JP2007077940A - Variable valve train - Google Patents

Variable valve train Download PDF

Info

Publication number
JP2007077940A
JP2007077940A JP2005269299A JP2005269299A JP2007077940A JP 2007077940 A JP2007077940 A JP 2007077940A JP 2005269299 A JP2005269299 A JP 2005269299A JP 2005269299 A JP2005269299 A JP 2005269299A JP 2007077940 A JP2007077940 A JP 2007077940A
Authority
JP
Japan
Prior art keywords
arm
variable
valve
cam
transmission arm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005269299A
Other languages
Japanese (ja)
Other versions
JP2007077940A5 (en
Inventor
Katsutoshi Kitagawa
勝敏 北川
Tomiyasu Hirano
富保 平野
Ken Sugiura
憲 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Otics Corp
Original Assignee
Otics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otics Corp filed Critical Otics Corp
Priority to JP2005269299A priority Critical patent/JP2007077940A/en
Publication of JP2007077940A publication Critical patent/JP2007077940A/en
Publication of JP2007077940A5 publication Critical patent/JP2007077940A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • F01L13/0015Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque
    • F01L13/0063Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque by modification of cam contact point by displacing an intermediate lever or wedge-shaped intermediate element, e.g. Tourtelot
    • F01L2013/0073Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque by modification of cam contact point by displacing an intermediate lever or wedge-shaped intermediate element, e.g. Tourtelot with an oscillating cam acting on the valve of the "Delphi" type

Landscapes

  • Valve-Gear Or Valve Arrangements (AREA)
  • Valve Device For Special Equipments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a variable valve train simply constructed with a less number of components to produce stable valve property. <P>SOLUTION: The variable valve train 1 comprises a rotary cam 4 provided on a cam shaft 2, an input roller 16 to be displaced in contact with the rotary cam 4, a rocker arm 6 for driving a valve 5, a transmission arm 19 for transmitting the power of the rotary cam 4 to the rocker arm 6, a variable arm 15 contacting the transmission arm 19, and an actuator 13 for driving the variable arm 15. The transmission arm 19 is connected at its base end to the input roller 16. On the front end side of the transmission arm 19, there are provided a drive part 22 contacting the rocker arm 6 and a cam surface 21 which a rotary contactor 20 of the rocker arm 15 contacts. With the turn of the variable arm 15, an initial contact position between the cam surface 21 and the rotary contactor 20 is changed. A lift portion of the cam surface 21 is formed closer to the base end side of the transmission arm 19 than a base portion. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、内燃機関の運転状態に応じてバルブ特性を制御する可変動弁機構に関する。   The present invention relates to a variable valve mechanism that controls valve characteristics in accordance with the operating state of an internal combustion engine.

従来、リンクを用いてバルブのリフト量、作用角および開閉タイミングを制御する可変動弁機構が知られている。例えば、図11に示す特許文献1の可変動弁機構100は、内燃機関のクランク軸によって回転されるカムシャフト101を備えている。カムシャフト101上には、回転カム102が一体回転可能に固定されるとともに、バルブリフタ(動弁部材)103を介してバルブ110を駆動する駆動アーム104が相対回動可能に支持されている。   2. Description of the Related Art Conventionally, a variable valve mechanism that uses a link to control the lift amount, working angle, and opening / closing timing of a valve is known. For example, the variable valve mechanism 100 of Patent Document 1 shown in FIG. 11 includes a camshaft 101 that is rotated by a crankshaft of an internal combustion engine. A rotating cam 102 is fixed on the camshaft 101 so as to be integrally rotatable, and a drive arm 104 that drives a valve 110 via a valve lifter (valve member) 103 is supported so as to be relatively rotatable.

カムシャフト101と平行なコントロールシャフト105上には、揺動アーム106が可変カム107を介して支持されている。揺動アーム106の入力端はリング状リンク108を介して回転カム102に連結され、揺動アーム106の出力端がロッド状リンク109を介して駆動アーム104に連結されている。そして、コントロールシャフト105をアクチュエータで駆動し、可変カム107の偏心回転により揺動アーム106を変位させ、回転カム102に対する駆動アーム104の初期位置を変更するように構成されている。
特開平11−324625号公報
A swing arm 106 is supported via a variable cam 107 on a control shaft 105 parallel to the camshaft 101. The input end of the swing arm 106 is connected to the rotary cam 102 via a ring-shaped link 108, and the output end of the swing arm 106 is connected to the drive arm 104 via a rod-shaped link 109. The control shaft 105 is driven by an actuator, and the swing arm 106 is displaced by the eccentric rotation of the variable cam 107, so that the initial position of the drive arm 104 with respect to the rotating cam 102 is changed.
JP-A-11-324625

ところが、従来の可変動弁機構100によると、回転カム102の動力をバルブリフタ103に伝えるために、二本のリンク108,109と、二本のアーム104,106が必要であった。このため、可変動弁機構100の部品点数が増え、構成が複雑化するばかりでなく、組付誤差によってバルブ特性が不安定になるという問題点があった。   However, according to the conventional variable valve mechanism 100, in order to transmit the power of the rotating cam 102 to the valve lifter 103, the two links 108 and 109 and the two arms 104 and 106 are required. For this reason, the number of parts of the variable valve mechanism 100 is increased, which not only complicates the configuration, but also causes a problem that valve characteristics become unstable due to an assembly error.

本発明の目的は、上記課題を解決し、部品点数が少ない簡単な構成で安定したバルブ特性が得られる可変動弁機構を提供することにある。   An object of the present invention is to solve the above-mentioned problems and to provide a variable valve mechanism that can obtain stable valve characteristics with a simple configuration with a small number of parts.

