JP2007078228A - Cold air circulation type show case - Google Patents

Cold air circulation type show case Download PDF

Info

Publication number
JP2007078228A
JP2007078228A JP2005265124A JP2005265124A JP2007078228A JP 2007078228 A JP2007078228 A JP 2007078228A JP 2005265124 A JP2005265124 A JP 2005265124A JP 2005265124 A JP2005265124 A JP 2005265124A JP 2007078228 A JP2007078228 A JP 2007078228A
Authority
JP
Japan
Prior art keywords
evaporator
air
refrigerant
end side
air inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005265124A
Other languages
Japanese (ja)
Other versions
JP4375312B2 (en
Inventor
Takeshi Watanabe
健 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Retail Systems Co Ltd
Original Assignee
Fuji Electric Retail Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Retail Systems Co Ltd filed Critical Fuji Electric Retail Systems Co Ltd
Priority to JP2005265124A priority Critical patent/JP4375312B2/en
Publication of JP2007078228A publication Critical patent/JP2007078228A/en
Application granted granted Critical
Publication of JP4375312B2 publication Critical patent/JP4375312B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Freezers Or Refrigerated Showcases (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve evaporating coil piping structure for an evaporator capable of controlling the increase of windage and the impairing of cold insulation performance of the evaporator caused by frost formation on an evaporating coil and a fan. <P>SOLUTION: In this cold air circulation type show case wherein a refrigerant is supplied to the fin tube type evaporator 6 of a refrigerating machine mounted in an inside cold air circulation passage through high pressure-side refrigerant piping 10 and an expansion valve 9, and the air exchanging heat with the evaporator is circulated and distributed inside to keep displayed articles cold, an evaporating coil part at an air inlet end side (lower end side of evaporator) of the evaporating coil 6a arranged while meandering over the whole area of the evaporator 6 is a fin-free bare pipe 6a-1, the liquid refrigerant is supplied to the bare pipe through the expansion valve 9, and a piping route of the evaporating coil in the whole evaporator is determined in such manner that a coil part continued from the bare pipe is once led to an air outlet side (upper end side of evaporator) of the evaporator, and then successively arranged while meandering toward the air inlet side, and its terminal end is connected with low pressure-side refrigerant piping 11. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、オープンショーケースを対象とする冷気循環式ショーケースに関し、詳しくはショーケースの庫内冷気循環通風路に配した冷凍機のエバポレータにおける蒸発コイルの配管構造に係わる。   The present invention relates to a cold air circulation type showcase intended for an open showcase, and more particularly to a piping structure of an evaporation coil in an evaporator of a refrigerator arranged in a cold air circulation ventilation path of a showcase.

まず、オープンショーケースを対象に、冷気循環式ショーケースの全体構造を図3に示す。図において、1は断熱筐体になる前面開放形ケース本体の外箱、2は内箱、3は商品陳列棚、4は庫内底部に配したデッキパン、5は前記外箱1と内箱2との間に画成した冷気循環通風路、6は冷気循環通風路5に配置した冷凍機のエバポレータ(蒸発器)、7はエバポレータ6の上流側に配置したファンプレナム、8は庫内ファンである。
上記の構成で、ショーケースの保冷運転時には図示矢印のように庫内空気が循環送風され、その循環通風の途上でエバポレータ6との熱交換により低温になった冷気が庫内に吹き出して陳列棚3,デッキパン4に陳列した商品を保冷することは周知の通りである。
ここで、前記のエバポレータ6として、従来のショーケースでは冷却面積を大きくするためにフィンチューブ形の蒸発コイルが一般に採用されており、この蒸発コイルには高圧側冷媒配管から膨張弁を介して液冷媒を供給している。
First, for the open showcase, FIG. 3 shows the overall structure of the cool air circulation type showcase. In the figure, 1 is an outer box of a front open type case main body that becomes a heat-insulating housing, 2 is an inner box, 3 is a product display shelf, 4 is a deck pan arranged at the bottom of the cabinet, and 5 is the outer box 1 and inner box 2 , A cold air circulation passage defined between the two, 6 is an evaporator (evaporator) of the refrigerator arranged in the cold air circulation passage 5, 7 is a fan plenum arranged upstream of the evaporator 6, and 8 is an internal fan is there.
With the above configuration, during the cool-down operation of the showcase, the air in the cabinet is circulated as indicated by the arrows in the figure, and the cold air that has become cold due to heat exchange with the evaporator 6 is blown into the cabinet in the course of the circulating ventilation. 3. It is well known that the goods displayed on the deck pan 4 are kept cold.
Here, in order to increase the cooling area in the conventional showcase, a fin tube type evaporation coil is generally adopted as the evaporator 6, and the evaporation coil is connected to the liquid via a high pressure side refrigerant pipe through an expansion valve. Supplying refrigerant.

