JP2007080613A - Scale tool for current distribution measurement in fuel cell, and fixing device for current distribution measurement in fuel cell - Google Patents

Scale tool for current distribution measurement in fuel cell, and fixing device for current distribution measurement in fuel cell Download PDF

Info

Publication number
JP2007080613A
JP2007080613A JP2005265242A JP2005265242A JP2007080613A JP 2007080613 A JP2007080613 A JP 2007080613A JP 2005265242 A JP2005265242 A JP 2005265242A JP 2005265242 A JP2005265242 A JP 2005265242A JP 2007080613 A JP2007080613 A JP 2007080613A
Authority
JP
Japan
Prior art keywords
fuel cell
current
current distribution
magnetic resonance
scale
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005265242A
Other languages
Japanese (ja)
Inventor
Hiroyuki Kawaki
博行 河木
Seiichi Matsumoto
清市 松本
Terutake Ueno
照剛 上野
Masaki Sekino
正樹 関野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tokyo NUC
Toyota Motor Corp
Original Assignee
University of Tokyo NUC
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tokyo NUC, Toyota Motor Corp filed Critical University of Tokyo NUC
Priority to JP2005265242A priority Critical patent/JP2007080613A/en
Publication of JP2007080613A publication Critical patent/JP2007080613A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a scale tool for an electric current distribution measurement in a fuel cell in which improvement in detection precision can be achieved when used to detect the current distribution of the fuel cell by a nuclear magnetic resonance imaging device, and to provide a fixing device for the current distribution measurement in the fuel cell enabling improvement in detection precision of the electric current distribution in the fuel cell using the nuclear magnetic resonance imaging apparatus. <P>SOLUTION: The scale tool 10 houses a container 14 housing distilled water 12 in the MRI device, and while generating a position dependent magnetic resonance signal obtained by utilizing a nuclear magnetic resonance phenomenon, the electric current is made to flow in the distilled water 12 in the container 14 through electrodes 16, 17 of the container 14, and a phase difference-current scale to show relationship between the current and the phase difference of precessional movement of the nuclear spin is obtained. Then, by using the phase difference-current scale 11, the current distribution of the fuel cell is detected in a non-contact state without changing structure of the fuel cell. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、燃料電池内の電流又は温度変化などの物理現象を適切に把握するために用いられる燃料電池内電流分布計測用スケール冶具及び燃料電池内電流分布計測用固定装置に関する。   The present invention relates to a scale jig for measuring a current distribution in a fuel cell and a fixing device for measuring the current distribution in a fuel cell, which are used for appropriately grasping a physical phenomenon such as a current or temperature change in the fuel cell.

近時、環境保全及び資源確保などの観点から、燃料電池が自動車等の種々の分野で用いられるようになってきている。この燃料電池は、例えば、多孔質性材料を使用した一対の電極間に、電解質を保持する電解質層を挟み、一方の電極の背面に反応ガスとして水素ガス(燃料ガス)を接触させることにより、このときに生じる電気化学反応を利用して一対の電極間から電気エネルギーを取出すように構成されるセルを、複数個、組合せて構成されている。   In recent years, fuel cells have been used in various fields such as automobiles from the viewpoint of environmental protection and resource securing. In this fuel cell, for example, an electrolyte layer holding an electrolyte is sandwiched between a pair of electrodes using a porous material, and hydrogen gas (fuel gas) is contacted as a reaction gas on the back of one electrode, A plurality of cells configured to take out electrical energy from a pair of electrodes by using the electrochemical reaction generated at this time are configured in combination.

この燃料電池では、全領域で化学反応が進行しているのではなく、化学反応の進行度合いが不均一であり、また、化学反応が行なわれていない部分もある。このため、化学反応が進んでいる部分の電流は大きく、また、化学反応が行なわれていない部分は電流が小さくなる。そして、良好な燃料電池の生産や性能検査を行なう等のために、燃料電池内の場所毎の電流、すなわち燃料電池内電流分布を把握することが望まれている。
ところで、近時、静磁場に置かれた測定対象に対して核磁気共鳴現象を利用して前記測定対象中の所望の検査部位に対応した磁気共鳴信号を発生して、検査部位における水素原子中の原子核(以下、適宜プロトンという。)の振舞を3次元的に把握して、画像表示を行なう装置、いわゆるMRI装置(装置核磁気共鳴撮像装置)が知られている。
In this fuel cell, the chemical reaction does not progress in the entire region, the progress of the chemical reaction is not uniform, and there is a portion where the chemical reaction is not performed. For this reason, the current in the portion where the chemical reaction is proceeding is large, and the current is small in the portion where the chemical reaction is not performed. In order to perform good fuel cell production and performance inspection, it is desired to grasp the current at each location in the fuel cell, that is, the current distribution in the fuel cell.
By the way, recently, a magnetic resonance signal corresponding to a desired inspection site in the measurement object is generated for a measurement object placed in a static magnetic field by using a nuclear magnetic resonance phenomenon, so There is known a device for so-called MRI apparatus (apparatus nuclear magnetic resonance imaging apparatus) that three-dimensionally grasps the behavior of atomic nuclei (hereinafter, appropriately referred to as protons) and displays an image.