上記の課題を解決するために、本発明の可変動弁機構は、カムシャフト上に設けられた回転カムと、回転カムに接触して変位する入力部材と、バルブを駆動する動弁部材と、回転カムの動力を動弁部材に伝える伝動アームと、伝動アームに接触する接触部を備えた可変アームと、可変アームを駆動するアクチュエータとからなり、伝動アームの基端を入力部材に連結し、伝動アームの先端側に動弁部材を駆動する駆動部と、可変アームの接触部が接触するカム面とを設け、可変アームの移動に伴ってカム面と接触部との初期接点位置を変更することを特徴とする。   In order to solve the above problems, a variable valve mechanism of the present invention includes a rotating cam provided on a camshaft, an input member that contacts and displaces the rotating cam, a valve operating member that drives a valve, It consists of a transmission arm that transmits the power of the rotating cam to the valve member, a variable arm having a contact portion that contacts the transmission arm, and an actuator that drives the variable arm, and connects the base end of the transmission arm to the input member, Provided on the distal end side of the transmission arm is a drive unit that drives the valve member and a cam surface that contacts the contact portion of the variable arm, and changes the initial contact position between the cam surface and the contact portion as the variable arm moves. It is characterized by that.

ここで、回転カムに関して、次の構成を採用できる。
(1)回転カムに、所定の角度範囲でバルブリフト量をゼロに保つ等半径部と、残りの角度範囲でバルブリフト量を増大させるノーズ部とを設けること。
(2)回転カムに、中心がカムシャフトの軸心から偏倚した偏心カムを用いること。
Here, the following structure is employable regarding a rotation cam.
(1) The rotating cam is provided with an equal radius portion that keeps the valve lift amount at zero within a predetermined angle range, and a nose portion that increases the valve lift amount at the remaining angle range.
(2) Use an eccentric cam whose center is offset from the axis of the camshaft.

入力部材に関しては、次の構成を採用できる。
(3)入力部材を揺動アームの先端に支持し、揺動アームの基端をカムシャフトと平行な軸で揺動可能に支持すること。
(4)可変動弁機構のハウジングに支持部材を固定し、支持部材に入力部材を案内する案内面を設けること。
(5)入力部材に回転体を用いること。
Regarding the input member, the following configuration can be adopted.
(3) The input member is supported on the tip of the swing arm, and the base end of the swing arm is swingably supported by an axis parallel to the camshaft.
(4) A support member is fixed to the housing of the variable valve mechanism, and a guide surface for guiding the input member is provided on the support member.
(5) Use a rotating body for the input member.

動弁部材に関しては、次の構成を採用できる。
(6)動弁部材に基端を支点に揺動するロッカアームを使用すること。
(7)動弁部材に中間部を支点に揺動するスイングアームを使用すること。
(8)動弁部材にバルブの軸線方向へ直線移動可能なバルブリフタを使用すること。
Regarding the valve operating member, the following configuration can be adopted.
(6) Use a rocker arm that swings with the base end as a fulcrum for the valve member.
(7) Use a swing arm that swings around the intermediate portion as a fulcrum for the valve member.
(8) A valve lifter that can move linearly in the axial direction of the valve is used as the valve operating member.

伝動アームに関しては、次の構成を採用できる。
(9)伝動アームのカム面に、動弁部材の運動量をゼロに保つベース部と、動弁部材の運動量を漸増させるリフト部とを設け、リフト部をベース部よりも伝動アームの基端側に形成すること。
(10)伝動アームの先端を動弁部材と可変アームの接触部との間に挿入すること。
(11)伝動アームのカム面を上向きに形成し、伝動アームの駆動部を下向きに設けること。
The following configuration can be adopted for the transmission arm.
(9) Provided on the cam surface of the transmission arm are a base portion that keeps the momentum of the valve member zero, and a lift portion that gradually increases the momentum of the valve member, and the lift portion is closer to the base end side of the transmission arm than the base portion To form.
(10) The tip of the transmission arm is inserted between the valve member and the contact portion of the variable arm.
(11) The cam surface of the transmission arm is formed upward, and the drive portion of the transmission arm is provided downward.

可変アームの駆動方式としては、次の構成を採用できる。
(12)可変アームと前記揺動アームを共通の支持軸上に相対回動可能に支持し、支持軸とは別のコントロールシャフトをアクチュエータに連結し、可変アームをアクチュエータによりコントロールシャフトを介して駆動すること。
(13)前記コントロールシャフト上に制御カムを設け、可変アームに制御カムのカム面に追従して揺動する揺動体を設けること。
(14)可変アームと揺動アームを共通のコントロールシャフト上に相対回動可能に支持し、コントロールシャフトをアクチュエータに連結し、可変アームをアクチュエータによりコントロールシャフトを介して駆動すること。
The following configuration can be adopted as the variable arm driving method.
(12) The variable arm and the swing arm are supported on a common support shaft so as to be relatively rotatable. A control shaft different from the support shaft is connected to an actuator, and the variable arm is driven by the actuator via the control shaft. To do.
(13) A control cam is provided on the control shaft, and a swinging body that swings following the cam surface of the control cam is provided on the variable arm.
(14) A variable arm and a swing arm are supported on a common control shaft so as to be relatively rotatable, the control shaft is connected to an actuator, and the variable arm is driven by the actuator via the control shaft.

本発明の可変動弁機構によれば、回転カムに接触する入力部材に伝動アームの基端を連結し、伝動アームの先端側に動弁部材を駆動する駆動部と、可変アームに係合するカム面とを設けたので、回転カムから動弁部材への動力伝達経路をごく少数の部品で簡単に構成でき、組付誤差を少なくして、バルブ特性を安定させることができるという優れた効果を奏する。また、カム面のリフト部をベース部よりも伝動アームの基端側に形成した場合は、伝動アームのアーム比が低速回転時よりも高速回転時の方が大きくなり、高速運転に適した高出力のバルブ特性が得られる。   According to the variable valve mechanism of the present invention, the base end of the transmission arm is connected to the input member that contacts the rotating cam, and the drive unit that drives the valve member on the distal end side of the transmission arm is engaged with the variable arm. Because the cam surface is provided, the power transmission path from the rotating cam to the valve operating member can be easily configured with very few parts, and it is possible to reduce the assembly error and stabilize the valve characteristics. Play. In addition, when the cam surface lift is formed closer to the base end of the transmission arm than the base, the arm ratio of the transmission arm is greater during high-speed rotation than during low-speed rotation. Output valve characteristics are obtained.