ところで、フィンチューブ形蒸発コイルのエバポレータは保冷運転時に湿気を含んだ庫内空気がエバポレータを通風することから、蒸発コイル,フィンの表面(低温)に霜が発生し、保冷運転の時間経過とともにこの着霜量が増加してフィン間の通風路が狭まるようになるとエバポレータの風損が増大して庫内の循環通風量が減少し、これが原因でショーケースの保冷性能が低下するようになる。なお、ショーケースは周期的に保冷運転と除霜運転を交互に繰り返し、除霜運転時にはエバポレータにヒータで加熱した空気を送り込んで蒸発コイル,フィンの着霜を除去するようにしている。
そこで、ショーケースの保冷運転中にエバポレータの蒸発コイル,フィンに着霜した霜で通風路が目詰まりするのを防ぐ対策として、特に湿気の多い空気が流入するエバポレータの空気入口端側で蒸発コイルのフィン配列ピッチを広げてこの部分の通風路が霜で目詰まりするのを防止するようにした構成が従来より知られている(例えば、特許文献1参照)。
By the way, in the evaporator of the fin tube type evaporation coil, frost is generated on the surface (low temperature) of the evaporation coil and the fin because the inside air containing moisture passes through the evaporator during the cooling operation. When the amount of frost formation increases and the ventilation path between the fins becomes narrower, the windage loss of the evaporator increases and the circulation ventilation amount in the cabinet decreases, which causes the cooling performance of the showcase to deteriorate. In addition, the showcase periodically repeats the cold insulation operation and the defrosting operation, and during the defrosting operation, the air heated by the heater is sent to the evaporator to remove the frosting of the evaporation coils and the fins.
Therefore, as a measure to prevent the ventilation path from becoming clogged with frost that has formed on the evaporator's evaporator coil and fins during the cool-down operation of the showcase, the evaporator coil particularly at the air inlet end side of the evaporator into which humid air flows. A configuration in which the fin arrangement pitch is widened to prevent clogging of the air passages in this portion with frost has been conventionally known (see, for example, Patent Document 1).

次に、前記したエバポレータの従来構造を図4,図5に示す。まず、図4に示すエバポレータ6において、6aは蒸発コイル、6bは左右の端板、6cはフィンで、蒸発コイル6aは端板6b,フィン6cの間を蛇行状(ジグザグ)に配管し、エバポレータ6の空気出口端側(エバポレータ6の上端側)に配管した蒸発コイル6の冷媒導入側が膨張弁9を介して高圧側冷媒配管10に接続され、空気入口側(エバポレータ6の下端側)に配管した蒸発コイルの終端を低圧側冷媒配管11に接続している。また、このエバポレータ6においては、図示のように空気入口側端(エバポレータ6の下端側)でフィン6cを一枚おきに短尺にしてフィン間のピッチを広げている。
また、図5は実際にショーケースに搭載したエバポレータの側面図であり、図示例のエバポレータ6では蒸発コイル6aが2系統に分けて配管され、各系統の蒸発コイルが分岐ヘッダー12,13を介して高圧側冷媒配管10,低圧側冷媒配管11に並列に接続されている。また、膨張弁9は温度式膨張弁が採用されており、該膨張弁9に接続した感温筒14がエバポレータ6から引出した蒸発コイル6aの冷媒出口側に取付けられている。
Next, the conventional structure of the above-described evaporator is shown in FIGS. First, in the evaporator 6 shown in FIG. 4, 6a is an evaporation coil, 6b is left and right end plates, 6c is a fin, and the evaporation coil 6a is piped in a zigzag manner between the end plates 6b and fins 6c. 6, the refrigerant introduction side of the evaporation coil 6 piped to the air outlet end side (upper end side of the evaporator 6) is connected to the high-pressure side refrigerant pipe 10 via the expansion valve 9, and piped to the air inlet side (lower end side of the evaporator 6). The end of the evaporation coil is connected to the low-pressure refrigerant pipe 11. Moreover, in this evaporator 6, as shown in the figure, the pitch between the fins is increased by shortening every other fin 6c at the air inlet side end (lower end side of the evaporator 6).
FIG. 5 is a side view of the evaporator actually mounted on the showcase. In the evaporator 6 of the illustrated example, the evaporation coil 6a is divided into two systems, and the evaporation coils of each system are connected via the branch headers 12 and 13, respectively. The high-pressure side refrigerant pipe 10 and the low-pressure side refrigerant pipe 11 are connected in parallel. The expansion valve 9 employs a temperature type expansion valve, and a temperature sensing cylinder 14 connected to the expansion valve 9 is attached to the refrigerant outlet side of the evaporation coil 6 a drawn from the evaporator 6.

上記の構成で、庫内空気はファン8の送風により図示矢印のようにエバポレータ6の内部を下方から上方に向けて流れ、蒸発コイル6a,フィン6cの表面と熱交換して低温に冷却される。また、この送風過程で庫内側からエバポレータ6に送風される空気に含まれている湿気は霜に変わって蒸発コイル6a,フィン6cの表面に着霜し、除湿された空気がエバポレータ6を通過して庫内に還流されるようになる。
この場合に、空気の除湿はエバポレータ6の空気入口側端から出口側端に向けて順に進行し、蒸発コイル,フィンの着霜量もエバポレータの空気入口側部分で多くなることから、図示のように空気入口端側においてフィン6cの配列を間引いてフィン間の通風間隙を広げておくことにより、エバポレータの通風路が保冷運転中に着霜で目詰まり難くなる。
実開昭60−68365号公報
With the above configuration, the internal air flows through the inside of the evaporator 6 from the lower side to the upper side as indicated by the arrows of the fan 8 and is cooled to a low temperature by exchanging heat with the surfaces of the evaporation coils 6a and fins 6c. . Further, the moisture contained in the air blown from the inside of the cabinet to the evaporator 6 during this blowing process changes to frost and forms frost on the surfaces of the evaporation coils 6 a and fins 6 c, and the dehumidified air passes through the evaporator 6. Then it will be recirculated into the cabinet.
In this case, the dehumidification of the air proceeds in order from the air inlet side end of the evaporator 6 toward the outlet side end, and the frosting amount of the evaporation coils and fins also increases at the air inlet side portion of the evaporator. In addition, by thinning the arrangement of the fins 6c on the air inlet end side to widen the ventilation gap between the fins, the ventilation path of the evaporator is less likely to be clogged with frost during the cooling operation.
Japanese Utility Model Publication No. 60-68365

ところで、図4に示した従来のエバポレータ6では、膨張弁9を通じて液冷媒を空気出口端側(エバポレータ6の上端側)から蒸発コイル6aに供給していることから、空気入口端側(エバポレータ6の下端側)に配管した終端側のコイル部分(冷媒供給端から見て最も遠い位置)には殆ど蒸発し終えた冷媒ガスが通流することになる。
したがって、エバポレータ6の空気入口端側に配管した蒸発コイル部分での着霜,除湿量はさほど多くなく、空気は十分に除湿されないままこの部分を通過して通風する。そのために、液冷媒の供給端に近い空気出口側の蒸発コイルの部分にも多くの霜が着霜するようになる。
このことから、図4のようにエバポレータの空気入口端側でフィンピッチを広げても、エバポレータ全体で見ると着霜による通風路の目詰まり防止機能が十分に発揮されず、このままでは保冷運転の時間経過とともに空気出口側のフィン間通風路が着霜により狭められしまい、そのためにエバポレータの風損が増加して高い保冷性能を維持できなくなる。
By the way, in the conventional evaporator 6 shown in FIG. 4, since the liquid refrigerant is supplied to the evaporation coil 6a from the air outlet end side (the upper end side of the evaporator 6) through the expansion valve 9, the air inlet end side (the evaporator 6). The refrigerant gas almost completely evaporated flows through the coil portion on the end side (the farthest position as viewed from the refrigerant supply end) piped on the lower end side of the gas.
Therefore, the amount of frost and dehumidification at the evaporation coil portion piped on the air inlet end side of the evaporator 6 is not so large, and the air passes through this portion without being sufficiently dehumidified. Therefore, a lot of frost forms on the portion of the evaporation coil on the air outlet side near the supply end of the liquid refrigerant.
For this reason, even if the fin pitch is widened on the air inlet end side of the evaporator as shown in FIG. 4, the function of preventing the clogging of the ventilation path due to frost formation is not sufficiently exhibited when viewed from the whole evaporator. Over time, the air passage between the fins on the air outlet side is narrowed due to frost formation, so that the windage loss of the evaporator increases and high cooling performance cannot be maintained.

本発明は上記の点に鑑みなされたものであり、その目的は前記課題を解決し、蒸発コイル,ファンの着霜に起因する風損増加,保冷性能低下を抑えるようにエバポレータの蒸発コイル配管構造を改良したショーケースを提供することにある。   SUMMARY OF THE INVENTION The present invention has been made in view of the above points, and its object is to solve the above-mentioned problems, and to prevent an increase in windage loss and a decrease in cooling performance caused by frosting of the evaporation coil and fan. The purpose is to provide an improved showcase.

上記目的を達成するために、本発明によれば、庫内の冷気循環通風路に配置した冷凍機のフィンチューブ形エバポレータに高圧側冷媒配管,膨張弁を通じて冷媒を供給し、該エバポレータと熱交換した空気を庫内に循環送風して陳列商品を保冷する冷気循環式ショーケースにおいて、
前記エバポレータの全域に亘り蛇行配管した蒸発コイルのうち、空気入口端側に配管した蒸発コイル部分をフィン無しのベアパイプとして、該ベアパイプに高圧側の冷媒配管を接続し冷媒を供給するようにする(請求項1)。
また、エバポレータはその空気入口を下に,空気出口を上にして縦向きに配置した上で、エバポレータ全体での蒸発コイルの配管経路は、エバポレータの空気入口端側に配管したベアパイプに続くコイル部分をエバポレータの空気出口端側に引回し、ここから空気入口側に向けて順に蛇行配管するようにする(請求項2)。
In order to achieve the above object, according to the present invention, a refrigerant is supplied to a fin-tube evaporator of a refrigerator arranged in a cold air circulation passage in a warehouse through a high-pressure side refrigerant pipe and an expansion valve, and heat exchange with the evaporator is performed. In a cool air circulation showcase that circulates and blows air into the cabinet to keep the displayed products cool,
Among the evaporation coils meandering over the whole area of the evaporator, the evaporation coil portion connected to the air inlet end side is used as a bare pipe without fins, and a refrigerant pipe on the high-pressure side is connected to the bare pipe to supply refrigerant ( Claim 1).
In addition, the evaporator is arranged vertically with the air inlet facing down and the air outlet facing up, and the evaporation coil piping path of the entire evaporator is the coil part that continues to the bare pipe that is piped to the air inlet end side of the evaporator. Are routed to the air outlet end side of the evaporator, and meandering pipes are sequentially arranged from here to the air inlet side (claim 2).

上記の構成によれば、膨張弁を通じてエバポレータに供給される液冷媒が最初に空気入口側端に配管したベアパイプの部分を流れる。したがって、湿気を多く含んで庫内側からエバポレータに向けて送風されてきた高湿状態の空気は、最初にベアパイプに流れる液冷媒と熱交換して強力に冷却,除湿される。また、ここで除湿された空気はさらにフィン付き蒸発コイルからの冷却作用を受けながらエバポレータの内部を通流し、その空気出口端側から再び庫内に向けて還流するよう送風される。
したがって、エバポレータの空気入口端側に配管したベアパイプの表面には多量の霜が付着発生するようになるが、ベアパイプにはフィンがないので、この部分の通風路が霜によって目詰まりを引き起こすおそれは殆どない。しかも、ベアパイプの配管部分を通過した空気は十分に除湿されているので、ここからエバポレータの空気出口端側に至る通風経路で蒸発コイルおよびフィンに発生する着霜量が少なくなる。したがって、エバポレータ全体では保冷運転中にフィン間の通風間隙が着霜によって極端に狭まったり目詰まりしたりして風損の増加,保冷性能の低下を抑えることができ、結果としてショーケースを高い保冷性能で運転することができる。
According to said structure, the liquid refrigerant | coolant supplied to an evaporator through an expansion valve flows through the part of the bare pipe initially piped to the air inlet side end. Therefore, the high-humidity air that contains a lot of moisture and is blown toward the evaporator from the inside of the cabinet is first cooled and dehumidified by exchanging heat with the liquid refrigerant flowing in the bare pipe. In addition, the air dehumidified here flows through the inside of the evaporator while receiving the cooling action from the finned evaporation coil, and is sent to return to the interior from the air outlet end side again.
Therefore, a large amount of frost adheres to the surface of the bare pipe piped to the air inlet end side of the evaporator, but since there is no fin in the bare pipe, there is a possibility that the ventilation path of this part may be clogged by frost. Almost no. And since the air which passed the piping part of the bare pipe is fully dehumidified, the amount of frost which generate | occur | produces in an evaporation coil and a fin on the ventilation path from here to the air outlet end side of an evaporator decreases. Therefore, in the entire evaporator, the ventilation gap between the fins can be extremely narrowed or clogged due to frosting during the cooling operation, thereby suppressing increase in windage loss and deterioration in cooling performance. You can drive with performance.

以下、本発明の実施の形態を図1,図2に示す実施例に基づいて説明する。なお、実施例の図中で図4,図5に対応する部材には同じ符号を付してその説明は省略する。
図示実施例のエバポレータ6においては、蒸発コイル6aが次記のような配管経路を辿って配管されている。すなわち、膨張弁9を介して高圧側冷媒配管10に接続した蒸発コイル6aは、最初の1ターン分をベアパイプ6a−1のままエバポレータ6の空気入口端側(エバポレータの下端側)に配管し、端板6bから引き出したコイルをエバポレータ6の外側方に引回して空気出口側端(エバポレータの上端側)に立ち上げ、ここから左右端板6bの間に定ピッチで配列したフィン6cの間を縫って順次蛇行状(ジグザグ)に配管し、その終端を低圧側冷媒配管11に接続している。なお、図2において、図中の矢印は冷媒の通流方向を表している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below based on the examples shown in FIGS. In the drawing of the embodiment, members corresponding to those in FIG. 4 and FIG.
In the evaporator 6 of the illustrated embodiment, the evaporation coil 6a is piped along the following piping path. That is, the evaporation coil 6a connected to the high-pressure side refrigerant pipe 10 via the expansion valve 9 pipes the first one turn to the air inlet end side (lower end side of the evaporator) of the evaporator 6 while keeping the bare pipe 6a-1. The coil pulled out from the end plate 6b is routed outward of the evaporator 6 to rise to the air outlet side end (upper end side of the evaporator), and between the fins 6c arranged at a constant pitch between the left and right end plates 6b from here. The pipes are formed in a meandering manner (zigzag) and connected to the low-pressure side refrigerant pipe 11. In FIG. 2, the arrows in the figure indicate the direction of refrigerant flow.

上記した蒸発コイル6aの配管経路により、ショーケースの保冷運転中に膨張弁9を通じて高圧側冷媒配管10よりエバポレータ6に供給された液冷媒は、最初に空気入口端側に配管したベアパイプ6a−1を流れ、ここで図3に示した循環通風路5を経て庫内側から送風されてエバポレータ6に流入する空気(湿気を多く含んでいる)は、ベアパイプ6a−1に流れる液冷媒と熱交換して強力な冷却,除湿作用を受ける。これにより、エバポレータ6の空気入口端側に配管したベアパイプ6a−1には多量に着霜することになるが、このコイル配管部分にはフィン6cが無いので通風路が霜で目詰まりするおそれはない。
また、ベアパイプ6a−1を通流した冷媒は、図示の配管経路に沿って上方の空気出口端側から下方に向けて蛇行配管した蒸発コイル6aの中を流下し、その終端から低圧側冷媒配管に吐き出されて冷凍機の圧縮機に戻り、この過程でエバポレータ6の内部を通風する循環空気流と熱交換して空気を低温に冷却する。この場合に、エバポレータ6を通風する空気は、エバポレータの空気入口端側を通過する際にベアパイプ6a−1との熱交換により強力に除湿されてその湿度が低下しているので着霜の発生量も少なく、フィン6cの間の通風間隙が着霜により極端に狭まって風損を高めたり,目詰まりするおそれは少く、これにより高い保冷性能を維持してショーケースを保冷運転できる。
Due to the piping path of the evaporation coil 6a described above, the liquid refrigerant supplied to the evaporator 6 from the high-pressure side refrigerant pipe 10 through the expansion valve 9 during the cool-down operation of the showcase is the bare pipe 6a-1 first piped to the air inlet end side. Here, the air (containing a lot of humidity) blown from the inside of the warehouse through the circulation ventilation path 5 shown in FIG. 3 and flows into the evaporator 6 exchanges heat with the liquid refrigerant flowing in the bare pipe 6a-1. It receives strong cooling and dehumidifying action. As a result, a large amount of frost is formed on the bare pipe 6a-1 piped on the air inlet end side of the evaporator 6; Absent.
Further, the refrigerant flowing through the bare pipe 6a-1 flows down through the evaporation coil 6a meandering downward from the upper air outlet end side along the illustrated piping path, and the low pressure side refrigerant pipe from the end thereof. In this process, the air is cooled to a low temperature by exchanging heat with the circulating air flow passing through the inside of the evaporator 6. In this case, the air flowing through the evaporator 6 is strongly dehumidified by the heat exchange with the bare pipe 6a-1 when passing through the air inlet end side of the evaporator, and the humidity is reduced. However, there is little possibility that the ventilation gap between the fins 6c becomes extremely narrow due to frosting, thereby increasing windage loss or clogging, and thus the showcase can be kept cold while maintaining high cold insulation performance.

なお、ショーケースの庫内循環通風路内で縦向きに配置したエバポレータ6の蒸発コイル6aを図示配管経路のように一旦上方に立ち上げて配管することにより、高圧側冷媒配管10を通じてエバポレータ6に供給する冷媒に冷凍機オイルが混入していても、冷媒の流れに随伴してエバポレータから排出されるので、冷凍機の運転停止中にオイルがエバポレータ6の蒸発コイル内に停留する不具合を防止できる。   Note that the evaporator coil 6a of the evaporator 6 disposed vertically in the circulation passage of the showcase is once raised upward as shown in the illustrated piping path and piped to the evaporator 6 through the high-pressure refrigerant pipe 10. Even if refrigeration oil is mixed in the refrigerant to be supplied, the refrigerant is discharged from the evaporator in association with the flow of the refrigerant. .

本発明の実施例によるエバポレータの蒸発コイルの配管経路を表す図The figure showing the piping path | route of the evaporation coil of the evaporator by the Example of this invention 図1に対応するエバポレータの配置構造を示す側面図The side view which shows the arrangement structure of the evaporator corresponding to FIG. オープンショーケースの全体構成図Overall configuration of open showcase 従来のショーケースに搭載したエバポレータの蒸発コイルの配管経路を表す図The figure showing the piping route of the evaporation coil of the evaporator mounted in the conventional showcase 図4に対応するエバポレータの配置構造を示す側面図The side view which shows the arrangement structure of the evaporator corresponding to FIG.

符号の説明Explanation of symbols

1 ショーケースの本体ケース
5 庫内の冷気循環通風路
6 エバポレータ
6a 蒸発コイル
6a−1 ベアパイプ
6c フィン
8 庫内ファン
9 膨張弁
10 高圧側冷媒配管
11 低圧側冷媒配管
DESCRIPTION OF SYMBOLS 1 Main body case of a showcase 5 Cold air circulation ventilation path in the chamber 6 Evaporator 6a Evaporating coil 6a-1 Bare pipe 6c Fin 8 Fan in the chamber 9 Expansion valve 10 High pressure side refrigerant piping 11 Low pressure side refrigerant piping

Claims (2)

庫内の冷気循環通風路に配置した冷凍機のフィンチューブ形エバポレータに高圧側冷媒配管,膨張弁を通じて冷媒を供給し、該エバポレータと熱交換した低温空気を庫内に循環送風して陳列商品を保冷する冷気循環式ショーケースにおいて、
前記エバポレータに蛇行配管した蒸発コイルのうち、空気入口端側に配管した蒸発コイルをベア管とし、該ベア管に高圧側の冷媒配管を接続して冷媒を供給するようにしたことを特徴とする冷気循環式ショーケース。
Supply refrigerant to the finned-tube evaporator of the refrigerator placed in the cold air circulation passage in the refrigerator through the high-pressure side refrigerant piping and expansion valve, and circulate and blow low-temperature air heat-exchanged with the evaporator into the refrigerator to display products. In the cool air circulation showcase to keep cool,
Among the evaporation coils meanderingly piped to the evaporator, the evaporation coil piped on the air inlet end side is used as a bare pipe, and a refrigerant is supplied by connecting a high-pressure side refrigerant pipe to the bare pipe. Cold air circulation showcase.
請求項1記載のショーケースにおいて、エバポレータはその空気入口を下に,空気出口を上にして縦向きに配置した上で、エバポレータの空気入口端側に配管したベアパイプに続くコイル部分をエバポレータの空気出口端側に引回し、ここから空気入口側に向けて順に蛇行配管したことを特徴とする冷気循環式ショーケース。

2. The showcase according to claim 1, wherein the evaporator is arranged vertically with the air inlet facing down and the air outlet facing up, and the coil portion following the bare pipe piped on the evaporator air inlet end side is connected to the evaporator air. A cold air circulation showcase, characterized in that it is routed to the outlet end side, and meandering pipes are sequentially arranged from here to the air inlet side.

JP2005265124A 2005-09-13 2005-09-13 Cold air circulation display case Expired - Fee Related JP4375312B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005265124A JP4375312B2 (en) 2005-09-13 2005-09-13 Cold air circulation display case

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005265124A JP4375312B2 (en) 2005-09-13 2005-09-13 Cold air circulation display case

Publications (2)

Publication Number Publication Date
JP2007078228A true JP2007078228A (en) 2007-03-29
JP4375312B2 JP4375312B2 (en) 2009-12-02

Family

ID=37938740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005265124A Expired - Fee Related JP4375312B2 (en) 2005-09-13 2005-09-13 Cold air circulation display case

Country Status (1)

Country Link
JP (1) JP4375312B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010014362A (en) * 2008-07-04 2010-01-21 Fuji Electric Retail Systems Co Ltd Showcase
JP2010078234A (en) * 2008-09-26 2010-04-08 Sanyo Electric Co Ltd Refrigerating device
CN101398247B (en) * 2007-09-30 2011-04-06 海尔集团公司 Direct freezing double-system double door refrigerator with freezing chamber at upper part
JP2011247501A (en) * 2010-05-27 2011-12-08 Mitsubishi Electric Corp Cold air circulation type showcase
CN105202506A (en) * 2015-10-24 2015-12-30 左颖 High-power LED lamp heat dissipating device and application method thereof
WO2017080346A1 (en) * 2015-11-10 2017-05-18 南通四方冷链装备股份有限公司 Fin-type evaporator
CN108291780A (en) * 2015-11-23 2018-07-17 开利公司 Heat exchanger

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110285612A (en) * 2019-06-14 2019-09-27 合肥美的电冰箱有限公司 Moisture separator, refrigeration equipment and the method for separating water vapor in air

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101398247B (en) * 2007-09-30 2011-04-06 海尔集团公司 Direct freezing double-system double door refrigerator with freezing chamber at upper part
JP2010014362A (en) * 2008-07-04 2010-01-21 Fuji Electric Retail Systems Co Ltd Showcase
JP2010078234A (en) * 2008-09-26 2010-04-08 Sanyo Electric Co Ltd Refrigerating device
JP2011247501A (en) * 2010-05-27 2011-12-08 Mitsubishi Electric Corp Cold air circulation type showcase
CN105202506A (en) * 2015-10-24 2015-12-30 左颖 High-power LED lamp heat dissipating device and application method thereof
WO2017080346A1 (en) * 2015-11-10 2017-05-18 南通四方冷链装备股份有限公司 Fin-type evaporator
CN108291780A (en) * 2015-11-23 2018-07-17 开利公司 Heat exchanger

Also Published As

Publication number Publication date
JP4375312B2 (en) 2009-12-02

Similar Documents

Publication Publication Date Title
JP4375312B2 (en) Cold air circulation display case
US6923013B2 (en) Evaporator for medium temperature refrigerated merchandiser
KR100602535B1 (en) Evaporator for Medium Temperature Refrigerated Merchandiser
KR20170104877A (en) Refrigerator
JP2009133624A (en) Refrigerating/air-conditioning device
JP2008202823A (en) Refrigerator
WO2019008664A1 (en) Refrigeration cycle device
US7065982B2 (en) Evaporator for refrigeration systems
JPH08313144A (en) Defrosting device of freezing and refrigerating showcase
JP4130636B2 (en) Refrigerator built-in showcase
US20050247077A1 (en) Evaporator for a refrigeration system
CN102038387B (en) Refrigerating display case
JP5322551B2 (en) Refrigeration equipment
JP4423321B2 (en) Refrigerator built-in showcase
KR200178433Y1 (en) Evaporation device of refrigerator
US20110024083A1 (en) Heat exchanger
EP2310773A1 (en) Remote refrigeration display case system
JP2011247501A (en) Cold air circulation type showcase
JP5188564B2 (en) Showcase and refrigeration equipment
JP2010071540A (en) Showcase
JP2009168288A (en) Cooling device
KR970009814B1 (en) Cool air circulating type show case of a refrigerator
JP3157360B2 (en) Cooler
TWI794745B (en) cooling device
JP7129372B2 (en) refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080715

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090219

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090818

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090831

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130918

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees