JP2007077901A - Diesel engine equipment - Google Patents

Diesel engine equipment Download PDF

Info

Publication number
JP2007077901A
JP2007077901A JP2005268043A JP2005268043A JP2007077901A JP 2007077901 A JP2007077901 A JP 2007077901A JP 2005268043 A JP2005268043 A JP 2005268043A JP 2005268043 A JP2005268043 A JP 2005268043A JP 2007077901 A JP2007077901 A JP 2007077901A
Authority
JP
Japan
Prior art keywords
gas
diesel engine
reformed
temperature
reformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005268043A
Other languages
Japanese (ja)
Other versions
JP4537301B2 (en
Inventor
Hirokazu Takahashi
宏和 高橋
Koji Nishida
浩二 西田
Shinichi Inage
真一 稲毛
Nobuyuki Hokari
信幸 穂刈
Osamu Yokota
修 横田
Akinori Hayashi
林  明典
Shinsuke Kokubo
慎介 小久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Japan Petroleum Energy Center JPEC
Original Assignee
Petroleum Energy Center PEC
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Petroleum Energy Center PEC, Hitachi Ltd filed Critical Petroleum Energy Center PEC
Priority to JP2005268043A priority Critical patent/JP4537301B2/en
Publication of JP2007077901A publication Critical patent/JP2007077901A/en
Application granted granted Critical
Publication of JP4537301B2 publication Critical patent/JP4537301B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Liquid Carbonaceous Fuels (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide diesel engine equipment, which can use a light component produced from heavy oil as fuel so as to utilize the heavy oil without wastage. <P>SOLUTION: The diesel engine equipment comprises: a reformer 8 for mixing the heavy oil with reaction water and separating it into a heavy component and the light component; a gas-liquid separator 15 for separating the light component, which is separated by the reformer 8, into reformed gas and reformed oil; and a diesel engine 2 using the reformed oil, which is separated by the gas-liquid separator 15, as fuel. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は例えば発電機やその他の負荷を駆動するディーゼルエンジン設備に係り、特に、重質油を改質して生成した改質油を燃料とするディーゼルエンジン設備に関する。   The present invention relates to, for example, a diesel engine facility that drives a generator or other load, and more particularly, to a diesel engine facility that uses a reformed oil produced by reforming a heavy oil as fuel.

通常、原油の蒸留で生成する残渣から軽質な燃料を生成させるために流動接触分解(Fluid Catalyst Cracking)法が用いられる。この分解法は残渣を触媒と接触させて分解し、高オクタン価のガソリンを製造する方法である。そしてこの分解法は、ガソリン成分の他に触媒等の固体粒子を含む重質油が生成される。この重質油は軽油やA重油などに較べ安価であるが、ディーゼルエンジン用の燃料に用いると、含まれている固体粒子がピストンリング,シリンダー,燃料噴射ノズル,プランジャに対して早期摩耗の原因となり、ディーゼルエンジンの短命化及びメンテナンスコスト高の原因になる可能性がある。   Usually, a fluid catalytic cracking method is used to produce light fuel from the residue produced by distillation of crude oil. In this decomposition method, the residue is decomposed by contacting with a catalyst to produce gasoline having a high octane number. And this cracking method produces | generates the heavy oil which contains solid particles, such as a catalyst, in addition to a gasoline component. This heavy oil is less expensive than diesel oil or heavy oil A, but when used in diesel engine fuel, the contained solid particles cause premature wear on piston rings, cylinders, fuel injection nozzles, and plungers. Therefore, there is a possibility that the life of the diesel engine is shortened and the maintenance cost is high.

尚、重質油を利用したディーゼルエンジンは、例えば特許文献1に開示されているように、既に提案されている。特許文献1に記載の技術は、重質油と反応水とを混合して重質油中に存在する金属類を除去し、得られた軽質成分を燃料としてディーゼルエンジンへ供給するものである。   In addition, the diesel engine using heavy oil has already been proposed, for example as disclosed in Patent Document 1. The technique described in Patent Document 1 is a technique in which heavy oil and reaction water are mixed to remove metals present in the heavy oil, and the obtained light components are supplied to the diesel engine as fuel.

特開2004−11479号公報JP 2004-11479 A

上記特許文献1に記載の軽質成分を燃料とするディーゼルエンジンは、次のような問題がある。即ち、ディーゼルエンジンへ燃料を噴射するには、軽質成分を数10〜100数10MPa以上の高圧に加圧する必要がある。しかしながら、軽質成分には水素やメタン等のガスが含まれるため、そのような高圧に加圧することは困難であり、したがって重質油から生成した軽質成分をディーゼルエンジンの燃料にすることは実用化されていないのが現状である。   The diesel engine using the light component described in Patent Document 1 as a fuel has the following problems. That is, in order to inject fuel into a diesel engine, it is necessary to pressurize the light component to a high pressure of several tens to several tens of MPa. However, since light components include gases such as hydrogen and methane, it is difficult to pressurize to such high pressures, so it is practical to use light components generated from heavy oil as fuel for diesel engines. The current situation is not.

本発明の目的は、重質油から生成した軽質分を用いて燃料にすることができるディーゼルエンジン設備を提供することである。   The objective of this invention is providing the diesel engine equipment which can be made into a fuel using the light part produced | generated from heavy oil.

また、本発明の別な目的は、重質油を無駄なく利用できるディーゼルエンジン設備を提供することである。   Another object of the present invention is to provide a diesel engine facility that can use heavy oil without waste.

本発明は上記目的を達成するために、重質油と反応水とを混合して重質成分と軽質成分とに分離する改質器と、この改質器で分離された軽質成分を改質ガスと改質油とに分離する気液分離器と、この気液分離器で分離された改質油を燃料とするディーゼルエンジンとでディーゼルエンジン設備を構成したのである。   In order to achieve the above object, the present invention mixes heavy oil and reaction water to separate a heavy component and a light component, and reforms the light component separated by the reformer. The diesel engine equipment is composed of a gas-liquid separator that separates gas and reformed oil and a diesel engine that uses the reformed oil separated by the gas-liquid separator as fuel.

さらに、前記気液分離器で分離された改質ガスや前記改質器で分離された重質成分を燃焼させて前記改質器を加熱するように構成したのである。   Further, the reformer gas is heated by burning the reformed gas separated by the gas-liquid separator and the heavy components separated by the reformer.

さらにまた、前記気液分離器で分離された改質ガスを燃料とするガスタービンを設けたのである。   Furthermore, a gas turbine using the reformed gas separated by the gas-liquid separator as a fuel is provided.

上記構成により、重質油から分離した軽質成分から水素やメタン等のガス成分を除去し、軽質油のみをディーゼルエンジンの燃料として利用するようにしたので、これを数10〜100数10MPa以上の高圧に加圧して噴射させることができる。   With the above configuration, gas components such as hydrogen and methane are removed from the light components separated from the heavy oil, and only the light oil is used as the fuel for the diesel engine. It can be injected under high pressure.

また、ディーゼルエンジンの燃料として利用される改質油以外の改質ガスや重質成分は改質器の加熱に利用したり、改質ガスはガスタービンの燃料にしたりすることで、重質油を無駄なく利用することができる。   In addition, reformed gas and heavy components other than reformed oil used as fuel for diesel engines can be used for heating the reformer, and reformed gas can be used as fuel for gas turbines. Can be used without waste.

以上説明したように本発明によれば、重質油から生成した軽質分を用いて燃料にすることができると共に、重質油を無駄なく利用できるディーゼルエンジン設備を得ることができる。   As described above, according to the present invention, it is possible to obtain diesel engine equipment that can be made into fuel using light components generated from heavy oil and that can use heavy oil without waste.

以下本発明によるディーゼルエンジン設備の第1の実施の形態を、図1に示すディーゼルエンジン発電設備に基づいて説明する。   A first embodiment of a diesel engine facility according to the present invention will be described below based on the diesel engine power generation facility shown in FIG.

ディーゼルエンジン発電設備1は、ディーゼルエンジン2と、このディーゼルエンジン2で駆動される発電機3と、前記ディーゼルエンジン2の燃料供給系4とで構成されている。   The diesel engine power generation facility 1 includes a diesel engine 2, a generator 3 driven by the diesel engine 2, and a fuel supply system 4 of the diesel engine 2.

前記燃料供給系4は、重質油タンク5と、この重質油タンク5内の重質油を10〜25MPaに加圧して送り出す重質油ポンプ6と、送り出された重質油を350℃〜450℃に加熱する重質油予熱器7と、加熱された重質油を改質する改質器8とを備えている。そして、この改質器8には、反応水タンク9内の反応水が反応水ポンプ10によって10〜25MPaに加圧されて送り出され、改質器8に供給する前に反応水を反応水予熱器11によって450℃〜500℃に加熱している。   The fuel supply system 4 includes a heavy oil tank 5, a heavy oil pump 6 that sends out the heavy oil in the heavy oil tank 5 to a pressure of 10 to 25 MPa, and a sent heavy oil at 350 ° C. A heavy oil preheater 7 for heating to ˜450 ° C. and a reformer 8 for reforming the heated heavy oil are provided. The reaction water in the reaction water tank 9 is pressurized to 10 to 25 MPa by the reaction water pump 10 and sent out to the reformer 8, and the reaction water is preheated before being supplied to the reformer 8. The vessel 11 is heated to 450 ° C. to 500 ° C.

改質器8内で反応水を混合された重質油は、改質器8を温度430℃〜460℃で圧力10〜25MPaとすることで反応し、重質成分aと水蒸気を含む軽質成分bとに分離される。分離された重質成分aの主成分は、レジン分やアサファルテン分であり、バルブ12を介して重質成分回収器13に回収され、同時に重質油に含まれる触媒等の固体粒子は重質成分aに濃縮されて重質成分回収器13に回収される。重質成分回収器13に回収された重質成分aは、図示しないアスファルト製造装置に供給され、アスファルトの原料となる。   The heavy oil mixed with the reaction water in the reformer 8 reacts by setting the reformer 8 at a temperature of 430 ° C. to 460 ° C. and a pressure of 10 to 25 MPa, and a light component containing a heavy component a and water vapor. and b. The main components of the separated heavy component a are a resin component and an asphaltene component, and are recovered by the heavy component recovery unit 13 via the valve 12. At the same time, solid particles such as a catalyst contained in the heavy oil are heavy. It is concentrated to the component a and collected in the heavy component collector 13. The heavy component a recovered in the heavy component recovery unit 13 is supplied to an asphalt manufacturing apparatus (not shown) and becomes a raw material for asphalt.

また、軽質成分bは、水素や炭化水素ガス(メタンやエタン等の化合物)、飽和物(ヘキサンやヘプタン等の化合物)、芳香族分(ベンゼンやトルエン等の化合物)が主成分であり、一部レジン分を含んでいる。この軽質成分bは、バルブ14を介して気液分離器15に供給される。尚、前記バルブ14の開度を調節することで改質器8内の圧力が一定に保たれる。   The light component b is mainly composed of hydrogen or hydrocarbon gas (a compound such as methane or ethane), a saturated substance (a compound such as hexane or heptane), or an aromatic component (a compound such as benzene or toluene). Contains part of resin. This light component b is supplied to the gas-liquid separator 15 via the valve 14. The pressure in the reformer 8 is kept constant by adjusting the opening of the valve 14.

気液分離器15は、圧力が2〜4MPaに保持されているので、供給された軽質成分bは減圧膨脹で温度が低下し、その結果、凝縮する改質油cと凝縮しない改質ガス(水蒸気、水素、一酸化炭素、二酸化炭素、炭化水素ガス(炭素数18程度までの炭化水素))dに分離する。   Since the gas-liquid separator 15 is maintained at a pressure of 2 to 4 MPa, the temperature of the supplied light component b is reduced by expansion under reduced pressure. As a result, the reformed oil c that condenses and the reformed gas that does not condense ( Water vapor, hydrogen, carbon monoxide, carbon dioxide, hydrocarbon gas (hydrocarbon having up to about 18 carbon atoms)) d are separated.

分離された気液分離器15内の改質油cは、液位計16で計測され、一定となるようにバルブ17の開度を調節する。これにより、改質油cは気液分離器15内から抽出され、冷却器18で約60℃に冷却された後、改質油タンク19に貯蔵される。改質油タンク19内の改質油cは改質油ポンプ20で加圧され、前記ディーゼルエンジン2の燃料として供給される。ディーゼルエンジン2に供給された改質油cは空気と混合して燃焼されてディーゼルエンジン2を駆動し、連結された発電機3を駆動して発電させる。ディーゼルエンジン2から排出される排ガスAは、バルブ21を介して直接煙突23から大気中に放出されるか、バルブ24〜26を経由して重質油予熱器7,反応水予熱器11,改質器8を加熱した後、煙突23から大気中に放出される。   The reformed oil c in the separated gas-liquid separator 15 is measured by the liquid level meter 16, and the opening degree of the valve 17 is adjusted so as to be constant. Thereby, the reformed oil c is extracted from the gas-liquid separator 15, cooled to about 60 ° C. by the cooler 18, and then stored in the reformed oil tank 19. The reformed oil c in the reformed oil tank 19 is pressurized by the reformed oil pump 20 and supplied as fuel for the diesel engine 2. The reformed oil c supplied to the diesel engine 2 is mixed with air and burned to drive the diesel engine 2 and drive the connected generator 3 to generate power. The exhaust gas A discharged from the diesel engine 2 is discharged directly from the chimney 23 through the valve 21 into the atmosphere or through the valves 24 to 26, and the heavy oil preheater 7, the reaction water preheater 11, and the modified After heating the mass device 8, it is discharged from the chimney 23 into the atmosphere.

一方、気液分離器15で分離された改質ガスdは、バルブ27を経由してガスタービン設備28に供給される。ガスタービン設備28は、空気圧縮機29と、この空気圧縮機29で圧縮された圧縮空気と前記改質ガスdと混合して燃焼させる燃焼器30と、燃焼器30で燃焼した燃焼ガスで駆動されるガスタービン31とで構成され、ガスタービン31に回転駆動される負荷を連結している。ガスタービン31を駆動し終えた排ガスBは、前記煙突23から大気中に放出される。尚、気液分離器15内の圧力を一定に保つために、バルブ32の開度を調節して余分な改質ガスdをフレアスタック33で燃焼させ、その排ガスCを煙突23から放出している。このとき、改質油タンク19内に貯蔵された改質油cの一部は、改質ガスdの燃料として前記フレアスタック3にブロア34で吸引された空気と共に供給される。   On the other hand, the reformed gas d separated by the gas-liquid separator 15 is supplied to the gas turbine equipment 28 via the valve 27. The gas turbine equipment 28 is driven by an air compressor 29, a combustor 30 that is mixed with the compressed air compressed by the air compressor 29 and the reformed gas d and burned, and a combustion gas burned by the combustor 30. The gas turbine 31 is connected to a load that is rotationally driven by the gas turbine 31. The exhaust gas B that has finished driving the gas turbine 31 is discharged from the chimney 23 into the atmosphere. In order to keep the pressure in the gas-liquid separator 15 constant, the opening of the valve 32 is adjusted to burn excess reformed gas d in the flare stack 33, and the exhaust gas C is discharged from the chimney 23. Yes. At this time, a part of the reformed oil c stored in the reformed oil tank 19 is supplied to the flare stack 3 together with the air sucked by the blower 34 as fuel of the reformed gas d.

上記構成により重質油に含まれていた固体粒子は除去され、これにより12重量ppmであったアルミニウムを0.05重量ppm未満にまで低減でき、かつガス成分が除去されて数10〜100数10MPa以上の高圧に加圧して噴射させることができる改質油をディーゼルエンジンの燃料として利用することができる。   The solid particles contained in the heavy oil are removed by the above configuration, whereby the aluminum that was 12 ppm by weight can be reduced to less than 0.05 ppm by weight, and the gas component is removed to be several 10 to several hundreds. A reformed oil that can be pressurized and injected at a high pressure of 10 MPa or more can be used as a fuel for a diesel engine.

また、分離した改質ガスdは、全重質油量に対して10〜40重量%であり、ディーゼルエンジン発電設備として、ガスタービン設備28の出力が、ディーゼルエンジン2の1/10〜1/2になるように設計することで、改質ガスdの全量をガスタービン設備28で消費させることができる。ところで、ガスタービン設備28の代わりにガスエンジン等を設置することも考えられるが、改質ガスdには、上述のように、水蒸気が含まれているので発熱量が低く、ガスエンジンの燃料としては好ましくない。したがって、ガスタービン設備28の代わりにガスエンジンを設置する必要が生じた場合には、改質ガスdを冷却して水蒸気を凝縮させて除去した後、ガスエンジンに供給することが望ましい。   Further, the separated reformed gas d is 10 to 40% by weight with respect to the total heavy oil amount, and the output of the gas turbine equipment 28 is 1/10 to 1/1 of that of the diesel engine 2 as the diesel engine power generation equipment. By designing to be 2, the total amount of the reformed gas d can be consumed by the gas turbine equipment 28. By the way, it is conceivable to install a gas engine or the like instead of the gas turbine equipment 28. However, as described above, the reformed gas d contains water vapor and thus has a low calorific value, and is used as a fuel for the gas engine. Is not preferred. Therefore, when it becomes necessary to install a gas engine instead of the gas turbine equipment 28, it is desirable to cool the reformed gas d to condense and remove the water vapor, and then supply the gas engine to the gas engine.

次に、本発明によるディーゼルエンジン設備の第2の実施の形態を、図2に示すディーゼルエンジン発電設備に基づいて説明する。尚、図1と同符号は、同一部品を示すので、再度の詳細な説明は省略する。   Next, a second embodiment of the diesel engine facility according to the present invention will be described based on the diesel engine power generation facility shown in FIG. The same reference numerals as those in FIG. 1 denote the same parts, and thus detailed description thereof is omitted.

この第2の実施の形態が、前記第1の実施の形態と異なる点は、重質成分回収器13に回収された重質成分aを、重質成分ポンプ35で抽出してディーゼルエンジン2の排ガスAの下流側に設置した重質成分燃焼炉36に供給し、ブロア37から供給される空気と混合して燃焼させる点と、重質成分燃焼炉36の下流側に設置した粒子分離手段38で燃焼ガスD中に濃縮されている固体粒子や他の金属を除去し、550℃〜600℃の高温排ガスEを生成する点である。   The second embodiment is different from the first embodiment in that the heavy component a recovered in the heavy component recovery unit 13 is extracted by the heavy component pump 35 and the diesel engine 2 It is supplied to the heavy component combustion furnace 36 installed on the downstream side of the exhaust gas A, mixed with the air supplied from the blower 37 and burned, and the particle separation means 38 installed on the downstream side of the heavy component combustion furnace 36. The solid particles and other metals concentrated in the combustion gas D are removed, and a high temperature exhaust gas E of 550 ° C. to 600 ° C. is generated.

粒子分離手段38は、例えば、貫通型フィルタやサイクロンフィルタ、さらには電気集塵機等が適用できる。   As the particle separation means 38, for example, a through-type filter, a cyclone filter, an electric dust collector or the like can be applied.

重質成分燃焼炉36には、重質成分aとブロア37からの空気とが供給されるほか、ディーゼルエンジン2の排ガスAが供給され、粒子分離手段38から出た高温排ガスEは、第1の実施の形態と同じように、バルブ21,24,25,26を経由して流量を調節され、重質油予熱器7,反応水予熱器11,改質器8を設定温度に加熱した後、煙突23から放出される。   The heavy component combustion furnace 36 is supplied with the heavy component a and the air from the blower 37, and also supplied with the exhaust gas A of the diesel engine 2, and the high temperature exhaust gas E emitted from the particle separation means 38 is the first As in the above embodiment, after the flow rate is adjusted via the valves 21, 24, 25, and 26, the heavy oil preheater 7, the reaction water preheater 11, and the reformer 8 are heated to the set temperature. , Emitted from the chimney 23.

このような第2の実施の形態によれば、550℃〜600℃の高温排ガスEで重質油予熱器7,反応水予熱器11を加熱できるので、ディーゼルエンジン2の排ガスAの温度が低く、重質油予熱器7,反応水予熱器11の加熱が十分に行うことができず、改質器8の温度を約430℃に設定できない第1の実施の形態に比べて、円滑な加熱を行うことができる。   According to the second embodiment, since the heavy oil preheater 7 and the reaction water preheater 11 can be heated with the high-temperature exhaust gas E of 550 ° C. to 600 ° C., the temperature of the exhaust gas A of the diesel engine 2 is low. As compared with the first embodiment, the heavy oil preheater 7 and the reaction water preheater 11 cannot be sufficiently heated and the temperature of the reformer 8 cannot be set to about 430 ° C. It can be performed.

さらに、第2の実施の形態によれば、重質成分回収器13に回収された重質成分aを燃焼させるために、重質成分aの処理が不要になると共に、粒子分離手段38で分離した粒子を回収することで、それを触媒の原料として用いることができる。   Furthermore, according to the second embodiment, since the heavy component a recovered by the heavy component recovery unit 13 is combusted, the processing of the heavy component a becomes unnecessary and the particle separation means 38 separates the heavy component a. The collected particles can be recovered and used as a catalyst raw material.

勿論、第2の実施の形態によれば、第1の実施の形態と同じように、重質油に含まれていた固体粒子は除去され、これにより12重量ppmであったアルミニウムを0.05重量ppm未満にまで低減でき、かつガス成分が除去されて数10〜100数10MPa以上の高圧に加圧して噴射させることができる改質油をディーゼルエンジンの燃料として利用することができる効果を奏することができる。   Of course, according to the second embodiment, as in the first embodiment, the solid particles contained in the heavy oil are removed, so that the aluminum content of 12 ppm by weight is reduced to 0.05. The modified oil which can be reduced to less than ppm by weight and can be injected by being pressurized to a high pressure of several tens to several hundreds of MPa or more after the gas component is removed has an effect that can be used as a fuel for a diesel engine. be able to.

図3は、本発明によるディーゼルエンジン設備の第3の実施の形態を示すものである。尚、図1及び図2と同符号は、同一部品を示すので、再度の詳細な説明は省略する。   FIG. 3 shows a third embodiment of the diesel engine equipment according to the present invention. The same reference numerals as those in FIGS. 1 and 2 indicate the same parts, and thus detailed description thereof is omitted.

この第3の実施の形態が、前記第1及び第2の実施の形態と異なる点は、気液分離器15に、気液温度調節手段を構成する冷却水ポンプ39を備えた冷却装置40を設けた点と、気液分離器15に、気液温度検出手段41を設けた点と、改質器8に、改質温度測定手段42を設けた点と、発電機3の出力に基づいて冷却水ポンプ39を制御して前記気液温度検出手段41と改質温度測定手段42で温度を監視しながら気液分離器15の温度を制御する気液分離器温度制御装置43を設けた点と、ガスタービン設備を撤去し、代わりに気液分離器15で分離された改質ガスdをバルブ44を経由して重質成分燃焼炉36に供給するようにした点である。   The third embodiment is different from the first and second embodiments in that the gas-liquid separator 15 is provided with a cooling device 40 provided with a cooling water pump 39 constituting gas-liquid temperature adjusting means. Based on the provided points, the gas-liquid separator 15 provided with the gas-liquid temperature detecting means 41, the reformer 8 provided with the reforming temperature measuring means 42, and the output of the generator 3. A gas-liquid separator temperature control device 43 for controlling the temperature of the gas-liquid separator 15 while controlling the cooling water pump 39 and monitoring the temperature with the gas-liquid temperature detecting means 41 and the reforming temperature measuring means 42 is provided. The gas turbine equipment is removed, and the reformed gas d separated by the gas-liquid separator 15 is supplied to the heavy component combustion furnace 36 via the valve 44 instead.

このような第3の実施の形態において、発電機3の出力を変化させる時は、ディーゼルエンジン2に供給する改質油cの供給量を変化させる必要があるので、重質油と反応水の供給量を変化させると共に、これら重質油と反応水を加熱するためのエンタルピも変化するため、高温排ガスEの流量も変化させる必要がある。第3の実施の形態におけるディーゼルエンジン発電設備1において、発電機3の出力変化時の制御を次に説明する。   In such a third embodiment, when the output of the generator 3 is changed, it is necessary to change the supply amount of the reformed oil c supplied to the diesel engine 2, so that heavy oil and reaction water are changed. Since the supply amount is changed and the enthalpy for heating the heavy oil and the reaction water is also changed, the flow rate of the high temperature exhaust gas E needs to be changed. In the diesel engine power generation facility 1 according to the third embodiment, control when the output of the generator 3 is changed will be described next.

図4には、発電機3の出力が低下した場合における改質油cの供給量、気液分離器15の冷却水ポンプ39による冷却水量、気液分離器15の温度、改質ガスdの生成量、改質油cの生成量の変化を示す。   FIG. 4 shows the supply amount of the reformed oil c when the output of the generator 3 decreases, the amount of cooling water by the cooling water pump 39 of the gas-liquid separator 15, the temperature of the gas-liquid separator 15, the reformed gas d. The production amount and the change in the production amount of the reformed oil c are shown.

時間t1において、発電機3の出力が低下すると、改質油dの供給量も減少する。時間t1からt2までは、前記出力の低下を気液分離器温度制御装置43で検出して気液分離器15の冷却水量を増加せる指示を出し、気液分離器15の温度が所定温度まで低下したことを気液温度検出手段41で監視する。気液分離器15の温度が所定温度まで低下することで、改質ガスdが凝縮することで改質ガス生成量は減少し、減少した分だけ改質油cの生成量が増加する。発電機3の出力が一定になる時間t2〜t3間では、気液分離器15の冷却水量を調節して、改質ガス生成量を重質油予熱器7,反応水予熱器11,改質器8を加熱するために必要な量まで低減させる。   When the output of the generator 3 decreases at time t1, the supply amount of the reformed oil d also decreases. From time t1 to t2, the gas-liquid separator temperature control device 43 detects the decrease in the output and issues an instruction to increase the amount of cooling water in the gas-liquid separator 15, and the temperature of the gas-liquid separator 15 reaches the predetermined temperature. The gas / liquid temperature detecting means 41 monitors the decrease. By reducing the temperature of the gas-liquid separator 15 to a predetermined temperature, the reformed gas d condenses, so that the amount of reformed gas produced decreases, and the amount of reformed oil c produced increases by the reduced amount. During the time t2 to t3 when the output of the generator 3 is constant, the amount of cooling water in the gas-liquid separator 15 is adjusted so that the reformed gas generation amount is changed to the heavy oil preheater 7, the reaction water preheater 11, and the reforming. The vessel 8 is reduced to the amount necessary to heat it.

尚、気液分離器15の冷却水量は、図5に示すように、決定する。即ち、図5は、改質器8で分離された軽質成分bの気液分離器15における沸点の分布であり、温度T1と温度T2の間で沸騰した成分の分率がw(wt%)であることを示している。温度T3であれば、それよりも低沸点(矢印方向)の成分は、改質ガスdとなり、それ以外の成分は改質油cとなることを意味している。この図5における沸点と改質ガスdの質量分率の関係を予め気液分離器温度制御装置43に記憶させておくことで、設定すべき気液分離器温度を予測して気液分離器の冷却水量を制御することができる。   The amount of cooling water in the gas-liquid separator 15 is determined as shown in FIG. That is, FIG. 5 is a distribution of boiling points in the gas-liquid separator 15 of the light component b separated by the reformer 8, and the fraction of the components boiled between the temperature T1 and the temperature T2 is w (wt%). It is shown that. If the temperature is T3, it means that the component having a lower boiling point (in the arrow direction) becomes the reformed gas d, and the other components become the reformed oil c. The relationship between the boiling point and the mass fraction of the reformed gas d in FIG. 5 is stored in the gas-liquid separator temperature control device 43 in advance, so that the gas-liquid separator temperature to be set is predicted and the gas-liquid separator. The amount of cooling water can be controlled.

このように本発明による第3の実施の形態においては、重質油から生成した軽質分を用いて燃料にすることができると共に、重質油を無駄なく利用できるのは勿論のこと、改質ガスdの生成比率を下げて改質油cの生成比率を上げるように気液分離器15の温度を管理することで、ディーゼルエンジン2への改質油量を増加させて発電機3の出力を向上させることができ、ディーゼツエンジン発電設備の効率低下を回避することができる。   As described above, in the third embodiment according to the present invention, the light component generated from the heavy oil can be used as the fuel, and the heavy oil can be used without waste. By controlling the temperature of the gas-liquid separator 15 so as to decrease the generation ratio of the gas d and increase the generation ratio of the reformed oil c, the amount of the reformed oil to the diesel engine 2 is increased and the output of the generator 3 is increased. The efficiency of the diesel engine power generation facility can be avoided.

さらに、本実施の形態においては、改質ガスdを重質成分燃焼炉36で燃焼させることで、第1及び第2の実施の形態のようなガスタービン設備等を併設する必要はなく、初期設備費を抑えることができる。   Furthermore, in the present embodiment, it is not necessary to add the gas turbine equipment and the like as in the first and second embodiments by burning the reformed gas d in the heavy component combustion furnace 36, and the initial stage Equipment costs can be reduced.

ところで、以上説明の各実施の形態は、ディーゼルエンジン設備として発電機を備えたディーゼルエンジン発電設備を一例として説明したが、その他の負荷を駆動するディーゼルエンジン設備であれば、ディーゼルエンジン発電設備に限定されるものではない。   By the way, although each embodiment of the above description demonstrated the diesel engine power generation equipment provided with the generator as a diesel engine equipment as an example, if it is a diesel engine equipment which drives other loads, it will be limited to a diesel engine power generation equipment. Is not to be done.

本発明によるディーゼルエンジン設備の第1の実施の形態を示すディーゼルエンジン発電設備のブロック図。The block diagram of the diesel engine power generation equipment which shows 1st Embodiment of the diesel engine equipment by this invention. 本発明によるディーゼルエンジン設備の第2の実施の形態を示すディーゼルエンジン発電設備のブロック図。The block diagram of the diesel engine power generation equipment which shows 2nd Embodiment of the diesel engine equipment by this invention. 本発明によるディーゼルエンジン設備の第3の実施の形態を示すディーゼルエンジン発電設備のブロック図。The block diagram of the diesel engine power generation equipment which shows 3rd Embodiment of the diesel engine equipment by this invention. 図3に示すディーゼルエンジン発電設備の発電機出力に対する各所の変化を示す線図。The diagram which shows the change of each place with respect to the generator output of the diesel engine power generation equipment shown in FIG. 改質ガスの質量分率と分子量との関係を示すグラフ。The graph which shows the relationship between the mass fraction of reformed gas, and molecular weight.

符号の説明Explanation of symbols

1…ディーゼルエンジン発電設備、2…ディーゼルエンジン、3…発電機、4…燃料供給系、5…重質油タンク、6…重質油ポンプ、7…重質油予熱器、8…改質器、9…反応水タンク、10…反応水ポンプ、11…反応水予熱器、13…重質成分回収器、15…気液分離器、16…液位計、18…冷却器、19…改質油タンク、20…改質油ポンプ、23…煙突、28…ガスタービン設備、29…空気圧縮機、30…燃焼器、31…ガスタービン、33…フレアスタック、35…重質成分ポンプ、36…重質成分燃焼炉、38…粒子分離手段、39…冷却水ポンプ、40…冷却装置、41…気液温度検出手段、42…改質温度測定手段、43…気液分離器温度制御装置。   DESCRIPTION OF SYMBOLS 1 ... Diesel engine power generation equipment, 2 ... Diesel engine, 3 ... Generator, 4 ... Fuel supply system, 5 ... Heavy oil tank, 6 ... Heavy oil pump, 7 ... Heavy oil preheater, 8 ... Reformer , 9 ... Reaction water tank, 10 ... Reaction water pump, 11 ... Reaction water preheater, 13 ... Heavy component recovery device, 15 ... Gas-liquid separator, 16 ... Liquid level gauge, 18 ... Cooler, 19 ... Reformation Oil tank, 20 ... reformed oil pump, 23 ... chimney, 28 ... gas turbine equipment, 29 ... air compressor, 30 ... combustor, 31 ... gas turbine, 33 ... flare stack, 35 ... heavy component pump, 36 ... Heavy component combustion furnace, 38 ... particle separation means, 39 ... cooling water pump, 40 ... cooling device, 41 ... gas-liquid temperature detection means, 42 ... reforming temperature measuring means, 43 ... gas-liquid separator temperature control device.

Claims (9)

重質油と反応水とを混合して重質成分と軽質成分とに分離する改質器と、この改質器で分離された軽質成分を改質ガスと改質油とに分離する気液分離器と、この気液分離器で分離された改質ガスと改質油のうち改質油を燃料とするディーゼルエンジンとを備えたことを特徴とするディーゼルエンジン設備。   A reformer that mixes heavy oil and reaction water and separates it into a heavy component and a light component, and a gas / liquid that separates the light component separated by this reformer into reformed gas and reformed oil A diesel engine facility comprising: a separator; and a diesel engine using the reformed gas and reformed oil separated by the gas-liquid separator as fuel. 重質油と反応水とを混合して重質成分と軽質成分とに分離する改質器と、この改質器で分離された軽質成分を改質ガスと改質油とに分離する気液分離器と、この気液分離器で分離された改質ガスと改質油のうち改質油を燃料とするディーゼルエンジンと、前記改質器で分離された重質成分を前記ディーゼルエンジンからの排ガスと共に燃焼させる重質成分燃焼炉とを備え、この重質成分燃焼炉からの排ガスで前記重質油と反応水及び改質器を加熱するように構成したことを特徴とするディーゼルエンジン設備。   A reformer that mixes heavy oil and reaction water and separates it into a heavy component and a light component, and a gas / liquid that separates the light component separated by this reformer into reformed gas and reformed oil A separator, a diesel engine that uses the reformed gas separated from the gas-liquid separator as a fuel, and a heavy component separated by the reformer from the diesel engine. A diesel engine facility comprising a heavy component combustion furnace that is combusted with exhaust gas, and configured to heat the heavy oil, the reaction water, and the reformer with the exhaust gas from the heavy component combustion furnace. 前記気液分離器で分離された改質ガスを前記重質成分燃焼炉で燃焼させるように構成したことを特徴とする請求項2記載のディーゼルエンジン設備。   The diesel engine equipment according to claim 2, wherein the reformed gas separated by the gas-liquid separator is combusted in the heavy component combustion furnace. 前記重質成分燃焼炉の下流側に粒子分離装置が設けられていることを特徴とする請求項2記載のディーゼルエンジン設備。   The diesel engine equipment according to claim 2, wherein a particle separation device is provided downstream of the heavy component combustion furnace. 前記気液分離器で分離された改質ガスを燃料とするガスタービンを備えたことを特徴とする請求項1,2,3又は4記載のディーゼルエンジン設備。   The diesel engine equipment according to claim 1, 2, 3, or 4, further comprising a gas turbine that uses the reformed gas separated by the gas-liquid separator as a fuel. 前記気液分離器で分離された改質ガス及び改質油の一部を燃焼させるフレアスタックが設けられていることを特徴とする請求項1,2,3,4又は5記載のディーゼルエンジン設備。   6. A diesel engine facility according to claim 1, further comprising a flare stack for burning part of the reformed gas and reformed oil separated by the gas-liquid separator. . 重質油と反応水とを混合して重質成分と軽質成分とに分離する改質器と、この改質器で分離された軽質成分を改質ガスと改質油とに分離する気液分離器と、この気液分離器で分離された改質油を燃料とするディーゼルエンジンと、このディーゼルエンジンによって駆動される発電機と、前記改質器で分離された重質成分を前記ディーゼルエンジンからの排ガスと共に燃焼させる重質成分燃焼炉と、前記気液分離器の温度を検出する気液温度検出手段と、この気液温度検出手段によって前記気液分離器の温度を調節する気液温度調節手段と、前記気液温度検出手段による気液分離器温度に基づいて前記気液温度調節手段で温度を調節する気液分離器温度制御装置とを備え、前記重質成分燃焼炉からの排ガスで前記重質油と反応水及び改質器を加熱すると共に、前記気液分離器温度制御装置による温度調整によって気液分離器からの改質ガスの生成量を調節するように構成したことを特徴とするディーゼルエンジン設備。   A reformer that mixes heavy oil and reaction water and separates it into a heavy component and a light component, and a gas / liquid that separates the light component separated by this reformer into reformed gas and reformed oil A separator, a diesel engine fueled by the reformed oil separated by the gas-liquid separator, a generator driven by the diesel engine, and a heavy component separated by the reformer in the diesel engine A heavy component combustion furnace for burning together with exhaust gas from the gas, a gas-liquid temperature detecting means for detecting the temperature of the gas-liquid separator, and a gas-liquid temperature for adjusting the temperature of the gas-liquid separator by the gas-liquid temperature detecting means Exhaust gas from the heavy component combustion furnace, comprising adjusting means and a gas-liquid separator temperature control device for adjusting the temperature by the gas-liquid temperature adjusting means based on the gas-liquid separator temperature by the gas-liquid temperature detecting means Add the heavy oil, reaction water and reformer. While, diesel engine equipment, characterized by being configured to adjust the production amount of the reformed gas from the gas-liquid separator by the temperature adjustment by the gas-liquid separator temperature controller. 重質油と反応水とを混合して重質成分と軽質成分とに分離する改質器と、この改質器で分離された軽質成分を改質ガスと改質油とに分離する気液分離器と、この気液分離器で分離された改質油を燃料とするディーゼルエンジンと、このディーゼルエンジンによって駆動される発電機と、前記改質器で分離された重質成分を前記ディーゼルエンジンからの排ガスと共に燃焼させる重質成分燃焼炉と、前記気液分離器の温度を検出する気液温度検出手段と、この気液温度検出手段によって前記気液分離器の温度を調節する気液温度調節手段と、前記改質器の温度を測定する改質温度測定手段と、前記発電機の出力と前記改質温度測定手段による改質器温度と前記気液温度調節手段による気液分離器温度に基づいて前記気液分離器の温度を調節する気液分離器温度制御装置とを備え、前記重質成分燃焼炉からの排ガスで前記重質油と反応水及び改質器を加熱すると共に、前記気液分離器温度制御装置による温度調整によって気液分離器からの改質ガスの生成量を調節するように構成したことを特徴とするディーゼルエンジン設備。   A reformer that mixes heavy oil and reaction water and separates it into a heavy component and a light component, and a gas / liquid that separates the light component separated by this reformer into reformed gas and reformed oil A separator, a diesel engine fueled by the reformed oil separated by the gas-liquid separator, a generator driven by the diesel engine, and a heavy component separated by the reformer in the diesel engine A heavy component combustion furnace for burning together with exhaust gas from the gas, a gas-liquid temperature detecting means for detecting the temperature of the gas-liquid separator, and a gas-liquid temperature for adjusting the temperature of the gas-liquid separator by the gas-liquid temperature detecting means Adjusting means, reforming temperature measuring means for measuring the temperature of the reformer, output of the generator, reformer temperature by the reforming temperature measuring means, and gas-liquid separator temperature by the gas-liquid temperature adjusting means The temperature of the gas-liquid separator is adjusted based on A liquid separator temperature control device, heating the heavy oil, the reaction water and the reformer with the exhaust gas from the heavy component combustion furnace, and adjusting the temperature by the gas-liquid separator temperature control device. A diesel engine facility configured to adjust a generation amount of reformed gas from a separator. 重質油と反応水とを混合して重質成分と軽質成分とに分離する改質器と、この改質器で分離された軽質成分を改質ガスと改質油とに分離する気液分離器と、この気液分離器で分離された改質油を燃料とするディーゼルエンジンと、このディーゼルエンジンによって駆動される発電機とを備え、前記ディーゼルエンジンからの排ガスで前記重質油と反応水及び改質器を加熱するように構成したことを特徴とするディーゼルエンジン設備。   A reformer that mixes heavy oil and reaction water and separates it into a heavy component and a light component, and a gas / liquid that separates the light component separated by this reformer into reformed gas and reformed oil A separator, a diesel engine using the reformed oil separated by the gas-liquid separator as a fuel, and a generator driven by the diesel engine, and reacts with the heavy oil with exhaust gas from the diesel engine A diesel engine facility configured to heat water and a reformer.
JP2005268043A 2005-09-15 2005-09-15 Diesel engine equipment Active JP4537301B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005268043A JP4537301B2 (en) 2005-09-15 2005-09-15 Diesel engine equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005268043A JP4537301B2 (en) 2005-09-15 2005-09-15 Diesel engine equipment

Publications (2)

Publication Number Publication Date
JP2007077901A true JP2007077901A (en) 2007-03-29
JP4537301B2 JP4537301B2 (en) 2010-09-01

Family

ID=37938478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005268043A Active JP4537301B2 (en) 2005-09-15 2005-09-15 Diesel engine equipment

Country Status (1)

Country Link
JP (1) JP4537301B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004092520A (en) * 2002-08-30 2004-03-25 Toyota Motor Corp Exhaust gas reformer system for internal combustion engine
JP2005053962A (en) * 2003-08-05 2005-03-03 Hitachi Ltd Method for treating heavy oil and system for treating heavy oils

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004092520A (en) * 2002-08-30 2004-03-25 Toyota Motor Corp Exhaust gas reformer system for internal combustion engine
JP2005053962A (en) * 2003-08-05 2005-03-03 Hitachi Ltd Method for treating heavy oil and system for treating heavy oils

Also Published As

Publication number Publication date
JP4537301B2 (en) 2010-09-01

Similar Documents

Publication Publication Date Title
US6775987B2 (en) Low-emission, staged-combustion power generation
CN101324203B (en) Systems and methods for power generation with exhaust gas recirculation
RU2599762C2 (en) Method of producing hydrogen by steam reforming oil fraction with optimised production of steam
JP2005502811A (en) Combustion turbine fuel inlet temperature control to maximize power generation
JP5215185B2 (en) Method for producing synthesis gas using oxygen-containing gas produced by at least one gas turbine
JP4495004B2 (en) Heavy oil reformed fuel-fired gas turbine system and operation method thereof
US9273607B2 (en) Generating power using an ion transport membrane
EA010401B1 (en) Method of operating a gas engine plant and fuel feeding system of a gas engine
KR100847972B1 (en) Gas reforming system
JP4537301B2 (en) Diesel engine equipment
JP2015024950A (en) Apparatus and method for recovery of waste heat
CN1211534A (en) Gas generator and method for generating gas by using same
JP2009228475A (en) Gas turbine power generation system
EP3410013B1 (en) Combustion gas supply system
JP2007291897A (en) Heavy oil reformed fuel burning gas turbine and method for operating heavy oil reformed fuel burning gas turbine
JP4402531B2 (en) Heavy oil reforming apparatus and reforming method, gas turbine power generation apparatus and petroleum refining apparatus
CN1328494C (en) Process for the production of thermally converted light products and eletricity
JP2010270594A (en) Gas turbine system burning reformed fuel of heavy oil
JP4685644B2 (en) Heavy oil reformer, heavy oil reformer shutdown method, and gas turbine equipped with heavy oil reformer
JP2005325322A (en) Energy recovery method of reducing gasified wood biomass
JP2008095004A (en) Equipment and method for modification of heavy oil utilizing water
US20120174596A1 (en) Systems and methods for improved combustion operations
EP3473929A1 (en) Method for minimizing nox emissions during pox based syngas plant startup
JP5863875B2 (en) Gas turbine power generation system
JP5781562B2 (en) Gas turbine power generation system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100615

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100617

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4537301

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250