以下、本発明の実施形態を図面に基づいて説明する。図1に示すように、この実施形態の可変動弁機構1は、カムシャフト2上に設けられた回転カム4と、回転カム4に接触して変位する入力ローラ16と、バルブ5を駆動するロッカアーム6と、回転カム4の動力をロッカアーム6に伝える伝動アーム19と、伝動アーム19に接触する回転接触子20を備えた可変アーム15と、可変アーム15を駆動するアクチュエータ13とから構成されている。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. As shown in FIG. 1, the variable valve mechanism 1 of this embodiment drives a rotating cam 4 provided on a camshaft 2, an input roller 16 that contacts and displaces the rotating cam 4, and a valve 5. The rocker arm 6, a transmission arm 19 that transmits the power of the rotating cam 4 to the rocker arm 6, a variable arm 15 that includes a rotary contact 20 that contacts the transmission arm 19, and an actuator 13 that drives the variable arm 15. Yes.

伝動アーム19の基端は入力ローラ16に連結され、伝動アーム19の先端側にロッカアーム6と接触する駆動部22と、可変アーム15の回転接触子20が接触するカム面21とが設けられ、可変アーム15の移動に伴ってカム面21と回転接触子20との初期接点位置が変更される。図2に示すように、カム面21はロッカアーム6の揺動量をゼロに保つベース部21aと、ロッカアーム6の揺動量を漸増させるリフト部21bとを備え、リフト部21bがベース部21aよりも伝動アーム19の基端側に形成されている。   The proximal end of the transmission arm 19 is connected to the input roller 16, and a drive unit 22 that contacts the rocker arm 6 and a cam surface 21 that contacts the rotary contact 20 of the variable arm 15 are provided on the distal end side of the transmission arm 19. As the variable arm 15 moves, the initial contact position between the cam surface 21 and the rotary contact 20 is changed. As shown in FIG. 2, the cam surface 21 includes a base portion 21a that keeps the rocking amount of the rocker arm 6 at zero, and a lift portion 21b that gradually increases the rocking amount of the rocker arm 6. The lift portion 21b is transmitted more than the base portion 21a. It is formed on the base end side of the arm 19.

図1〜図6は本発明の実施例1を示す。この可変動弁機構1は自動車用ガソリンエンジンの吸気系に用いられている。ただし、同じ機構をガソリンエンジンの排気系に適用することもできる。図1〜図3に示すように、可変動弁機構1のカムシャフト2は、シリンダヘッド3の上方に設けられ、エンジンのクランク軸(図示略)によって回転される。カムシャフト2上には回転カム4が固定され、カムシャフト2の下側にバルブ(吸気バルブ)5を開閉するロッカアーム6が配設されている。   1 to 6 show Embodiment 1 of the present invention. The variable valve mechanism 1 is used in an intake system of an automobile gasoline engine. However, the same mechanism can be applied to the exhaust system of a gasoline engine. As shown in FIGS. 1 to 3, the camshaft 2 of the variable valve mechanism 1 is provided above the cylinder head 3 and is rotated by a crankshaft (not shown) of the engine. A rotating cam 4 is fixed on the camshaft 2, and a rocker arm 6 that opens and closes a valve (intake valve) 5 is disposed below the camshaft 2.

回転カム4には、所定の角度範囲でバルブ5のリフト量をゼロに保つ等半径部4aと、残りの角度範囲でバルブリフト量を増大させるノーズ部4bとが設けられている。ロッカアーム6は、基端側のピボット7で上下に揺動可能に支持され、先端にバルブ5の上端を押圧する押圧部8を備え、中間に回転カム4の動力を受け入れるベースローラ9を備えている。なお、実施例1の可変動弁機構1は、一つのシリンダにつき、一つの回転カム4が二本のロッカアーム6を駆動して二本のバルブ5を開閉するように構成されている。   The rotating cam 4 is provided with an equal radius portion 4a that keeps the lift amount of the valve 5 at zero within a predetermined angle range and a nose portion 4b that increases the valve lift amount at the remaining angle range. The rocker arm 6 is supported by a pivot 7 on the base end side so as to be swingable up and down, has a pressing portion 8 that presses the upper end of the valve 5 at the tip, and a base roller 9 that receives the power of the rotating cam 4 in the middle. Yes. The variable valve mechanism 1 according to the first embodiment is configured such that one rotary cam 4 drives two rocker arms 6 to open and close two valves 5 per cylinder.

ロッカアーム6の上方には、コントロールシャフト10と支持軸11とが共にカムシャフト2と平行に設けられている。コントロールシャフト10上には、中心がコントロールシャフト10の軸心から偏倚した制御カム12が固定されている。コントロールシャフト10の一端は油圧又は電動のアクチュエータ13に連結され、アクチュエータ13が制御装置(図示略)によりエンジンの運転状態に応じて制御される。支持軸11上には、一本の揺動アーム14と二本の可変アーム15とが相対回動可能に支持されている。揺動アーム14の先端には、回転カム4に接触する入力ローラ16がローラ軸17によって支持され、回転カム4のカム形状に従って上下に変位するようになっている。   Above the rocker arm 6, a control shaft 10 and a support shaft 11 are both provided in parallel with the camshaft 2. A control cam 12 whose center is deviated from the axis of the control shaft 10 is fixed on the control shaft 10. One end of the control shaft 10 is connected to a hydraulic or electric actuator 13, and the actuator 13 is controlled by a control device (not shown) according to the operating state of the engine. On the support shaft 11, one swing arm 14 and two variable arms 15 are supported so as to be relatively rotatable. An input roller 16 that contacts the rotating cam 4 is supported by a roller shaft 17 at the tip of the swing arm 14, and is displaced up and down according to the cam shape of the rotating cam 4.

揺動アーム14の両側には、回転カム4の動力をロッカアーム6に伝える二本の伝動アーム19が配設されている。伝動アーム19は嘴状に形成され、基端がローラ軸17の両端に回動可能に連結され、先端がロッカアーム6のベースローラ9と可変アーム15の回転接触子20との間に挿入されている。伝動アーム19の先端側には、回転接触子20が係合する上向きのカム面21と、ベースローラ9に接触してロッカアーム6を駆動する下向きの駆動部22とが設けられている。カム面21は、ロッカアーム6の揺動量をゼロに保つベース部21aと、ロッカアーム6の揺動量を漸増させるリフト部21bとを含み、リフト部21bがベース部21aよりも伝動アーム19の基端側に形成されている。   Two transmission arms 19 for transmitting the power of the rotating cam 4 to the rocker arm 6 are disposed on both sides of the swing arm 14. The transmission arm 19 is formed in a bowl shape, the base end is rotatably connected to both ends of the roller shaft 17, and the tip is inserted between the base roller 9 of the rocker arm 6 and the rotary contact 20 of the variable arm 15. Yes. On the distal end side of the transmission arm 19, an upward cam surface 21 with which the rotary contact 20 engages and a downward drive portion 22 that contacts the base roller 9 and drives the rocker arm 6 are provided. The cam surface 21 includes a base portion 21a that keeps the rocking amount of the rocker arm 6 at zero, and a lift portion 21b that gradually increases the rocking amount of the rocker arm 6. The lift portion 21b is closer to the base end side of the transmission arm 19 than the base portion 21a. Is formed.

そして、可変アーム15がアクチュエータ13によりコントロールシャフト10と制御カム12を介して回動され、可変アーム15の回動に伴って回転接触子20とカム面21との初期接点位置が変更されるようになっている。なお、可変アーム15は制御カム12との相対面に凹部23(図3b参照)を備え、凹部23に制御カム12のカム面(外周面)と接触するシム24がコントロールシャフト10の軸線と直角な軸線周りで揺動可能に支持されている。伝動アーム19の駆動部22とカム面21のベース部21aとは、共に支持軸11の軸線を中心とする円筒面に含まれている。図1、図3(a)には、二本の伝動アーム19を一本の揺動アーム14に組み付けた構成を例示したが、二本の伝動アーム19を二本の揺動アーム14に別々に組み付けることも可能である。   Then, the variable arm 15 is rotated by the actuator 13 via the control shaft 10 and the control cam 12, and the initial contact position between the rotary contact 20 and the cam surface 21 is changed as the variable arm 15 rotates. It has become. The variable arm 15 includes a recess 23 (see FIG. 3B) on the surface facing the control cam 12, and a shim 24 that contacts the cam surface (outer peripheral surface) of the control cam 12 is perpendicular to the axis of the control shaft 10. It is supported so as to be swingable around a specific axis. The drive portion 22 of the transmission arm 19 and the base portion 21 a of the cam surface 21 are both included in a cylindrical surface centered on the axis of the support shaft 11. FIG. 1 and FIG. 3A exemplify a configuration in which two transmission arms 19 are assembled to one swing arm 14, but the two transmission arms 19 are separated into two swing arms 14. It is also possible to assemble to.

次に、可変動弁機構1の作用を図4〜図6に従って説明する。図4はガソリンエンジンの低速回転時にバルブ5を最小のリフト量で開閉するときの状態を示す。このとき、図4(a)に示すように、可変アーム15の回転接触子20は、伝動アーム19のカム面21において、ベース部21aの始端側に接触している(Pは初期接点位置を示す)。この状態で、カムシャフト2が駆動されると、回転カム4の等半径部4aが揺動アーム14の入力ローラ16に係合している期間中は、ベース部21aのカム作用によって、揺動アーム14、伝動アーム19およびロッカアーム6がそれぞれ静止し、バルブ5が閉鎖位置に保持される。   Next, the operation of the variable valve mechanism 1 will be described with reference to FIGS. FIG. 4 shows a state where the valve 5 is opened and closed with a minimum lift amount when the gasoline engine rotates at a low speed. At this time, as shown in FIG. 4A, the rotary contact 20 of the variable arm 15 is in contact with the start end side of the base portion 21a on the cam surface 21 of the transmission arm 19 (P is the initial contact position). Show). When the camshaft 2 is driven in this state, the cam portion of the base portion 21a swings during the period in which the constant radius portion 4a of the rotating cam 4 is engaged with the input roller 16 of the swing arm 14. The arm 14, the transmission arm 19 and the rocker arm 6 are stationary, and the valve 5 is held in the closed position.

図4(b)に示すように、回転カム4のノーズ部4bの頂点が入力ローラ16に係合すると、揺動アーム14が下方へ揺動し、伝動アーム19が左方へ変位し、カム面21のリフト部21bが回転接触子20に接触し、駆動部22がベースローラ9を介してロッカアーム6を押し下げる。しかし、初期接点位置Pがベース部21aの始端側に設定されているため、リフト部21bの作用範囲が限られ、ロッカアーム6が最小の角度で揺動する。従って、図6の曲線(イ)に示すように、バルブリフト量と作用角が共に最小化され、吸気バルブ5の開放タイミングが遅く閉鎖タイミングが早く制御される。なお、図6の曲線(ホ)は排気バルブのリフト量と作用角を示す。   As shown in FIG. 4B, when the apex of the nose portion 4b of the rotating cam 4 is engaged with the input roller 16, the swing arm 14 swings downward, and the transmission arm 19 is displaced leftward. The lift part 21 b of the surface 21 contacts the rotary contact 20, and the drive part 22 pushes down the rocker arm 6 via the base roller 9. However, since the initial contact position P is set at the start end side of the base portion 21a, the operating range of the lift portion 21b is limited, and the rocker arm 6 swings at the minimum angle. Therefore, as shown by the curve (A) in FIG. 6, both the valve lift amount and the operating angle are minimized, and the opening timing of the intake valve 5 is controlled late and the closing timing is controlled early. The curve (e) in FIG. 6 shows the lift amount and operating angle of the exhaust valve.

