JP2007077442A - Cold working tool steel and manufacturing method therefor - Google Patents
Cold working tool steel and manufacturing method therefor Download PDFInfo
- Publication number
- JP2007077442A JP2007077442A JP2005266090A JP2005266090A JP2007077442A JP 2007077442 A JP2007077442 A JP 2007077442A JP 2005266090 A JP2005266090 A JP 2005266090A JP 2005266090 A JP2005266090 A JP 2005266090A JP 2007077442 A JP2007077442 A JP 2007077442A
- Authority
- JP
- Japan
- Prior art keywords
- mass
- carbide
- tool steel
- machinability
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910001315 Tool steel Inorganic materials 0.000 title claims abstract description 30
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 8
- 238000005482 strain hardening Methods 0.000 title abstract description 3
- 239000000203 mixture Substances 0.000 claims abstract description 10
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 5
- 239000012535 impurity Substances 0.000 claims abstract description 5
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 4
- 239000000463 material Substances 0.000 claims description 19
- 229910000831 Steel Inorganic materials 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 claims description 6
- 239000010959 steel Substances 0.000 claims description 6
- 238000001816 cooling Methods 0.000 claims description 4
- 229910000822 Cold-work tool steel Inorganic materials 0.000 claims description 3
- 238000000137 annealing Methods 0.000 claims description 2
- 238000005266 casting Methods 0.000 claims description 2
- 238000005242 forging Methods 0.000 claims description 2
- 238000002844 melting Methods 0.000 claims description 2
- 230000008018 melting Effects 0.000 claims description 2
- 150000001247 metal acetylides Chemical group 0.000 abstract description 25
- 239000000126 substance Substances 0.000 abstract description 2
- 238000005299 abrasion Methods 0.000 abstract 1
- 230000007547 defect Effects 0.000 abstract 1
- 238000005520 cutting process Methods 0.000 description 10
- 238000000034 method Methods 0.000 description 9
- 229910000859 α-Fe Inorganic materials 0.000 description 8
- 239000002245 particle Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 4
- 229910052750 molybdenum Inorganic materials 0.000 description 4
- 238000012937 correction Methods 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- 229910001035 Soft ferrite Inorganic materials 0.000 description 2
- 239000010687 lubricating oil Substances 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- 238000005496 tempering Methods 0.000 description 2
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000005539 carbonized material Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- OXNIZHLAWKMVMX-UHFFFAOYSA-N picric acid Chemical compound OC1=C([N+]([O-])=O)C=C([N+]([O-])=O)C=C1[N+]([O-])=O OXNIZHLAWKMVMX-UHFFFAOYSA-N 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000002436 steel type Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
Images
Landscapes
- Mounting, Exchange, And Manufacturing Of Dies (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
Description
本発明は、プレス型、曲げ型、抜き型、絞り型、ダイ、パンチ、及び治工具等に使用する冷間工具鋼に関する。 The present invention relates to a cold tool steel used for press dies, bending dies, punching dies, drawing dies, dies, punches, jigs and the like.
従来、冷間加工用金型材には、高い硬度及び耐摩耗性が要求されるため、炭化物を多く含むJISのSKD11など、高C−高Cr系の冷間工具鋼が使用されている。 Conventionally, since a die material for cold working is required to have high hardness and wear resistance, a high C-high Cr type cold tool steel such as JIS SKD11 containing a large amount of carbides has been used.
しかし、SKD11材は、粗大な1次炭化物が多く含まれており、そのために焼きなまし状態でも被削性が悪く、切削加工による金型の加工に多くの時間を要するという問題点がある。 However, the SKD11 material contains a large amount of coarse primary carbides, and therefore, the machinability is poor even in the annealed state, and it takes a long time to process the die by cutting.