このMRI装置では、測定対象が静磁場に置かれると、測定対象中のプロトンは歳差運動し、プロトンの歳差運動と同じ周波数の電磁波(RFパルス)が測定対象(プロトン)に照射されると、歳差運動がさらに進んで共鳴現象を生じてプロトンは励起され、前記電磁波の照射を停止すると、プロトンは、受けたエネルギーに相当する分のエネルギー(電波)を戻す(例えば電磁波を発生するRFコイルに戻す)ようになる。上述した歳差運動時に、静磁場中で電流が発生する等して静磁場が乱されると、当該部分(静磁場が乱された部分)のプロトンの歳差運動は乱され、歳差運動の位相が変化し、この位相変化(すなわち、位相差に相当する。)に相当する内容がプロトンから戻されることになる。この場合、前記位相変化(位相差)は静磁場を乱した要因、例えば前記静磁場中に発生した電流と一定の対応する関係があるものになっている。   In this MRI apparatus, when a measurement object is placed in a static magnetic field, protons in the measurement object precess, and an electromagnetic wave (RF pulse) having the same frequency as the proton precession is irradiated to the measurement object (proton). Then, the precession further progresses and a resonance phenomenon occurs, protons are excited, and when the irradiation of the electromagnetic waves is stopped, the protons return energy (radio waves) corresponding to the received energy (for example, generate electromagnetic waves) Return to the RF coil). If the static magnetic field is disturbed due to the generation of an electric current in the static magnetic field during the precession described above, the proton precession of that part (the part where the static magnetic field is disturbed) is disturbed, and the precession The phase corresponding to this phase change (that is, corresponding to the phase difference) is returned from the proton. In this case, the phase change (phase difference) has a certain corresponding relationship with a factor disturbing the static magnetic field, for example, a current generated in the static magnetic field.

燃料電池では、上述したように燃料電池内電流分布を把握することが望まれているが、この要望に対してMRI装置に燃料電池を収納して、燃料電池内電流分布の検出を図ることが考えられる。   In the fuel cell, it is desired to grasp the current distribution in the fuel cell as described above. In response to this demand, the fuel cell is housed in the MRI apparatus, and the current distribution in the fuel cell can be detected. Conceivable.

なお、上述した燃料電池内電流分布を把握したいという要望に対して、特許文献1のガスセンサを用いて対処することが考えられる。すなわち、特許文献1のガスセンサは、第1測定室内の水素濃度が所定濃度となるように第1測定室に輸送する水素量を制御したときに、この水素輸送量に基づいて酸素極側の被測定ガス中の酸素濃度を検出する一方、第2測定室内の水素濃度が所定濃度となるように前記第1測定室に輸送する水素量を制御したときに、この水素輸送量に基づいて水素極側の被測定ガス中の水素濃度を検出するようにしている。そして、この検出された水素濃度から電流分布を求めるようにする。
特開2004−226213号公報
Note that it is conceivable to deal with the above-described demand for grasping the current distribution in the fuel cell using the gas sensor disclosed in Patent Document 1. That is, the gas sensor disclosed in Patent Document 1 controls the amount of hydrogen on the oxygen electrode side based on the hydrogen transport amount when the amount of hydrogen transported to the first measurement chamber is controlled so that the hydrogen concentration in the first measurement chamber becomes a predetermined concentration. When the amount of hydrogen transported to the first measurement chamber is controlled so that the hydrogen concentration in the second measurement chamber becomes a predetermined concentration while the oxygen concentration in the measurement gas is detected, the hydrogen electrode is based on this hydrogen transport amount. The hydrogen concentration in the measured gas on the side is detected. Then, the current distribution is obtained from the detected hydrogen concentration.
JP 2004-226213 A

ところで、上述した特許文献1のガスセンサでは、燃料電池内に第1、第2測定室を設ける必要があることから、燃料電池の構成の複雑化を招く上、水素濃度と電流との対応関係が必ずしも明確なものではなかった。また、水素濃度検出のために第1、第2測定室を設ける分、燃料電池の特性に影響を与え、性能の低下を招き易いため、良好な燃料電池を得る上からは望ましいものではなかった。このため、電流分布を把握するために、特許文献1のガスセンサを採用することは困難である上、望ましいものではないというのが実情であった。   By the way, in the gas sensor of the above-mentioned patent document 1, since it is necessary to provide the first and second measurement chambers in the fuel cell, the configuration of the fuel cell is complicated, and the correspondence relationship between the hydrogen concentration and the current is present. It was not always clear. In addition, since the first and second measurement chambers are provided for detecting the hydrogen concentration, the characteristics of the fuel cell are affected and the performance is liable to deteriorate, which is not desirable for obtaining a good fuel cell. . For this reason, in order to grasp | ascertain current distribution, it was difficult to employ | adopt the gas sensor of patent document 1, and it was the actual condition that it was not desirable.

また、MRI装置に燃料電池を収納して、燃料電池内電流分布を検出しようとしても、燃料電池をMRI装置内に単に収納しただけでは、MRI装置の作動により燃料電池が変位し、これに伴い検出しようとする燃料電池内電流分布に大きな影響を与えてしまい、精度の高い検出が行なえないというのが実情であった。   Even if the fuel cell is stored in the MRI apparatus and the current distribution in the fuel cell is detected, if the fuel cell is simply stored in the MRI apparatus, the fuel cell is displaced by the operation of the MRI apparatus. The actual situation is that the current distribution in the fuel cell to be detected is greatly affected, and high-accuracy detection cannot be performed.

本発明は、上記事情に鑑みてなされたものであり、核磁気共鳴撮像装置による燃料電池の電流分布の検出に用いて、検出精度の向上を図ることができる燃料電池内電流分布計測用スケール冶具を提供することを目的とする。
また、本発明の他の目的は、核磁気共鳴撮像装置を用いた燃料電池内電流分布の検出精度の向上を図ることができる燃料電池内電流分布計測用固定装置を提供することにある。
The present invention has been made in view of the above circumstances, and is a scale jig for measuring the current distribution in a fuel cell that can be used for detection of the current distribution of the fuel cell by a nuclear magnetic resonance imaging apparatus and can improve the detection accuracy. The purpose is to provide.
Another object of the present invention is to provide a fuel cell current distribution measuring fixing device capable of improving the detection accuracy of the fuel cell current distribution using a nuclear magnetic resonance imaging apparatus.

