JP2007080700A - Induction heating device - Google Patents

Induction heating device Download PDF

Info

Publication number
JP2007080700A
JP2007080700A JP2005267836A JP2005267836A JP2007080700A JP 2007080700 A JP2007080700 A JP 2007080700A JP 2005267836 A JP2005267836 A JP 2005267836A JP 2005267836 A JP2005267836 A JP 2005267836A JP 2007080700 A JP2007080700 A JP 2007080700A
Authority
JP
Japan
Prior art keywords
semiconductor switch
resonance
heating coil
induction heating
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005267836A
Other languages
Japanese (ja)
Other versions
JP4710503B2 (en
Inventor
Takeshi Kitaizumi
武 北泉
Yoichi Kurose
洋一 黒瀬
Motonari Hirota
泉生 弘田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005267836A priority Critical patent/JP4710503B2/en
Publication of JP2007080700A publication Critical patent/JP2007080700A/en
Application granted granted Critical
Publication of JP4710503B2 publication Critical patent/JP4710503B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an induction heating device having a small number of frequency components of a commercial power supply which are emitted from a heating coil, and generating a small quantity of noise because no interference noise between loads is generated between adjacent burners. <P>SOLUTION: Energy stored in an auxiliary resonance means 9 is discharged before a first or second semiconductor switch 5, 4 is switched on to pass a current in a first or second reverse conducting element 15, 14, and the parallel-connected first or second semiconductor switch 5, 4 is brought into a conducting state during a time period when the current is being passed through the reverse conducting element. Thereby, a current passing through the heating coil 3 always passes through a resonance capacitor 2, and since it becomes possible to reduce the chances where a magnetic field having the frequency components of the power supply is emitted to the outside from the heating coil 3, and switching loss can be suppressed when the first or second semiconductor switch 5, 4 is turned on, the induction heating device generating a small quantity of noise can be obtained because no interference noise between loads is generated between the adjacent burners. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、高周波磁界による誘導加熱を利用して被加熱物の加熱を行う誘導加熱装置に関するものである。   The present invention relates to an induction heating apparatus that heats an object to be heated using induction heating by a high-frequency magnetic field.

従来、誘導加熱装置としては種々の回路構成のものが知られている(例えば、特許文献1参照)。   Conventionally, induction heating apparatuses having various circuit configurations are known (see, for example, Patent Document 1).

これは、図6に示すように、直流電源1と並列に第1の半導体スイッチ5と第2の半導体スイッチ4の直列体が接続され、第1の半導体スイッチ5には加熱コイル3と共振コンデンサ2の直列接続体と、スナバコンデンサ7および第1の逆導通素子15が接続され、第2の半導体スイッチ4には第2の逆導通素子14が接続され、更に鍋などの負荷6は加熱コイル3と磁気的に結合する様に加熱コイル3の直上に配置されている。   As shown in FIG. 6, a series body of a first semiconductor switch 5 and a second semiconductor switch 4 is connected in parallel with the DC power source 1, and the heating coil 3 and the resonant capacitor are connected to the first semiconductor switch 5. 2 connected in series, a snubber capacitor 7 and a first reverse conducting element 15, a second reverse conducting element 14 is connected to the second semiconductor switch 4, and a load 6 such as a pan is a heating coil 3 is arranged immediately above the heating coil 3 so as to be magnetically coupled to the heating coil 3.

そして、第2の半導体スイッチ4が導通すると、加熱コイル3に直流電源1と共振コンデンサ2の電圧の差で決まる電流が供給される。次に、第2の半導体スイッチ4を非導通状態にすると、スナバコンデンサ7に蓄えられた電荷が加熱コイル3を通して共振コンデンサ2に移動し、スナバコンデンサ7の電荷がなくなった後は第1の逆導通素子15が導通することで、加熱コイル3から共振コンデンサ2に電流が流れることになる。この第1の逆導通素子15が導通しているタイミングで、第1の半導体スイッチ5を導通状態としておくことで、加熱コイル3の電力が共振コンデンサ2に遷移した後、共振コンデンサ2を電源として加熱コイル3に電力を供給することになる。さらに、所定時間が経過した後、第1の半導体スイッチ5を非導通状態にすると、スナバコンデンサ7に電荷を蓄えた後、第2の逆導通素子14を通して加熱コイル3に蓄えられた電力を直流電源1に回生することになる。この回生期間に、再び第2の半導体スイッチ4を導通状態にすることで最初の動作に戻ることになる。   When the second semiconductor switch 4 is turned on, a current determined by the voltage difference between the DC power source 1 and the resonant capacitor 2 is supplied to the heating coil 3. Next, when the second semiconductor switch 4 is turned off, the charge stored in the snubber capacitor 7 moves to the resonance capacitor 2 through the heating coil 3, and after the charge of the snubber capacitor 7 is exhausted, the first reverse When the conduction element 15 is conducted, a current flows from the heating coil 3 to the resonance capacitor 2. By setting the first semiconductor switch 5 in the conductive state at the timing when the first reverse conducting element 15 is conducted, the power of the heating coil 3 is transferred to the resonant capacitor 2 and then the resonant capacitor 2 is used as a power source. Electric power is supplied to the heating coil 3. Further, when the first semiconductor switch 5 is turned off after a predetermined time has elapsed, electric charge is stored in the snubber capacitor 7 and then the electric power stored in the heating coil 3 through the second reverse conducting element 14 is converted into direct current. The power source 1 will be regenerated. In this regeneration period, the second semiconductor switch 4 is again turned on to return to the initial operation.

ここで、スナバコンデンサ7は、第1および第2の半導体スイッチ5、4が非導通状態になる際に電圧を緩やかに増加させることで、半導体スイッチのターンオフ時の損失を減少させる役割を担っている。また、この誘導加熱装置は、共振コンデンサ2の容量を加熱コイル3と共振コンデンサ2で形成される共振回路の共振周波数の近傍に設定しなければ必要な電力が確保されず、一方、負荷6の種類によって共振周波数は大きく異なるため、制御手段8が駆動周波数を共振周波数の近くに併せる制御、つまり駆動周波数を変化させて制御を行っている。
特開平5−114474号公報
Here, the snubber capacitor 7 plays a role of reducing the loss at the time of turn-off of the semiconductor switch by gradually increasing the voltage when the first and second semiconductor switches 5 and 4 become non-conductive. Yes. In addition, this induction heating device cannot secure necessary power unless the capacity of the resonance capacitor 2 is set in the vicinity of the resonance frequency of the resonance circuit formed by the heating coil 3 and the resonance capacitor 2. Since the resonance frequency varies greatly depending on the type, the control means 8 performs control to bring the drive frequency close to the resonance frequency, that is, control by changing the drive frequency.
Japanese Patent Laid-Open No. 5-114474

しかしながら、前記従来の構成では、負荷6の種類が変わった場合に駆動周波数を変化させることで、入力電力を確保する必要が生じる。一方、制御手段8は、共振コンデンサ2と加熱コイル3によって形成される共振回路の共振周波数に入力電力が大きく依存するため、入力電力を安定に確保するためには負荷6に応じて第1の半導体スイッチ5と第2の半導体スイッチ4の駆動周波数を変える必要がある。このため、誘導加熱装置が複数のバーナを持つ場合には、互いの駆動周波数差の周波数による干渉音が発生する課題を有することになる。   However, in the conventional configuration, it is necessary to secure input power by changing the drive frequency when the type of the load 6 changes. On the other hand, since the input power largely depends on the resonance frequency of the resonance circuit formed by the resonance capacitor 2 and the heating coil 3, the control means 8 has a first function corresponding to the load 6 in order to ensure stable input power. It is necessary to change the driving frequency of the semiconductor switch 5 and the second semiconductor switch 4. For this reason, when an induction heating apparatus has a some burner, it has the subject that the interference sound by the frequency of a mutual drive frequency difference generate | occur | produces.