図5はガソリンエンジンの高速回転時にバルブ5を最大のリフト量で開閉するときの状態を示す。ここでは、図5(a)に示すように、可変アーム15が制御カム12によって支持軸11の軸線周りで回動され、回転接触子20とカム面21との初期接点位置Pがベース部21aの終端側に変更されている。このとき、伝動アーム19の駆動部22とベース部21aとが支持軸11と同心の円筒面に含まれているので、可変アーム15の回動に伴ってロッカアーム6の初期位相に変化が生じない。このため、回転カム4の等半径部4aが入力ローラ16に係合する期間中は、揺動アーム14、伝動アーム19、ロッカアーム6がそれぞれ静止し、バルブ5が閉鎖位置に保持される。   FIG. 5 shows a state where the valve 5 is opened and closed with the maximum lift amount when the gasoline engine rotates at high speed. Here, as shown in FIG. 5A, the variable arm 15 is rotated around the axis of the support shaft 11 by the control cam 12, and the initial contact position P between the rotary contact 20 and the cam surface 21 is the base portion 21a. The end has been changed. At this time, since the drive portion 22 and the base portion 21a of the transmission arm 19 are included in the cylindrical surface concentric with the support shaft 11, the initial phase of the rocker arm 6 does not change as the variable arm 15 rotates. . Therefore, during the period in which the equiradius 4a of the rotating cam 4 is engaged with the input roller 16, the swing arm 14, the transmission arm 19, and the rocker arm 6 are stationary, and the valve 5 is held in the closed position.

図5(b)に示すように、ノーズ部4bの頂点が入力ローラ16に係合すると、伝動アーム19が左方へ大きく変位し、リフト部21bが回転接触子20に接触し、駆動部22がベースローラ9を介してロッカアーム6を押し下げる。このときは、初期接点位置Pがベース部21aの終端側に変更されているので、リフト部21bの作用範囲が拡張し、ロッカアーム6が最大の角度で揺動する。このため、図6の曲線(ロ)に示すように、バルブリフト量と作用角が共に最大化され、吸気バルブ5の開放タイミングが早く閉鎖タイミングが遅く制御される。従って、可変アーム15により回転接触子20とカム面21との初期接点位置Pを変えることで、図6の曲線(ハ),(ニ)に示すように、バルブ特性を任意の中間値に制御することができる。   As shown in FIG. 5B, when the apex of the nose portion 4b is engaged with the input roller 16, the transmission arm 19 is greatly displaced to the left, the lift portion 21b comes into contact with the rotary contact 20, and the drive portion 22 is engaged. Pushes down the rocker arm 6 via the base roller 9. At this time, since the initial contact position P is changed to the terminal end side of the base portion 21a, the operating range of the lift portion 21b is expanded and the rocker arm 6 swings at the maximum angle. For this reason, as shown by the curve (b) in FIG. 6, both the valve lift amount and the operating angle are maximized, and the opening timing of the intake valve 5 is controlled earlier and the closing timing is controlled later. Therefore, by changing the initial contact position P between the rotary contact 20 and the cam surface 21 by the variable arm 15, the valve characteristic is controlled to an arbitrary intermediate value as shown by the curves (c) and (d) in FIG. can do.

この実施例1の可変動弁機構1によれば、次のような作用・効果が得られる。
(1)回転カム4に接触する入力ローラ16に伝動アーム19の基端を連結し、伝動アーム19の先端側にカム面21と駆動部22とを設けたので、回転カム4からロッカアーム6への動力伝達経路を入力ローラ16と伝動アーム19の二部品で簡単に構成できる。
(2)カム面21のリフト部21bをベース部21aよりも伝動アーム19の基端側に形成したので、伝動アーム19のアーム比がエンジンの低速回転時よりも高速回転時の方が大きくなる(図4bのL1/L2<図5bのL3/L4)。この結果、高速回転時のバルブ特性(図6の曲線ロ)において、バルブリフト量/作用角の値を従来(曲線ヘ)よりも増加させ、比較的長い開弁期間(作用角幅)にバルブ5を大きく開いて、高速運転に適した高出力のバルブ特性を得られる。
According to the variable valve mechanism 1 of the first embodiment, the following operations and effects can be obtained.
(1) Since the base end of the transmission arm 19 is connected to the input roller 16 that contacts the rotating cam 4, and the cam surface 21 and the drive unit 22 are provided on the distal end side of the transmitting arm 19, the rotating cam 4 moves to the rocker arm 6. The power transmission path can be easily configured with two parts of the input roller 16 and the transmission arm 19.
(2) Since the lift portion 21b of the cam surface 21 is formed closer to the base end side of the transmission arm 19 than the base portion 21a, the arm ratio of the transmission arm 19 becomes larger at high speed rotation than at low speed rotation of the engine. (L1 / L2 in FIG. 4b <L3 / L4 in FIG. 5b). As a result, in the valve characteristics during high speed rotation (curve b in FIG. 6), the valve lift amount / working angle value is increased from the conventional value (curve f), and the valve is operated during a relatively long valve opening period (working angle width). 5 can be opened wide to obtain high output valve characteristics suitable for high speed operation.