請求項1記載の発明は、静磁場に置かれた燃料電池に対して核磁気共鳴現象を利用して前記燃料電池中の所望の検査部位に対応した磁気共鳴信号を発生して画像表示を行なう核磁気共鳴撮像装置に用いられ、前記検査部位に流れる検査部位電流と、該検査部位電流による磁場変化に伴って生じる前記検査部位における核スピンの歳差運動の位相差との対応関係を示す位相差−電流スケールを得る燃料電池内電流分布計測用スケール冶具であって、前記核磁気共鳴撮像装置内に収納され、水を収納する樹脂製の有蓋の容器と、前記蓋及び前記容器の底部に、前記容器内の水に電流供給可能に設けられたカーボン製の電極と、を備え、水を収納した容器を前記核磁気共鳴撮像装置に収納し、前記核磁気共鳴現象を利用して得られる位置依存性の磁気共鳴信号を発生した状態で、前記容器の電極を通して前記容器内の水に電流を流し、その電流と核スピンの歳差運動の位相差との関係を示す電流計測スケールを求めることを特徴とする。   According to the first aspect of the present invention, an image is displayed by generating a magnetic resonance signal corresponding to a desired inspection site in the fuel cell by utilizing a nuclear magnetic resonance phenomenon for the fuel cell placed in a static magnetic field. A position used in a nuclear magnetic resonance imaging apparatus and indicating a correspondence relationship between a test site current flowing through the test site and a phase difference of precession of nuclear spins in the test site caused by a magnetic field change caused by the test site current A scale jig for measuring a current distribution in a fuel cell to obtain a phase difference-current scale, which is housed in the nuclear magnetic resonance imaging apparatus and is made of a resin-covered container for storing water, the lid, and a bottom of the container And an electrode made of carbon provided so that current can be supplied to the water in the container, and the container containing water is stored in the nuclear magnetic resonance imaging apparatus and obtained using the nuclear magnetic resonance phenomenon Position-dependent magnetism In a state where a resonance signal is generated, a current is passed through the water in the container through the electrode of the container, and a current measurement scale indicating the relationship between the current and the phase difference of the precession of the nuclear spin is obtained. .

請求項2記載の発明は、請求項1記載の燃料電池内電流分布計測用スケール冶具により得られた電流計測スケールに基づいて電流分布が計測される燃料電池を前記核磁気共鳴撮像装置に固定する燃料電池内電流分布計測用固定装置であって、前記核磁気共鳴撮像装置における前記燃料電池配置部分には円弧状装着部を形成し、前記燃料電池には、前記円弧状装着部に沿う形状の保持具を、前記燃料電池に対して位置調整可能に設けたことを特徴とする。   According to a second aspect of the present invention, a fuel cell whose current distribution is measured based on a current measurement scale obtained by the scale jig for measuring the current distribution in the fuel cell according to the first aspect is fixed to the nuclear magnetic resonance imaging apparatus. A fixing device for current distribution measurement in a fuel cell, wherein an arcuate mounting portion is formed in the fuel cell arrangement portion in the nuclear magnetic resonance imaging apparatus, and the fuel cell has a shape along the arcuate mounting portion. The holder is provided such that the position of the holder can be adjusted with respect to the fuel cell.

請求項1記載の発明によれば、燃料電池の構造を変えることなく、非接触の状態で、核スピンの歳差運動の位相差ひいては燃料電池の電流分布を検出することが可能となるので、良好な検出精度を確保できる。また、電流分布を検出する上で燃料電池の性能に影響を及ぼさず、良好な性能を確保できる。     According to the first aspect of the present invention, it is possible to detect the phase difference of the precession of the nuclear spins and thus the current distribution of the fuel cell in a non-contact state without changing the structure of the fuel cell. Good detection accuracy can be secured. In addition, it is possible to ensure good performance without affecting the performance of the fuel cell in detecting the current distribution.

請求項2記載の発明によれば、核磁気共鳴撮像装置における燃料電池配置部分には円弧状装着部を形成し、燃料電池には、前記円弧状装着部に沿う形状の保持具を、前記燃料電池に対して位置調整可能に設けたので、保持具の位置を調整することにより燃料電池の核磁気共鳴撮像装置ヘの固定を確実に行なえる。このため、核磁気共鳴撮像装置内に燃料電池を収納した状態で、例えば燃料電池の発電により大きな力が燃料電池に作用しても、燃料電池の変位が抑制されるので、燃料電池内電流分布検出を適切に行なうことができる。     According to the second aspect of the present invention, an arcuate mounting portion is formed in the fuel cell arrangement portion in the nuclear magnetic resonance imaging apparatus, and a holder having a shape along the arcuate mounting portion is provided in the fuel cell. Since the position of the battery can be adjusted, the fuel cell can be securely fixed to the nuclear magnetic resonance imaging apparatus by adjusting the position of the holder. For this reason, even when a large force acts on the fuel cell, for example, due to the power generation of the fuel cell in the state where the fuel cell is housed in the nuclear magnetic resonance imaging apparatus, the displacement of the fuel cell is suppressed. Detection can be performed appropriately.