本発明は、前記従来の課題を解決するもので、加熱コイルから放射される商用電源の周波数成分が少なく、隣接バーナ間で発生する負荷間の干渉音のない騒音の少ない誘導加熱装置を提供することを目的とする。   The present invention solves the above-described conventional problems, and provides an induction heating device that has a low frequency component of a commercial power source radiated from a heating coil and that has no interference noise between loads generated between adjacent burners. For the purpose.

前記従来の課題を解決するために、本発明の誘導加熱装置は、直流電源と、直流電源に並列に接続された第1、第2の半導体スイッチの直列体と、第1、第2の半導体スイッチにそれぞれ逆並列に接続される第1、第2の逆導通素子と、第1、第2の半導体スイッチの接続点と直流電源の間に接続される、加熱コイルと共振コンデンサの直列回路と、第1、第2の半導体スイッチの導通時間を制御する制御手段と、第1または第2の半導体スイッチと並列に接続され、共振回路を備えた補助共振手段とを備え、第1または第2の半導体スイッチがオン状態となる前に補助共振手段に蓄えられたエネルギーを放出し第1または第2の逆導通素子に電流を流し、逆導通素子に電流が流れている期間に並列に接続された第1または第2の半導体スイッチを導通状態とするものである。   In order to solve the above-described conventional problems, an induction heating apparatus according to the present invention includes a DC power source, a series body of first and second semiconductor switches connected in parallel to the DC power source, and first and second semiconductors. A first circuit and a second reverse conducting element connected in reverse parallel to the switch, and a series circuit of a heating coil and a resonant capacitor connected between a connection point of the first and second semiconductor switches and a DC power source; , Control means for controlling the conduction time of the first and second semiconductor switches, and auxiliary resonance means connected in parallel with the first or second semiconductor switch and provided with a resonance circuit, the first or second The energy stored in the auxiliary resonance means is released before the semiconductor switch of the first switch is turned on, the current flows through the first or second reverse conducting element, and the current is passed through the reverse conducting element in parallel. First or second semiconductor switch In which the switch conductive.

これによって、加熱コイルを流れる電流は常に共振コンデンサを通過することになり、電源の周波数成分を持った電流が加熱コイルに印可されることが減少するため、加熱コイルから電源の周波数成分を持った磁界が外部に放射されることを減少させることが可能になるとともに、第1または第2の半導体スイッチが導通状態になる直前に補助共振手段により第1または第2の逆導通素子に電流を流すことで、第1または第2の半導体スイッチのターンオン時におけるスイッチング損失を抑制することができるため、加熱コイルに流れる電流の周波数を入力電力や負荷の種類によらず一定に保つことができ、隣接バーナ間で発生する負荷間の干渉音のない騒音の少ないものとすることができる。   As a result, the current flowing through the heating coil always passes through the resonant capacitor, and the current having the frequency component of the power supply is reduced from being applied to the heating coil. It is possible to reduce the radiation of the magnetic field to the outside, and to allow a current to flow to the first or second reverse conducting element by the auxiliary resonance means immediately before the first or second semiconductor switch becomes conductive. Therefore, since the switching loss at the time of turn-on of the first or second semiconductor switch can be suppressed, the frequency of the current flowing through the heating coil can be kept constant regardless of the type of input power or load, It is possible to reduce noise without interference sound between loads generated between burners.

本発明の誘導加熱装置は、加熱コイルから放射される商用電源の周波数成分が少なく、隣接バーナ間で発生する負荷間の干渉音のない騒音の少ないものとすることができる。   The induction heating device of the present invention can be one that has a small frequency component of the commercial power source radiated from the heating coil and a low noise without interference sound between loads generated between adjacent burners.

第1の発明は、直流電源と、直流電源に並列に接続された第1、第2の半導体スイッチの直列体と、第1、第2の半導体スイッチにそれぞれ逆並列に接続される第1、第2の逆導通素子と、第1、第2の半導体スイッチの接続点と直流電源の間に接続される、加熱コイルと共振コンデンサの直列回路と、第1、第2の半導体スイッチの導通時間を制御する制御手段と、第1または第2の半導体スイッチと並列に接続され、共振回路を備えた補助共振手段とを備え、第1または第2の半導体スイッチがオン状態となる前に補助共振手段に蓄えられたエネルギーを放出し第1または第2の逆導通素子に電流を流し、逆導通素子に電流が流れている期間に並列に接続された第1または第2の半導体スイッチを導通状態とすることにより、加熱コイルを流れる電流は常に共振コンデンサを通過することになり、電源の周波数成分を持った電流が加熱コイルに印可されることが減少するため、加熱コイルから電源の周波数成分を持った磁界が外部に放射されることを減少させることが可能になるとともに、第1または第2の半導体スイッチが導通状態になる直前に補助共振手段により第1または第2の逆導通素子に電流を流すことで、第1または第2の半導体スイッチのターンオン時におけるスイッチング損失を抑制することができるため、加熱コイルに流れる電流の周波数を入力電力や負荷の種類によらず一定に保つことができ、隣接バーナ間で発生する負荷間の干渉音のない騒音の少ないものとすることができる。   A first aspect of the present invention is a DC power supply, a series body of first and second semiconductor switches connected in parallel to the DC power supply, and first and second connected in antiparallel to the first and second semiconductor switches, respectively. The second reverse conducting element, the series circuit of the heating coil and the resonant capacitor connected between the connection point of the first and second semiconductor switches and the DC power source, and the conduction time of the first and second semiconductor switches And a control means for controlling the power supply, and an auxiliary resonance means connected in parallel with the first or second semiconductor switch and provided with a resonance circuit, before the first or second semiconductor switch is turned on. The energy stored in the means is discharged, the current flows through the first or second reverse conducting element, and the first or second semiconductor switch connected in parallel during the period in which the current flows through the reverse conducting element is in a conductive state. By heating coil The flowing current always passes through the resonant capacitor, and the current with the frequency component of the power supply is reduced from being applied to the heating coil, so the magnetic field with the frequency component of the power supply is radiated from the heating coil to the outside. And the first or second semiconductor switch is made to flow in the first or second reverse conducting element by the auxiliary resonance means immediately before the first or second semiconductor switch is turned on. Since the switching loss at the time of turn-on of the second semiconductor switch can be suppressed, the frequency of the current flowing through the heating coil can be kept constant regardless of the type of input power or load, and the load generated between adjacent burners There can be little noise without interfering sound.

第2の発明は、特に、第1の発明において、第1または第2の半導体スイッチの一方または両方にスナバコンデンサを接続したことにより、第1および第2の半導体スイッチのターンオフ時のコレクタ−エミッタ間の電圧の急峻な立ち上がりをスナバコンデンサにより抑えることができるため、ターンオフ損失を大幅に減少させることができる。このため、簡易な冷却構成をとることができ、小形で騒音の少ない誘導加熱装置を実現できるものである。   In particular, the second invention is the collector-emitter at the time of turn-off of the first and second semiconductor switches by connecting a snubber capacitor to one or both of the first and second semiconductor switches in the first invention. Since the sudden rise of the voltage between the two can be suppressed by the snubber capacitor, the turn-off loss can be greatly reduced. For this reason, a simple cooling structure can be taken, and a small and low noise induction heating apparatus can be realized.

第3の発明は、特に、第1または第2の発明において、制御手段は、第1、第2の半導体スイッチの切り替え時に生じる非導通時間の一方を固定とし、もう一方の非導通時間を可変とすることにより、補助共振手段は第1の半導体スイッチから第2の半導体スイッチまたは第2の半導体スイッチから第1の半導体スイッチのいずれかの状態遷移に関して動作すればよくなるため、簡易な回路構成をとることができ、安価な回路手段で第1または第2の半導体スイッチのターンオン時におけるスイッチング損失を抑制することができる。このため、加熱コイルに流れる電流の周波数を入力電力や負荷の種類によらず一定に保つことができる誘導加熱装置を実現するものである。   According to a third aspect of the invention, in particular, in the first or second aspect of the invention, the control means fixes one of the non-conduction times that occurs when the first and second semiconductor switches are switched, and varies the other non-conduction time. As a result, the auxiliary resonance means only needs to operate with respect to the state transition of either the first semiconductor switch to the second semiconductor switch or the second semiconductor switch to the first semiconductor switch. In addition, it is possible to suppress a switching loss when the first or second semiconductor switch is turned on with an inexpensive circuit means. For this reason, the induction heating apparatus which can keep the frequency of the electric current which flows into a heating coil constant irrespective of the kind of input electric power or load is implement | achieved.

第4の発明は、特に、第1〜第3のいずれか1つの発明において、第1、第2の半導体スイッチの導通時間をほぼ同じとし、入力電力に応じて第1、第2の半導体スイッチの導通時間を変えるとともに、非導通時間の一方を可変して一定周波数で動作させることにより、第1、第2の半導体スイッチの非導通時間で電力制御ができるようになるため、簡易な回路構成で電力制御をすることができる誘導加熱装置を実現するものである。   In particular, according to a fourth invention, in any one of the first to third inventions, the first and second semiconductor switches have substantially the same conduction time, and the first and second semiconductor switches correspond to the input power. By changing one of the non-conduction times and operating at a constant frequency by varying one of the non-conduction times, it becomes possible to control the power with the non-conduction time of the first and second semiconductor switches, so that a simple circuit configuration An induction heating apparatus capable of controlling electric power with is realized.

第5の発明は、特に、第1〜第4のいずれか1つの発明において、補助共振手段は、第3の半導体スイッチと補助共振コイルと補助共振コンデンサの直列回路と、第3の半導体スイッチを逆並列に接続された第3の逆導通素子とを有し、所定のタイミングで補助共振コンデンサに蓄えられたエネルギーを第3の半導体スイッチを用いて第1または第2の逆導通素子に供給することにより、補助共振回路をコイルとコンデンサと半導体スイッチという簡易な構成で実現することができ、安価な回路手段で第1または第2の半導体スイッチのターンオン時におけるスイッチング損失を抑制することができる。このため、加熱コイルに流れる電流の周波数を入力電力や負荷の種類によらず一定に保つことができる誘導加熱装置を実現するものである。   According to a fifth aspect of the invention, in particular, in any one of the first to fourth aspects of the invention, the auxiliary resonance means includes a third semiconductor switch, a series circuit of an auxiliary resonance coil and an auxiliary resonance capacitor, and a third semiconductor switch. A third reverse conducting element connected in antiparallel, and supplying the energy stored in the auxiliary resonant capacitor to the first or second reverse conducting element using a third semiconductor switch at a predetermined timing. Thus, the auxiliary resonant circuit can be realized with a simple configuration of a coil, a capacitor, and a semiconductor switch, and the switching loss at the time of turning on the first or second semiconductor switch can be suppressed by an inexpensive circuit means. For this reason, the induction heating apparatus which can keep constant the frequency of the electric current which flows into a heating coil irrespective of the kind of input electric power or load is implement | achieved.

第6の発明は、特に、第1〜第5のいずれか1つの発明において、第3の半導体スイッチは、可変する非導通時間が終了し、第1または第2の半導体スイッチが導通状態となる前に導通状態とし、導通状態となった第1または第2の半導体スイッチが非導通状態になる前に非導通状態となるように動作させることにより、第1または第2の半導体スイッチのターンオン時におけるスイッチング損失を抑制することができるともに、第3の半導体スイッチの損失を抑えることができるため、加熱コイルに流れる電流の周波数を入力電力や負荷の種類によらず一定に保つことができる誘導加熱装置を実現するものである。   In a sixth aspect of the invention, in particular, in any one of the first to fifth aspects, the third semiconductor switch has a variable non-conducting time, and the first or second semiconductor switch is turned on. When the first or second semiconductor switch is turned on by operating so that the first or second semiconductor switch that has been made conductive before becomes non-conductive before the first or second semiconductor switch made conductive becomes non-conductive. Induction heating that can keep the frequency of the current flowing in the heating coil constant regardless of the type of input power or load, because the switching loss in the power supply can be suppressed and the loss of the third semiconductor switch can be suppressed. The device is realized.

第7の発明は、特に、第5または第6の発明において、補助共振コンデンサの容量をスナバコンデンサの容量より大としたことにより、第1および第2の半導体スイッチのターンオフ時における急峻な立ち上がりを抑える動作がスナバコンデンサのみに依存する様になるため、簡易な設計で半導体スイッチの損失を抑えることができ、簡易な冷却構成をとることができ、小形で騒音の少ない誘導加熱装置を実現できるものである。   In the seventh aspect of the invention, in particular, in the fifth or sixth aspect of the present invention, the capacitance of the auxiliary resonant capacitor is made larger than the capacitance of the snubber capacitor, so that the first and second semiconductor switches have a steep rise at the turn-off time. Since the suppression operation depends only on the snubber capacitor, the loss of the semiconductor switch can be suppressed with a simple design, a simple cooling configuration can be taken, and a compact and low noise induction heating device can be realized. It is.

第8の発明は、特に、第1〜第7のいずれか1つの発明において、加熱コイルと共振コンデンサからなる共振回路の共振周波数が動作周波数より低い場合には、非導通時間を固定とし導通時間比で入力電力制御を行うことにより、加熱コイルと共振コンデンサの共振周波数が低い場合、つまり磁性ステンレスなどの磁性材料である負荷の場合において、簡易な制御方法で加熱コイルに流れる電流の周波数を一定としたまま負荷に応じた最適な電力制御を行うことができるようになるため、制御性に優れた誘導加熱装置を実現するものである。   In the eighth invention, in particular, in any one of the first to seventh inventions, when the resonance frequency of the resonance circuit including the heating coil and the resonance capacitor is lower than the operating frequency, the non-conduction time is fixed and the conduction time is set. By controlling the input power by the ratio, the frequency of the current flowing through the heating coil is kept constant with a simple control method when the resonance frequency of the heating coil and the resonant capacitor is low, that is, when the load is a magnetic material such as magnetic stainless steel. As a result, it is possible to perform optimal power control according to the load while maintaining the above, and thus an induction heating device having excellent controllability is realized.

第9の発明は、特に、第1〜第8のいずれか1つの発明において、加熱コイルと共振コンデンサからなる共振回路の共振周波数が動作周波数より低い場合には、補助共振手段を動作させないことにより、加熱コイルと共振コンデンサの共振周波数が低い場合、つまり磁性ステンレスなどの磁性材料の負荷の場合において、簡易な制御方法で加熱コイルに流れる電流の周波数を一定としたまま負荷に応じた最適な電力制御を行うことができるようになるため、制御性に優れた誘導加熱装置を実現するものである。   In the ninth invention, in particular, in any one of the first to eighth inventions, when the resonance frequency of the resonance circuit including the heating coil and the resonance capacitor is lower than the operation frequency, the auxiliary resonance means is not operated. When the resonance frequency of the heating coil and the resonance capacitor is low, that is, when the load of magnetic material such as magnetic stainless steel is used, the optimum power according to the load is maintained with the frequency of the current flowing through the heating coil being kept constant with a simple control method. Since the control can be performed, an induction heating device having excellent controllability is realized.

第10の発明は、特に、第8の発明において、加熱コイルと共振コンデンサからなる共振回路の共振周波数が動作周波数より低い場合には、第1または第2の半導体スイッチの非導通状態への動作遷移時と第3の半導体スイッチの導通状態への動作遷移時をほぼ同時とすることにより、簡易な制御回路で加熱コイルに流れる電流の周波数を一定としたまま負荷に応じた最適な電力制御を行うことができるようになるため、制御性に優れた誘導加熱装置を実現するものである。   According to a tenth aspect of the invention, in particular, in the eighth aspect of the invention, when the resonance frequency of the resonance circuit including the heating coil and the resonance capacitor is lower than the operation frequency, the operation of the first or second semiconductor switch to the non-conduction state By making the transition and the operation transition to the conductive state of the third semiconductor switch almost simultaneous, optimal power control corresponding to the load can be performed with a simple control circuit while keeping the frequency of the current flowing in the heating coil constant. Therefore, an induction heating device with excellent controllability is realized.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1〜図3は、本発明の実施の形態1における誘導加熱装置を示すものである。
(Embodiment 1)
1 to 3 show an induction heating apparatus according to Embodiment 1 of the present invention.

図1に示すように、本実施の形態の誘導加熱装置は、直流電源1と、直流電源1に並列に接続された第1、第2の半導体スイッチ5、4の直列体と、第1、第2の半導体スイッチ5、4にそれぞれ逆並列に接続される第1、第2の逆導通素子15、14と、第1、第2の半導体スイッチ5、4の接続点と直流電源1の間に接続される、加熱コイル3と共振コンデンサ2の直列回路と、第1、第2の半導体スイッチ5、4の導通時間を制御する制御手段8と、第1または第2の半導体スイッチ5、4と並列に接続され、共振回路を備えた補助共振手段9とを備えている。そして、第1または第2の半導体スイッチ5、4がオン状態となる前に補助共振手段9に蓄えられたエネルギーを放出し第1または第2の逆導通素子15、14に電流を流し、逆導通素子に電流が流れている期間に並列に接続された第1または第2の半導体スイッチ5、4を導通状態とするものである。   As shown in FIG. 1, the induction heating device of the present embodiment includes a DC power source 1, a series body of first and second semiconductor switches 5 and 4 connected in parallel to the DC power source 1, Between the first and second reverse conducting elements 15 and 14 connected in antiparallel to the second semiconductor switches 5 and 4, and the connection point between the first and second semiconductor switches 5 and 4 and the DC power supply 1. , A control circuit 8 for controlling the conduction time of the first and second semiconductor switches 5, 4, and the first or second semiconductor switch 5, 4. And auxiliary resonance means 9 connected in parallel with each other and having a resonance circuit. Then, the energy stored in the auxiliary resonance means 9 is released before the first or second semiconductor switch 5 or 4 is turned on, and a current is passed through the first or second reverse conducting element 15 or 14, and the reverse The first or second semiconductor switch 5 or 4 connected in parallel during a period in which a current flows through the conductive element is set in a conductive state.

また、加熱コイル3には鍋などの負荷6が加熱コイル3と磁気的に結合すべく配置され、第1の半導体スイッチ5または第2の半導体スイッチ4の一方あるいは双方の両端にはスナバコンデンサ7が接続されている。   Further, a load 6 such as a pan is disposed on the heating coil 3 so as to be magnetically coupled to the heating coil 3, and a snubber capacitor 7 is provided at one or both ends of the first semiconductor switch 5 or the second semiconductor switch 4. Is connected.

前記補助共振手段9は、第3の半導体スイッチ12と補助共振コイル11と補助共振コンデンサ10の直列回路と、第3の半導体スイッチ12に並列に接続された第3の逆導通素子13で構成される。第1の半導体スイッチ5、第2の半導体スイッチ4および第3の半導体スイッチ12は、制御手段8の指令により加熱コイル3に高周波磁界を発生させ、この高周波磁界により負荷6を誘導加熱する。   The auxiliary resonance means 9 includes a series circuit of a third semiconductor switch 12, an auxiliary resonance coil 11, and an auxiliary resonance capacitor 10, and a third reverse conducting element 13 connected in parallel to the third semiconductor switch 12. The The first semiconductor switch 5, the second semiconductor switch 4, and the third semiconductor switch 12 generate a high-frequency magnetic field in the heating coil 3 according to a command from the control unit 8 and inductively heat the load 6 with this high-frequency magnetic field.

負荷6を誘導加熱する際、制御手段8は第1の半導体スイッチ5と第2の半導体スイッチ4の駆動周波数を一定にすることで、隣接するバーナで加熱動作を行っても鍋間の干渉音が生じないようにしている。また、本実施の形態では、第1の半導体スイッチ5、第2の半導体スイッチ4および第3の半導体スイッチ12は順方向に導通するIGBTとこれに逆並列に接続したダイオードで記載しているが、MOSFETのように素子内部にダイオードを構成した素子を用いても問題ない。更に、本実施の形態では、補助共振手段9を第3の半導体スイッチ12と補助共振コイル11と補助共振コンデンサ10の直列共振回路で構成しているが、補助共振コイル11と補助共振コンデンサ10の共振電流を第1の逆導通素子15または/および第2の逆導通素子14に流す構成であれば特に限定するものではない。   When the load 6 is inductively heated, the control means 8 keeps the drive frequency of the first semiconductor switch 5 and the second semiconductor switch 4 constant, so that even if the heating operation is performed with the adjacent burner, the interference sound between the pans Is prevented from occurring. In the present embodiment, the first semiconductor switch 5, the second semiconductor switch 4, and the third semiconductor switch 12 are described as IGBTs that conduct in the forward direction and diodes connected in reverse parallel thereto. There is no problem even if an element in which a diode is formed inside the element, such as a MOSFET, is used. Further, in the present embodiment, the auxiliary resonance means 9 is constituted by a series resonance circuit of the third semiconductor switch 12, the auxiliary resonance coil 11, and the auxiliary resonance capacitor 10. The resonance current is not particularly limited as long as it is configured to flow through the first reverse conducting element 15 and / or the second reverse conducting element 14.

次に、図2、図3に基づき本実施の形態における誘導加熱装置の動作について説明する。   Next, the operation of the induction heating apparatus in the present embodiment will be described based on FIGS.

図2はインバータ回路の各区間における電流経路を示し、図3は図2に対応した波形を示している。   FIG. 2 shows a current path in each section of the inverter circuit, and FIG. 3 shows a waveform corresponding to FIG.

図2(a)の状態から説明する。制御手段8は電力指令値に応じて第2の半導体スイッチ4を導通状態(図3のVge4)とする。すると、直流電源1からは第2の半導体スイッチ4の導通時間に応じ、加熱コイル3と共振コンデンサ2に電流が流れ(図3のIc4)電力が供給される。加熱コイル3には鍋などの負荷6が磁気的に結合しており、加熱コイル3で発生した高周波磁界が負荷6に供給され、負荷6に高周波磁界による渦電流が流れ負荷6を加熱する。   A description will be given from the state of FIG. The control means 8 brings the second semiconductor switch 4 into a conductive state (Vge4 in FIG. 3) according to the power command value. Then, a current flows from the DC power source 1 to the heating coil 3 and the resonant capacitor 2 (Ic4 in FIG. 3) according to the conduction time of the second semiconductor switch 4, and power is supplied. A load 6 such as a pan is magnetically coupled to the heating coil 3, and a high frequency magnetic field generated by the heating coil 3 is supplied to the load 6, and an eddy current due to the high frequency magnetic field flows through the load 6 to heat the load 6.