(3)揺動アーム14と可変アーム15を支持軸11上に相対回動可能に支持したので、制御カム12の動力が揺動アーム14に伝わらない。このため、揺動アーム14と伝動アーム19を静止させた状態で、回転接触子20とカム面21との初期接点位置Pを的確に変更できる。
(4)カムシャフト2の回転時には、回転カム4の動力が揺動アーム14を介して支持軸11に作用するが、可変アーム15の駆動軸であるコントロールシャフト10が支持軸11とは別に設けられているので、回転カム4からコントロールシャフト10への動力伝達を絶ち、可変アーム15を小型・低出力のアクチュエータ13で駆動できる。
(5)制御カム12が可変アーム15上のシム24に接触しているので、シム24の揺動により駆動系部材の寸法誤差や組付誤差を吸収し、可変アーム15を正確な角度で回動して、バルブ特性を安定化できる。
(3) Since the swing arm 14 and the variable arm 15 are supported on the support shaft 11 so as to be relatively rotatable, the power of the control cam 12 is not transmitted to the swing arm 14. For this reason, the initial contact position P between the rotary contact 20 and the cam surface 21 can be accurately changed while the swing arm 14 and the transmission arm 19 are stationary.
(4) When the camshaft 2 rotates, the power of the rotating cam 4 acts on the support shaft 11 via the swing arm 14, but the control shaft 10 that is the drive shaft of the variable arm 15 is provided separately from the support shaft 11. Therefore, power transmission from the rotary cam 4 to the control shaft 10 is interrupted, and the variable arm 15 can be driven by the small and low output actuator 13.
(5) Since the control cam 12 is in contact with the shim 24 on the variable arm 15, the swinging of the shim 24 absorbs the dimensional error and assembly error of the drive system member, and rotates the variable arm 15 at an accurate angle. To stabilize the valve characteristics.

図7〜図9は本発明の実施例2を示す。この可変動弁機構31では、実施例1の動弁機構1から支持軸11と制御カム12と省かれ、揺動アーム14と可変アーム15とがコントロールシャフト10上に相対回動可能に支持されている。つまり、揺動アーム14はコントロールシャフト10上に揺動可能に支持され、可変アーム15がキー32でコントロールシャフト10に一体回動可能に結合されている。コントロールシャフト10はアクチュエータ(図示略)に連結され、可変アーム15がアクチュエータによりコントロールシャフト10を介して揺動アーム14の揺動軸線周りで回動される。その他の構成は実施例1と同じである。   7 to 9 show a second embodiment of the present invention. In the variable valve mechanism 31, the support shaft 11 and the control cam 12 are omitted from the valve mechanism 1 of the first embodiment, and the swing arm 14 and the variable arm 15 are supported on the control shaft 10 so as to be relatively rotatable. ing. In other words, the swing arm 14 is swingably supported on the control shaft 10, and the variable arm 15 is coupled to the control shaft 10 by the key 32 so as to be integrally rotatable. The control shaft 10 is connected to an actuator (not shown), and the variable arm 15 is rotated around the swing axis of the swing arm 14 via the control shaft 10 by the actuator. Other configurations are the same as those of the first embodiment.

従って、実施例2の可変動弁機構31も、実施例1の動弁機構1と同様に動作し、同等の作用・効果を発揮する。加えて、支持軸11および制御カム12を省いた点で、機構全体の部品点数をより少なくできる利点もある。なお、図8にバルブリフト量を最小化するときの動作を示し、図9にバルブリフト量を最大化するときの動作を示した。   Therefore, the variable valve mechanism 31 of the second embodiment also operates in the same manner as the valve mechanism 1 of the first embodiment, and exhibits the same actions and effects. In addition, since the support shaft 11 and the control cam 12 are omitted, there is an advantage that the number of parts of the entire mechanism can be further reduced. FIG. 8 shows an operation when the valve lift amount is minimized, and FIG. 9 shows an operation when the valve lift amount is maximized.

図10は本発明の実施例3を示す。この可変動弁機構41は、可変アーム42および伝動アーム43の支持構造において、実施例1,2の可変動弁機構1,31と相違する。可変アーム42は、基端にコントロールシャフト10上の制御カム12に外嵌するリング部44を備え、先端に伝動アーム43のカム面45に接触する回転接触子46とガイドリング47とを備え、制御カム12の偏心回転に伴って回転接触子46がカムシャフト4とコントロールシャフト10との間で略水平に移動するように構成されている。伝動アーム43は、基端が入力ローラ16のローラ軸17に連結され、先端側に回転接触子46が接触する上向きのカム面45と、ロッカアーム6のベースローラ9に係合する下向きの駆動部48とが設けられている。   FIG. 10 shows a third embodiment of the present invention. The variable valve mechanism 41 is different from the variable valve mechanisms 1 and 31 of the first and second embodiments in the support structure of the variable arm 42 and the transmission arm 43. The variable arm 42 includes a ring portion 44 that is fitted on the control cam 12 on the control shaft 10 at the base end, and a rotary contact 46 that contacts the cam surface 45 of the transmission arm 43 and a guide ring 47 at the distal end. The rotary contact 46 is configured to move substantially horizontally between the camshaft 4 and the control shaft 10 as the control cam 12 rotates eccentrically. The transmission arm 43 has a base end coupled to the roller shaft 17 of the input roller 16, and an upward cam surface 45 with which the rotary contact 46 comes into contact with the distal end side, and a downward drive unit that engages with the base roller 9 of the rocker arm 6. 48 is provided.

カム面45は、ロッカアーム6の揺動量をゼロに保つベース部45aと、ロッカアーム6の揺動量を漸増させるリフト部45bとを含み、リフト部45bがベース部45aよりも伝動アーム43の基端側に形成されている。入力ローラ16は、実施例1,2の揺動アーム14にかえて支持部材49に支持され、支持部材49が可変動弁機構41のハウジング(図示略)に固定されている。支持部材49には、ローラ軸17上のガイドリング50に係合する第一案内面51と、可変アーム42上のガイドリング47に係合する第二案内面52とが設けられている。そして、案内面51,52、カム面45のベース部45aおよび駆動部48が、それぞれ軸線を一致させた異なる半径の円筒面に含まれるように形成されている。   The cam surface 45 includes a base portion 45a that keeps the rocking amount of the rocker arm 6 at zero, and a lift portion 45b that gradually increases the rocking amount of the rocker arm 6, and the lift portion 45b is closer to the base end side of the transmission arm 43 than the base portion 45a. Is formed. The input roller 16 is supported by a support member 49 instead of the swing arm 14 of the first and second embodiments, and the support member 49 is fixed to a housing (not shown) of the variable valve mechanism 41. The support member 49 is provided with a first guide surface 51 that engages with the guide ring 50 on the roller shaft 17 and a second guide surface 52 that engages with the guide ring 47 on the variable arm 42. And the guide surfaces 51 and 52, the base part 45a of the cam surface 45, and the drive part 48 are formed so that it may be contained in the cylindrical surface of a different radius which each made the axis line correspond.

この可変動弁機構41によれば、入力ローラ16をハウジングに固定の支持部材49に支持したので、可変動弁機構41から一つの可動部品(実施例1,2の揺動アーム14)を省略できる利点がある。また、支持部材49の第二案内面52がカム面45との間で回転接触子46を案内するので、回転カム4の動力の一部を支持部材49からハウジング側に逃がし、コントロールシャフト10に作用する負荷を少なくして、アクチュエータ(図示略)に小型・低出力の油圧又は電動機器を使用できる利点もある。その他の作用・効果は実施例1と同じである。   According to the variable valve mechanism 41, the input roller 16 is supported by the support member 49 fixed to the housing, and therefore one movable part (the swing arm 14 of the first and second embodiments) is omitted from the variable valve mechanism 41. There are advantages you can do. Further, since the second guide surface 52 of the support member 49 guides the rotary contact 46 between the support member 49 and the cam surface 45, a part of the power of the rotary cam 4 is released from the support member 49 to the housing side, and is transferred to the control shaft 10. There is also an advantage that a small and low output hydraulic or electric device can be used for an actuator (not shown) by reducing the applied load. Other actions and effects are the same as those of the first embodiment.

本発明の実施例1を示す可変動弁機構の斜視図である。It is a perspective view of the variable valve mechanism which shows Example 1 of this invention. 実施例1の可変動弁機構を図1の左方から見た断面図である。FIG. 2 is a cross-sectional view of the variable valve mechanism according to the first embodiment when viewed from the left in FIG. 1. 実施例1の可変動弁機構において揺動アーム、可変アーム、伝動アーム、ロッカアームの組付構造を示す断面図である。It is sectional drawing which shows the assembly structure of a rocking | swiveling arm, a variable arm, a transmission arm, and a rocker arm in the variable valve mechanism of Example 1. 実施例1の可変動弁機構においてバルブリフト量を最小化するときの作用を示す機構図である。It is a mechanism figure which shows an effect | action when the valve lift amount is minimized in the variable valve mechanism of Embodiment 1. 実施例1の可変動弁機構においてバルブリフト量を最大化するときの作用を示す機構図である。It is a mechanism figure which shows an effect | action when maximizing valve lift amount in the variable valve mechanism of Example 1. FIG. バルブリフト量と作用角の関係を示す特性図である。It is a characteristic view which shows the relationship between a valve lift amount and a working angle. 本発明の実施例2を示す可変動弁機構の断面図である。It is sectional drawing of the variable valve mechanism which shows Example 2 of this invention. 実施例2の可変動弁機構においてバルブリフト量を最小化するときの作用を示す機構図である。It is a mechanism figure which shows an effect | action when the valve lift amount is minimized in the variable valve mechanism of Example 2. 実施例2の可変動弁機構においてバルブリフト量を最大化するときの作用を示す機構図である。It is a mechanism figure which shows an effect | action when maximizing valve lift amount in the variable valve mechanism of Example 2. FIG. 本発明の実施例3を示す可変動弁機構の断面図である。It is sectional drawing of the variable valve mechanism which shows Example 3 of this invention. 従来の可変動弁機構を示す断面図である。It is sectional drawing which shows the conventional variable valve mechanism.

符号の説明Explanation of symbols

1 可変動弁機構(実施例1)
2 カムシャフト
4 回転カム
5 バルブ
6 ロッカアーム
10 コントロールシャフト
11 支持軸
13 アクチュエータ
14 揺動アーム
15 可変アーム
16 入力ローラ
15 カム面
19 伝動アーム
20 回転接触子
21 カム面
21a ベース部
21b リフト部
22 駆動部
31 可変動弁機構(実施例2)
41 可変動弁機構(実施例3)
42 可変アーム
43 伝動アーム
45 カム面
45a ベース部
45b リフト部
46 回転接触子
48 駆動部
49 支持部材
1 Variable valve mechanism (Example 1)
2 Camshaft 4 Rotating Cam 5 Valve 6 Rocker Arm 10 Control Shaft 11 Support Shaft 13 Actuator 14 Swing Arm 15 Variable Arm 16 Input Roller 15 Cam Surface 19 Transmission Arm 20 Rotating Contact 21 Cam Surface 21a Base Portion 21b Lift Portion 22 Drive Portion 31 Variable valve mechanism (Example 2)
41 Variable valve mechanism (Example 3)
42 variable arm 43 transmission arm 45 cam surface 45a base part 45b lift part 46 rotary contactor 48 drive part 49 support member

Claims (2)

カムシャフト上に設けられた回転カムと、回転カムに接触して変位する入力部材と、バルブを駆動する動弁部材と、回転カムの動力を動弁部材に伝える伝動アームと、伝動アームに接触する接触部を備えた可変アームと、可変アームを駆動するアクチュエータとからなり、伝動アームの基端を入力部材に連結し、伝動アームの先端側に動弁部材を駆動する駆動部と、可変アームの接触部が接触するカム面とを設け、可変アームの移動に伴ってカム面と接触部との初期接点位置を変更することを特徴とする可変動弁機構。   A rotating cam provided on the camshaft, an input member that contacts and displaces the rotating cam, a valve operating member that drives the valve, a transmission arm that transmits the power of the rotating cam to the valve operating member, and a contact with the transmission arm A variable arm provided with a contact portion and an actuator that drives the variable arm, the base end of the transmission arm is connected to the input member, and the drive unit that drives the valve member on the distal end side of the transmission arm, and the variable arm The variable valve mechanism is provided with a cam surface that comes into contact with the contact portion, and changes an initial contact position between the cam surface and the contact portion as the variable arm moves. 前記カム面が、動弁部材の運動量をゼロに保つベース部と、動弁部材の運動量を漸増させるリフト部とを備え、リフト部をベース部よりも伝動アームの基端側に形成した請求項1記載の可変動弁機構。   The cam surface includes a base portion that keeps the momentum of the valve member to zero, and a lift portion that gradually increases the momentum of the valve member, and the lift portion is formed closer to the base end side of the transmission arm than the base portion. The variable valve mechanism according to 1.
JP2005269299A 2005-09-15 2005-09-15 Variable valve train Pending JP2007077940A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005269299A JP2007077940A (en) 2005-09-15 2005-09-15 Variable valve train

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005269299A JP2007077940A (en) 2005-09-15 2005-09-15 Variable valve train

Publications (2)

Publication Number Publication Date
JP2007077940A true JP2007077940A (en) 2007-03-29
JP2007077940A5 JP2007077940A5 (en) 2008-07-17

Family

ID=37938508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005269299A Pending JP2007077940A (en) 2005-09-15 2005-09-15 Variable valve train

Country Status (1)

Country Link
JP (1) JP2007077940A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100962194B1 (en) 2007-12-14 2010-06-11 현대자동차주식회사 Continuous variable valve lift system
KR100986448B1 (en) * 2007-09-19 2010-10-08 고려대학교 산학협력단 Continuously Variable Valve Lift system for internal combustion engine
KR101063489B1 (en) * 2008-11-20 2011-09-07 현대자동차주식회사 Variable valve lift
KR101251691B1 (en) 2007-12-15 2013-04-05 현대자동차주식회사 Continuous variable valve lift(CVVL) apparatus
EP3236028A1 (en) 2016-01-29 2017-10-25 Otics Corporation Variable valve mechanism of internal combustion engine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0763023A (en) * 1993-08-05 1995-03-07 Bayerische Motoren Werke Ag Operating valve gear for internal combustion engine
JPH07310514A (en) * 1994-05-13 1995-11-28 Mitsubishi Motors Corp Valve driving gear
JP2003254023A (en) * 2003-02-24 2003-09-10 Takaaki Kuwabara Variable valve system
JP2005076607A (en) * 2003-09-03 2005-03-24 Daihatsu Motor Co Ltd Valve operation system for internal combustion engine
US6932035B1 (en) * 2005-01-28 2005-08-23 Ford Global Technologies, Llc Cylinder valve operating system for internal combustion engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0763023A (en) * 1993-08-05 1995-03-07 Bayerische Motoren Werke Ag Operating valve gear for internal combustion engine
JPH07310514A (en) * 1994-05-13 1995-11-28 Mitsubishi Motors Corp Valve driving gear
JP2003254023A (en) * 2003-02-24 2003-09-10 Takaaki Kuwabara Variable valve system
JP2005076607A (en) * 2003-09-03 2005-03-24 Daihatsu Motor Co Ltd Valve operation system for internal combustion engine
US6932035B1 (en) * 2005-01-28 2005-08-23 Ford Global Technologies, Llc Cylinder valve operating system for internal combustion engine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100986448B1 (en) * 2007-09-19 2010-10-08 고려대학교 산학협력단 Continuously Variable Valve Lift system for internal combustion engine
KR100962194B1 (en) 2007-12-14 2010-06-11 현대자동차주식회사 Continuous variable valve lift system
KR101251691B1 (en) 2007-12-15 2013-04-05 현대자동차주식회사 Continuous variable valve lift(CVVL) apparatus
KR101063489B1 (en) * 2008-11-20 2011-09-07 현대자동차주식회사 Variable valve lift
EP3236028A1 (en) 2016-01-29 2017-10-25 Otics Corporation Variable valve mechanism of internal combustion engine
US10233790B2 (en) 2016-01-29 2019-03-19 Otics Corporation Variable valve mechanism of internal combustion engine

Similar Documents

Publication Publication Date Title
JP4211846B2 (en) Variable valve gear
JP2007170333A (en) Variable valve train
EP1873362B1 (en) Variable valve mechanism
JP4571161B2 (en) Variable valve operating device for internal combustion engine
WO2004081351A1 (en) Variable valve mechanism for internal combustion engine
JP2007198363A (en) Variable valve gear
JP4697011B2 (en) Variable valve mechanism
JP5028355B2 (en) Variable valve mechanism
JP4771874B2 (en) Variable valve mechanism
JP4026634B2 (en) Variable valve gear
JP2005171922A (en) Variable valve mechanism
JP2007077940A (en) Variable valve train
JPH0693816A (en) Valve drive mechanism for internal combustion engine
JPWO2003098012A1 (en) Engine valve gear
JP4103871B2 (en) Variable valve gear
JP4469341B2 (en) Variable valve mechanism
WO2010061829A1 (en) Variable valve mechanism
JP4070124B2 (en) Decompression device for internal combustion engine
JP4535973B2 (en) Variable valve mechanism
JP2007113419A (en) Continuous variable valve mechanism
JPH11294125A (en) Valve system for internal combustion engine
JP2005291014A (en) Variable valve gear for engine
JP2006283630A (en) Valve gear of engine
JP4097209B2 (en) Valve mechanism in internal combustion engine
JP6058817B2 (en) Engine valve gear

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080604

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100420