以下、本発明の第1実施の形態を図1〜図4に基づいて説明する。
この第1実施の形態では、図1に示すように、MRI装置1(核磁気共鳴撮像装置)を利用して燃料電池3の燃料電池内電流分布を計測するようにしている。
図3において、MRI装置1は、静磁場コイル2を磁気シールド状態で収納するシールド体6と、静磁場コイル2の内部に配置されて検査部位の位置を把握などに用いられるX,Y,Z軸方向の傾斜磁場を発生する傾斜磁場コイル7と、傾斜磁場コイル7内に配置されて燃料電池3を収納する筒状のRFコイル4と、を備えている。MRI装置1は、さらに、RFコイル4からの磁気共鳴信号及び位相差信号等に基づいて演算制御を行なう制御部5と、制御プログラム、演算用データ及び演算内容を格納する記憶部8と、制御部5の制御結果に基づいて画像表示を行なう表示部9と、を備えている。
A first embodiment of the present invention will be described below with reference to FIGS.
In the first embodiment, as shown in FIG. 1, the current distribution in the fuel cell of the fuel cell 3 is measured using the MRI apparatus 1 (nuclear magnetic resonance imaging apparatus).
In FIG. 3, an MRI apparatus 1 includes a shield body 6 that houses a static magnetic field coil 2 in a magnetic shield state, and X, Y, and Z that are disposed inside the static magnetic field coil 2 and used to grasp the position of an examination site. A gradient magnetic field coil 7 that generates an axial gradient magnetic field and a cylindrical RF coil 4 that is disposed in the gradient magnetic field coil 7 and accommodates the fuel cell 3 are provided. The MRI apparatus 1 further includes a control unit 5 that performs calculation control based on a magnetic resonance signal and a phase difference signal from the RF coil 4, a storage unit 8 that stores a control program, calculation data, and calculation contents, and a control unit. And a display unit 9 for displaying an image based on the control result of the unit 5.

RFコイル4は、図4に示すように、2つの分割円筒コイル4a,4bからなり、これらを接合して円筒状に形成されている。分割円筒コイル4a,4bは、1つの円筒を、中心軸を含む平面で分割することにより得られる形状をなしており、接合することにより上述したように円筒状を成すようになっている。RFコイル4は、静磁場コイル2による静磁場中の燃料電池3などの測定対象に電磁波(RFパルス)を当てることにより磁気共鳴現象を生じさせると共に、水素原子核が発生する電波を受信してこの電波に対応する内容の磁気共鳴信号を発生して制御部5に送る。前記電波には、燃料電池3等の測定対象に生じる電流に伴う検査部位における核スピンの歳差運動の位相のずれに相当する内容が含まれている。そして、前記電波がRFコイル4に受信されることにより、RFコイル4から核スピンの歳差運動の位相のずれに相当する内容が位相差信号として制御部5に送られる。   As shown in FIG. 4, the RF coil 4 includes two divided cylindrical coils 4a and 4b, which are joined to form a cylindrical shape. The divided cylindrical coils 4a and 4b have a shape obtained by dividing one cylinder by a plane including the central axis, and form a cylindrical shape as described above by joining. The RF coil 4 generates a magnetic resonance phenomenon by applying an electromagnetic wave (RF pulse) to a measurement object such as the fuel cell 3 in the static magnetic field by the static magnetic field coil 2 and receives radio waves generated by hydrogen nuclei. A magnetic resonance signal having a content corresponding to the radio wave is generated and sent to the control unit 5. The radio wave includes contents corresponding to the phase shift of the precession of the nuclear spin at the examination site due to the current generated in the measurement target such as the fuel cell 3. Then, when the radio wave is received by the RF coil 4, the content corresponding to the phase shift of the precession of the nuclear spin is sent from the RF coil 4 to the control unit 5 as a phase difference signal.

MRI装置1の静磁場を発生する静磁場コイル2内に燃料電池3を置き、核磁気共鳴現象を利用して燃料電池3中の所望の検査部位に対応した磁気共鳴信号を発生させ、その画像表示を行なう。また、燃料電池3は、反応中、内部で生じる電流に伴って外部に発生する磁場が変化することにより、前記検査部位における核スピンの歳差運動の位相がずれるので、電流発生前と比して、位相差を生じることになる。この位相差を示す信号が上述したようにRFコイル4に受信され、位相差信号として制御部5に送られる。   A fuel cell 3 is placed in a static magnetic field coil 2 that generates a static magnetic field of the MRI apparatus 1, and a magnetic resonance signal corresponding to a desired examination site in the fuel cell 3 is generated using a nuclear magnetic resonance phenomenon. Display. In addition, the fuel cell 3 changes the phase of the precession of the nuclear spin at the examination site due to a change in the magnetic field generated outside with the current generated during the reaction. Thus, a phase difference is generated. A signal indicating this phase difference is received by the RF coil 4 as described above, and is sent to the control unit 5 as a phase difference signal.

ところで、記憶部8には、燃料電池内電流分布計測用スケール冶具(以下、スケール冶具という。)10を用い、後述するようにして得られる位相差−電流スケール(電流計測スケール)11が格納されている。制御部5は、位相差−電流スケール11を用いて、検査部位における核スピンの歳差運動の位相差に対応した電流(検査部位における電流)を検出できるものであり、各検査部位における電流を検出することができる。   By the way, the storage unit 8 stores a phase difference-current scale (current measurement scale) 11 obtained as described later using a scale jig (hereinafter referred to as a scale jig) 10 for measuring the current distribution in the fuel cell. ing. The control unit 5 can detect a current corresponding to the phase difference of the precession of the nuclear spin at the examination site (current at the examination site) using the phase difference-current scale 11, and the current at each examination site can be detected. Can be detected.

スケール冶具10は、図1に示すように、MRI装置1のRFコイル4内に収納され、蒸留水12を収納する樹脂製の有蓋13の容器14(蓋13及び容器14が共に樹脂製とされている。)と、蓋13及び容器14の底部15に、容器14内の蒸留水12に電流供給可能に設けられたカーボン膜からなる電極16,17と、を備えている。以下、蓋13に設けられた電極16を第1電極16、容器14の底部15に設けられた電極17を第2電極17という。第1、第2電極16,17は配線18で接続されている。配線18には、電圧発生装置19及び電流計20が介在されており、第1、第2電極16,17に電圧を印加して、容器14内の蒸留水12に電流を流すと共に、その電流値を計測し得るようにしている。なお、蒸留水12を流れる電流に直交する静磁場がかかるように容器14がMRI装置1にセットされる。電流計20には、解析用コンピュータ21が接続されている。この解析用コンピュータ21には、RFコイル4が接続され、位相差信号の入力を受けるようになっている。   As shown in FIG. 1, the scale jig 10 is accommodated in the RF coil 4 of the MRI apparatus 1, and a container 14 having a resin lid 13 for storing distilled water 12 (the lid 13 and the container 14 are both made of resin. And electrodes 16 and 17 made of carbon film provided on the bottom portion 15 of the lid 13 and the container 14 so as to be able to supply electric current to the distilled water 12 in the container 14. Hereinafter, the electrode 16 provided on the lid 13 is referred to as a first electrode 16, and the electrode 17 provided on the bottom 15 of the container 14 is referred to as a second electrode 17. The first and second electrodes 16 and 17 are connected by a wiring 18. A voltage generator 19 and an ammeter 20 are interposed in the wiring 18, and a voltage is applied to the first and second electrodes 16, 17 to flow current through the distilled water 12 in the container 14, and the current The value can be measured. The container 14 is set in the MRI apparatus 1 so that a static magnetic field orthogonal to the current flowing through the distilled water 12 is applied. An analysis computer 21 is connected to the ammeter 20. The analyzing computer 21 is connected to the RF coil 4 so as to receive a phase difference signal.

上述した電流の計測は、蒸留水12を収納した容器14をMRI装置1のRFコイル4内に挿入し、静磁場がかけられた状態で行なわれる。そして、蒸留水12に電流が流れることにより、この電流に伴う磁場変化により所望の検査部位における核スピンの歳差運動の位相がずれ、電流発生前と比して、位相差を生じ、この位相差を示す内容がRFコイル4に受信されて位相差信号として解析用コンピュータ21に送られる。解析用コンピュータ21は、電流計20からの電流値及びRFコイル4からの位相差信号が示す位相差値に基づいて、図2に示すように、横軸を電流値、縦軸を位相差とした1つの点情報Bを得る。   The above-described current measurement is performed in a state where a container 14 containing distilled water 12 is inserted into the RF coil 4 of the MRI apparatus 1 and a static magnetic field is applied. Then, when a current flows in the distilled water 12, the phase of the precession of the nuclear spin at the desired examination site is shifted due to the magnetic field change accompanying this current, and a phase difference is generated compared to before the current is generated. The content indicating the phase difference is received by the RF coil 4 and sent to the analyzing computer 21 as a phase difference signal. Based on the current value from the ammeter 20 and the phase difference value indicated by the phase difference signal from the RF coil 4, the analysis computer 21 has the horizontal axis as the current value and the vertical axis as the phase difference as shown in FIG. The obtained point information B is obtained.

上述と同様にして、電圧発生装置19の電圧値を調整して蒸留水12に流れる電流値を種々変えることにより、当該各電流値に対応した位相差値を求め、複数の点情報Bを得る。このようにして得られた複数の点情報Bを結び合わせるようにして直線状の位相差−電流スケール11を得るようにしている。
このように得られた位相差−電流スケール11は、上述したようにMRI装置1の記憶部8に格納され、RFコイル4からの位相差信号を受けて、位相差信号を位相差−電流スケール11に照らして、測定対象における検査部位の電流値、すなわち電流分布を検出するようにしている。
Similarly to the above, by adjusting the voltage value of the voltage generator 19 and changing the current value flowing in the distilled water 12 in various ways, the phase difference value corresponding to each current value is obtained, and a plurality of point information B is obtained. . The linear phase difference-current scale 11 is obtained by combining the plurality of point information B obtained in this way.
The phase difference-current scale 11 thus obtained is stored in the storage unit 8 of the MRI apparatus 1 as described above, receives the phase difference signal from the RF coil 4, and converts the phase difference signal into the phase difference-current scale. 11, the current value of the examination site in the measurement object, that is, the current distribution is detected.

本実施の形態のスケール冶具10により得られる位相差−電流スケール11によれば、燃料電池3の構造を変えることなく、非接触の状態で燃料電池3の電流分布を検出するので、良好な検出精度を確保できる。また、電流分布を検出する上で燃料電池3の性能に影響を及ぼさず、良好な性能を確保することができる。   According to the phase difference-current scale 11 obtained by the scale jig 10 of the present embodiment, the current distribution of the fuel cell 3 is detected in a non-contact state without changing the structure of the fuel cell 3, so that good detection is possible. Accuracy can be secured. Further, it is possible to ensure good performance without affecting the performance of the fuel cell 3 in detecting the current distribution.

次に、本発明の第2実施の形態に係る燃料電池内電流分布計測用固定装置を、図5に基づき、図3を参照して、説明する。
図5において、燃料電池内電流分布計測用固定装置25は、燃料電池3の長手方向の両端にそれぞれ装着され、外周面がRFコイル4(燃料電池配置部分)の内周面4c(円弧状装着部)に沿う形状の保持具27を備えている。
燃料電池3は、例えば、多孔質性材料を使用した一対の電極29,29間に、電解質を保持する電解質層30を挟み、一方の電極16の背面に反応ガスとして水素ガス(燃料ガス)を接触させることにより、このときに生じる電気化学反応を利用して一対の電極29,29間から電気エネルギーを取出すように構成された発電要素31を備え、発電要素31を樹脂製で略ロ字形のカバー32に収納させて複数本の樹脂製のボルト33により固定し、略直方体形状に構成されている。
Next, the fixing device for measuring the current distribution in the fuel cell according to the second embodiment of the present invention will be described based on FIG. 5 and referring to FIG.
In FIG. 5, the fixing device 25 for measuring the current distribution in the fuel cell is mounted on both ends of the fuel cell 3 in the longitudinal direction, and the outer peripheral surface is the inner peripheral surface 4c (arc-shaped mounting) of the RF coil 4 (fuel cell arrangement portion). Part) is provided.
In the fuel cell 3, for example, an electrolyte layer 30 that holds an electrolyte is sandwiched between a pair of electrodes 29, 29 using a porous material, and hydrogen gas (fuel gas) is used as a reaction gas on the back of one electrode 16. A power generation element 31 configured to take out electrical energy from between the pair of electrodes 29 and 29 by utilizing the electrochemical reaction generated at this time by contacting is provided. The power generation element 31 is made of resin and has a substantially rectangular shape. It is accommodated in the cover 32 and fixed by a plurality of resin bolts 33, and is formed in a substantially rectangular parallelepiped shape.