次に、制御手段8が第2の半導体スイッチ4を非導通状態とすると、図2(b)の状態になり、スナバコンデンサ7に蓄えられたエネルギーが加熱コイル3→共振コンデンサ2の経路で放出され、スナバコンデンサ7の電荷がなくなった時点で第1の逆導通素子15が導通状態となり、加熱コイル3→共振コンデンサ2→第1の逆導通素子15のループで電流が流れる。この第1の逆導通素子15が導通状態にある時に、第1の半導体スイッチ5を導通状態にしておく(図3のVge5)と、図2(c)の状態に移行し、共振コンデンサ2を電源として第1の半導体スイッチ5が導通することで加熱コイル3に電流が流れ(図3のIc5)電力が供給される。その後、制御手段8は第1の半導体スイッチ5を非導通状態にすると、図2(d)の状態に移行し、共振コンデンサ2→加熱コイル3→スナバコンデンサ7の経路でスナバコンデンサ7を充電し、スナバコンデンサ7の電位が直流電源1と同電位になると第2の逆導通素子14が導通状態となり、共振コンデンサ2→加熱コイル3→第2の逆導通素子14→直流電源1の経路で電流が流れる。   Next, when the control means 8 brings the second semiconductor switch 4 into a non-conducting state, the state shown in FIG. 2 (b) is reached, and the energy stored in the snubber capacitor 7 is released through the path of the heating coil 3 → resonance capacitor 2. When the electric charge of the snubber capacitor 7 is exhausted, the first reverse conducting element 15 becomes conductive, and a current flows through the loop of the heating coil 3 → the resonant capacitor 2 → the first reverse conducting element 15. When the first reverse conducting element 15 is in the conducting state, the first semiconductor switch 5 is kept in the conducting state (Vge5 in FIG. 3), the state shifts to the state in FIG. When the first semiconductor switch 5 is turned on as a power source, a current flows through the heating coil 3 (Ic5 in FIG. 3), and power is supplied. Thereafter, when the control means 8 brings the first semiconductor switch 5 into a non-conducting state, the control means 8 shifts to the state shown in FIG. 2D and charges the snubber capacitor 7 through the path of the resonance capacitor 2 → the heating coil 3 → the snubber capacitor 7. When the potential of the snubber capacitor 7 becomes the same as that of the DC power source 1, the second reverse conducting element 14 becomes conductive, and the current flows through the path of the resonant capacitor 2 → the heating coil 3 → the second reverse conducting element 14 → the DC power source 1. Flows.

その後、加熱コイル3の電流が逆向きに流れ出し、図2(e)の状態に移行し加熱コイル3→共振コンデンサ2→スナバコンデンサ7の経路で電流が流れ、その後、加熱コイル3→共振コンデンサ2→第1の逆導通素子15の経路で電流が流れることになる。その後、制御手段8は所定にタイミングで第3の半導体スイッチ12を導通状態とし、図2(f)の状態に移行する。この状態では、第3の補助共振コンデンサ10に蓄えられた電荷が補助共振コイル11および第3の半導体スイッチ12を通してスナバコンデンサ7を充電し、その後第2の逆導通素子14に電流が流れることになる。この第2の逆導通素子14が導通状態になった時点で第2の半導体スイッチ4を導通状態にすることで図2(a)の状態に戻り、以下この動作を繰り返すことになる。この動作を20〜50kHz程度の周波数で連続的に繰り返すことで、図3のI3に示すように加熱コイル3に高周波電流が流れ、この高周波電流により生じる高周波磁界が負荷6に吸収され、負荷6自身がもつ高周波抵抗と高周波磁界により生じる渦電流により負荷6自身が発熱することになる。   Thereafter, the current of the heating coil 3 flows out in the opposite direction, transitions to the state of FIG. 2 (e), the current flows through the path of the heating coil 3, the resonance capacitor 2, and the snubber capacitor 7, and then the heating coil 3 → the resonance capacitor 2 → Current flows through the path of the first reverse conducting element 15. Thereafter, the control means 8 makes the third semiconductor switch 12 conductive at a predetermined timing, and shifts to the state of FIG. In this state, the electric charge stored in the third auxiliary resonance capacitor 10 charges the snubber capacitor 7 through the auxiliary resonance coil 11 and the third semiconductor switch 12, and then a current flows through the second reverse conducting element 14. Become. When the second reverse conducting element 14 is turned on, the second semiconductor switch 4 is turned on to return to the state of FIG. 2A, and this operation is repeated thereafter. By continuously repeating this operation at a frequency of about 20 to 50 kHz, a high frequency current flows through the heating coil 3 as shown by I3 in FIG. 3, and a high frequency magnetic field generated by this high frequency current is absorbed by the load 6. The load 6 itself generates heat due to an eddy current generated by the high-frequency resistance and high-frequency magnetic field of the load 6 itself.

なお、図3のVge12は制御手段8が第3の半導体スイッチ12に与える制御信号を、Ic14は第1の逆導通素子14を流れる電流を、Ic15は第1の逆導通素子15を流れる電流を、I12は第3の半導体スイッチ12を流れる電流を、I13は第3の逆導通素子13を流れる電流をそれぞれ示している。   In FIG. 3, Vge12 is a control signal that the control means 8 gives to the third semiconductor switch 12, Ic14 is a current flowing through the first reverse conducting element 14, and Ic15 is a current flowing through the first reverse conducting element 15. , I12 indicates a current flowing through the third semiconductor switch 12, and I13 indicates a current flowing through the third reverse conducting element 13.

このような構成をとることで、加熱コイル3には直流成分(低周波成分)が流れず、加熱に必要とされる高周波成分のみが加熱コイル3に供給されており、不要な周波成分が外部に放射されることを防止することができる。さらに、本実施の形態では、負荷6の種類が異なる場合、あるいは入力電力変化させる場合において、第1の半導体スイッチ5と第2の半導体スイッチ4の駆動周波数を一定としたままで、それぞれの導通時間および非導通時間を変化させることで、各半導体スイッチの損失を大きく増加させず入力電力を設定値にすることができる。このことにより、隣接するバーナ間で生じる負荷6間の干渉音を防止することができる。   By adopting such a configuration, the direct current component (low frequency component) does not flow through the heating coil 3, and only the high frequency component required for heating is supplied to the heating coil 3, and unnecessary frequency components are externally supplied. Can be prevented from being emitted. Furthermore, in the present embodiment, when the types of loads 6 are different or when the input power is changed, the conduction frequencies of the first semiconductor switch 5 and the second semiconductor switch 4 are kept constant while the driving frequencies of the first semiconductor switch 5 and the second semiconductor switch 4 are kept constant. By changing the time and the non-conduction time, the input power can be set to the set value without greatly increasing the loss of each semiconductor switch. As a result, it is possible to prevent the interference sound between the loads 6 generated between adjacent burners.

また、制御手段8は第1の半導体スイッチ5と第2の半導体スイッチ4の導通時間を同一とし、共通の非導通時間を調整することで駆動周波数を一定とすることにより入力電力制御を簡易に行うことができる。更に、半導体スイッチの切り替え時に生じる一方の非導通時間を常に固定値とし、もう一方の切り替え時間を可変とすることで補助共振手段9は一方の切り替え時のみ対応すれば良く、回路を簡素化することができる。   Further, the control means 8 makes the conduction time of the first semiconductor switch 5 and the second semiconductor switch 4 the same and adjusts the common non-conduction time to make the driving frequency constant, thereby simplifying the input power control. It can be carried out. Further, the non-conduction time that occurs when switching the semiconductor switch is always a fixed value, and the other switching time is made variable so that the auxiliary resonance means 9 only needs to respond to the switching of one of the switches, thereby simplifying the circuit. be able to.

一方、制御手段8は第3の半導体スイッチ12が第1の半導体スイッチ5と第2の半導体スイッチ4間における所定の非導通時間が終了する直前(終了する2μsec程度前)に導通状態とし、次に第1の半導体スイッチ5または第2の半導体スイッチ4を導通状態とする。その後、制御手段8は第3の逆導通素子13に電流が流れているタイミングで第3の半導体スイッチ12を非導通状態にし、その後所定のタイミングで導通状態にある第1の半導体スイッチ5または第2の半導体スイッチ4を非導通状態とする様に動作させる。この様なタイミングで動作させることにより、第3の半導体スイッチ12はターンオフ損失が発生しないため、スイッチング損失を抑えることが可能となる。   On the other hand, the control means 8 makes the third semiconductor switch 12 conductive immediately before the predetermined non-conduction time between the first semiconductor switch 5 and the second semiconductor switch 4 ends (about 2 μsec before the end), and next The first semiconductor switch 5 or the second semiconductor switch 4 is turned on. Thereafter, the control means 8 makes the third semiconductor switch 12 non-conductive at the timing when the current flows through the third reverse conducting element 13, and then the first semiconductor switch 5 or the first semiconductor switch 5 which is in the conductive state at the predetermined timing. 2 semiconductor switch 4 is operated so as to be in a non-conductive state. By operating at such timing, the third semiconductor switch 12 does not generate a turn-off loss, so that the switching loss can be suppressed.

さらに、補助共振コンデンサ10の容量をスナバコンデンサ7の容量より大とすることで、補助共振コンデンサ10からの電流を、スナバコンデンサ7を充電した後、第2の逆導通素子14にも十分流すことが可能となる。   Further, by making the capacity of the auxiliary resonant capacitor 10 larger than the capacity of the snubber capacitor 7, the current from the auxiliary resonant capacitor 10 is sufficiently passed through the second reverse conducting element 14 after charging the snubber capacitor 7. Is possible.

以上のように、本実施の形態によれば、第1または第2の半導体スイッチ5、4が導通状態になる直前に補助共振手段9により第1または第2の逆導通素子15、14に電流を流すことで第1または第2の半導体スイッチ5、4のターンオン時のスイッチング損失を抑制することができるため、加熱コイル3に流れる電流の周波数を入力電力や負荷の種類によらず一定に保つことができるとともに、加熱コイル3に共振コンデンサ2が直列に接続されるため、電源の周波数成分を持った電流が加熱コイル3に印可されることが減少するため、加熱コイル3から直流電源の周波数成分を持った磁界が外部に放射されることを減少させることが可能になる誘導加熱装置を実現するものである。   As described above, according to the present embodiment, the current is supplied to the first or second reverse conducting element 15 or 14 by the auxiliary resonance means 9 immediately before the first or second semiconductor switch 5 or 4 is turned on. Since the switching loss at the turn-on time of the first or second semiconductor switch 5 or 4 can be suppressed by flowing the current, the frequency of the current flowing through the heating coil 3 is kept constant regardless of the type of input power or load. In addition, since the resonance capacitor 2 is connected in series to the heating coil 3, the current having the frequency component of the power supply is reduced from being applied to the heating coil 3. An induction heating apparatus that can reduce the external emission of a magnetic field having a component is realized.

(実施の形態2)
次に、図4、図5に基づき、本発明の実施の形態2における誘導加熱装置について説明する。基本構成は実施の形態1と同じであるのでその説明は省略する。
(Embodiment 2)
Next, the induction heating apparatus according to Embodiment 2 of the present invention will be described with reference to FIGS. Since the basic configuration is the same as that of the first embodiment, the description thereof is omitted.

図4はインバータ回路の各区間における電流経路を示し、図5は図4に対応した波形を示している。   FIG. 4 shows a current path in each section of the inverter circuit, and FIG. 5 shows a waveform corresponding to FIG.

本実施の形態では、負荷6が磁気的に結合した状態の加熱コイル3と共振コンデンサ2で構成される共振回路の共振周波数が第1の半導体スイッチ5と第2の半導体スイッチ4の駆動周波数よりも低い場合、すなわち負荷6が磁性ステンレスなどの磁性体で構成されているものとする。   In the present embodiment, the resonance frequency of the resonance circuit composed of the heating coil 3 and the resonance capacitor 2 in a state where the load 6 is magnetically coupled is determined by the driving frequency of the first semiconductor switch 5 and the second semiconductor switch 4. In other words, it is assumed that the load 6 is made of a magnetic material such as magnetic stainless steel.

図4(a)の状態から説明する。制御手段8は電力指令値に応じて第2の半導体スイッチ4を導通状態(図5のVge4)とする。すると、直流電源1からは第2の半導体スイッチ4の導通時間に応じ、加熱コイル3と共振コンデンサ2に電流が流れ(図5のIc4)電力が供給される。加熱コイル3には鍋などの負荷6が磁気的に結合しており、加熱コイル3で発生した高周波磁界が負荷6に供給され、負荷6に高周波磁界による渦電流が流れ負荷6を加熱する。   The description starts from the state of FIG. The control means 8 brings the second semiconductor switch 4 into a conducting state (Vge4 in FIG. 5) according to the power command value. Then, a current flows from the DC power source 1 to the heating coil 3 and the resonance capacitor 2 according to the conduction time of the second semiconductor switch 4 (Ic4 in FIG. 5), and power is supplied. A load 6 such as a pan is magnetically coupled to the heating coil 3, and a high frequency magnetic field generated by the heating coil 3 is supplied to the load 6, and an eddy current due to the high frequency magnetic field flows through the load 6 to heat the load 6.

次に、制御手段8が第2の半導体スイッチ4を非導通状態とすると図4(b)の状態になり、スナバコンデンサ7に蓄えられたエネルギーが加熱コイル3→共振コンデンサ2の経路で放出され、スナバコンデンサ7の電荷がなくなった時点で第1の逆導通素子15が導通状態となり、加熱コイル3→共振コンデンサ2→第1の逆導通素子15のループで電流が流れる。この第1の逆導通素子15が導通状態にある時に、第1の半導体スイッチ5を導通状態にしておく(図5のVge5)と、図4(c)の状態に移行し、共振コンデンサ2を電源として第1の半導体スイッチ5が導通することで加熱コイル3に電流が流れ(図5のIc5)電力が供給される。その後、制御手段8は第1の半導体スイッチ5を非導通状態にすると、図4(d)の状態に移行し、共振コンデンサ2→加熱コイル3→スナバコンデンサ7の経路でスナバコンデンサ7を充電し、スナバコンデンサ7の電位が直流電源1と同電位になると第2の逆導通素子14が導通状態となり、共振コンデンサ2→加熱コイル3→第2の逆導通素子14→直流電源1の経路で電流が流れる。この第2の逆導通素子14が導通状態になった時点で第2の半導体スイッチ4を導通状態にすることで図4(a)の状態に戻り、以下この動作を繰り返すことになる。この動作を20〜50kHz程度の周波数で連続的に繰り返すことで、図5のI3に示すように加熱コイル3に高周波電流が流れ、この高周波電流により生じる高周波磁界が負荷6に吸収され、負荷6自身がもつ高周波抵抗と高周波磁界により生じる渦電流により負荷6自身が発熱することになる。   Next, when the control means 8 brings the second semiconductor switch 4 into a non-conducting state, the state shown in FIG. 4B is obtained, and the energy stored in the snubber capacitor 7 is released through the path of the heating coil 3 → the resonance capacitor 2. When the electric charge of the snubber capacitor 7 runs out, the first reverse conducting element 15 becomes conductive, and a current flows through the loop of the heating coil 3 → the resonant capacitor 2 → the first reverse conducting element 15. When the first reverse conducting element 15 is in the conducting state, the first semiconductor switch 5 is kept in the conducting state (Vge5 in FIG. 5), the state shifts to the state in FIG. When the first semiconductor switch 5 is turned on as a power source, a current flows through the heating coil 3 (Ic5 in FIG. 5), and power is supplied. Thereafter, when the first semiconductor switch 5 is turned off, the control means 8 shifts to the state shown in FIG. 4D and charges the snubber capacitor 7 through the path of the resonance capacitor 2 → the heating coil 3 → the snubber capacitor 7. When the potential of the snubber capacitor 7 becomes the same as that of the DC power source 1, the second reverse conducting element 14 becomes conductive, and the current flows through the path of the resonant capacitor 2 → the heating coil 3 → the second reverse conducting element 14 → the DC power source 1. Flows. When the second reverse conducting element 14 is turned on, the second semiconductor switch 4 is turned on to return to the state of FIG. 4A, and this operation is repeated thereafter. By repeating this operation continuously at a frequency of about 20 to 50 kHz, a high-frequency current flows through the heating coil 3 as shown by I3 in FIG. 5, and a high-frequency magnetic field generated by this high-frequency current is absorbed by the load 6. The load 6 itself generates heat due to an eddy current generated by the high-frequency resistance and high-frequency magnetic field of the load 6 itself.

なお、図5のVge12、Ic14、Ic15、I12、およびI13については、実施の形態1で説明したとおりである。   Note that Vge12, Ic14, Ic15, I12, and I13 in FIG. 5 are as described in the first embodiment.

以上の動作においては、負荷6と磁気的な結合した加熱コイル3と共振コンデンサ2で構成された共振回路の共振周波数が駆動周波数よりも低いため、実施の形態1のように非導通時間を可変せずに第1、第2の半導体スイッチ5、4の導通時間比で入力電力を調整することができる。この際、非導通時間は固定とする方が、制御回路が簡素化されるため望ましい。   In the above operation, since the resonance frequency of the resonance circuit composed of the heating coil 3 magnetically coupled to the load 6 and the resonance capacitor 2 is lower than the drive frequency, the non-conduction time can be varied as in the first embodiment. Without this, the input power can be adjusted by the conduction time ratio of the first and second semiconductor switches 5 and 4. At this time, it is desirable to fix the non-conduction time because the control circuit is simplified.

また、第3の半導体スイッチ12は第1の半導体スイッチ5から第2の半導体スイッチ4の遷移時、または第2の半導体スイッチ4から第1の半導体スイッチ5とほぼ同時に導通状態として、一定時間導通時間を設けておくことで、半導体スイッチの状態の遷移時に、逆導通素子に電流が流れやすくなるため、半導体スイッチのターンオン損失を防止することができる。   Further, the third semiconductor switch 12 is turned on for a certain period of time at the time of transition from the first semiconductor switch 5 to the second semiconductor switch 4 or almost simultaneously with the first semiconductor switch 5 from the second semiconductor switch 4. By providing time, it becomes easier for a current to flow through the reverse conducting element at the time of transition of the state of the semiconductor switch, so that it is possible to prevent the turn-on loss of the semiconductor switch.

また、負荷6が磁気的に結合した状態の加熱コイル3と共振コンデンサ2で構成される共振回路の共振周波数が第1の半導体スイッチ5と第2の半導体スイッチ4の駆動周波数よりも低い場合、すなわち負荷6が磁性ステンレスなどの磁性体で構成される場合においては、第3の半導体スイッチ12を動作させなくとも良い。   When the resonance frequency of the resonance circuit composed of the heating coil 3 and the resonance capacitor 2 in a state where the load 6 is magnetically coupled is lower than the drive frequency of the first semiconductor switch 5 and the second semiconductor switch 4, That is, when the load 6 is made of a magnetic material such as magnetic stainless steel, the third semiconductor switch 12 need not be operated.

以上のように、本実施の形態によれば、加熱コイル3と共振コンデンサ2からなる共振回路の共振周波数が動作周波数より低い場合には、非導通時間を固定とし導通時間比で入力電力制御を行うことにより、加熱コイル3と共振コンデンサ2の共振周波数が低い場合、つまり磁性ステンレスなどの磁性材料による負荷の場合において、簡易な制御方法で加熱コイル3に流れる電流の周波数を一定としたまま負荷に応じた最適な電力制御を行うことができる。   As described above, according to the present embodiment, when the resonance frequency of the resonance circuit composed of the heating coil 3 and the resonance capacitor 2 is lower than the operating frequency, the non-conduction time is fixed and the input power control is performed with the conduction time ratio. By doing so, when the resonance frequency of the heating coil 3 and the resonant capacitor 2 is low, that is, when the load is made of a magnetic material such as magnetic stainless steel, the load is kept constant with the frequency of the current flowing through the heating coil 3 by a simple control method. It is possible to perform optimal power control according to the above.

以上のように、本発明にかかる誘導加熱装置は、加熱コイルから放射される商用電源の周波数成分が少なく、隣接バーナ間で発生する負荷間の干渉音のない騒音の少ないものとすることができるので、調理機器としてはもちろんのこと各種の加熱装置として適用できる。   As described above, the induction heating device according to the present invention has a small frequency component of the commercial power source radiated from the heating coil, and can reduce noise without interference sound between loads generated between adjacent burners. Therefore, it can be applied as various heating devices as well as cooking appliances.

本発明の実施の形態1における誘導加熱装置の回路図The circuit diagram of the induction heating apparatus in Embodiment 1 of this invention 同誘導加熱装置のインバータ回路の各区間における電流経路を示す図The figure which shows the electric current path in each area of the inverter circuit of the induction heating apparatus 同誘導加熱装置の図2に対応した各動作波形図Each operation waveform diagram corresponding to FIG. 2 of the induction heating apparatus 本発明の実施の形態2における誘導加熱装置のインバータ回路の各区間における電流経路を示す図The figure which shows the current pathway in each area of the inverter circuit of the induction heating apparatus in Embodiment 2 of this invention. 同誘導加熱装置の図4に対応した各動作波形図Each operation waveform diagram corresponding to FIG. 4 of the induction heating apparatus 従来の誘導加熱装置の回路構成図Circuit diagram of a conventional induction heating device

符号の説明Explanation of symbols

1 直流電源
2 共振コンデンサ
3 加熱コイル
4 第2の半導体スイッチ
5 第1の半導体スイッチ
6 負荷
7 スナバコンデンサ
8 制御手段
9 補助共振手段
10 補助共振コンデンサ
11 補助共振コイル
12 第3の半導体スイッチ
13 第3の逆導通素子
14 第2の逆導通素子
15 第1の逆導通素子
DESCRIPTION OF SYMBOLS 1 DC power supply 2 Resonance capacitor 3 Heating coil 4 2nd semiconductor switch 5 1st semiconductor switch 6 Load 7 Snubber capacitor 8 Control means 9 Auxiliary resonance means 10 Auxiliary resonance capacitor 11 Auxiliary resonance coil 12 3rd semiconductor switch 13 3rd Reverse conducting element 14 second reverse conducting element 15 first reverse conducting element

Claims (10)

直流電源と、直流電源に並列に接続された第1、第2の半導体スイッチの直列体と、第1、第2の半導体スイッチにそれぞれ逆並列に接続される第1、第2の逆導通素子と、第1、第2の半導体スイッチの接続点と直流電源の間に接続される、加熱コイルと共振コンデンサの直列回路と、第1、第2の半導体スイッチの導通時間を制御する制御手段と、第1または第2の半導体スイッチと並列に接続され、共振回路を備えた補助共振手段とを備え、第1または第2の半導体スイッチがオン状態となる前に補助共振手段に蓄えられたエネルギーを放出し第1または第2の逆導通素子に電流を流し、逆導通素子に電流が流れている期間に並列に接続された第1または第2の半導体スイッチを導通状態とする誘導加熱装置。 DC power supply, first and second semiconductor switches connected in parallel to DC power supply, and first and second reverse conducting elements connected in antiparallel to first and second semiconductor switches, respectively A series circuit of a heating coil and a resonant capacitor connected between the connection point of the first and second semiconductor switches and the DC power source, and a control means for controlling the conduction time of the first and second semiconductor switches. And an auxiliary resonance means connected in parallel with the first or second semiconductor switch and provided with a resonance circuit, and energy stored in the auxiliary resonance means before the first or second semiconductor switch is turned on. Inductive heating device that discharges the first and second reverse conducting elements and causes the first or second semiconductor switch connected in parallel during the period in which the current flows through the reverse conducting element. 第1または第2の半導体スイッチの一方または両方にスナバコンデンサを接続した請求項1に記載の誘導加熱装置。 The induction heating apparatus according to claim 1, wherein a snubber capacitor is connected to one or both of the first and second semiconductor switches. 制御手段は、第1、第2の半導体スイッチの切り替え時に生じる非導通時間の一方を固定とし、もう一方の非導通時間を可変とする請求項1または2に記載の誘導加熱装置。 The induction heating apparatus according to claim 1 or 2, wherein the control means fixes one of the non-conduction times generated when the first and second semiconductor switches are switched and makes the other non-conduction time variable. 第1、第2の半導体スイッチの導通時間をほぼ同じとし、入力電力に応じて第1、第2の半導体スイッチの導通時間を変えるとともに、非導通時間の一方を可変して一定周波数で動作させる請求項1〜3のいずれか1項に記載の誘導加熱装置。 The conduction times of the first and second semiconductor switches are substantially the same, the conduction times of the first and second semiconductor switches are changed according to the input power, and one of the non-conduction times is varied to operate at a constant frequency. The induction heating device according to any one of claims 1 to 3. 補助共振手段は、第3の半導体スイッチと補助共振コイルと補助共振コンデンサの直列回路と、第3の半導体スイッチを逆並列に接続された第3の逆導通素子とを有し、所定のタイミングで補助共振コンデンサに蓄えられたエネルギーを第3の半導体スイッチを用いて第1または第2の逆導通素子に供給する請求項1〜4のいずれか1項に記載の誘導加熱装置。 The auxiliary resonance means has a series circuit of a third semiconductor switch, an auxiliary resonance coil, and an auxiliary resonance capacitor, and a third reverse conducting element in which the third semiconductor switch is connected in antiparallel, and at a predetermined timing. The induction heating device according to any one of claims 1 to 4, wherein the energy stored in the auxiliary resonant capacitor is supplied to the first or second reverse conducting element using a third semiconductor switch. 第3の半導体スイッチは、可変する非導通時間が終了し、第1または第2の半導体スイッチが導通状態となる前に導通状態とし、導通状態となった第1または第2の半導体スイッチが非導通状態になる前に非導通状態となるように動作させる請求項1〜5のいずれか1項に記載の誘導加熱装置。 The third semiconductor switch is turned on before the variable non-conduction time ends, and the first or second semiconductor switch is turned on, and the first or second semiconductor switch that is turned on is turned off. The induction heating device according to any one of claims 1 to 5, wherein the induction heating device is operated so as to be in a non-conductive state before being in a conductive state. 補助共振コンデンサの容量をスナバコンデンサの容量より大とした請求項5または6に記載の誘導加熱装置。 The induction heating apparatus according to claim 5 or 6, wherein the capacity of the auxiliary resonant capacitor is larger than that of the snubber capacitor. 加熱コイルと共振コンデンサからなる共振回路の共振周波数が動作周波数より低い場合には、非導通時間を固定とし導通時間比で入力電力制御を行う請求項1〜7のいずれか1項に記載の誘導加熱装置。 The induction according to any one of claims 1 to 7, wherein when the resonance frequency of the resonance circuit including the heating coil and the resonance capacitor is lower than the operating frequency, the non-conduction time is fixed and the input power control is performed based on the conduction time ratio. Heating device. 加熱コイルと共振コンデンサからなる共振回路の共振周波数が動作周波数より低い場合には、補助共振手段を動作させない請求項1〜8のいずれか1項に記載の誘導加熱装置。 The induction heating apparatus according to any one of claims 1 to 8, wherein the auxiliary resonance means is not operated when a resonance frequency of a resonance circuit including a heating coil and a resonance capacitor is lower than an operation frequency. 加熱コイルと共振コンデンサからなる共振回路の共振周波数が動作周波数より低い場合には、第1または第2の半導体スイッチの非導通状態への動作遷移時と第3の半導体スイッチの導通状態への動作遷移時をほぼ同時とする請求項8に記載の誘導加熱装置。 When the resonance frequency of the resonance circuit including the heating coil and the resonance capacitor is lower than the operation frequency, the operation of the first or second semiconductor switch to the non-conduction state and the operation of the third semiconductor switch to the conduction state The induction heating apparatus according to claim 8, wherein the time of transition is substantially simultaneous.
JP2005267836A 2005-09-15 2005-09-15 Induction heating device Expired - Fee Related JP4710503B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005267836A JP4710503B2 (en) 2005-09-15 2005-09-15 Induction heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005267836A JP4710503B2 (en) 2005-09-15 2005-09-15 Induction heating device

Publications (2)

Publication Number Publication Date
JP2007080700A true JP2007080700A (en) 2007-03-29
JP4710503B2 JP4710503B2 (en) 2011-06-29

Family

ID=37940769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005267836A Expired - Fee Related JP4710503B2 (en) 2005-09-15 2005-09-15 Induction heating device

Country Status (1)

Country Link
JP (1) JP4710503B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007287600A (en) * 2006-04-20 2007-11-01 Matsushita Electric Ind Co Ltd Induction heating device
JP2010250950A (en) * 2009-04-10 2010-11-04 Panasonic Corp Induction heating device
US8890453B2 (en) 2011-08-27 2014-11-18 Denso Corporation Power conversion apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01260785A (en) * 1988-04-08 1989-10-18 Matsushita Electric Ind Co Ltd Induction heating cooker
JPH0594868A (en) * 1991-10-03 1993-04-16 Matsushita Electric Ind Co Ltd Induction heating cooker
JPH1092564A (en) * 1996-09-17 1998-04-10 Toshiba Corp Induction heating cooker
JP2001068260A (en) * 1999-08-27 2001-03-16 Matsushita Electric Ind Co Ltd Induction cooking appliance

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01260785A (en) * 1988-04-08 1989-10-18 Matsushita Electric Ind Co Ltd Induction heating cooker
JPH0594868A (en) * 1991-10-03 1993-04-16 Matsushita Electric Ind Co Ltd Induction heating cooker
JPH1092564A (en) * 1996-09-17 1998-04-10 Toshiba Corp Induction heating cooker
JP2001068260A (en) * 1999-08-27 2001-03-16 Matsushita Electric Ind Co Ltd Induction cooking appliance

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007287600A (en) * 2006-04-20 2007-11-01 Matsushita Electric Ind Co Ltd Induction heating device
JP2010250950A (en) * 2009-04-10 2010-11-04 Panasonic Corp Induction heating device
US8890453B2 (en) 2011-08-27 2014-11-18 Denso Corporation Power conversion apparatus

Also Published As

Publication number Publication date
JP4710503B2 (en) 2011-06-29

Similar Documents

Publication Publication Date Title
JP6050412B2 (en) HF surgical generator and method of operating HF surgical generator
JP3884664B2 (en) Induction heating device
JP5658692B2 (en) Induction heating device
JP5909675B2 (en) Induction heating cooker
EP2753147B1 (en) Induction heat cooking apparatus
KR20140067328A (en) Induction heat cooking apparatus and method for driving the same
KR102031907B1 (en) Induction heat cooking apparatus and method for controlling of output level the same
JP4710503B2 (en) Induction heating device
JP2009117200A (en) Induction heating apparatus
JP5402663B2 (en) Induction heating cooker
JP5223315B2 (en) Induction heating device
JP4904902B2 (en) Induction heating device
JP2005116385A (en) Induction heating device
JP2005222728A (en) Control unit
KR102306811B1 (en) Induction heat cooking apparatus and method for driving the same
JP4107150B2 (en) Induction heating device
JP5169488B2 (en) Induction heating device
JP4867110B2 (en) Induction heating device
JP4345209B2 (en) Induction heating cooker
JP2019021491A (en) Induction heating device
JP2005149736A (en) Induction heating device
JP2009289422A (en) Induction heating apparatus
KR20160150510A (en) Induction heat cooking apparatus
JP4314705B2 (en) Induction heating cooker
JP4775418B2 (en) Induction heating cooker

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080512

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110307

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140401

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees