JP2007078000A - Hydrostatic continuously variable transmission for working vehicle - Google Patents

Hydrostatic continuously variable transmission for working vehicle Download PDF

Info

Publication number
JP2007078000A
JP2007078000A JP2005262801A JP2005262801A JP2007078000A JP 2007078000 A JP2007078000 A JP 2007078000A JP 2005262801 A JP2005262801 A JP 2005262801A JP 2005262801 A JP2005262801 A JP 2005262801A JP 2007078000 A JP2007078000 A JP 2007078000A
Authority
JP
Japan
Prior art keywords
swash plate
trunnion shaft
neutral position
continuously variable
variable transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005262801A
Other languages
Japanese (ja)
Inventor
Tetsuji Murakami
徹司 村上
Fumio Shigematsu
文雄 重松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iseki and Co Ltd
Iseki Agricultural Machinery Mfg Co Ltd
Original Assignee
Iseki and Co Ltd
Iseki Agricultural Machinery Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iseki and Co Ltd, Iseki Agricultural Machinery Mfg Co Ltd filed Critical Iseki and Co Ltd
Priority to JP2005262801A priority Critical patent/JP2007078000A/en
Publication of JP2007078000A publication Critical patent/JP2007078000A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Control Of Fluid Gearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrostatic continuously variable transmission for a working vehicle which may not start nor stop suddenly even by changing a rotation angle of a trunnion shaft near the neutral position. <P>SOLUTION: An eccentric cam 42 is installed in a crank arm 37 which is an interlocking member between the trunnion shaft 36 and a swash plate 3. Since the inclination angle of the swash plate 3 changes quadratically from the neutral position of an HST toward either positive or negative side with respect to the rotation angle of the trunnion shaft 36, but the inclination angel of the swash plate 3 does not change rapidly, the movement of the swash plate 3 near the neutral position can be minimized compared with the movement of the trunnion shaft 36. Thereby, the neutral position can be easily controlled, while the most subtle operation can be made for the working vehicle near the neutral position, so that the starting and stopping can be smoothly performed. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は作業車両の静油圧式無段変速装置に関する。   The present invention relates to a hydrostatic continuously variable transmission for a work vehicle.

従来から静油圧式無段変速装置(HSTということがある)を搭載した田植機等の作業車両が汎用されている。静油圧式無段変速装置は、軸回りに多数のピストンシリンダを配設して回転させながら、可動斜板の斜面角に沿わせて可変容量型ポンプの油圧によって、油圧閉回路により接続された固定容量型モ−タを油圧駆動させながら無段変速を行わせる油圧無段変速装置である。
特開閉5−288271号公報
Conventionally, work vehicles such as rice transplanters equipped with a hydrostatic continuously variable transmission (sometimes referred to as HST) have been widely used. The hydrostatic continuously variable transmission is connected by a hydraulic closed circuit by the hydraulic pressure of the variable displacement pump along the slope angle of the movable swash plate while rotating by arranging a number of piston cylinders around the shaft. This is a hydraulic continuously variable transmission that performs a continuously variable transmission while hydraulically driving a fixed displacement motor.
Special opening and closing No. 5-288271

前記HSTは斜板の傾斜角度をトラニオン軸の回転角度により調整することで可変容量型ポンプの油吐出圧を調整し、かつ可変容量型ポンプの回転方向を正転又は逆転させることで油圧モータの出力軸の回転速度と回転方向を変更させることができる。   The HST adjusts the oil discharge pressure of the variable displacement pump by adjusting the inclination angle of the swash plate according to the rotation angle of the trunnion shaft, and by rotating the rotation direction of the variable displacement pump forward or reverse. The rotational speed and direction of the output shaft can be changed.

しかし従来のHSTでは、トラニオン軸の回転角度と斜板の傾斜角度の間に図6に点線で示す関係があり、トラニオン軸の回転角度を中立位置から正転方向及び逆転方向に大きくしていくと斜板の傾斜角度は直線的に上昇する。そのため、中立付近でHSTの出力が急激に上昇又は減少して作業車両の急発進、急停止の原因となる。
そこで、本発明の課題は、トラニオン軸の回転角度を中立位置付近で大きくしても作業車両が急発進、急停止するおそれのない静油圧式無段変速装置を提供することである。
However, in the conventional HST, there is a relationship shown by a dotted line in FIG. 6 between the rotation angle of the trunnion shaft and the inclination angle of the swash plate, and the rotation angle of the trunnion shaft is increased from the neutral position to the forward rotation direction and the reverse rotation direction. The inclination angle of the swash plate rises linearly. Therefore, the HST output suddenly increases or decreases near the neutral position, causing sudden start and stop of the work vehicle.
Accordingly, an object of the present invention is to provide a hydrostatic continuously variable transmission that does not cause the work vehicle to suddenly start or stop even if the rotation angle of the trunnion shaft is increased near the neutral position.

本発明の上記課題は次の解決手段により解決される。
すなわち、手動操作可能なトラニオン軸(36)と、該トラニオン軸(36)の回動により傾斜角度が変更される斜板(3)と、該斜板(3)の傾斜角度により吐出油量と油の吐出方向を調整する可変容量型ポンプ(A)と、該可変容量型ポンプ(A)の吐出油量と油の吐出方向に応じて出力軸(11)の回転速度と方向を変更する油圧モータ(B)とを備えた静油圧式無段変速装置において、前記トラニオン軸(36)と斜板(3)との間の連動部材の一つとして偏心カム(42)を装着する静油圧式無段変速装置である。
The above-described problems of the present invention are solved by the following solution means.
That is, the manually operated trunnion shaft (36), the swash plate (3) whose inclination angle is changed by the rotation of the trunnion shaft (36), and the discharge oil amount by the inclination angle of the swash plate (3). A variable displacement pump (A) that adjusts the oil discharge direction, and a hydraulic pressure that changes the rotational speed and direction of the output shaft (11) according to the amount of oil discharged from the variable displacement pump (A) and the oil discharge direction. In a hydrostatic continuously variable transmission equipped with a motor (B), a hydrostatic type is mounted with an eccentric cam (42) as one of the interlocking members between the trunnion shaft (36) and the swash plate (3). It is a continuously variable transmission.

本発明によれば、連動部材の一つとして偏芯カム(42)を用いると、トラニオン軸(36)の回動操作角度に対して斜板(3)の傾斜角度がHSTの中立位置から正負のいずれの側にも2次曲線的に変化し、斜板(3)の傾斜角度が急激に変化しないので、中立位置近傍での斜板(3)の動きをトラニオン軸(36)の動きに比較して極少なくすることができ、中立位置の調整が容易に行えると同時に、作業車両が中立近傍において、極微妙な操作が可能となり、発進及び停止が滑らかに行えるようになる。   According to the present invention, when the eccentric cam (42) is used as one of the interlocking members, the inclination angle of the swash plate (3) with respect to the rotation operation angle of the trunnion shaft (36) is positive or negative from the neutral position of the HST. Since the inclination angle of the swash plate (3) does not change rapidly, the movement of the swash plate (3) near the neutral position is changed to the movement of the trunnion shaft (36). In comparison, the neutral position can be easily adjusted, and at the same time, the work vehicle can be operated very delicately in the vicinity of the neutral position, so that start and stop can be smoothly performed.

本発明の実施例について説明する。
本実施例の油圧無段変速装置HSTの油圧回路の構成を図1に示し、ポートデスクの正面図を図2に示し、全体の側断面図を図3に示し、全体の平断面図を図4に示す。
Examples of the present invention will be described.
The configuration of the hydraulic circuit of the hydraulic continuously variable transmission HST of this embodiment is shown in FIG. 1, the front view of the port desk is shown in FIG. 2, the entire side sectional view is shown in FIG. 3, and the entire plan sectional view is shown. 4 shows.

ポートボディ7に可変容量型油圧ポンプA及び固定容量型油圧モータBを内装するケース8及びブーストポンプ9のケース等を重合させて一体的構成とし、軸方向が互いに平行な入力軸10と出力軸11を軸受けする。この入力軸10の回りにポンプA及びブーストポンプ9のトロコイドロータ(図示せず)等を設け、出力軸11の回りにモータBを設ける。   The case 8 of the variable displacement hydraulic pump A and the fixed displacement hydraulic motor B and the case of the boost pump 9 and the like are superposed on the port body 7 to form an integral structure, and the input shaft 10 and the output shaft are parallel to each other in the axial direction. 11 is supported. A trochoid rotor (not shown) of the pump A and the boost pump 9 is provided around the input shaft 10, and a motor B is provided around the output shaft 11.

これらポンプA及びモータBは、入力軸10と出力軸11の回りに多数のシリンダ1を、軸方向と平行に配設してシリンダブロックを構成し、各シリンダ1には軸方向に摺動するピストン2を設けている。この各ピストン2は、先端部をジョイントディスク13の各ボールジョイントによって揺動自在に支持し、斜板3のスラストプレート14に対して、軸10,11回りに回転自在に設ける。該シリンダブロックは、軸10,11等と共に一体的に回転するが、ピストン2と共に回転するジョイントディスク13及び摺動案内されるスラストプレート14やこれと一体の斜板3は、該シリンダブロックと一体の球座15の回りに傾斜角が変更自在であり、このうち、モータB側の斜板3の角度は一定として、ポンプA側の斜板3の角度をコントロールレバー等によって操作して制御作動することにより、このポンプA側のピストン2の往復移動のストローク量を変更し、これによって前進側の油圧回路4と後進側の油圧回路5を経て相手側のモータBのピストン2の一定ストローク量のもとにおける回転数を増域変更して、変速する。   The pump A and the motor B constitute a cylinder block by arranging a large number of cylinders 1 around the input shaft 10 and the output shaft 11 in parallel with the axial direction, and each cylinder 1 slides in the axial direction. A piston 2 is provided. Each of the pistons 2 is supported at its tip by a ball joint of a joint disk 13 so as to be swingable, and is provided so as to be rotatable about axes 10 and 11 with respect to a thrust plate 14 of the swash plate 3. The cylinder block rotates integrally with the shafts 10, 11 and the like. However, the joint disk 13 that rotates together with the piston 2, the thrust plate 14 that is slidably guided, and the swash plate 3 integrated therewith are integrated with the cylinder block. The inclination angle of the swash plate 3 on the motor B side is constant, and the angle of the swash plate 3 on the pump A side is controlled by a control lever or the like. Thus, the stroke amount of the reciprocating movement of the piston 2 on the pump A side is changed, whereby the fixed stroke amount of the piston 2 of the motor B on the other side passes through the hydraulic circuit 4 on the forward side and the hydraulic circuit 5 on the reverse side. The speed is changed by changing the rotation speed at the base.

従って、斜板3が入力軸10に対して直角状態にあるときは、この入力軸10側のシリンダ1が回転されても、各ピストン2は軸方向には往復移動しないから、出力軸11側への伝動は行われず中立状態にある。また、このポンプA側の斜板3が、正転側に傾斜角を増すと、このピストン2のストロークも大きくなり、油圧回路4を経てモータB側へ働く油圧も高圧となる。このとき油圧回路4の反対側の油圧回路5は、低圧となってモータB側から排出されるオイルがポンプA側へ吸入されて行く。従って、モータBによる出力軸11は、中立状態から正転側高速状態に順次増速される。   Therefore, when the swash plate 3 is at a right angle to the input shaft 10, even if the cylinder 1 on the input shaft 10 side is rotated, each piston 2 does not reciprocate in the axial direction. There is no transmission to and is in a neutral state. Further, when the swash plate 3 on the pump A side increases the inclination angle to the forward rotation side, the stroke of the piston 2 also increases, and the hydraulic pressure acting on the motor B side via the hydraulic circuit 4 also becomes high. At this time, the hydraulic circuit 5 on the opposite side of the hydraulic circuit 4 becomes low pressure, and the oil discharged from the motor B side is sucked into the pump A side. Accordingly, the output shaft 11 by the motor B is sequentially increased from the neutral state to the forward rotation side high speed state.

また、逆にポンプA側の斜板3の角度を中立状態から、逆転側へ増すと、油圧回路5が高圧となってモータB側へオイルが流れ、油圧回路4が低圧となってポンプA側へ吸入されて、この結果出力軸11は逆転方向に無段変速されることとなる。前記ブーストポンプ9は、タンクポートTから油圧回路4,5内へオイルを補給するもので、オイルフィルタ16、メインリリーフバルブ17、フィールドバルブ(チェックバルブ)18a,18b及びニュートラルバルブ19等を経て各油圧回路4,5に連通する。これら両油圧回路4,5間に亘って高圧リリーフバルブ20が設けられている。   Conversely, when the angle of the swash plate 3 on the pump A side is increased from the neutral state to the reverse side, the hydraulic circuit 5 becomes high pressure and oil flows to the motor B side, and the hydraulic circuit 4 becomes low pressure and the pump A As a result, the output shaft 11 is continuously variable in the reverse direction. The boost pump 9 replenishes oil into the hydraulic circuits 4 and 5 from the tank port T, and passes through an oil filter 16, a main relief valve 17, field valves (check valves) 18a and 18b, a neutral valve 19 and the like. It communicates with the hydraulic circuits 4 and 5. A high-pressure relief valve 20 is provided between the hydraulic circuits 4 and 5.

このように、ポンプA及びモータBのシリンダ1のブロックは、各入力軸10、出力軸11と共に回転するが、各シリンダ1のブロックのポートボディ7側の端面には、各シリンダ1のシリンダポート25,26が等配角間隔で配設されて、ポートボディ7に対して取付けられたポートディスク21に回転摺動する。このポートディスク21には、中心部に入力軸10、出力軸11の挿通される軸穴22が形成され、この軸穴22の外周に該各シリンダポート25,26の回転面に沿って、しかも所定の回転角度に亘って円弧状長穴のポート23,24を形成し、これら左右のポート23,24の上下死点間に亘り無穴の圧力遷移区間(イ),(ロ)を形成する。   As described above, the block of the cylinder 1 of the pump A and the motor B rotates together with the input shaft 10 and the output shaft 11, but the cylinder port of each cylinder 1 is disposed on the end surface of the block of each cylinder 1 on the port body 7 side. 25 and 26 are arranged at equal angular intervals, and rotate and slide on the port disk 21 attached to the port body 7. The port disk 21 is formed with a shaft hole 22 through which the input shaft 10 and the output shaft 11 are inserted at the center, and the outer periphery of the shaft hole 22 along the rotational surfaces of the cylinder ports 25 and 26. The arc-shaped oblong holes 23 and 24 are formed over a predetermined rotation angle, and no-hole pressure transition sections (A) and (B) are formed between the upper and lower dead centers of the left and right ports 23 and 24. .

これによって、各シリンダポート25,26は、油圧回路4,5の形成されるポートボディ7とポート23,24を介して連通するが、斜板3の操作角が正転側変速位置にあるものとして、一側のポート23を油圧吐出側の高圧とすれば、他側のポート24が油圧吸入側の低圧となる。又、斜板3の操作角が中立位置を越えて逆転側変速位置にあるときは、吐出側と吸入側とが反転される。   As a result, the cylinder ports 25 and 26 communicate with the port body 7 formed with the hydraulic circuits 4 and 5 via the ports 23 and 24, but the operation angle of the swash plate 3 is in the forward rotation position. Assuming that one port 23 has a high pressure on the hydraulic discharge side, the other port 24 has a low pressure on the hydraulic suction side. When the operation angle of the swash plate 3 exceeds the neutral position and is in the reverse shift position, the discharge side and the suction side are reversed.

前記ポートディスク21の下死点における圧力遷移区間(ロ)の中央部にリリーフポート27を設け、このリリーフポート27に通ずるリリーフバルブ6をポートボディ7に取付ける。これによって、ポンプA又はモータBのシリンダブロックの各シリンダポート25,26が、高圧域側のポート23から圧力遷移区間(ロ)を経て、低圧域側のポート24へ移るとき、シリンダポート25はポート23との連通状態から圧力遷移区間(ロ)のリリーフポート27へ切換えられて、リリーフバルブ6による油圧力吸収が行われる。従って、このときの油圧力が高過ぎるときは、リリーフバルブ6によって緩和吸収されて、続く低圧域のポート24への切換において、油圧力低下が円滑に行われることとなる。
このようなリリーフポート27及びリリーフバルブ6は、ポンプAとモータBとの両ポートディスク21に設けてもよく、いずれか一方のポートディスク21に設けてもよい。
A relief port 27 is provided at the center of the pressure transition section (b) at the bottom dead center of the port disk 21, and the relief valve 6 communicating with the relief port 27 is attached to the port body 7. Thereby, when each cylinder port 25, 26 of the cylinder block of the pump A or the motor B moves from the port 23 on the high pressure region side to the port 24 on the low pressure region side through the pressure transition section (b), the cylinder port 25 is The state of communication with the port 23 is switched to the relief port 27 in the pressure transition section (B), and the oil pressure is absorbed by the relief valve 6. Therefore, when the oil pressure at this time is too high, the oil pressure is relaxed and absorbed by the relief valve 6 and the oil pressure is smoothly lowered in the subsequent switching to the port 24 in the low pressure region.
Such relief port 27 and relief valve 6 may be provided on both port disks 21 of the pump A and the motor B, or may be provided on any one of the port disks 21.

また、調整ねじ35は、前記ケース8に対して入力軸10方向へ螺挿し、斜板3をこの入力軸10方向に沿って移動調節することにより、シリンダ1との間隔を変更調節する。このとき入力軸10と直交方向のトラニオン軸36が設けられていて、このトラニオン軸36の先端にトラニオン軸36と一体のクランクアーム37のピンスライダ38を、斜板3に形成したローラ溝3aに係合させて、トラニオン軸36を回動操作することによって、ピンスライダ38を揺動させて、斜板3の傾斜角度を操作する。   The adjusting screw 35 is screwed into the case 8 in the direction of the input shaft 10 and moves and adjusts the swash plate 3 along the direction of the input shaft 10 to change and adjust the distance from the cylinder 1. At this time, a trunnion shaft 36 perpendicular to the input shaft 10 is provided, and a pin slider 38 of a crank arm 37 integral with the trunnion shaft 36 is provided at the tip of the trunnion shaft 36 in a roller groove 3 a formed in the swash plate 3. By engaging and rotating the trunnion shaft 36, the pin slider 38 is swung to operate the inclination angle of the swash plate 3.

図5(a)には図4のトラニオン軸36とクランクアーム37と斜板3の一部の拡大断面図を示し、図5(b)には図5(a)のA−A線矢視図を示す。
斜板3を操作するクランクアーム37とピンスライダ38の間に偏芯カム42を介在させている。偏芯カム42はクランクアーム37とピンスライダ38にそれぞれピン42aとピン42bを回動自在に挿入しており、この2つのピン42a,42bが互いに偏心した位置に設けられている。
5A shows an enlarged cross-sectional view of a part of the trunnion shaft 36, the crank arm 37, and the swash plate 3 of FIG. 4, and FIG. 5B shows the AA line arrow of FIG. 5A. The figure is shown.
An eccentric cam 42 is interposed between the crank arm 37 for operating the swash plate 3 and the pin slider 38. In the eccentric cam 42, a pin 42a and a pin 42b are rotatably inserted into the crank arm 37 and the pin slider 38, respectively, and the two pins 42a and 42b are provided at positions eccentric from each other.

従って、トラニオン軸36の回動位置に応じてクランクアーム37が操作されると、偏芯カム42を介してその操作量がピンスライダ38に伝えられて、該ピンスライダ38が斜板3の溝3aを所定量だけスライドする。ピンスライダ38の所定量のスライドに応じて斜板3の傾斜角度が決まる。   Therefore, when the crank arm 37 is operated according to the rotational position of the trunnion shaft 36, the operation amount is transmitted to the pin slider 38 via the eccentric cam 42, and the pin slider 38 is moved to the groove of the swash plate 3. Slide 3a by a predetermined amount. The inclination angle of the swash plate 3 is determined according to a predetermined amount of sliding of the pin slider 38.

図6には前記偏芯カム42をクランクアーム37とピンスライダ38の間に介在させた場合のトラニオン軸36の回動角度と斜板3の傾斜角度との関係を実線で示す。一方、前記カム42を用いないでクランクアーム37により直接ピンスライダ38を操作する場合のトラニオン軸36の回動角度と斜板3の傾斜角度の関係は点線で示すが、実線の場合にはトラニオン軸36の操作回転角度に対し、実際の斜板3の傾斜角度がHSTの中立位置から正負のいずれの側にも2次曲線的に変化し、偏芯カム42を用いない点線に示す場合に比較して斜板3の傾斜角度が急激に変化しないので、中立位置近傍での斜板3の動きをトラニオン軸36の動きに比較して極少なくすることができる。そのため、中立位置の調整が容易に行えると同時に、作業車両が中立近傍において、極微妙な操作が可能となり、発進及び停止が滑らかに行えるようになる。   In FIG. 6, the solid line shows the relationship between the rotation angle of the trunnion shaft 36 and the inclination angle of the swash plate 3 when the eccentric cam 42 is interposed between the crank arm 37 and the pin slider 38. On the other hand, the relationship between the rotation angle of the trunnion shaft 36 and the inclination angle of the swash plate 3 when the pin slider 38 is directly operated by the crank arm 37 without using the cam 42 is shown by a dotted line, but in the case of a solid line, the trunnion When the actual inclination angle of the swash plate 3 changes in a quadratic curve from the neutral position of the HST to either the positive or negative side with respect to the operation rotation angle of the shaft 36, and is shown by a dotted line not using the eccentric cam In comparison, since the inclination angle of the swash plate 3 does not change abruptly, the movement of the swash plate 3 in the vicinity of the neutral position can be minimized compared to the movement of the trunnion shaft 36. Therefore, the neutral position can be easily adjusted, and at the same time, the work vehicle can be operated very delicately in the vicinity of the neutral position, so that start and stop can be smoothly performed.

また、図7(a)には他の実施例のトラニオン軸36とクランクアーム37と斜板3の一部の拡大断面図を示し、図7(b)には図7(a)のB−B線矢視図を示す。
偏芯カム42の回動量を一方側のみで規制するストッパ43を設けている。従って、中立位置から前進側への操作では、偏芯カム42の回動がストッパ43に規制され、図8の中立位置から正の方向へのトラニオン軸の回転角度を順次大きくすると、即座に発進(前進)できる。一方、中立位置から後進側への操作では、偏芯カム42の回動がストッパ43に規制されることはなく、図8の中立位置から負の方向へのトラニオン軸の回転角度を順次大きくしても発進(後進)を遅らせることができる。このように偏芯カム42の支点位置を車両前進側と後進側でずらした構成とすることで、図8のトラニオン軸36の回動角度と斜板3の傾斜角度の関係が得られ、前進時は走行レバー操作に対して後進よりはやく発進でき、後進時には走行レバー操作に対してゆっくり発進できる。
FIG. 7A shows an enlarged cross-sectional view of a portion of the trunnion shaft 36, crank arm 37, and swash plate 3 of another embodiment, and FIG. B line arrow figure is shown.
A stopper 43 that restricts the amount of rotation of the eccentric cam 42 only on one side is provided. Therefore, in the operation from the neutral position to the forward side, the rotation of the eccentric cam 42 is restricted by the stopper 43, and when the rotation angle of the trunnion shaft from the neutral position to the positive direction in FIG. You can (forward). On the other hand, in the operation from the neutral position to the reverse side, the rotation of the eccentric cam 42 is not restricted by the stopper 43, and the rotation angle of the trunnion shaft from the neutral position to the negative direction in FIG. Even starting (reversing) can be delayed. In this way, the fulcrum position of the eccentric cam 42 is shifted between the vehicle forward side and the reverse side, whereby the relationship between the rotation angle of the trunnion shaft 36 and the inclination angle of the swash plate 3 in FIG. At times, the vehicle can start faster than the reverse operation with respect to the travel lever operation, and can start slowly with respect to the operation of the travel lever when the vehicle travels backward.

従来は車両の前進時と後進時共にトラニオン軸36の回転角度操作量に対して等しく走行速度が変化する構成にしていたが、例えば、作業車両がトラクタである場合、トラクタにはロータリのバックアップ機構を設けてあるため、ロータリが上昇する前に機体がバックすると破損するおそれがある。しかし、上記図7に示す構成にすると、実際の車両の動きに合わせて、前進側と後進側の動きを変えることにより、最適なフィーリングを得やすくする。特に車両をバックさせる場合に車両を緩やかに立ち上げることによって、作業装置が対地浮上してから安全に後進できる。   Conventionally, the traveling speed is equally changed with respect to the rotation angle operation amount of the trunnion shaft 36 both when the vehicle is moving forward and when the vehicle is moving backward. For example, when the work vehicle is a tractor, the tractor has a rotary backup mechanism. Therefore, there is a risk of damage if the fuselage is backed before the rotary moves up. However, the configuration shown in FIG. 7 makes it easier to obtain an optimum feeling by changing the forward and backward movements in accordance with the actual movement of the vehicle. In particular, when the vehicle is to be moved back, the vehicle can be started up gently so that the work apparatus can safely move backward after the working device has surfaced.

図9には図3のポートボディ7のX−X線断面矢視図を示すが、ポートボディ7の前進側の油圧回路4と後進側の油圧回路5内のオイルがそれぞれ不足している場合にはチャージ油路47からオイルが供給されるが、チャージ油路47から前記油圧回路4,5内へのオイルの供給路にはそれぞれフィールドバルブ18a、18bが設けられていることは先に図1に示す油圧回路で説明した。   FIG. 9 shows a cross-sectional view of the port body 7 of FIG. 3 taken along the line XX. When the oil in the forward hydraulic circuit 4 and the backward hydraulic circuit 5 of the port body 7 is insufficient, respectively. The oil is supplied from the charge oil passage 47, but the oil supply passages from the charge oil passage 47 into the hydraulic circuits 4 and 5 are provided with field valves 18a and 18b, respectively. The hydraulic circuit shown in FIG.

図9に示すHSTは後進側油圧回路5のフィールドバルブ(チェック弁)18bにオリフィス穴45を設け、中立を確保する構成であるが、前進側(高圧側)の油圧回路4のフィールドバルブ(チェック弁)18aには、前進側油圧回路4から後進側(低圧回路側)の油圧回路5へのみ開閉可能なリリーフ弁46(スチールボール46aとバネ46b)を設けている。   The HST shown in FIG. 9 has a configuration in which an orifice hole 45 is provided in the field valve (check valve) 18b of the reverse hydraulic circuit 5 to ensure neutrality, but the field valve (check) of the hydraulic circuit 4 on the forward side (high pressure side). The valve 18a is provided with a relief valve 46 (steel ball 46a and spring 46b) that can be opened and closed only from the forward hydraulic circuit 4 to the hydraulic circuit 5 on the reverse side (low pressure circuit side).

もし、前進側(高圧側)の油圧回路4のフィールドバルブ(チェック弁)18aに高圧リリーフ弁46を設けていないと、後進状態から急激に中立へ戻す操作をした場合、機体の慣性力によってモータBがポンプ作用を行い、前進側油圧回路4に急激に高圧がかかり、場合によっては車両が急停止するおそれがある。そこで前進側油圧回路4から後進側(低圧回路側)の油圧回路5へのみ開閉可能なリリーフ弁46を設けることで前進側油圧回路4に急激に高圧がかからないようにする。   If the high-pressure relief valve 46 is not provided in the field valve (check valve) 18a of the hydraulic circuit 4 on the forward side (high pressure side), the motor is driven by the inertial force of the fuselage when the operation is suddenly returned from the reverse state to the neutral state. B performs a pumping action, a high pressure is suddenly applied to the forward hydraulic circuit 4, and the vehicle may stop suddenly in some cases. Therefore, by providing a relief valve 46 that can be opened and closed only from the forward hydraulic circuit 4 to the hydraulic circuit 5 on the reverse side (low pressure circuit side), high pressure is not applied to the forward hydraulic circuit 4 suddenly.

また、図10に示すHSTにおいて、トラニオン軸36にアシストシリンダ48を設け、このアシストシリンダ48とHSTの閉回路である前進側と後進側の油圧回路4,5の高圧ポートを連通する構成とする実施例を示す。
変速レバーの操作時に負荷がかかると変速レバーの操作が重くなるが、このときHSTの油路内において前進側油圧回路4または後進側油圧回路5内の油路圧力も高くなる。この圧力が高くなった側の油圧回路4又は5内の圧力を利用してアシストシリンダ48を作動させて変速レバーの操作を軽くしようとするものである。HSTの閉回路にアシストシリンダ48を装着するだけで変速レバーの操作荷重が小さくなるので、サーボバルブなどを装着する場合に比べてトルクの軽減が低コストで実現できる。
なお、図10のS部分の油路はプーストポンプ9(図1参照)からのチャージ油路である。
Further, in the HST shown in FIG. 10, an assist cylinder 48 is provided on the trunnion shaft 36, and the assist cylinder 48 is connected to the high pressure ports of the hydraulic circuits 4 and 5 on the forward side and the reverse side, which are closed circuits of the HST. An example is shown.
If a load is applied during the operation of the shift lever, the operation of the shift lever becomes heavy. At this time, the oil passage pressure in the forward hydraulic circuit 4 or the reverse hydraulic circuit 5 also increases in the HST oil passage. The assist cylinder 48 is actuated by using the pressure in the hydraulic circuit 4 or 5 on the side where the pressure is increased, so as to lighten the operation of the shift lever. Since only the assist cylinder 48 is mounted on the closed circuit of the HST, the operation load of the shift lever is reduced, so that torque can be reduced at a lower cost than when a servo valve or the like is mounted.
In addition, the oil path of the S portion in FIG. 10 is a charge oil path from the push pump 9 (see FIG. 1).

HST入力軸端にギヤポンプを装着する構成は構成の簡素化するために採用されることがある。図11にはギアポンプCにメタル50を介して入力軸51が設けられ、HST入力軸10の端部に該入力軸51を装着する構成において、ギヤポンプCのHST入力軸10への装着用の入力軸51のスプライン部51aにHSTチャージ回路52の圧油を供給し、スプライン部51aに効果的に潤滑油を送る構成とした例を示している。
このとき、HSTチャージ回路52からのスプライン部51aへの圧油の供給はポートボディ(バルブプレート)7の内部に設けた油路7aにより直接供給する構成にするとコンパクトな構成とすることができる。
A configuration in which a gear pump is attached to the end of the HST input shaft may be employed to simplify the configuration. In FIG. 11, the input shaft 51 is provided on the gear pump C through the metal 50, and the input shaft 51 is mounted on the end of the HST input shaft 10, and the input for mounting the gear pump C on the HST input shaft 10 is provided. An example is shown in which the pressure oil of the HST charge circuit 52 is supplied to the spline part 51a of the shaft 51 and the lubricating oil is effectively sent to the spline part 51a.
At this time, if the supply of the pressure oil from the HST charge circuit 52 to the spline portion 51 a is directly supplied through the oil passage 7 a provided inside the port body (valve plate) 7, a compact configuration can be obtained.

前記ギヤポンプCは、例えばブーストポンプ9や田植機の苗植付部の昇降シリンダなどへ圧油を送るオイルポンプなどであるが、このギアポンプをHST入力軸10の端部に装着する組立作業時にはHST入力軸10にグリスを塗布するが、従来の構成では、グリスの飛散、劣化によりスプライン部51aが摩耗することある。そこで図11に示す構成を採用すると、前記スプライン部51aにはHSTチャージ回路52から安定した圧油が供給され、常に良好な潤滑状態が保たれ、摩耗が防止する。   The gear pump C is, for example, an oil pump that sends pressure oil to the boost pump 9 or an elevating cylinder of a seedling planting portion of a rice transplanter, etc. In the assembly operation of mounting this gear pump on the end of the HST input shaft 10, Grease is applied to the input shaft 10, but in the conventional configuration, the spline portion 51a may be worn due to scattering and deterioration of the grease. Therefore, when the configuration shown in FIG. 11 is adopted, stable pressure oil is supplied to the spline portion 51a from the HST charge circuit 52, so that a good lubrication state is always maintained and wear is prevented.

HSTの油圧ポンプAにおけるピストン2の綴じ込み位置におけるによりエアレーションが発生し、ピストン摺動面にオイル切れが発生し、ピストン2が焼き付く(かじり発生)ことがある。そこで図12(a)の可変容量型ポンプA部分の断面図と図12(b)の図12(a)のC−C線断面矢視図に示すように綴じ込み圧を逃がす小さな穴7bをポートボディ7に設け、該穴7bに逆止弁7cを配置し、該穴7bを経由して高圧側油圧回路4又は5に連通する油路を設けると、前記エヤーレーションの発生を防止できる。   In the HST hydraulic pump A, aeration may occur depending on the binding position of the piston 2, oil may be cut off on the piston sliding surface, and the piston 2 may seize (cause galling). Therefore, as shown in the sectional view of the variable displacement pump A portion of FIG. 12 (a) and the sectional view taken along the line CC of FIG. 12 (a) of FIG. 12 (b), a small hole 7b for releasing the binding pressure is provided in the port. If the check valve 7c is arranged in the body 7, the check valve 7c is disposed in the hole 7b, and an oil passage communicating with the high-pressure side hydraulic circuit 4 or 5 is provided via the hole 7b, the occurrence of the air-conditioning can be prevented.

本発明は急停止、急発進のない作業車両用のHSTとして利用可能である。   The present invention can be used as an HST for a work vehicle that does not have a sudden stop or sudden start.

本発明の実施例の油圧無段変速装置の油圧回路の構成を示す。The structure of the hydraulic circuit of the hydraulic continuously variable transmission of the Example of this invention is shown. 図1の油圧無段変速装置のポートデスクの正面図を示す。The front view of the port desk of the hydraulic continuously variable transmission of FIG. 1 is shown. 図1の油圧無段変速装置の全体の側断面図を示す。FIG. 2 is a side sectional view of the entire hydraulic continuously variable transmission of FIG. 1. 図1の油圧無段変速装置の全体の平断面図を示す。FIG. 2 is an overall plan sectional view of the hydraulic continuously variable transmission of FIG. 1. 図5(a)には図1の油圧無段変速装置のトラニオン軸とクランクアームと斜板の一部の拡大断面図を示し、図5(b)には図5(a)のA−A線矢視図を示す。FIG. 5A shows an enlarged cross-sectional view of a portion of the trunnion shaft, crank arm and swash plate of the hydraulic continuously variable transmission of FIG. 1, and FIG. 5B shows an AA of FIG. A line arrow figure is shown. 図1の油圧無段変速装置において偏芯カムをクランクアームとピンスライダの間に介在させた場合と偏芯カムを用いない場合のトラニオン軸の回動角度と斜板の傾斜角度との関係をそれぞれ実線と点線で示す。The relationship between the rotation angle of the trunnion shaft and the inclination angle of the swash plate when the eccentric cam is interposed between the crank arm and the pin slider and when the eccentric cam is not used in the hydraulic continuously variable transmission of FIG. Shown in solid and dotted lines, respectively. 図7(a)には図1の油圧無段変速装置の他の実施例のトラニオン軸とクランクアームと斜板の一部の拡大断面図を示し、図7(b)には図7(a)のB−B線矢視図を示す。FIG. 7A shows an enlarged cross-sectional view of a portion of a trunnion shaft, a crank arm, and a swash plate of another embodiment of the hydraulic continuously variable transmission of FIG. 1, and FIG. ) Is a view taken along line B-B in FIG. 図7の構成におけるトラニオン軸の回動角度と斜板の傾斜角度との関係を示す。The relationship between the rotation angle of the trunnion shaft in the structure of FIG. 7 and the inclination angle of a swash plate is shown. 図3のポートボディ7のX−X線一部断面矢視図を示す。The XX line partial cross section arrow view of the port body 7 of FIG. 3 is shown. 本発明の他の実施例の油圧無段変速装置の油圧回路の構成を示す。The structure of the hydraulic circuit of the hydraulic continuously variable transmission of the other Example of this invention is shown. 本発明の他の実施例の油圧無段変速装置の全体の側断面図を示す。The side sectional view of the whole hydraulic continuously variable transmission of other examples of the present invention is shown. 本発明の他の実施例の油圧無段変速装置のポンプ部分の断面図(図12(a))と図12(a)のC−C線断面矢視図(図12(b))を示す。Sectional drawing (FIG. 12 (a)) of the pump part of the hydraulic continuously variable transmission of other Example of this invention and CC sectional view taken on the line in FIG. 12 (a) are shown. .

符号の説明Explanation of symbols

1、2 シリンダ 2 ピストン
3 斜板 3a ローラ溝
4 前進側油圧回路 5 後進側油圧回路
6 リリーフバルブ 7 ポートボディ
7a 油路 7b 穴
7c 逆止弁 8 ケース
9 ブーストポンプ 10 入力軸
11 出力軸 13 ジョイントディスク
14 スラストプレート 15 球座
16 オイルフィルタ 17 メインリリーフバルブ
18a、18b フィールドバルブ 19 ニュートラルバルブ
20 高圧リリーフバルブ 21 ポートディスク
22 軸穴 23、24 円弧状長穴のポート
25、26 シリンダポート 27 リリーフポート
35 調整ねじ 36 トラニオン軸
37 クランクアーム 38 ピンスライダ
40 ストッパ 42 偏芯カム
42a、42b ピン 43 ストッパ
45 オリフィス穴 46 リリーフ弁
46a スチールボール 46b バネ
47 チャージ油路 48 アシストシリンダ
50 メタル 51 入力軸
51a スプライン部 52 HSTチャージ回路
A 可変容量型油圧ポンプ B 固定容量型油圧モータ
C ギヤポンプ T タンクポート
1, 2 Cylinder 2 Piston 3 Swash plate 3a Roller groove 4 Forward hydraulic circuit 5 Reverse hydraulic circuit 6 Relief valve 7 Port body
7a Oil passage 7b Hole 7c Check valve 8 Case
9 Boost pump 10 Input shaft
DESCRIPTION OF SYMBOLS 11 Output shaft 13 Joint disk 14 Thrust plate 15 Ball seat 16 Oil filter 17 Main relief valve 18a, 18b Field valve 19 Neutral valve 20 High pressure relief valve 21 Port disk 22 Shaft hole 23, 24 Port 25, 26 of arc-shaped long hole Port 27 Relief port 35 Adjustment screw 36 Trunnion shaft 37 Crank arm 38 Pin slider 40 Stopper 42 Eccentric cam 42a, 42b Pin 43 Stopper 45 Orifice hole 46 Relief valve 46a Steel ball 46b Spring 47 Charge oil passage 48 Assist cylinder 50 Metal 51 Input Shaft 51a Spline 52 HST charge circuit A Variable displacement hydraulic pump B Fixed displacement hydraulic motor C Gear pump T Tank port

Claims (1)

手動操作可能なトラニオン軸(36)と、該トラニオン軸(36)の回動により傾斜角度が変更される斜板(3)と、該斜板(3)の傾斜角度により吐出油量と油の吐出方向を調整する可変容量型ポンプ(A)と、該可変容量型ポンプ(A)の吐出油量と油の吐出方向に応じて出力軸(11)の回転速度と方向を変更する油圧モータ(B)とを備えた静油圧式無段変速装置において、
前記トラニオン軸(36)と斜板(3)との間の連動部材の一つとして偏心カム(42)を装着することを特徴とする静油圧式無段変速装置。
A manually operable trunnion shaft (36), a swash plate (3) whose inclination angle is changed by the rotation of the trunnion shaft (36), and the amount of oil discharged and the amount of oil depending on the inclination angle of the swash plate (3) A variable displacement pump (A) that adjusts the discharge direction, and a hydraulic motor that changes the rotational speed and direction of the output shaft (11) according to the amount of oil discharged from the variable displacement pump (A) and the direction of oil discharge ( B) with a hydrostatic continuously variable transmission,
A hydrostatic continuously variable transmission comprising an eccentric cam (42) as one of the interlocking members between the trunnion shaft (36) and the swash plate (3).
JP2005262801A 2005-09-09 2005-09-09 Hydrostatic continuously variable transmission for working vehicle Withdrawn JP2007078000A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005262801A JP2007078000A (en) 2005-09-09 2005-09-09 Hydrostatic continuously variable transmission for working vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005262801A JP2007078000A (en) 2005-09-09 2005-09-09 Hydrostatic continuously variable transmission for working vehicle

Publications (1)

Publication Number Publication Date
JP2007078000A true JP2007078000A (en) 2007-03-29

Family

ID=37938546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005262801A Withdrawn JP2007078000A (en) 2005-09-09 2005-09-09 Hydrostatic continuously variable transmission for working vehicle

Country Status (1)

Country Link
JP (1) JP2007078000A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010180911A (en) * 2009-02-03 2010-08-19 Kobelco Contstruction Machinery Ltd Shaft lubricating device of hybrid working machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010180911A (en) * 2009-02-03 2010-08-19 Kobelco Contstruction Machinery Ltd Shaft lubricating device of hybrid working machine

Similar Documents

Publication Publication Date Title
EP1936242B1 (en) Hydraulic stepless transmission
US7353650B2 (en) Axle driving apparatus
JP4847242B2 (en) Mixer drum drive device
US20070034294A1 (en) Load control for stump cutter
JP3623101B2 (en) Hydrostatic transmission system
US10539163B1 (en) Transaxle having dual brake system
US11274682B2 (en) Hydraulic driving apparatus
JP6114089B2 (en) Opposite swash plate type piston pump / motor
US5207751A (en) Swash plate type pump with swash plate tilt angle controller
US5235810A (en) Conduit valve providing wide neutral in a hydrostatic transmission
JP2007078000A (en) Hydrostatic continuously variable transmission for working vehicle
US6739128B2 (en) Electronically controlled dampener for hydrostatic transmission
KR20230032102A (en) A two-step speed change control apparatus for a hydrostatic transmission
JPH09177663A (en) Variable capacity pump
JP3913920B2 (en) Variable capacity swash plate type hydraulic rotating machine
US6571554B2 (en) Hydrostatic transmission having hydraulic dampening and neutral bleed mechanism
JPH05288271A (en) Surge hydraulic buffer of hydraulic continuously variable transmission
JP2568922B2 (en) Hydraulic nitret distribution ring
JP2002205561A (en) Hydrostatic continuously variable transmission for traveling
KR20180090015A (en) Hydro Static Transmission and Swash plate controlling methods of Hydro Static Transmission
US11333135B2 (en) Axial piston machine and method of extending neutral position for axial piston machine
JP2002022005A (en) Fluid pressure transmission gear
JPH0579563A (en) Hydraulic circuit of hydraulic non-stage speed change gear
KR101988413B1 (en) 2 stage travel control apparatus for a hydrostatic transmission
JP2002013636A (en) Fluid pressure transmission device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20081202