保持具27は、燃料電池3の端部に嵌合されて、燃料電池3の長手方向(図5左右方向)に移動可能とされた略コ字型の樹脂製の第1保持具34と、第1保持具34に対して蟻溝などのレール機構51を介して図5上下方向に移動可能に装着される樹脂製の第2保持具35と、を備えている。保持具27は、さらに、燃料電池3に対する第1保持具34の移動を抑制する樹脂製のテーパボルト(以下、第1ボルトという。)36と、第1保持具34に対する第2保持具35の移動を抑制する樹脂製のボルト(以下、第2ボルトという。)37と、を備えている。   The holder 27 is fitted to an end of the fuel cell 3 and is made of a substantially U-shaped resin-made first holder 34 that is movable in the longitudinal direction of the fuel cell 3 (left and right direction in FIG. 5). And a resin-made second holder 35 that is mounted on the first holder 34 via a rail mechanism 51 such as a dovetail groove so as to be movable in the vertical direction of FIG. 5. The holder 27 further includes a resin taper bolt (hereinafter referred to as a first bolt) 36 that suppresses the movement of the first holder 34 relative to the fuel cell 3, and the movement of the second holder 35 relative to the first holder 34. And a resin bolt (hereinafter referred to as a second bolt) 37 for suppressing the above.

第1保持具34は、燃料電池3の端面部3aに対面して配置される保持具本体38と、保持具本体38の端部に保持具本体38と直交して延設された第1、第2延設部39,40と、からなっており、第1延設部39に形成したねじ孔(以下、第1ねじ孔という。)41に螺合される第1ボルト36の先端部がカバー32に差込まれることにより燃料電池3に保持されるようになっている。
第2保持具35は、略かまぼこ形で、弧状をなす外周面(以下、弧状外周面という。)42がRFコイル4の内周面4cに沿う形状になっている。第2保持具35は、弧状外周面42と反対側の底部(以下、第2保持具底部という。)43が、レール機構51を介して第1保持具34の保持具本体38に摺動して、保持具本体38の長手方向(図5上下方向)に移動可能とされている。そして、第2保持具35は、弧状外周面42から第2保持具底部43まで延びて形成されたねじ孔(以下、第2ねじ孔という。)44に螺合される第2ボルト37が第1保持具34を押圧することにより第1保持具34に保持されるようになっている。
The first holder 34 includes a holder main body 38 disposed so as to face the end surface portion 3 a of the fuel cell 3, and first and second ends extending perpendicularly to the holder main body 38 at the end of the holder main body 38. And a tip end portion of a first bolt 36 screwed into a screw hole (hereinafter referred to as a first screw hole) 41 formed in the first extension portion 39. The fuel cell 3 is held by being inserted into the cover 32.
The second holder 35 has a substantially semi-cylindrical shape, and an outer peripheral surface (hereinafter referred to as an arc-shaped outer peripheral surface) 42 having an arc shape is formed along the inner peripheral surface 4 c of the RF coil 4. In the second holder 35, a bottom portion (hereinafter referred to as a second holder bottom portion) 43 opposite to the arcuate outer peripheral surface 42 slides on the holder body 38 of the first holder 34 via the rail mechanism 51. The holder main body 38 is movable in the longitudinal direction (vertical direction in FIG. 5). The second holder 35 has a second bolt 37 screwed into a screw hole (hereinafter referred to as a second screw hole) 44 formed to extend from the arcuate outer peripheral surface 42 to the second holder bottom 43. The first holder 34 is held by pressing the one holder 34.

そして、燃料電池3の電流分布を検出するために、例えば第1実施の形態に係るスケール冶具10を用いて燃料電池3の電流分布を計測する場合、上述したように構成された燃料電池内電流分布計測用固定装置25を燃料電池3に装着し、MRI装置1における静磁場の中心部分に、燃料電池3の中心がセットできるように第1、第2ボルト36,37を用いて、両側の保持具27の位置を調整し、燃料電池内電流分布計測用固定装置25を介して燃料電池3をRFコイル4に嵌合させる。
保持具27の位置を調整することにより燃料電池3のRFコイル4への嵌合を確実に行なえ、燃料電池3がMRI装置1に確実に固定されることになる。
In order to detect the current distribution of the fuel cell 3, for example, when the current distribution of the fuel cell 3 is measured using the scale jig 10 according to the first embodiment, the current in the fuel cell configured as described above. The distribution measuring fixing device 25 is attached to the fuel cell 3, and the first and second bolts 36 and 37 are used so that the center of the fuel cell 3 can be set at the center of the static magnetic field in the MRI apparatus 1. The position of the holder 27 is adjusted, and the fuel cell 3 is fitted to the RF coil 4 through the fixing device 25 for measuring the current distribution in the fuel cell.
By adjusting the position of the holder 27, the fuel cell 3 can be securely fitted to the RF coil 4, and the fuel cell 3 is securely fixed to the MRI apparatus 1.

このため、スケール冶具10を用いて燃料電池3の電流分布を計測する(この場合、位相差信号を求めて、位相差信号を位相差−電流スケール11に照合して電流分布を求める)場合、MRI装置1の静磁場(強磁界)内で燃料電池3が発電するため、燃料電池3にはフレミングの法則により大きな力が作用することになる。しかし、燃料電池3は、上述したようにMRI装置1に確実に固定されていることから変位が確実に抑制される。このため、位相差信号ひいては燃料電池3の電流分布は良好な検出精度をもって検出できる。   Therefore, when the current distribution of the fuel cell 3 is measured using the scale jig 10 (in this case, a phase difference signal is obtained and the phase difference signal is collated with the phase difference-current scale 11 to obtain a current distribution), Since the fuel cell 3 generates power in the static magnetic field (strong magnetic field) of the MRI apparatus 1, a large force acts on the fuel cell 3 according to Fleming's law. However, since the fuel cell 3 is securely fixed to the MRI apparatus 1 as described above, the displacement is reliably suppressed. For this reason, the phase difference signal and the current distribution of the fuel cell 3 can be detected with good detection accuracy.

この第2実施の形態では、燃料電池内電流分布計測用固定装置25を用いる例として、燃料電池3内の物理現象が燃料電池3の電流分布である場合を例にしたが、燃料電池3の水分量、温度などの燃料電池内の物理現象を計測する場合に、燃料電池内電流分布計測用固定装置25を用いるようにしてもよい。   In the second embodiment, as an example of using the fixing device 25 for measuring the current distribution in the fuel cell, the case where the physical phenomenon in the fuel cell 3 is the current distribution of the fuel cell 3 is taken as an example. When measuring physical phenomena in the fuel cell such as the amount of water and temperature, the fixing device 25 for measuring the current distribution in the fuel cell may be used.

保持具27(第1、第2保持具34,35及び第1、第2ボルト36,37)は樹脂製(非磁性材料)とされており、MRI装置1を用いた燃料電池3内の物理現象計測を行う上で、静磁場への影響がなく、その分、物理現象計測を良好に行なうことができる。   The holders 27 (first and second holders 34 and 35 and first and second bolts 36 and 37) are made of resin (non-magnetic material), and the physics in the fuel cell 3 using the MRI apparatus 1 is used. When measuring phenomena, there is no effect on the static magnetic field, and physical phenomena can be measured well.

本発明の第1実施の形態に係る燃料電池内電流分布計測用スケール冶具を模式的に示す図である。It is a figure which shows typically the scale jig for the current distribution measurement in a fuel cell which concerns on 1st Embodiment of this invention. 図1の燃料電池内電流分布計測用スケール冶具で得られる電流計測スケールを示す図である。It is a figure which shows the electric current measurement scale obtained with the scale jig for electric current distribution measurement in a fuel cell of FIG. 図1の燃料電池内電流分布計測用スケール冶具で得られる電流計測スケールが用いられるMRI装置を模式的に示す図である。It is a figure which shows typically the MRI apparatus by which the current measurement scale obtained with the scale jig for current distribution measurement in a fuel cell of FIG. 1 is used. 図3のRFコイルを模式的に示す分解斜視図である。FIG. 4 is an exploded perspective view schematically showing the RF coil of FIG. 3. 本発明の第2実施の形態に係る燃料電池内電流分布計測用固定装置を模式的に示し、(A)は燃料電池側部分、(B)はRFコイル側部分を示す図である。FIG. 5 schematically shows a fuel cell current distribution measurement fixing device according to a second embodiment of the present invention, in which FIG. 5A shows a fuel cell side portion and FIG. 5B shows an RF coil side portion.

符号の説明Explanation of symbols

1…MRI装置(核磁気共鳴撮像装置)、3…燃料電池、4…RFコイル(燃料電池配置部分)、4C…RFコイルの内周面(円弧状装着部)、10…スケール冶具(燃料電池内電流分布計測用スケール冶具)、11…位相差−電流スケール(電流計測スケール)、25…燃料電池内電流分布計測用固定装置、27…保持具。

DESCRIPTION OF SYMBOLS 1 ... MRI apparatus (nuclear magnetic resonance imaging apparatus), 3 ... Fuel cell, 4 ... RF coil (fuel cell arrangement | positioning part), 4C ... Inner peripheral surface (arc-shaped mounting part) of RF coil, 10 ... Scale jig (fuel cell) Internal current distribution measurement scale jig), 11... Phase difference-current scale (current measurement scale), 25... Fuel cell current distribution measurement fixing device, 27.

Claims (2)

静磁場に置かれた燃料電池に対して核磁気共鳴現象を利用して前記燃料電池中の所望の検査部位に対応した磁気共鳴信号を発生して画像表示を行なう核磁気共鳴撮像装置に用いられ、前記検査部位に流れる検査部位電流と、該検査部位電流による磁場変化に伴って生じる前記検査部位における核スピンの歳差運動の位相差との対応関係を示す位相差−電流スケールを得る燃料電池内電流分布計測用スケール冶具であって、
前記核磁気共鳴撮像装置内に収納され、水を収納する樹脂製の有蓋の容器と、
前記蓋及び前記容器の底部に、前記容器内の水に電流供給可能に設けられたカーボン製の電極と、を備え、
水を収納した前記容器を前記核磁気共鳴撮像装置に収納し、核磁気共鳴現象を利用して得られる位置依存性の磁気共鳴信号を発生した状態で、前記容器の電極を通して前記容器内の水に電流を流し、その電流と核スピンの歳差運動の位相差との関係を示す電流計測スケールを求めることを特徴とする燃料電池内電流分布計測用スケール冶具。
It is used in a nuclear magnetic resonance imaging apparatus for generating an image display by generating a magnetic resonance signal corresponding to a desired inspection site in the fuel cell by utilizing a nuclear magnetic resonance phenomenon for a fuel cell placed in a static magnetic field. A fuel cell for obtaining a phase difference-current scale showing a correspondence relationship between a test site current flowing through the test site and a phase difference of precession of nuclear spins in the test site caused by a magnetic field change caused by the test site current A scale jig for measuring internal current distribution,
A resin-covered container that is stored in the nuclear magnetic resonance imaging apparatus and stores water;
A carbon electrode provided at the bottom of the lid and the container so as to be able to supply current to the water in the container;
The container containing water is stored in the nuclear magnetic resonance imaging apparatus, and a position-dependent magnetic resonance signal obtained by using a nuclear magnetic resonance phenomenon is generated, and the water in the container is passed through the electrode of the container. A scale jig for measuring a current distribution in a fuel cell, characterized in that a current measurement scale is obtained that shows a relationship between the current and a phase difference of precession movement of nuclear spins.
請求項1記載の燃料電池内電流分布計測用スケール冶具により得られた電流計測スケールに基づいて電流分布が計測される燃料電池を前記核磁気共鳴撮像装置に固定する燃料電池内電流分布計測用固定装置であって、前記核磁気共鳴撮像装置における前記燃料電池配置部分には円弧状装着部を形成し、前記燃料電池には、前記円弧状装着部に沿う形状の保持具を、前記燃料電池に対して位置調整可能に設けたことを特徴とする燃料電池内電流分布計測用固定装置。

2. A fuel cell current distribution measurement fixture for fixing a fuel cell, whose current distribution is measured based on a current measurement scale obtained by a current jig for current distribution measurement in a fuel cell according to claim 1, to the nuclear magnetic resonance imaging apparatus. An arcuate mounting portion is formed in the fuel cell arrangement portion in the nuclear magnetic resonance imaging apparatus, and a holder having a shape along the arcuate mounting portion is attached to the fuel cell. A fixing device for measuring a current distribution in a fuel cell, characterized in that the position can be adjusted.

JP2005265242A 2005-09-13 2005-09-13 Scale tool for current distribution measurement in fuel cell, and fixing device for current distribution measurement in fuel cell Pending JP2007080613A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005265242A JP2007080613A (en) 2005-09-13 2005-09-13 Scale tool for current distribution measurement in fuel cell, and fixing device for current distribution measurement in fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005265242A JP2007080613A (en) 2005-09-13 2005-09-13 Scale tool for current distribution measurement in fuel cell, and fixing device for current distribution measurement in fuel cell

Publications (1)

Publication Number Publication Date
JP2007080613A true JP2007080613A (en) 2007-03-29

Family

ID=37940696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005265242A Pending JP2007080613A (en) 2005-09-13 2005-09-13 Scale tool for current distribution measurement in fuel cell, and fixing device for current distribution measurement in fuel cell

Country Status (1)

Country Link
JP (1) JP2007080613A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009302040A (en) * 2008-05-13 2009-12-24 Keio Gijuku Fuel cell system
JP2010003628A (en) * 2008-06-23 2010-01-07 Keio Gijuku Measuring device for fuel cell, and fuel cell system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009302040A (en) * 2008-05-13 2009-12-24 Keio Gijuku Fuel cell system
JP2010003628A (en) * 2008-06-23 2010-01-07 Keio Gijuku Measuring device for fuel cell, and fuel cell system

Similar Documents

Publication Publication Date Title
JP4997380B2 (en) Method for locally measuring the mobility of a protic solvent in a sample, apparatus for locally measuring the mobility of a protic solvent in a sample
Zieba et al. Detection coil, sensitivity function, and sample geometry effects for vibrating sample magnetometers
US20120194198A1 (en) Sensor arrangements for measuring magnetic susceptibility
CN106405457B (en) A kind of device and method detected for material ferromagnetism and magnetization property
JP2018004462A (en) Magnetic field measurement device, adjustment method of magnetic field measurement device and method of manufacturing magnetic field measurement device
JP6243534B2 (en) Method and apparatus for analyzing sample volume with magnetic particles
JP2011075472A (en) Method and device for accurately adjusting magic angle in nmr
JP4849623B2 (en) Method and apparatus for locally measuring the amount of protic solvent in a sample
JP5170686B2 (en) Measuring apparatus and measuring method using nuclear magnetic resonance method
JP2009020095A (en) System and method for attaching instrument to nmr system
JP2007080613A (en) Scale tool for current distribution measurement in fuel cell, and fixing device for current distribution measurement in fuel cell
Davydov et al. Small-size NMR spectrometer for express control of liquid media state
Padniuk et al. Universal determination of comagnetometer response to spin couplings
JP5337569B2 (en) Fuel cell system
Campmany et al. New improvements in magnetic measurements laboratory of the ALBA synchrotron facility
US6166542A (en) Nuclear magnetic resonance level gauging device
Blaum et al. Precision experiments and fundamental physics at low energies-Part II
RU190710U1 (en) Compact nuclear magnetic resonance spectrometer
Govind et al. Errors in Measurement of Magnetic Field and Magnetic Moment with its Associated Uncertainty
JPH06265611A (en) Magnetic-field measuring apparatus
JP2014004169A (en) Magnetic field adjustment method, magnetic field generator, magnetic resonance imaging device and magnetic field adjuster
JPH04238281A (en) Electrochemical reaction measuring device
JP5026757B2 (en) NMR probe and NMR apparatus
JP5513783B2 (en) Measuring device and fuel cell system
Yamamoto et al. Field-dependent 19F NMR study of sperm whale myoglobin reconstituted with a ring-fluorinated heme