JP2007083157A - Agitation apparatus - Google Patents

Agitation apparatus Download PDF

Info

Publication number
JP2007083157A
JP2007083157A JP2005274555A JP2005274555A JP2007083157A JP 2007083157 A JP2007083157 A JP 2007083157A JP 2005274555 A JP2005274555 A JP 2005274555A JP 2005274555 A JP2005274555 A JP 2005274555A JP 2007083157 A JP2007083157 A JP 2007083157A
Authority
JP
Japan
Prior art keywords
tank
stirring blade
solution
fluid
blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005274555A
Other languages
Japanese (ja)
Inventor
Hitomi Akiyama
仁美 秋山
Takashi Hara
敬 原
Kazuya Mori
一也 森
Yuji Isshiki
勇治 一色
Toshiaki Hasegawa
俊昭 長谷川
Junichi Tomonaga
淳一 朝長
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP2005274555A priority Critical patent/JP2007083157A/en
Publication of JP2007083157A publication Critical patent/JP2007083157A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Mixers Of The Rotary Stirring Type (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an agitation apparatus in which fluids can easily be mixed homogeneously and from which a mixed fluid can be discharged promptly without being retained in a tank as long as possible when discharged. <P>SOLUTION: The agitation apparatus 100 for agitating the fluid having 20-60 mPa-sec maximum viscosity at 25°C is provided with: the tank 10; an agitation blade 5; and a bottom discharge port 3. The agitation blade 5 is fit to a rotary shaft 4 hung from the outside of the tank toward the center of the tank 10. The angle θ formed by an extension line of the rotary shaft 4 and an extension line of the lower inclined surface 2 of the tank 10 is 10-55°, preferably, 15-50°. The agitation blade 5 preferably comprises an anchor blade at the least. The clearance (a) between the anchor blade 5 and the internal wall surface 1 of the tank 10 is preferably 1-50 mm and that between the anchor blade 5 and the internal bottom surface of the tank 10 is preferably 1-50 mm. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、流体の撹拌装置に関し、特に、25℃における粘度の最大値が約20〜約60ミリパスカル秒の粘凋な流体を混合撹拌する撹拌装置に関する。   The present invention relates to a fluid stirring device, and more particularly, to a stirring device for mixing and stirring a viscous fluid having a maximum viscosity at 25 ° C. of about 20 to about 60 millipascal seconds.

化学工業において、各種流体の撹拌は、一般に円筒形の壁面を有する直胴部と、その下端に連接し、縦断面が半楕円形の底面を有する下部からなる槽を備え、槽の中心に槽外から回転可能に配置した回転軸に撹拌翼が設けられた撹拌装置で行われる。   In the chemical industry, agitation of various fluids is generally provided with a straight body having a cylindrical wall surface, a tank connected to the lower end thereof, and a lower part having a bottom surface with a semi-elliptical longitudinal section. This is carried out by a stirring device in which a stirring blade is provided on a rotating shaft arranged rotatably from the outside.

撹拌翼は混合する流体の状態、物性に応じて適するさまざまな種類のものが好適に用いられている。   Various types of agitating blades suitable for the state and physical properties of the fluid to be mixed are suitably used.

ところで、流体は一般に、その粘度挙動に着目すると、ニュートンの粘性法則が成立するニュートン流体と、ニュートンの粘性法則が成立しない非ニュートン流体とに大別することができる。非ニュートン流体はさらに、いくつかの流体に分類することができ、例えば、擬塑性流体(構造粘性)、ダイラタント(ダイラタンシー)、ビンガム、非ビンガムのように細分することができる。これらの非ニュートン流体は、撹拌スピードの違いによって生じるずり応力の相違によりその挙動が異なるため、使用する撹拌翼については、その形状や槽に対する大きさおよび位置の選択が重要となる。特に、流体に特有の降伏値を有する、ビンガム、非ビンガムにおいては、降伏値以上のずり応力が与えられてはじめて、流動するものであるため、槽の排出性能を向上させるためには、撹拌翼の形状のほか、槽の形状についても重要となる。   By the way, in general, fluids can be broadly classified into Newtonian fluids in which Newton's viscosity law is established and non-Newtonian fluids in which Newton's viscosity law is not satisfied. Non-Newtonian fluids can be further classified into several fluids, for example, sub-plastic fluids (structural viscosity), dilatant (dilatancy), bingham, non-bingham. Since these non-Newtonian fluids have different behaviors due to the difference in shear stress caused by the difference in stirring speed, it is important to select the shape, size, and position of the stirring blade to be used. In particular, in Bingham and non-Bingham, which have a yield value peculiar to fluids, since they flow only when a shear stress higher than the yield value is given, in order to improve the discharge performance of the tank, a stirring blade In addition to the shape of the tank, the shape of the tank is also important.

各種流体の中でも、特に、付着性が強く、流動性の劣る流体を、槽内壁に付着させることなく均一に撹拌させることが、従来からの課題であり、これを解決する手段として、例えば、特許文献1が挙げられる。   Among various fluids, in particular, it is a conventional problem to uniformly stir a fluid with strong adhesion and poor fluidity without adhering to the inner wall of the tank. As a means for solving this problem, for example, a patent Reference 1 is cited.

特許文献1においては、粘度が高く、付着性が強い液体を撹拌するという観点で従来の撹拌翼を考察している。   In patent document 1, the conventional stirring blade is considered from a viewpoint of stirring a liquid with high viscosity and strong adhesiveness.

パドル翼は吐出性能が良くないほか、粘度の高い液体に使用すると翼のまわりだけ撹拌され、槽の内壁にある液体は動かないという難点がある。また、アンカー翼は槽底部や内壁の液体を良く撹拌する反面、上下の混合が悪く、特に粘度の高い液体では翼と液体とが共まわりしてしまい、撹拌作用が低下するおそれがある。一方、タービン翼のうち平羽根は剪断性に優れるが、吐出性能が良くないのに対し、傾斜翼はその逆の傾向、つまり、吐出性能に優れるが、剪断性が良くない。リボン翼は比較的高粘度液に向くけれども、構造が複雑で製作費が嵩み割高となる欠点がある。   Paddle blades have poor discharge performance, and when used for liquids with high viscosity, only the blades are agitated and the liquid on the inner wall of the tank does not move. In addition, the anchor blades stir the liquid at the bottom of the tank and the inner wall well, but the upper and lower mixing is poor. In particular, in a high-viscosity liquid, the blades and the liquid rotate together, which may reduce the stirring action. On the other hand, of the turbine blades, the flat blades are excellent in shearing properties, but the discharge performance is not good, while the inclined blades are in the opposite tendency, that is, the discharge performance is excellent, but the shearing properties are not good. Ribbon blades are suitable for relatively high-viscosity liquids, but have the disadvantage that the structure is complex and the manufacturing costs are high and expensive.

したがって、高粘度な液体を、槽内壁に付着させずに、水平方向とともに上下方向の混合を行って均一な撹拌を実施できる撹拌槽の出現が望まれており、アンカー翼・邪魔板・パドル翼を組み合わせることで、アンカー翼・邪魔板による平面的な全体混合と、パドル翼による上下混合との組み合わせで、均一撹拌を獲得していた。   Therefore, the advent of an agitation tank that can perform uniform agitation by mixing the liquid with high viscosity in the horizontal and vertical directions without adhering to the inner wall of the tank is desired, and the anchor blade, baffle plate, paddle blade By combining the two, a uniform mixing was obtained by a combination of planar overall mixing with anchor wings and baffle plates and vertical mixing with paddle wings.

特開平5−212261号公報JP-A-5-212261

しかしながら、従来技術においては、均一撹拌は達成するものの、次工程に液体を供給する際に、邪魔板裏の付着が多く、撹拌槽内から全量排出できずに、生産性の低下を招くといった懸念があった。特に連続生産を行う場合には、さらに槽内へ長時間残液が滞留し、品質を損なうといった懸念もあった。また、次工程へ定量供給が必要な場合において、供給する液体の量が少なくなってきた時に、撹拌翼先端から撹拌槽底部とのクリアランスがあると、重力方向への流れが弱くなり、定量的な供給ができずに品質を損なうといった問題があった。   However, in the prior art, although uniform stirring is achieved, there is a concern that when the liquid is supplied to the next process, the back of the baffle plate often adheres and the entire amount cannot be discharged from the stirring tank, leading to a decrease in productivity. was there. In particular, when continuous production is performed, there is also a concern that the remaining liquid stays in the tank for a long time, and the quality is impaired. In addition, when a constant supply to the next process is required, if the amount of liquid to be supplied is reduced, if there is a clearance from the tip of the stirring blade to the bottom of the stirring tank, the flow in the direction of gravity becomes weak and quantitative. There was a problem that quality could be lost due to inability to supply.

本発明は、流体を均一に撹拌混合させるとともに、撹拌混合によって得られた流体を槽内へ極力滞留させず、速やかに排出させることの可能な撹拌装置を提供する。   The present invention provides a stirring device that can uniformly stir and mix a fluid and can quickly discharge the fluid obtained by stirring and mixing without causing the fluid to stay in the tank as much as possible.

上記目的を達成するために、本発明は、槽と、撹拌翼と、底部排出口とからなる撹拌装置であって、25℃における粘度の最大値が20ミリパスカル秒から60ミリパスカル秒である流体を撹拌することを特徴とする。   In order to achieve the above object, the present invention is a stirring device comprising a tank, a stirring blade, and a bottom discharge port, and has a maximum viscosity at 25 ° C. of 20 to 60 millipascal seconds. The fluid is agitated.

上記撹拌装置において、撹拌翼は、前記槽の中心に槽外から垂下した回転軸に配置され、回転軸の延長線と槽の下部傾斜面の延長線とのなす角が、10°から55°であることが好ましい。   In the stirring apparatus, the stirring blade is disposed on a rotating shaft that hangs down from the outside of the tank at the center of the tank, and an angle formed by an extended line of the rotating shaft and an extended line of the lower inclined surface of the tank is 10 ° to 55 °. It is preferable that

上記撹拌装置において、撹拌翼は、槽内部の底面近傍の流体および壁面近傍の流体を掻きとるアンカー翼を少なくとも含むことが好ましい。   In the stirring device, the stirring blade preferably includes at least an anchor blade that scrapes off the fluid near the bottom surface and the fluid near the wall surface inside the tank.

上記撹拌装置において、アンカー翼と、槽内部の壁面とのクリアランスは、1から50mmであり、アンカー翼と、槽内部の底面とのクリアランスは、1から50mmであることが好ましい。   In the agitation apparatus, the clearance between the anchor blade and the wall surface inside the tank is preferably 1 to 50 mm, and the clearance between the anchor blade and the bottom surface inside the tank is preferably 1 to 50 mm.

本発明によれば、撹拌時には、邪魔板等の、流体の排出に妨げとなる部材を極力用いることなく容易に均一混合を行なうことが可能となるとともに、排出時には、混合によって得られた流体を槽内へ極力滞留させず、速やかに排出させることが可能となる。   According to the present invention, at the time of stirring, it is possible to easily perform uniform mixing without using a member such as a baffle that hinders the discharge of fluid as much as possible. It becomes possible to discharge quickly without stagnation as much as possible in the tank.

本発明の実施の形態について、図面に基づいて説明する。   Embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の実施の形態における流体の撹拌装置100の構成の概略を示す縦断面図である。撹拌装置100は、槽10と、底部排出口3と、撹拌翼5と、からなる。槽10は、円筒形の壁面1と、その下端から連接する円錐状の下部傾斜面2を有している。底部排出口3は、下部傾斜面2の円錐状頂点部分に備えられている。撹拌翼5は、槽10の中心に槽外から配置した回転軸4を含み、回転可能に設けられている。   FIG. 1 is a longitudinal sectional view showing an outline of a configuration of a fluid stirring apparatus 100 according to an embodiment of the present invention. The stirring device 100 includes a tank 10, a bottom discharge port 3, and a stirring blade 5. The tank 10 has a cylindrical wall surface 1 and a conical lower inclined surface 2 connected from the lower end thereof. The bottom discharge port 3 is provided at the conical apex portion of the lower inclined surface 2. The stirring blade 5 includes a rotating shaft 4 disposed from the outside of the tank at the center of the tank 10 and is rotatably provided.

本発明の実施の形態において、回転軸4の延長線xと下部傾斜面2の延長線mとのなす角θは、好ましくは10〜55°であり、より好ましくは15〜50°である。θを10°未満とした場合には、槽10の容量が低下する為、容量を確保しようとすると縦方向に長い撹拌槽となってしまう。特に、壁面1の大きさを一定とした場合には、下部傾斜面2の長さが長くなるため、やはり全体として縦方向に長い撹拌槽となってしまう。いずれにしても、θを10°未満とすることは、現実的ではない。一方、θが55°を越えると、円錐状の下部傾斜面2の、水平面に対する角度が緩やかになるため、重力方向の流動性が低下し、流体が底部排出口3まで到達せずに下部傾斜面2上に滞留してしまい、全量排出が容易でない。   In the embodiment of the present invention, the angle θ formed by the extension line x of the rotating shaft 4 and the extension line m of the lower inclined surface 2 is preferably 10 to 55 °, more preferably 15 to 50 °. When θ is less than 10 °, the capacity of the tank 10 is reduced. Therefore, when the capacity is secured, the stirring tank becomes long in the vertical direction. In particular, when the size of the wall surface 1 is constant, the length of the lower inclined surface 2 becomes longer, so that the overall stirring tank is long in the vertical direction as a whole. In any case, it is not realistic to make θ less than 10 °. On the other hand, when θ exceeds 55 °, the angle of the conical lower inclined surface 2 with respect to the horizontal plane becomes gentle, so that the fluidity in the direction of gravity decreases, and the fluid does not reach the bottom discharge port 3 and is inclined downward. It stays on the surface 2 and it is not easy to discharge the whole amount.

撹拌翼5は、その先端部が、流体と接する槽10内部において、壁面1、下部傾斜面2および底部排出口3全てに近接していればいかなる形状のものでも良い。つまり、槽10内部の壁面1近傍の流体および下部傾斜面2、底部排出口3で規定される底面近傍の流体を掻きとり、槽10内部を均一に混合撹拌することができるものであれば、いかなるものでもよいが、構造が複雑になると撹拌翼への付着が多くなる為、簡単なものが好ましい。例えば、壁面1、下部傾斜面2および底部排出口3に近接し、一続きに沿った錨型の垂直平板からなる翼で構成された、図1に示すようなアンカー翼などが適している。必要に応じて、槽10の深さ方向の撹拌を補助するパドル翼などを併用しても良い。   The stirring blade 5 may have any shape as long as the tip thereof is close to all of the wall surface 1, the lower inclined surface 2, and the bottom discharge port 3 in the tank 10 in contact with the fluid. That is, if the fluid in the vicinity of the wall surface 1 in the tank 10 and the fluid in the vicinity of the bottom surface defined by the lower inclined surface 2 and the bottom discharge port 3 are scraped and the inside of the tank 10 can be uniformly mixed and stirred, Any material may be used, but if the structure is complicated, adhesion to the stirring blade increases, so that a simple structure is preferable. For example, an anchor wing as shown in FIG. 1, which is composed of a wing made of a saddle-shaped vertical flat plate adjacent to the wall surface 1, the lower inclined surface 2 and the bottom discharge port 3, is suitable. If necessary, a paddle blade or the like that assists stirring in the depth direction of the tank 10 may be used in combination.

また、撹拌翼5の先端部と槽内壁とのクリアランスは、好ましくは1〜50mmである。より好ましくは、撹拌翼5と壁面1とのクリアランスaは1〜10mm、撹拌翼5と下部傾斜面2とのクリアランスbは1〜10mm、撹拌翼5と底部排出口3とのクリアランスcは1〜10mmである。撹拌翼5の先端部と槽内壁とのクリアランスが1mm未満の時には、撹拌時の振動により槽内壁と撹拌翼とが接触してしまい、槽や撹拌翼を傷つけてしまうおそれがある。また、撹拌翼5の先端部と槽内壁とのクリアランスが50mm以上の時には、槽内壁近傍の撹拌作用が弱くなる為、槽内壁への流体付着が多くなってしまうおそれがあるばかりか、高粘度溶液については均一混合が行なえないおそれもある。   The clearance between the tip of the stirring blade 5 and the inner wall of the tank is preferably 1 to 50 mm. More preferably, the clearance a between the stirring blade 5 and the wall surface 1 is 1 to 10 mm, the clearance b between the stirring blade 5 and the lower inclined surface 2 is 1 to 10 mm, and the clearance c between the stirring blade 5 and the bottom discharge port 3 is 1. -10 mm. When the clearance between the tip of the stirring blade 5 and the inner wall of the tank is less than 1 mm, the inner wall of the tank and the stirring blade come into contact with each other due to vibration during stirring, and the tank and the stirring blade may be damaged. Further, when the clearance between the tip of the stirring blade 5 and the inner wall of the tank is 50 mm or more, the stirring action in the vicinity of the inner wall of the tank is weakened, so that there is a risk of increasing the adhesion of fluid to the inner wall of the tank. There is a possibility that uniform mixing cannot be performed for the solution.

底部排出口3は、槽10内部の流体を排出可能な開口を有していればいかなるものでも良いが、例えば、フラッシュバルブやシャットノズルなどを設けて、槽10からの流体の排出を制御可能としてもよい。   The bottom discharge port 3 may be anything as long as it has an opening capable of discharging the fluid inside the tank 10. For example, a flush valve or a shut nozzle can be provided to control the discharge of the fluid from the tank 10. It is good.

内容物の流体が発熱を伴う場合、槽10の周囲に図示しないジャケットを設け、冷却水を通水させて冷却できるように構成してもよい。このとき、内容物の流体を加熱する必要があれば、温水、蒸気、熱媒体をジャケットへ導入することもできる。   When the fluid of the contents is accompanied by heat generation, a jacket (not shown) may be provided around the tub 10 so that the cooling water can be passed through and cooled. At this time, if it is necessary to heat the fluid of the contents, warm water, steam, or a heat medium can be introduced into the jacket.

本実施の形態における撹拌槽装置100の材質、特に流体と直接接触する部分の材質は、耐食性を有する、例えばSUS304などのステンレス鋼が好ましい。   The material of the agitation tank apparatus 100 in the present embodiment, in particular, the material of the portion in direct contact with the fluid, is preferably corrosion resistant stainless steel such as SUS304.

また、本実施の形態において、図1に示すように、槽10の壁面1の内径をB、底部排出口3の内径をAとすると、0.1B<A<0.5Bであることが好ましい。Aが0.1B以下の時には、底部排出口3の内径が狭くなり、流体の排出時に抵抗が増し、スムーズな排出が阻害されるおそれがある。一方、Aが0.5B以上の時には、円錐状の下部傾斜面2の長さが短くなってしまうため、重力方向の流動性が低下する。   Further, in the present embodiment, as shown in FIG. 1, when the inner diameter of the wall surface 1 of the tank 10 is B and the inner diameter of the bottom discharge port 3 is A, it is preferable that 0.1B <A <0.5B. . When A is 0.1 B or less, the inner diameter of the bottom discharge port 3 becomes narrow, resistance increases when the fluid is discharged, and smooth discharge may be hindered. On the other hand, when A is 0.5B or more, the length of the conical lower inclined surface 2 is shortened, so that the fluidity in the direction of gravity is lowered.

図2は、本発明の他の実施の形態における流体の撹拌装置200の構成の概略を示す縦断面図である。撹拌装置200は、傾斜した平板4枚傾斜パドルからなる撹拌翼6を備えたことを除いて、あとは図1に示した撹拌装置100の構成と略同一である。   FIG. 2 is a longitudinal sectional view showing an outline of a configuration of a fluid stirring apparatus 200 according to another embodiment of the present invention. The agitator 200 has substantially the same configuration as that of the agitator 100 shown in FIG. 1 except that the agitator 200 includes an agitating blade 6 composed of four inclined flat paddles.

本実施の形態において、底部排出口3にはフラッシュバルブが設けられている。また、槽10の中心に垂下した垂線を回転軸4として、槽外から可変速電動機によって回転駆動される、撹拌翼5が設けられている。本実施の形態において使用した可変速電動機は、回転数を0〜30rpmの範囲で調整可能である。回転軸4にはまた、回転軸4と垂直方向の回転軸を有する撹拌翼6が設けられており、撹拌翼5と伴って回転する。   In the present embodiment, the bottom discharge port 3 is provided with a flash valve. Further, a stirring blade 5 that is rotated by a variable speed electric motor from the outside of the tank is provided with a vertical line hanging from the center of the tank 10 as a rotation axis 4. The variable speed electric motor used in the present embodiment can adjust the rotational speed in the range of 0 to 30 rpm. The rotating shaft 4 is also provided with a stirring blade 6 having a rotating shaft perpendicular to the rotating shaft 4, and rotates with the stirring blade 5.

撹拌翼5は、壁面1、下部傾斜面2、底部排出口3それぞれの槽10の内部近傍を掻きとり可能に一続きに沿った錨型の垂直平板からなるアンカー翼で構成されており、攪拌翼5の幅dは、好ましくは80mm〜100mmである。撹拌翼6は、撹拌翼5より上部の位置に、鉛直方向より60°傾斜した平板4枚傾斜パドルで構成されており、攪拌翼6の幅eは、好ましくは80mm〜100mmである。   The stirring blade 5 is composed of anchor blades composed of vertical vertical plates that are continuous along the wall 10, the lower inclined surface 2, and the bottom discharge port 3 so as to scrape the vicinity of the inside of the tank 10. The width d of the blade 5 is preferably 80 mm to 100 mm. The stirring blade 6 is composed of four flat plate inclined paddles inclined at 60 ° from the vertical direction at a position above the stirring blade 5, and the width e of the stirring blade 6 is preferably 80 mm to 100 mm.

回転軸4の延長線xと下部傾斜面2の延長線mとのなす角をθとし、撹拌翼5と壁面1内部とのクリアランスをa、撹拌翼5と下部傾斜面2とのクリアランスをb、撹拌翼5と底部排出口3とのクリアランスをcとした。また、底部排出口3の内径をA、壁面1の内径をBとした。   The angle between the extension line x of the rotating shaft 4 and the extension line m of the lower inclined surface 2 is θ, the clearance between the stirring blade 5 and the wall surface 1 is a, and the clearance between the stirring blade 5 and the lower inclined surface 2 is b. The clearance between the stirring blade 5 and the bottom outlet 3 was c. The inner diameter of the bottom discharge port 3 is A, and the inner diameter of the wall surface 1 is B.

図2に示す撹拌装置200において、A、B、θ、a、bおよびcの値をそれぞれ変化させたものを用いて、本発明の実施の形態における撹拌装置の実施例と、これとは異なる参考例および比較例について、以下に説明する。なお、d、eについては、いずれも0.1Bになるよう一定になるようにし、例えば85mmで一定とした。   The stirring device 200 shown in FIG. 2 is different from the example of the stirring device according to the embodiment of the present invention by using the devices in which the values of A, B, θ, a, b, and c are changed. Reference examples and comparative examples will be described below. Note that d and e are both constant at 0.1 B, for example, constant at 85 mm.

[実施例1]
A=210mm、B=880mm、θ=30°、容積約0.7mの、SUS304製の槽を備えた撹拌装置を使用した。シリカ(SiO)20%水溶液(スノーテックスXS(商品名)、体積平均粒径4nm、日産化学工業株式会社製)75重量%、ポリ塩化アルミニウム水溶液(PAC100W(商品名)、浅田化学工業株式会社製)2.5重量%および0.02mol/リットルHNO水溶液22.5重量%を、総仕込み量が520kg(槽容積の約70%)となるように用意し、これを試料とした。
[Example 1]
A stirrer equipped with a tank made of SUS304 having A = 210 mm, B = 880 mm, θ = 30 °, and a volume of about 0.7 m 3 was used. Silica (SiO 2 ) 20% aqueous solution (Snowtex XS (trade name), volume average particle size 4 nm, manufactured by Nissan Chemical Industries, Ltd.) 75% by weight, polyaluminum chloride aqueous solution (PAC100W (trade name), Asada Chemical Co., Ltd.) (Manufactured) 2.5 wt% and 0.02 mol / liter HNO 3 aqueous solution 22.5 wt% were prepared so that the total charged amount was 520 kg (about 70% of the tank volume), and this was used as a sample.

槽の内部とのクリアランスをそれぞれa=10mm、b=10mm、c=10mmとなるように設けた、SUS304製の撹拌翼5を回転数25rpmで20分間回転させて上記試料の混合撹拌を行い、シリカ凝集溶液を調製した。   The sample was mixed and stirred by rotating a stirring blade 5 made of SUS304 at a rotational speed of 25 rpm for 20 minutes, with clearances from the inside of the tank set to be a = 10 mm, b = 10 mm, and c = 10 mm, respectively. A silica flocculation solution was prepared.

このシリカ凝集溶液は、撹拌を続けると粘度が一旦上昇し、その後下降するという性質を有しており、通常の測定での数値ではばらつきが生じる場合も多い。このため、本明細書でいう「粘度」とは、被験試料をB型粘度計(トキメック社製、VISCONIC-ED型)によって、せん断速度5〜400s−1の条件下で測定を行なったときの最大値をいう。 This silica agglomerated solution has the property that when the stirring is continued, the viscosity once rises and then falls, and there are many cases in which the numerical values in ordinary measurements vary. For this reason, "viscosity" as used in the present specification means that when a test sample is measured with a B-type viscometer (VISCONIC-ED type, manufactured by Tokimec Co., Ltd.) under a shear rate of 5 to 400 s -1 . The maximum value.

得られたシリカ凝集溶液は、pH3.0、比重1.14、粘度40mPa・sec(いずれも25℃で測定)を示す流体であった。また、この溶液は、容器を傾けてもしばらく流動しないが、水平から40°を超える程度まで液面を傾けるとはじめて、流動性を示す。つまり、得られたシリカ凝集溶液は、ある特定の降伏値を有する流体であると考えられる。   The obtained silica aggregation solution was a fluid having a pH of 3.0, a specific gravity of 1.14, and a viscosity of 40 mPa · sec (all measured at 25 ° C.). In addition, this solution does not flow for a while even when the container is tilted, but exhibits fluidity only when the liquid surface is tilted to an extent exceeding 40 ° from the horizontal. That is, the obtained silica aggregation solution is considered to be a fluid having a specific yield value.

得られたシリカ凝集溶液を、撹拌翼5を25rpmで回転させながら底部排出口3より排出した。排出率(排出量/仕込み量)が97%以上となった時点でほぼ排出がなされたものとみなし、排出開始からの時間を計測すると、38秒であった。また、底部排出口3より排出されたシリカ凝集溶液の全量を計量し、最終排出率を算出した結果、98%であり、槽内の付着がなく、ほぼ全量排出することができた。なお、最終排出率の評価は、98%以上を◎、97%〜98%未満を○、90%〜97%未満を△、90%未満を×とし、これらの結果を表1、表3に示した。   The obtained silica agglomerated solution was discharged from the bottom outlet 3 while rotating the stirring blade 5 at 25 rpm. When the discharge rate (discharge amount / preparation amount) reached 97% or more, it was considered that discharge was almost completed, and the time from the start of discharge was 38 seconds. Moreover, as a result of measuring the total amount of the silica aggregation solution discharged | emitted from the bottom part discharge port 3, and calculating the final discharge | emission rate, it was 98%, and there was no adhesion in a tank and it was able to discharge | emit almost all. The final emission rate was evaluated as follows: 98% or more: ◎, 97% to less than 98% ○, 90% to less than 97% △, less than 90% ×, and these results are shown in Tables 1 and 3 Indicated.

[実施例2]
θ=15°、槽の容積約0.7mである槽を有することを除いて、実施例1と同様の撹拌装置を使用した。総仕込み量が520kg(槽容積の約70%)となるように実施例1と同様の試料を用意して撹拌混合を行い、シリカ凝集溶液を調製した。得られたシリカ凝集溶液は、pH3.0、比重1.14、粘度40mPa・sec(いずれも25℃で測定)を示し、実施例1で得られた溶液と同様の流体であった。
[Example 2]
A stirrer similar to that of Example 1 was used except that it had a tank with θ = 15 ° and a volume of the tank of about 0.7 m 3 . A sample similar to that in Example 1 was prepared and stirred and mixed so that the total charged amount was 520 kg (about 70% of the tank volume) to prepare a silica aggregation solution. The obtained silica aggregation solution exhibited a pH of 3.0, a specific gravity of 1.14, a viscosity of 40 mPa · sec (all measured at 25 ° C.), and was the same fluid as the solution obtained in Example 1.

得られたシリカ凝集溶液を、撹拌翼5を25rpmで回転させながら底部排出口3より排出した。排出開始から、排出率が97%以上となった時点までの時間を計測すると、32秒であった。また、最終排出率は、98.5%であった。結果を表1に示した。   The obtained silica agglomerated solution was discharged from the bottom outlet 3 while rotating the stirring blade 5 at 25 rpm. The time from the start of discharge until the point when the discharge rate reached 97% or more was measured, and it was 32 seconds. The final emission rate was 98.5%. The results are shown in Table 1.

[実施例3]
θ=50°、槽の容積約0.7mである槽を有することを除いて、あとは実施例1と同様の撹拌装置を使用した。総仕込み量が520kg(槽容積の約70%)となるように実施例1と同様の試料を用意し、撹拌混合を行い、シリカ凝集溶液を調製した。得られたシリカ凝集溶液は、pH3.0、比重1.14、粘度40mPa・sec(いずれも25℃で測定)を示し、実施例1で得られた溶液と同様の流体であった。
[Example 3]
A stirrer similar to that of Example 1 was used except that a tank having θ = 50 ° and a tank volume of about 0.7 m 3 was used. A sample similar to that in Example 1 was prepared so that the total charged amount was 520 kg (about 70% of the tank volume), and stirred and mixed to prepare a silica aggregation solution. The obtained silica aggregation solution exhibited a pH of 3.0, a specific gravity of 1.14, a viscosity of 40 mPa · sec (all measured at 25 ° C.), and was the same fluid as the solution obtained in Example 1.

得られたシリカ凝集溶液を、撹拌翼5を25rpmで回転させながら底部排出口3より排出した。排出開始から、排出率が97%以上となった時点までの時間を計測すると、43秒であった。また、最終排出率は、97.5%であった。結果を表1に示した。   The obtained silica agglomerated solution was discharged from the bottom outlet 3 while rotating the stirring blade 5 at 25 rpm. It was 43 seconds when the time from the start of discharge to the time when the discharge rate reached 97% or more was measured. The final discharge rate was 97.5%. The results are shown in Table 1.

[実施例4]
シリカ20%水溶液70重量%、ポリ塩化アルミニウム水溶液3.0重量%および0.02mol/リットルHNO水溶液27.0重量%を、総仕込み量が520kgとなるように用意した。撹拌装置は、実施例1と同様のものを使用し、撹拌翼5を回転数25rpmで20分間回転させて上記試料の混合撹拌を行い、シリカ凝集溶液を調製した。得られたシリカ凝集溶液は、pH2.5、比重1.16、粘度55mPa・sec(いずれも25℃で測定)を示し、降伏値を有する流体であった。
[Example 4]
A silica 20% aqueous solution 70% by weight, a polyaluminum chloride aqueous solution 3.0% by weight, and a 0.02 mol / liter HNO 3 aqueous solution 27.0% by weight were prepared so that the total charge amount was 520 kg. The same stirrer as in Example 1 was used, and the stirring blade 5 was rotated at a rotation speed of 25 rpm for 20 minutes to mix and stir the sample, thereby preparing a silica aggregation solution. The obtained silica aggregation solution exhibited a pH of 2.5, a specific gravity of 1.16, a viscosity of 55 mPa · sec (all measured at 25 ° C.), and was a fluid having a yield value.

得られたシリカ凝集溶液を、撹拌翼5を25rpmで回転させながら底部排出口3より排出した。排出開始から、排出率が97%以上となった時点までの時間を計測すると、50秒であった。また、最終排出率は、98.3%であった。結果を表1、表3に示した。   The obtained silica agglomerated solution was discharged from the bottom outlet 3 while rotating the stirring blade 5 at 25 rpm. It was 50 seconds when the time from the start of discharge to the time when the discharge rate reached 97% or more was measured. The final emission rate was 98.3%. The results are shown in Tables 1 and 3.

[参考例1]
θ=60°、槽の容積約0.7mである槽を有することを除いて、あとは実施例1と同様の撹拌装置を使用した。総仕込み量が520kg(槽容積の約70%)となるように実施例1と同様の試料を用意し、撹拌混合を行い、シリカ凝集溶液を調製した。得られたシリカ凝集溶液は、pH3.0、比重1.14、粘度40mPa・sec(いずれも25℃で測定)を示し、実施例1で得られた溶液と同様の流体であった。
[Reference Example 1]
A stirrer similar to that of Example 1 was used except that the tank had a θ = 60 ° and a tank volume of about 0.7 m 3 . A sample similar to that in Example 1 was prepared so that the total charged amount was 520 kg (about 70% of the tank volume), and stirred and mixed to prepare a silica aggregation solution. The obtained silica aggregation solution exhibited a pH of 3.0, a specific gravity of 1.14, a viscosity of 40 mPa · sec (all measured at 25 ° C.), and was the same fluid as the solution obtained in Example 1.

得られたシリカ凝集溶液を、撹拌翼5を25rpmで回転させながら底部排出口3より排出した。最終排出率は、92.6%であり、下部傾斜面2に若干滞留しているスラリーが見られた。結果を表1に示した。   The obtained silica agglomerated solution was discharged from the bottom outlet 3 while rotating the stirring blade 5 at 25 rpm. The final discharge rate was 92.6%, and a slurry slightly staying on the lower inclined surface 2 was observed. The results are shown in Table 1.

[比較例1]
槽内部と撹拌翼5とのクリアランスをそれぞれa=80mm、b=80mm、c=80mmとすることを除いて、あとは参考例1と同様の撹拌装置を使用した。総仕込み量が520kg(槽容積の約70%)となるように実施例1と同様の試料を用意し、撹拌混合を行い、シリカ凝集溶液を調製した。得られたシリカ凝集溶液は、pH3.0、比重1.14、粘度40mPa・sec(いずれも25℃で測定)を示し、実施例1で得られた溶液と同様の流体であった。
[Comparative Example 1]
The same stirrer as in Reference Example 1 was used except that the clearance between the inside of the tank and the stirring blade 5 was set to a = 80 mm, b = 80 mm, and c = 80 mm, respectively. A sample similar to that in Example 1 was prepared so that the total charged amount was 520 kg (about 70% of the tank volume), and stirred and mixed to prepare a silica aggregation solution. The obtained silica aggregation solution exhibited a pH of 3.0, a specific gravity of 1.14, a viscosity of 40 mPa · sec (all measured at 25 ° C.), and was the same fluid as the solution obtained in Example 1.

得られたシリカ凝集溶液を、撹拌翼5を25rpmで回転させながら底部排出口3より排出した。最終排出率は、80.0%であり、実施例と比較しても、明らかに壁面への付着および下部傾斜面に堆積したシリカ凝集溶液が増えた。結果を表1に示した。

Figure 2007083157
The obtained silica agglomerated solution was discharged from the bottom outlet 3 while rotating the stirring blade 5 at 25 rpm. The final discharge rate was 80.0%. Even when compared with the example, the adhesion to the wall surface and the silica aggregation solution deposited on the lower inclined surface increased. The results are shown in Table 1.
Figure 2007083157

表1に示すように、本発明の撹拌装置は、回転軸4の延長線xと下部傾斜面2の延長線mとのなす角θは60°未満である槽を有することが好ましく、θの値が小さくなるにつれて排出時間が短縮されることがわかる。特に、θが10°から55°に範囲においては、粘度60mPa・sec程度以下の流体、特に、25℃における粘度の最大値が20〜60mPa・secの流体をほぼ全量排出させることが可能である。また、θの値だけでなく、槽と撹拌翼とのクリアランスの幅についても、排出性能に影響を及ぼすことがわかる。   As shown in Table 1, the stirring device of the present invention preferably has a tank in which an angle θ formed by the extension line x of the rotating shaft 4 and the extension line m of the lower inclined surface 2 is less than 60 °. It can be seen that the discharge time is shortened as the value decreases. In particular, when θ is in the range of 10 ° to 55 °, it is possible to discharge almost all fluids having a viscosity of about 60 mPa · sec or less, particularly fluids having a maximum viscosity at 25 ° C. of 20 to 60 mPa · sec. . It can also be seen that not only the value of θ but also the clearance width between the tank and the stirring blade affects the discharge performance.

[実施例5]
A=105mm、B=440mm、θ=30°、容積約0.1mである槽を有することを除いて、あとは実施例1と同様の撹拌装置を使用した。また、総仕込み量が80kg(槽容積の約70%)となるように、実施例1と同様の試料を用意した。
[Example 5]
A stirrer similar to that of Example 1 was used, except that a tank having A = 105 mm, B = 440 mm, θ = 30 °, and a volume of about 0.1 m 3 was used. Moreover, the same sample as Example 1 was prepared so that the total preparation amount might be 80 kg (about 70% of the tank volume).

槽内部とのクリアランスをそれぞれa=1mm、b=1mm、c=1mmとした撹拌翼5を回転数20rpmで20分間回転させて上記試料の混合撹拌を行い、シリカ凝集溶液を調製した。得られたシリカ凝集溶液は、pH3.0、比重1.14、粘度40mPa・sec(いずれも25℃で測定)を示し、実施例1で得られた溶液と同様の流体であった。   The agitation blade 5 with clearances a = 1 mm, b = 1 mm, and c = 1 mm from the inside of the tank was rotated for 20 minutes at a rotation speed of 20 rpm, and the sample was mixed and stirred to prepare a silica aggregation solution. The obtained silica aggregation solution exhibited a pH of 3.0, a specific gravity of 1.14, a viscosity of 40 mPa · sec (all measured at 25 ° C.), and was the same fluid as the solution obtained in Example 1.

得られたシリカ凝集溶液を、撹拌翼5を20rpmで回転させながら底部排出口3より排出した。排出開始から、排出率が97%以上となった時点までの時間を計測すると、22秒であった。また、最終排出率は、98.5%であった。結果を表2に示した。   The obtained silica aggregation solution was discharged from the bottom discharge port 3 while rotating the stirring blade 5 at 20 rpm. It was 22 seconds when the time from the start of discharge to the time when the discharge rate reached 97% or more was measured. The final emission rate was 98.5%. The results are shown in Table 2.

[実施例6]
槽内部と撹拌翼5とのクリアランスをそれぞれa=10mm、b=10mm、c=10mmとすることを除いて、あとは実施例5と同様の撹拌装置を使用した。総仕込み量が80kg(槽容積の約70%)となるように実施例5と同様の試料を用意し、回転数20rpmで20分間撹拌翼5を回転させて上記試料の撹拌混合を行い、シリカ凝集溶液を調製した。得られたシリカ凝集溶液は、pH3.0、比重1.14、粘度40mPa・sec(いずれも25℃で測定)を示し、実施例1で得られた溶液と同様の流体であった。
[Example 6]
The same stirrer as in Example 5 was used except that the clearance between the inside of the tank and the stirring blade 5 was a = 10 mm, b = 10 mm, and c = 10 mm, respectively. A sample similar to that of Example 5 was prepared so that the total charged amount was 80 kg (about 70% of the tank volume), and the sample was stirred and mixed by rotating the stirring blade 5 at a rotation speed of 20 rpm for 20 minutes. An aggregation solution was prepared. The obtained silica aggregation solution exhibited a pH of 3.0, a specific gravity of 1.14, a viscosity of 40 mPa · sec (all measured at 25 ° C.), and was the same fluid as the solution obtained in Example 1.

得られたシリカ凝集溶液を、撹拌翼5を20rpmで回転させながら底部排出口3より排出した。排出開始から、排出率が97%以上となった時点までの時間を計測すると、23秒であった。また、最終排出率は、98.0%であった。結果を表2に示した。   The obtained silica aggregation solution was discharged from the bottom discharge port 3 while rotating the stirring blade 5 at 20 rpm. It was 23 seconds when the time from the start of discharge until the point when the discharge rate reached 97% or more was measured. The final discharge rate was 98.0%. The results are shown in Table 2.

[実施例7]
A=157.5mm、B=660mm、θ=30°、容積約0.3mの槽を有することを除いて、あとは実施例5と同様の撹拌装置を使用した。また、総仕込み量が240kg(槽容積の約70%)となるように実施例5と同様の試料を用意した。
[Example 7]
A = 157.5mm, B = 660mm, θ = 30 °, except that it has a bath volume of about 0.3 m 3, after the using the same stirrer as in Example 5. Moreover, the same sample as Example 5 was prepared so that a total preparation amount might be 240 kg (about 70% of the tank volume).

槽内部とのクリアランスをそれぞれa=3mm、b=3mm、c=3mmとした撹拌翼5を回転数23rpmで20分間回転させて上記試料の混合撹拌を行い、シリカ凝集溶液を調製した。得られたシリカ凝集溶液は、pH3.0、比重1.14、粘度40mPa・sec(いずれも25℃で測定)を示し、実施例1で得られた溶液と同様の流体であった。   The agitation blade 5 with clearances from the inside of the tank of a = 3 mm, b = 3 mm, and c = 3 mm was rotated for 20 minutes at a rotational speed of 23 rpm, and the sample was mixed and stirred to prepare a silica aggregation solution. The obtained silica aggregation solution exhibited a pH of 3.0, a specific gravity of 1.14, a viscosity of 40 mPa · sec (all measured at 25 ° C.), and was the same fluid as the solution obtained in Example 1.

得られたシリカ凝集溶液を、撹拌翼5を23rpmで回転させながら底部排出口3より排出した。排出開始から、排出率が97%以上となった時点までの時間を計測すると、29秒であった。また、最終排出率は、98.3%であった。結果を表2に示した。   The obtained silica agglomerated solution was discharged from the bottom discharge port 3 while rotating the stirring blade 5 at 23 rpm. The time from the start of discharge until the point when the discharge rate reached 97% or more was measured, and it was 29 seconds. The final emission rate was 98.3%. The results are shown in Table 2.

[実施例8]
槽内部と撹拌翼5とのクリアランスをそれぞれa=20mm、b=20mm、c=20mmとすることを除いて、あとは実施例7と同様の撹拌装置を使用した。総仕込み量が240kg(槽容積の約70%)となるように実施例7と同様の試料を用意し、回転数23rpmで20分間撹拌翼5を回転させて上記試料の撹拌混合を行い、シリカ凝集溶液を調製した。得られたシリカ凝集溶液は、pH3.0、比重1.14、粘度40mPa・sec(いずれも25℃で測定)を示し、実施例1で得られた溶液と同様の流体であった。
[Example 8]
The same stirrer as in Example 7 was used except that the clearance between the inside of the tank and the stirring blade 5 was set to a = 20 mm, b = 20 mm, and c = 20 mm, respectively. A sample similar to that in Example 7 was prepared so that the total charged amount was 240 kg (about 70% of the tank volume), and the sample was stirred and mixed by rotating the stirring blade 5 at a rotational speed of 23 rpm for 20 minutes. An aggregation solution was prepared. The obtained silica aggregation solution exhibited a pH of 3.0, a specific gravity of 1.14, a viscosity of 40 mPa · sec (all measured at 25 ° C.), and was the same fluid as the solution obtained in Example 1.

得られたシリカ凝集溶液を、撹拌翼5を23rpmで回転させながら底部排出口3より排出した。排出開始から、排出率が97%以上となった時点までの時間を計測すると、33秒であった。また、最終排出率は、97.6%であった。結果を表2に示した。

Figure 2007083157
The obtained silica agglomerated solution was discharged from the bottom discharge port 3 while rotating the stirring blade 5 at 23 rpm. It was 33 seconds when the time from the start of discharge until the point when the discharge rate reached 97% or more was measured. The final emission rate was 97.6%. The results are shown in Table 2.
Figure 2007083157

表2に示すように、内径Bが440〜660mm程度の比較的槽の容量の小さい撹拌装置においては、クリアランスa、b、cがそれぞれ1〜20mm程度の条件下で、好適に均一撹拌および好適な排出を図ることができる。   As shown in Table 2, in an agitator with a relatively small tank capacity having an inner diameter B of about 440 to 660 mm, uniform agitation and suitable under conditions where the clearances a, b and c are about 1 to 20 mm, respectively. Discharge can be achieved.

[実施例9]
槽内部と撹拌翼5とのクリアランスをそれぞれa=3mm、b=3mm、c=3mmとすることを除いて、あとは実施例1と同様の撹拌装置を使用した。総仕込み量が520kg(槽容積の約70%)となるように実施例1と同様の試料を用意し、回転数25rpmで20分間撹拌翼5を回転させて上記試料の撹拌混合を行い、シリカ凝集溶液を調製した。得られたシリカ凝集溶液は、pH3.0、比重1.14、粘度40mPa・sec(いずれも25℃で測定)を示し、実施例1で得られた溶液と同様の流体であった。
[Example 9]
The same stirrer as in Example 1 was used except that the clearance between the inside of the tank and the stirring blade 5 was set to a = 3 mm, b = 3 mm, and c = 3 mm, respectively. A sample similar to that of Example 1 was prepared so that the total charged amount was 520 kg (about 70% of the tank volume), and the sample was stirred and mixed by rotating the stirring blade 5 at a rotation speed of 25 rpm for 20 minutes. An aggregation solution was prepared. The obtained silica aggregation solution exhibited a pH of 3.0, a specific gravity of 1.14, a viscosity of 40 mPa · sec (all measured at 25 ° C.), and was the same fluid as the solution obtained in Example 1.

得られたシリカ凝集溶液を、撹拌翼5を25rpmで回転させながら底部排出口3より排出した。排出開始から、排出率が97%以上となった時点までの時間を計測すると、36秒であった。また、最終排出率は、98.9%であった。結果を表3に示した。   The obtained silica agglomerated solution was discharged from the bottom outlet 3 while rotating the stirring blade 5 at 25 rpm. The time from the start of discharge until the point when the discharge rate reached 97% or more was measured, and it was 36 seconds. The final emission rate was 98.9%. The results are shown in Table 3.

[実施例10]
槽内部と撹拌翼5とのクリアランスをそれぞれa=30mm、b=30mm、c=30mmとすることを除いて、あとは実施例9と同様の撹拌装置を使用した。総仕込み量が520kg(槽容積の約70%)となるように実施例9と同様の試料を用意し、回転数25rpmで20分間撹拌翼5を回転させて上記試料の撹拌混合を行い、シリカ凝集溶液を調製した。得られたシリカ凝集溶液は、pH3.0、比重1.14、粘度40mPa・sec(いずれも25℃で測定)を示し、実施例1で得られた溶液と同様の流体であった。
[Example 10]
The same stirrer as in Example 9 was used except that the clearance between the inside of the tank and the stirring blade 5 was set to a = 30 mm, b = 30 mm, and c = 30 mm, respectively. A sample similar to that in Example 9 was prepared so that the total charged amount was 520 kg (about 70% of the tank volume), and the sample was stirred and mixed by rotating the stirring blade 5 at a rotation speed of 25 rpm for 20 minutes. An aggregation solution was prepared. The obtained silica aggregation solution exhibited a pH of 3.0, a specific gravity of 1.14, a viscosity of 40 mPa · sec (all measured at 25 ° C.), and was the same fluid as the solution obtained in Example 1.

得られたシリカ凝集溶液を、撹拌翼5を25rpmで回転させながら底部排出口3より排出した。排出開始から、排出率が97%以上となった時点までの時間を計測すると、40秒であった。また、最終排出率は、98.0%であった。結果を表3に示した。   The obtained silica agglomerated solution was discharged from the bottom outlet 3 while rotating the stirring blade 5 at 25 rpm. It was 40 seconds when the time from the start of discharge until the point when the discharge rate reached 97% or more was measured. The final discharge rate was 98.0%. The results are shown in Table 3.

[実施例11]
A=225mm、B=950mm、θ=30°、容積約0.95mの槽を有することを除いて、あとは実施例9と同様の撹拌装置を使用した。また、総仕込み量が760kg(槽容積の約70%)となるように、実施例9と同様の試料を用意した。
[Example 11]
A stirrer similar to that of Example 9 was used except that a tank having A = 225 mm, B = 950 mm, θ = 30 °, and a volume of about 0.95 m 3 was used. Moreover, the same sample as Example 9 was prepared so that the total preparation amount might be 760 kg (about 70% of the tank volume).

槽内部とのクリアランスをそれぞれa=5mm、b=5mm、c=5mmとした撹拌翼5を回転数27rpmで20分間回転させて上記試料の混合撹拌を行い、シリカ凝集溶液を調製した。得られたシリカ凝集溶液は、pH3.0、比重1.14、粘度40mPa・sec(いずれも25℃で測定)を示し、実施例1で得られた溶液と同様の流体であった。   The agitation blade 5 with clearances a = 5 mm, b = 5 mm, and c = 5 mm from the inside of the tank was rotated for 20 minutes at a rotation speed of 27 rpm, and the sample was mixed and stirred to prepare a silica aggregate solution. The obtained silica aggregation solution exhibited a pH of 3.0, a specific gravity of 1.14, a viscosity of 40 mPa · sec (all measured at 25 ° C.), and was the same fluid as the solution obtained in Example 1.

得られたシリカ凝集溶液を、撹拌翼5を27rpmで回転させながら底部排出口3より排出した。排出開始から、排出率が97%以上となった時点までの時間を計測すると、32秒であった。また、最終排出率は、98.2%であった。結果を表3に示した。   The obtained silica agglomerated solution was discharged from the bottom outlet 3 while rotating the stirring blade 5 at 27 rpm. The time from the start of discharge until the point when the discharge rate reached 97% or more was measured, and it was 32 seconds. The final emission rate was 98.2%. The results are shown in Table 3.

[実施例12]
槽内部と撹拌翼5とのクリアランスをそれぞれa=35mm、b=35mm、c=35mmとすることを除いて、あとは実施例11と同様の撹拌装置を使用した。総仕込み量が760kg(槽容積の約70%)となるように実施例11と同様の試料を用意し、回転数27rpmで25分間撹拌翼5を回転させて上記試料の撹拌混合を行い、シリカ凝集溶液を調製した。得られたシリカ凝集溶液は、pH3.0、比重1.14、粘度40mPa・sec(いずれも25℃で測定)を示し、実施例1で得られた溶液と同様の流体であった。
[Example 12]
A stirrer similar to that of Example 11 was used except that the clearance between the inside of the tank and the stirring blade 5 was set to a = 35 mm, b = 35 mm, and c = 35 mm, respectively. A sample similar to that of Example 11 was prepared so that the total charged amount was 760 kg (about 70% of the tank volume), and the sample was stirred and mixed by rotating the stirring blade 5 at a rotation speed of 27 rpm for 25 minutes. An aggregation solution was prepared. The obtained silica aggregation solution exhibited a pH of 3.0, a specific gravity of 1.14, a viscosity of 40 mPa · sec (all measured at 25 ° C.), and was the same fluid as the solution obtained in Example 1.

得られたシリカ凝集溶液を、撹拌翼5を27rpmで回転させながら底部排出口3より排出した。排出開始から、排出率が97%以上となった時点までの時間を計測すると、34秒であった。また、最終排出率は、97.7%であった。結果を表3に示した。

Figure 2007083157
The obtained silica agglomerated solution was discharged from the bottom outlet 3 while rotating the stirring blade 5 at 27 rpm. It was 34 seconds when the time from the start of discharge to the time when the discharge rate reached 97% or more was measured. The final emission rate was 97.7%. The results are shown in Table 3.
Figure 2007083157

表3に示すように、内径Bが880〜950mm程度の槽を有する撹拌装置においては、クリアランスa、b、cが、それぞれ例えば33〜35mm程度の条件下で、好適に均一撹拌および好適な排出を図ることができる。   As shown in Table 3, in a stirrer having a tank having an inner diameter B of about 880 to 950 mm, the clearances a, b, and c are preferably uniformly stirred and suitably discharged under conditions of about 33 to 35 mm, respectively. Can be achieved.

[実施例13]
A=240mm、B=1000mm、θ=30°、容積約1.1mの槽を有することを除いて、あとは実施例1と同様の撹拌装置を使用した。また、総仕込み量が880kg(槽容積の約70%)となるように、実施例1と同様の試料を用意した。
[Example 13]
A stirrer similar to that of Example 1 was used except that a tank having A = 240 mm, B = 1000 mm, θ = 30 °, and a volume of about 1.1 m 3 was used. Moreover, the same sample as Example 1 was prepared so that the total preparation amount might be 880 kg (about 70% of the tank volume).

槽内部とのクリアランスをそれぞれa=4mm、b=4mm、c=4mmとした撹拌翼5を回転数27rpmで20分間回転させて上記試料の混合撹拌を行い、シリカ凝集溶液を調製した。得られたシリカ凝集溶液は、pH3.0、比重1.14、粘度40mPa・sec(いずれも25℃で測定)を示し、実施例1で得られた溶液と同様の流体であった。   The agitation blade 5 with clearances of a = 4 mm, b = 4 mm, and c = 4 mm from the inside of the tank was rotated for 20 minutes at a rotation speed of 27 rpm, and the sample was mixed and stirred to prepare a silica aggregation solution. The obtained silica aggregation solution exhibited a pH of 3.0, a specific gravity of 1.14, a viscosity of 40 mPa · sec (all measured at 25 ° C.), and was the same fluid as the solution obtained in Example 1.

得られたシリカ凝集溶液を、撹拌翼5を27rpmで回転させながら底部排出口3より排出した。排出開始から、排出率が97%以上となった時点までの時間を計測すると、46秒であった。また、最終排出率は、98.0%であった。結果を表4に示した。   The obtained silica agglomerated solution was discharged from the bottom outlet 3 while rotating the stirring blade 5 at 27 rpm. The time from the start of discharge until the point when the discharge rate reached 97% or more was measured, and it was 46 seconds. The final discharge rate was 98.0%. The results are shown in Table 4.

[実施例14]
槽内部と撹拌翼5とのクリアランスをそれぞれa=45mm、b=45mm、c=45mmとすることを除いて、あとは実施例13と同様の撹拌装置を使用した。総仕込み量が880kg(槽容積の約70%)となるように実施例13と同様の試料を用意し、回転数27rpmで20分間撹拌翼5を回転させて上記試料の撹拌混合を行い、シリカ凝集溶液を調製した。得られたシリカ凝集溶液は、pH3.0、比重1.14、粘度40mPa・sec(いずれも25℃で測定)を示し、実施例1で得られた溶液と同様の流体であった。
[Example 14]
The same stirrer as in Example 13 was used except that the clearance between the inside of the tank and the stirring blade 5 was set to a = 45 mm, b = 45 mm, and c = 45 mm, respectively. A sample similar to that of Example 13 was prepared so that the total charged amount was 880 kg (about 70% of the tank volume), and the sample was stirred and mixed by rotating the stirring blade 5 at a rotation speed of 27 rpm for 20 minutes. An aggregation solution was prepared. The obtained silica aggregation solution exhibited a pH of 3.0, a specific gravity of 1.14, a viscosity of 40 mPa · sec (all measured at 25 ° C.), and was the same fluid as the solution obtained in Example 1.

得られたシリカ凝集溶液を、撹拌翼5を27rpmで回転させながら底部排出口3より排出した。排出開始から、排出率が97%以上となった時点までの時間を計測すると、49秒であった。また、最終排出率は、98.0%であった。結果を表4に示した。   The obtained silica agglomerated solution was discharged from the bottom outlet 3 while rotating the stirring blade 5 at 27 rpm. It was 49 seconds when the time from the start of discharge to the time when the discharge rate reached 97% or more was measured. The final discharge rate was 98.0%. The results are shown in Table 4.

[実施例15]
A=260mm、B=1100mm、θ=30°、容積約1.4mの槽を有することを除いて、あとは実施例1と同様の撹拌装置を使用した。また、総仕込み量が1120kg(槽容積の約70%)となるように、実施例1と同様の試料を用意した。
[Example 15]
A stirrer similar to that of Example 1 was used except that a tank having A = 260 mm, B = 1100 mm, θ = 30 °, and a volume of about 1.4 m 3 was used. Moreover, the same sample as Example 1 was prepared so that the total preparation amount might be 1120 kg (about 70% of the tank volume).

槽内部とのクリアランスをそれぞれa=5mm、b=5mm、c=5mmとした撹拌翼5を回転数30rpmで20分間回転させて上記試料の混合撹拌を行い、シリカ凝集溶液を調製した。得られたシリカ凝集溶液は、pH3.0、比重1.14、粘度40mPa・sec(いずれも25℃で測定)を示し、実施例1で得られた溶液と同様の流体であった。   The agitation blade 5 with clearances a = 5 mm, b = 5 mm, and c = 5 mm from the inside of the tank was rotated for 20 minutes at a rotation speed of 30 rpm, and the sample was mixed and stirred to prepare a silica aggregation solution. The obtained silica aggregation solution exhibited a pH of 3.0, a specific gravity of 1.14, a viscosity of 40 mPa · sec (all measured at 25 ° C.), and was the same fluid as the solution obtained in Example 1.

得られたシリカ凝集溶液を、撹拌翼5を30rpmで回転させながら底部排出口3より排出した。排出開始から、排出率が97%以上となった時点までの時間を計測すると、50秒であった。また、最終排出率は、98.2%であった。結果を表4に示した。   The obtained silica aggregation solution was discharged from the bottom discharge port 3 while rotating the stirring blade 5 at 30 rpm. It was 50 seconds when the time from the start of discharge to the time when the discharge rate reached 97% or more was measured. The final emission rate was 98.2%. The results are shown in Table 4.

[実施例16]
槽内部と撹拌翼5とのクリアランスをそれぞれa=50mm、b=50mm、c=50mmとすることを除いて、あとは実施例15と同様の撹拌装置を使用した。総仕込み量が1120kg(槽容積の約70%)となるように実施例15と同様の試料を用意し、回転数30rpmで20分間撹拌翼5を回転させて上記試料の撹拌混合を行い、シリカ凝集溶液を調製した。得られたシリカ凝集溶液は、pH3.0、比重1.14、粘度40mPa・sec(いずれも25℃で測定)を示し、実施例1で得られた溶液と同様の流体であった。
[Example 16]
The same stirrer as in Example 15 was used except that the clearance between the inside of the tank and the stirring blade 5 was set to a = 50 mm, b = 50 mm, and c = 50 mm, respectively. A sample similar to that of Example 15 was prepared so that the total charged amount was 1120 kg (about 70% of the tank volume), and the sample was stirred and mixed by rotating the stirring blade 5 at a rotation speed of 30 rpm for 20 minutes. An aggregation solution was prepared. The obtained silica aggregation solution exhibited a pH of 3.0, a specific gravity of 1.14, a viscosity of 40 mPa · sec (all measured at 25 ° C.), and was the same fluid as the solution obtained in Example 1.

得られたシリカ凝集溶液を、撹拌翼5を30rpmで回転させながら底部排出口3より排出した。排出開始から、排出率が97%以上となった時点までの時間を計測すると、54秒であった。また、最終排出率は、97.1%であった。結果を表4に示した。   The obtained silica aggregation solution was discharged from the bottom discharge port 3 while rotating the stirring blade 5 at 30 rpm. It was 54 seconds when the time from the start of discharge until the point when the discharge rate reached 97% or more was measured. The final emission rate was 97.1%. The results are shown in Table 4.

[参考例2]
槽内部と撹拌翼5とのクリアランスをそれぞれa=60mm、b=60mm、c=60mmとすることを除いて、あとは実施例15と同様の撹拌装置を使用した。総仕込み量が1120kg(槽容積の約70%)となるように実施例15と同様の試料を用意し、回転数30rpmで20分間撹拌翼5を回転させて上記試料の撹拌混合を行い、シリカ凝集溶液を調製した。得られたシリカ凝集溶液は、pH3.0、比重1.14、粘度40mPa・sec(いずれも25℃で測定)を示し、実施例1と同様の流体が得られた。
[Reference Example 2]
The same stirrer as in Example 15 was used except that the clearance between the inside of the tank and the stirring blade 5 was set to a = 60 mm, b = 60 mm, and c = 60 mm, respectively. A sample similar to that of Example 15 was prepared so that the total charged amount was 1120 kg (about 70% of the tank volume), and the sample was stirred and mixed by rotating the stirring blade 5 at a rotation speed of 30 rpm for 20 minutes. An aggregation solution was prepared. The obtained silica aggregation solution exhibited a pH of 3.0, a specific gravity of 1.14, a viscosity of 40 mPa · sec (all measured at 25 ° C.), and the same fluid as in Example 1 was obtained.

得られたシリカ凝集溶液を、撹拌翼5を30rpmで回転させながら底部排出口3より排出した。最終排出率は、93.5%であり、下部傾斜面2に若干滞留しているスラリーが見られた。結果を表4に示した。   The obtained silica aggregation solution was discharged from the bottom discharge port 3 while rotating the stirring blade 5 at 30 rpm. The final discharge rate was 93.5%, and a slurry slightly staying on the lower inclined surface 2 was observed. The results are shown in Table 4.

[比較例2]
槽内部と撹拌翼5とのクリアランスをそれぞれa=70mm、b=70mm、c=70mmとすることを除いて、あとは実施例15と同様の撹拌装置を使用した。総仕込み量が1120kg(槽容積の約70%)となるように実施例15と同様の試料を用意し、回転数30rpmで撹拌翼5を回転させて上記試料の撹拌混合を行ったが、槽の壁面近傍および下部傾斜面近傍が十分に撹拌されず、均一なシリカ凝集溶液を調製することができなかった。結果を表4に示した。
[Comparative Example 2]
A stirrer similar to that of Example 15 was used except that the clearance between the inside of the tank and the stirring blade 5 was set to a = 70 mm, b = 70 mm, and c = 70 mm, respectively. A sample similar to that of Example 15 was prepared so that the total charge amount was 1120 kg (about 70% of the tank volume), and the sample was stirred and mixed by rotating the stirring blade 5 at a rotation speed of 30 rpm. The vicinity of the wall and the vicinity of the lower inclined surface were not sufficiently stirred, and a uniform silica agglomerated solution could not be prepared. The results are shown in Table 4.

[比較例3]
槽内部と撹拌翼5とのクリアランスをそれぞれa=0.5mm、b=0.5mm、c=0.5mmとすることを除いて、あとは実施例15と同様の撹拌装置を使用した。総仕込み量が1120kg(槽容積の約70%)となるように実施例15と同様の試料を用意し、回転数30rpmで20分間撹拌翼5を回転させて上記試料の撹拌混合を行い、シリカ凝集溶液を調製した。得られたシリカ凝集溶液には、金属片らしき異物が混入しており、槽内部または撹拌翼の一部が削られたものであると認められた。結果を表4に示した。

Figure 2007083157
[Comparative Example 3]
The same stirrer as in Example 15 was used except that the clearance between the inside of the tank and the stirring blade 5 was set to a = 0.5 mm, b = 0.5 mm, and c = 0.5 mm, respectively. A sample similar to that of Example 15 was prepared so that the total charged amount was 1120 kg (about 70% of the tank volume), and the sample was stirred and mixed by rotating the stirring blade 5 at a rotation speed of 30 rpm for 20 minutes. An aggregation solution was prepared. The obtained silica agglomerated solution was mixed with foreign substances that appeared to be metal pieces, and it was recognized that the inside of the tank or a part of the stirring blade was shaved. The results are shown in Table 4.
Figure 2007083157

表4に示すように、内径Bが1000〜1100mm程度の撹拌装置においては、クリアランスa、b、cが、それぞれ例えば4〜50mm程度の条件下で、好適に均一撹拌および好適な排出を図ることができる。一方、クリアランスa、b、cが、60mm程度になると、槽内部の流体は97%以上の排出率を達成することができず、70mmを超えてしまうと、もはや均一混合さえ困難となってしまう。   As shown in Table 4, in a stirrer having an inner diameter B of about 1000 to 1100 mm, the clearances a, b, and c are each preferably about 4 to 50 mm, for example, to achieve uniform stirring and suitable discharge. Can do. On the other hand, when the clearances a, b, and c are about 60 mm, the fluid inside the tank cannot achieve a discharge rate of 97% or more, and if it exceeds 70 mm, even uniform mixing becomes difficult anymore. .

このように、本発明によれば、回転軸4の延長線xと下部傾斜面2の延長線mとのなす角θが10〜55°であり、好ましくは15〜50°である槽を有する撹拌装置において、槽内部と撹拌翼とのクリアランスを1〜50mmとすることにより、槽内部の壁面や底面、および撹拌翼などに付着しやすい流体を容易に排出することが可能となる。   Thus, according to this invention, it has the tank whose angle (theta) which the extension line x of the rotating shaft 4 and the extension line m of the lower inclined surface 2 make is 10-55 degrees, Preferably it is 15-50 degrees. In the stirrer, by setting the clearance between the inside of the tank and the stirring blade to 1 to 50 mm, it becomes possible to easily discharge the fluid that easily adheres to the wall surface and bottom surface of the tank and the stirring blade.

なお、本発明の他の実施の形態における撹拌装置は、バッチ処理に限らず、排出および混合を同時に行なう連続処理においても好適に適用することができる。   In addition, the stirring apparatus in other embodiment of this invention can be applied suitably also in the continuous process which performs discharge | emission and mixing not only in a batch process but simultaneously.

本発明は、得られる流体が降伏値を有し、特に粘度の最大値が、20〜60mPa・secである流体の均一混合および排出に好適に利用することが可能である。   The present invention can be suitably used for uniform mixing and discharging of a fluid in which the obtained fluid has a yield value, and the maximum viscosity is 20 to 60 mPa · sec.

本発明の実施の形態における流体の撹拌装置100の構成の概略を示す縦断面図である。It is a longitudinal cross-sectional view which shows the outline of a structure of the stirring apparatus 100 of the fluid in embodiment of this invention. 本発明の実施の形態における流体の撹拌装置200の構成の概略を示す縦断面図である。It is a longitudinal cross-sectional view which shows the outline of a structure of the stirring apparatus 200 of the fluid in embodiment of this invention.

符号の説明Explanation of symbols

1 壁面、2 下部傾斜面、3 底部排出口、4 回転軸、5,6 撹拌翼、10,20 槽、100,200 撹拌装置。   DESCRIPTION OF SYMBOLS 1 Wall surface, 2 Lower inclined surface, 3 Bottom discharge port, 4 Rotating shaft, 5,6 Stirring blade, 10,20 Tank, 100,200 Stirrer.

Claims (4)

槽と、撹拌翼と、底部排出口とからなる撹拌装置であって、
25℃における粘度の最大値が20ミリパスカル秒から60ミリパスカル秒である流体を撹拌する撹拌装置。
A stirring device comprising a tank, a stirring blade, and a bottom outlet,
A stirrer that stirs a fluid whose maximum viscosity at 25 ° C. is 20 to 60 millipascal seconds.
請求項1に記載の撹拌装置において、
前記撹拌翼は、前記槽の中心に槽外から垂下した回転軸に配置され、
前記回転軸の延長線と前記槽の下部傾斜面の延長線とのなす角が、10°から55°である、撹拌装置。
The stirrer according to claim 1,
The stirring blade is disposed on a rotating shaft that hangs down from the outside of the tank at the center of the tank,
An agitation device, wherein an angle formed by an extension line of the rotating shaft and an extension line of a lower inclined surface of the tank is 10 ° to 55 °.
請求項1または2に記載の撹拌装置において、
前記撹拌翼は、槽内部の壁面近傍の流体および底面近傍の流体を掻きとるアンカー翼を少なくとも含む、撹拌装置。
The stirrer according to claim 1 or 2,
The stirring blade includes at least an anchor blade that scrapes off a fluid near a wall surface and a fluid near a bottom surface inside the tank.
請求項3に記載の撹拌装置において、
前記アンカー翼と、前記槽内部の壁面とのクリアランスは、1から50mmであり、
前記アンカー翼と、前記槽内部の底面とのクリアランスは、1から50mmである、撹拌装置。
The stirrer according to claim 3,
The clearance between the anchor wing and the wall surface inside the tank is 1 to 50 mm,
The stirring device, wherein the clearance between the anchor blade and the bottom surface inside the tank is 1 to 50 mm.
JP2005274555A 2005-09-21 2005-09-21 Agitation apparatus Pending JP2007083157A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005274555A JP2007083157A (en) 2005-09-21 2005-09-21 Agitation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005274555A JP2007083157A (en) 2005-09-21 2005-09-21 Agitation apparatus

Publications (1)

Publication Number Publication Date
JP2007083157A true JP2007083157A (en) 2007-04-05

Family

ID=37970680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005274555A Pending JP2007083157A (en) 2005-09-21 2005-09-21 Agitation apparatus

Country Status (1)

Country Link
JP (1) JP2007083157A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009040886A1 (en) * 2007-09-25 2009-04-02 Shi Mechanical & Equipment Inc. Agitating apparatus
JP2012067020A (en) * 2010-09-21 2012-04-05 Pola Chemical Industries Inc Cell production system
JP2017192896A (en) * 2016-04-20 2017-10-26 花王株式会社 Agitation device
CN114700026A (en) * 2022-04-12 2022-07-05 池州方达科技有限公司 Hydroxyethyl methacrylate-based synthesis production equipment and preparation process thereof
CN115228322A (en) * 2022-07-06 2022-10-25 内蒙古鄂尔多斯化学工业有限公司 Pipeline mixer

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009040886A1 (en) * 2007-09-25 2009-04-02 Shi Mechanical & Equipment Inc. Agitating apparatus
JP2012067020A (en) * 2010-09-21 2012-04-05 Pola Chemical Industries Inc Cell production system
JP2017192896A (en) * 2016-04-20 2017-10-26 花王株式会社 Agitation device
CN114700026A (en) * 2022-04-12 2022-07-05 池州方达科技有限公司 Hydroxyethyl methacrylate-based synthesis production equipment and preparation process thereof
CN114700026B (en) * 2022-04-12 2022-12-16 池州方达科技有限公司 Hydroxyethyl methacrylate-based synthesis production equipment and preparation process thereof
CN115228322A (en) * 2022-07-06 2022-10-25 内蒙古鄂尔多斯化学工业有限公司 Pipeline mixer
CN115228322B (en) * 2022-07-06 2024-05-14 内蒙古鄂尔多斯化学工业有限公司 Pipeline mixer

Similar Documents

Publication Publication Date Title
JP6725504B2 (en) Stirrer
EP1779923B1 (en) Mixer with a stirrer having tapered blades
JP6155157B2 (en) Stirrer
WO2010082391A1 (en) Stirring device and stirring method
EP3020469B1 (en) Stirring apparatus and method for stirring a liquid toner
JP6170339B2 (en) Low shear type concentric twin screw mixer and method for producing water-based negative electrode paste using the same
JP2007083157A (en) Agitation apparatus
JP2003033635A (en) Stirring blade, stirring device and stirring method using the blade
JP5062186B2 (en) Stirring apparatus and stirring method
US20100278007A1 (en) Stirring Apparatus
JP2000005585A (en) Agitator and agitating device
CN109310961B (en) Stirring blade and stirring device
JP2022063988A (en) Mixer
JP4766905B2 (en) Paddle blade and stirring device provided with the paddle blade
JP2022107704A (en) Stirring blade and stirring device
JP5755474B2 (en) Stirrer
JP6265766B2 (en) Stirring apparatus and stirring method
CN208642364U (en) A kind of agitator arm
JPH04215829A (en) Stirring apparatus
US9022640B2 (en) Stirring apparatus for reducing vortexes
KR102191121B1 (en) Kneader improved mixing efficiency
CN108126589A (en) High speed agitator and its agitating device
TWI732297B (en) Blade for container rotary mixing device
CN207371375U (en) A kind of agitated liquid device
JP6086374B1 (en) Stirring body and stirrer using the same