このため、被削性を改善する技術として、以下に示す公知技術が開示されている。先ず、特許文献1には、被削性が優れ、熱処理変寸が小さい工具鋼及びその製造方法を得ることを目的として、断面組織中に占める面積20μm2以上の炭化物の面積率を3%以下とし、円相当径0.3μm以上の炭化物の個数をlmm2あたり40000個以上、かつ、16000μm2の断面組織範囲×10カ所での標準偏差/平均が0.3以下と規定することにより、被削性を良好とし、また熱処理変寸を小さくした工具鋼が開示されている。 For this reason, the following well-known techniques are disclosed as techniques for improving machinability. First, in Patent Document 1, for the purpose of obtaining a tool steel having excellent machinability and small heat treatment size change and a manufacturing method thereof, the area ratio of carbide having an area of 20 μm 2 or more in the cross-sectional structure is 3% or less. a, and circle the number of equivalent diameter 0.3μm or more carbides lmm 2 per 40000 or more, and, by the standard deviation / mean in a cross section tissue area × 10 locations of 16000Myuemu 2 is defined as 0.3 or less, the A tool steel with good machinability and reduced heat treatment size is disclosed.
また、特許文献2には、被削性に優れた冷間工具鋼及びその製造方法を得ることを目的として、1次炭化物の面積率を1〜8%、平均粒径を10μm以下とすることにより、耐摩耗性を高く維持しつつ、被削性及び靭性を良好とした冷間工具鋼が開示されている。 Patent Document 2 discloses that the primary carbide has an area ratio of 1 to 8% and an average particle size of 10 μm or less for the purpose of obtaining a cold tool steel excellent in machinability and a method for producing the same. Thus, a cold work tool steel having good machinability and toughness while maintaining high wear resistance is disclosed.
更に、特許文献3には、被削性に優れた冷間工具鋼を得ることを目的として、5μm以下の微細炭化物の平均粒径を0.8〜2.0μmとすることにより被削性を向上させた冷間工具鋼が開示されている。 Furthermore, in Patent Document 3, for the purpose of obtaining a cold tool steel having excellent machinability, the machinability is controlled by setting the average particle size of fine carbides of 5 μm or less to 0.8 to 2.0 μm. An improved cold tool steel is disclosed.
更にまた、特許文献4には耐摩耗性及び被削性の向上を目的とした冷間工具鋼及びその製造方法が開示されている。この特許文献4には、SKD11など多量の1次炭化物を含む鋼種は多量のSを添加しても被削性の改善ができないといわれていたが、1次炭化物をネットを組まないようにして、MnS層をサンドイッチのように1次炭化物を挟み込むことにより、MnS層がクッションの動作をして炭化物が工具に直接当たることを防ぐことによって、被削性を改善することが記載されている。 Furthermore, Patent Document 4 discloses a cold tool steel for the purpose of improving wear resistance and machinability and a manufacturing method thereof. In Patent Document 4, it was said that a steel type containing a large amount of primary carbide such as SKD11 cannot improve machinability even if a large amount of S is added. Further, it is described that the machinability is improved by sandwiching the primary carbide like a sandwich in the MnS layer to prevent the MnS layer from acting as a cushion and causing the carbide to directly hit the tool.
しかしながら、特許文献1に記載の工具鋼は、被削性及び靭性を向上させるために、C含有量を0.55〜0.75%と少なくし、1次炭化物の面積率を減少させており、また、ソーキング処理により粗大な1次炭化物を固溶させ小さくしているが、そうすると、粗大な1次炭化物が少なくなり、冷間工具鋼で最も重要な耐摩耗性が低くなるという欠点がある。 However, in order to improve the machinability and toughness, the tool steel described in Patent Document 1 reduces the C content to 0.55 to 0.75% and reduces the primary carbide area ratio. In addition, coarse primary carbides are dissolved and reduced by soaking, but there is a drawback that coarse primary carbides are reduced and the most important wear resistance in cold tool steel is reduced. .
また、特許文献2に記載の工具鋼は、1次炭化物の径を小さくしているため、10μm以下の小さな1次炭化物しかないため、冷間工具鋼で最も重要な耐摩耗性が低くなるという欠点がある。 Moreover, since the tool steel of patent document 2 has made the diameter of the primary carbide small, since there is only a small primary carbide of 10 micrometers or less, it is said that the most important wear resistance with cold tool steel becomes low. There are drawbacks.
更に、特許文献3に記載の冷間工具鋼は、5μm以下の炭化物の平均粒径を小さくしているため、耐摩耗性に重要な炭化物怪が小さくなり、耐摩耗性が悪化する。 Furthermore, since the cold tool steel described in Patent Document 3 has a smaller average particle size of carbides of 5 μm or less, carbide monsters important for wear resistance are reduced and wear resistance is deteriorated.
更にまた、特許文献4に記載の工具鋼は、S添加によりMnSによる被削性の改善効果を得たものであるが、2次炭化物の形態については考慮されていないため、被削性の改善が十分でない。また、特許文献4に記載の技術は、耐かじり性について考慮されていない。プレス金型を作製する通常の工程では、粗加工、仕上加工、焼入れ焼戻し、組み付け、仕打ち、修正、及び表面処理の順番で各工程を経て完成品が製造される。本来であれば、能率を向上させ、仕打ち後の修正を容易に行いたいため、下記工程のように焼き鈍し材で仕打ちを実施したい。即ち、粗加工、仕上加工、組み付け、仕打ち、修正、焼入れ焼戻し、及び表面処理の順番でプレス金型を作成したい。しかし、焼き鈍し材で仕打ちを実施すると、かじりが発生し、金型が早期に破損するという不具合が発生する。 Furthermore, the tool steel described in Patent Document 4 has an effect of improving the machinability by MnS by adding S, but the form of the secondary carbide is not taken into consideration, so the machinability is improved. Is not enough. Further, the technique described in Patent Document 4 does not consider galling resistance. In a normal process for producing a press die, a finished product is manufactured through each process in the order of roughing, finishing, quenching and tempering, assembly, finishing, correction, and surface treatment. Originally, in order to improve efficiency and easily perform post-finishing corrections, it is desirable to perform finishing with annealed materials as in the following process. That is, we want to create a press die in the order of roughing, finishing, assembly, finishing, correction, quenching and tempering, and surface treatment. However, when finishing with an annealed material, galling occurs and the mold is damaged early.
本発明はかかる問題点に鑑みてなされたものであって、化学成分組成の調整と炭化物の制御により、従来品の優れた特性である高い耐摩耗性を維持し、欠点であった被削性及び耐かじり性を大幅に向上させた冷間工具鋼とその製造方法を提供することを目的とする。 The present invention has been made in view of such problems, and maintains high wear resistance, which is an excellent characteristic of conventional products, by adjusting the chemical composition and controlling carbides, and has been a drawback in machinability. And it aims at providing the cold-work tool steel and its manufacturing method which improved galling resistance significantly.
本発明に係る冷間工具鋼は、C:0.9〜1.4質量%、Si:0.1〜1.0質量%、Mn:0.1〜1.0質量%、S:0.01〜0.12質量%、Cr:9〜12質量%、(Mo+1/2W):0.4〜1.5質量%、Ni:1.5質量%以下、及びV:0.1〜1.0質量%を含有し、残部Fe及び不可避的不純物からなる組成を有し、炭化物の最大長さをML、面積をAとしたとき、円相当径2μm以下の2次炭化物中の面積率で15%以上のものが、{(ML)2×π/(4×A)}×100が300以上となる細長い形状を有していることを特徴とする。 The cold tool steel according to the present invention has C: 0.9 to 1.4% by mass, Si: 0.1 to 1.0% by mass, Mn: 0.1 to 1.0% by mass, and S: 0.00. 01-0.12 mass%, Cr: 9-12 mass%, (Mo + 1 / 2W): 0.4-1.5 mass%, Ni: 1.5 mass% or less, and V: 0.1-1. It contains 0% by mass, has a composition composed of the remainder Fe and inevitable impurities, and when the maximum length of carbide is ML and the area is A, the area ratio in secondary carbide with an equivalent circle diameter of 2 μm or less is 15 % Or more has an elongated shape in which {(ML) 2 × π / (4 × A)} × 100 is 300 or more.
本発明においては、円相当径が2μm以下の2次炭化物のうち、面積率で15%以上のものが、微細な細長い状態の炭化物(超微細層状炭化物)であり、図1に示すように、多くの2次炭化物が球状化していない。これに対し、従来の冷間工具鋼は、図2に示すように、2次炭化物は球状化しているものが多い。これにより、耐摩耗性を損なうことなく、焼き鈍し状態での耐かじり性及び被削性が大幅に向上する。なお、X={(ML)2×π/(4×A)}×100は、炭化物形状を示す数値であり、炭化物形状が円の場合には、最大長MLはその円の直径Dとなるから、炭化物の面積Aは、A=π・D2/4=π・(ML)2/4となり、X=100となる。そして、炭化物形状が細長い場合は、π・(ML)2/4はその最大長MLを直径とする円の面積であるから、それを実際の面積Aで除したXは、炭化物形状が細長くなるほど大きくなる。従って、本発明においては、円相当径が2μm以下の微細な炭化粒粒子の中で、面積率で15%以上を占める炭化物の形状が、Xが300以上となるように、細長い形状を有している。 In the present invention, among the secondary carbides having an equivalent circle diameter of 2 μm or less, those having an area ratio of 15% or more are fine elongated carbides (ultrafine layered carbides). As shown in FIG. Many secondary carbides are not spheroidized. On the other hand, in the conventional cold tool steel, as shown in FIG. 2, many secondary carbides are spheroidized. Thereby, the galling resistance and the machinability in the annealed state are greatly improved without impairing the wear resistance. X = {(ML) 2 × π / (4 × A)} × 100 is a numerical value indicating the carbide shape. When the carbide shape is a circle, the maximum length ML is the diameter D of the circle. from area a of carbides, a = π · D 2/ 4 = π · (ML) 2/4 , and becomes a X = 100. When the carbide shape elongated, since π · (ML) 2/4 is the area of a circle whose diameter the maximum length ML, the X it was divided by the actual area A, as the carbide shape becomes elongated growing. Therefore, in the present invention, among fine carbonized particles having an equivalent circle diameter of 2 μm or less, the shape of the carbide occupying 15% or more in area ratio has an elongated shape so that X is 300 or more. ing.
このため、本発明においては、特許文献1に記載された冷間工具鋼に対し、1次炭化物の大きさは従来材と同等で耐摩耗性は従来材と同等でありながら、被削性が良好になるという優位性がある。また、本発明は、特許文献2に開示された冷間工具鋼に対し、1次炭化物の大きさは従来材と同等でも、被削性が良好になるという効果がある。更に、本発明は、特許文献3に記載された冷間工具鋼に対し、耐摩耗性に影響のない円相当径2μm以下の炭化物について、その形状を細長くしたものであるので、耐摩耗性を損なうことなく、被削性を向上できる。更にまた、本発明は、特許文献4に記載された冷間工具鋼に対し、2次炭化物の形態を制御することによって、更に一層被削性の向上を図ることができると共に、耐かじり性が格段に向上する。 For this reason, in the present invention, with respect to the cold tool steel described in Patent Document 1, the size of the primary carbide is the same as that of the conventional material and the wear resistance is the same as that of the conventional material, but the machinability is low. There is an advantage of being good. In addition, the present invention has an effect that the machinability is improved with respect to the cold tool steel disclosed in Patent Document 2, even though the size of the primary carbide is equal to that of the conventional material. Furthermore, since the present invention is obtained by elongating the shape of a carbide having an equivalent circle diameter of 2 μm or less that does not affect the wear resistance of the cold tool steel described in Patent Document 3, the wear resistance is improved. Machinability can be improved without loss. Furthermore, the present invention can further improve machinability and control galling resistance by controlling the form of the secondary carbide with respect to the cold tool steel described in Patent Document 4. Greatly improved.
本発明に係る冷間工具鋼の製造方法は、C:0.9〜1.4質量%、Si:0.1〜1.0質量%、Mn:0.1〜1.0質量%、S:0.01〜0.12質量%、Cr:9〜12質量%、(Mo+1/2W):0.4〜1.5質量%、Ni:1.5質量%以下、及びV:0.1〜1.0質量%を含有し、残部Fe及び不可避的不純物からなる組成を有する鋼材を溶解し、鋳造する工程と、得られた鋳塊を1140〜1170℃の温度に4時間以上加熱して、所定の寸法に鍛造する工程と、その後、780〜810℃の温度に3時間以上加熱して保持した後、400〜500℃の温度まで20〜45℃/時の冷却速度で冷却を行う焼きなまし工程とを有することを特徴とする。 The manufacturing method of the cold tool steel which concerns on this invention is C: 0.9-1.4 mass%, Si: 0.1-1.0 mass%, Mn: 0.1-1.0 mass%, S : 0.01 to 0.12% by mass, Cr: 9 to 12% by mass, (Mo + 1 / 2W): 0.4 to 1.5% by mass, Ni: 1.5% by mass or less, and V: 0.1 A step of melting and casting a steel material having a composition comprising ~ 1.0% by mass, the balance Fe and inevitable impurities, and heating the obtained ingot to a temperature of 1140 to 1170 ° C for 4 hours or more , Forging to a predetermined dimension, and thereafter annealing at a temperature of 780 to 810 ° C. for 3 hours or more and then cooling to a temperature of 400 to 500 ° C. at a cooling rate of 20 to 45 ° C./hour. And a process.
本発明によれば、JIS SKD11と比較して同等の耐摩耗性を確保することができ、被削性が優れた冷間工具鋼を得ることができる。これにより、切削加工による金型の加工時間を大幅に低減し、加工コストを低減することができる。また、焼きなまし材での耐かじり性が向上しているため、焼きなまし材での仕打ちが可能となり、金型修正が容易となり、能率が大幅に向上する。 According to the present invention, it is possible to ensure the same wear resistance as compared with JIS SKD11 and to obtain a cold tool steel with excellent machinability. Thereby, the processing time of the metal mold | die by cutting can be reduced significantly and processing cost can be reduced. In addition, since the galling resistance of the annealed material is improved, it is possible to finish with the annealed material, the mold can be easily corrected, and the efficiency is greatly improved.
次に、本発明の実施の形態について具体的に説明する。先ず、本発明の冷間工具鋼の成分組成を限定した理由について説明する。 Next, embodiments of the present invention will be specifically described. First, the reason which limited the component composition of the cold tool steel of this invention is demonstrated.
「C:0.9〜1.4質量%」
Cは、基地に固溶して硬度を高めると共に、炭化物を生成する元素である。Cが0.9質量%未満では、炭化物量が少なくなり必要な耐摩耗性を確保することができず、またCが1.4質量%を超えると靭性を低下するので、Cの含有量を0.9〜1.4質量%とする。
“C: 0.9 to 1.4% by mass”
C is an element that dissolves in the base to increase hardness and generate carbides. If C is less than 0.9% by mass, the amount of carbide is reduced and the required wear resistance cannot be ensured, and if C exceeds 1.4% by mass, the toughness is reduced. 0.9 to 1.4% by mass.
「Si:0.1〜1.0質量%」
Siは、脱酸材として有用であり、また焼入れ性を向上させるために添加する元素であるが、Siが1.0質量%を超えて含有させると、マトリックスの成分偏析が激しくなり、また、靭性が低下することから、Si含有量は0.1〜1.0質量%とする。
“Si: 0.1 to 1.0 mass%”
Si is useful as a deoxidizing material and is an element added to improve hardenability. However, when Si is contained in an amount exceeding 1.0% by mass, matrix component segregation becomes severe, Since toughness falls, Si content shall be 0.1-1.0 mass%.
「Mn:0.1〜1.0質量%」
Mnは焼入れ性を向上させるため、また硫化物を形成させるために添加する元素であり、Mnが0.1質量%未満では焼入れ性が悪く、また必要量の硫化物が得られない。Mnが1.0質量%を超えると、被削性を低下するので、Mnの含有量は0.1〜1.0質量%とする。
“Mn: 0.1 to 1.0% by mass”
Mn is an element added to improve hardenability and to form sulfides. When Mn is less than 0.1% by mass, hardenability is poor and a necessary amount of sulfide cannot be obtained. If Mn exceeds 1.0% by mass, machinability deteriorates, so the Mn content is 0.1 to 1.0% by mass.
「S:0.01〜0.15質量%」
Sは、被削性を向上させるために添加する元素であり、0.01質量%以上の添加が必要である。しかし、Sが0.15質量%を超えると、靭性の低下が著しいので、Sの含有量は0.01〜0.15質量%とする。
“S: 0.01 to 0.15 mass%”
S is an element added to improve machinability, and it is necessary to add 0.01% by mass or more. However, if S exceeds 0.15% by mass, the toughness is significantly reduced, so the S content is set to 0.01 to 0.15% by mass.
「Cr:9〜12質量%」
Crは、Cと結合して炭化物を生成し、また基地に固溶して焼入性を向上させるために有効な元素であり、Crが0.9質量%未満では、炭化物量が少なくなり、必要な耐摩耗性を確保することができない。また、Crが12質量%を超えると、炭化物の増加による靭性及び被削性低下の原因となり、またコスト面においても不利である。従って、Crの含有量は9〜12質量%とする。
"Cr: 9-12 mass%"
Cr is an element effective to combine with C to produce carbide, and to improve the hardenability by solid solution in the matrix. When Cr is less than 0.9% by mass, the amount of carbide decreases, The necessary wear resistance cannot be ensured. Moreover, when Cr exceeds 12 mass%, it will cause the toughness and machinability fall by the increase in a carbide | carbonized_material, and it is disadvantageous also in terms of cost. Therefore, the Cr content is 9-12% by mass.
「(Mo+1/2W):0.4〜1.5質量%」
MoとWは、いずれもCrと同様に焼入れ性を向上させるために有効な元素であり、夫々同等の効果をもたらす。従って、Mo及びWは、夫々単独で添加してもよく、又は複合添加してもよい。但し、Wの原子量はMoの原子量の約2倍であり、WがMoと同様の効果を得るためには、Moの2倍の量が必要である。そこで、No+1/2Wの値により、Mo及びWの量を規定する。従って、Mo単独添加の場合は、Moの含有量は0.4〜1.5質量%となるが、W単独の添加の場合は、Wの含有量は、0.8〜3.0質量%になる。焼入れ性向上のためには、Mo+1/2Wの量は、0.4質量%以上必要であるが、これが1.5質量%を超えると、熱処理変寸が大きくなると共に、コスト面において不利となる。このため、Mo+1/2Wの含有量は0.2〜1.5質量%とする。
“(Mo + 1 / 2W): 0.4 to 1.5 mass%”
Both Mo and W are effective elements for improving the hardenability like Cr and bring about the same effect. Therefore, Mo and W may be added alone or in combination. However, the atomic weight of W is about twice the atomic weight of Mo, and in order for W to obtain the same effect as Mo, twice the amount of Mo is necessary. Therefore, the amount of Mo and W is defined by the value of No + 1 / 2W. Therefore, in the case of adding Mo alone, the Mo content is 0.4 to 1.5 mass%, but in the case of adding W alone, the W content is 0.8 to 3.0 mass%. become. In order to improve hardenability, the amount of Mo + 1 / 2W needs to be 0.4% by mass or more. However, if it exceeds 1.5% by mass, the heat treatment changes in size and becomes disadvantageous in terms of cost. . For this reason, content of Mo + 1 / 2W shall be 0.2-1.5 mass%.
「Ni:1.5質量%以下」
Niは、Crと同様に焼入れ性を向上させるために有効な元素であり、必須添加元素であるが、Niが1.5質量%を超えると、コスト面において不利であり、また被削性も低下するので、その含有量を1.5質量%以下とする。
“Ni: 1.5% by mass or less”
Ni is an element effective for improving the hardenability like Cr, and is an essential additive element. However, if Ni exceeds 1.5% by mass, it is disadvantageous in terms of cost, and machinability is also good. Since it falls, the content shall be 1.5 mass% or less.
「V:0.1〜1.0質量%」
Vは炭化物を形成し、焼入時の結晶粒の粗大化防止及び耐摩耗性の向上に、有効な元素であるが、Vが1.0質量%を超えると、粗大な炭化物を形成し、被削性及び靭性を悪化させると共に、コストが上昇するので、Vの含有量は0.1〜1.0質量%とする。
“V: 0.1 to 1.0 mass%”
V forms carbides and is an effective element for preventing coarsening of crystal grains during hardening and improving wear resistance. However, when V exceeds 1.0% by mass, coarse carbides are formed, Since the machinability and toughness are deteriorated and the cost increases, the V content is set to 0.1 to 1.0% by mass.
次に、本発明において炭化物形状を規定した理由について説明する。本発明の特徴は、円相当径で2μm以下の2次炭化物を超微細な層状炭化物にすることにあり、これにより、被削性と耐かじり性が下記の理由により向上する。 Next, the reason why the carbide shape is defined in the present invention will be described. A feature of the present invention is that a secondary carbide having an equivalent circle diameter of 2 μm or less is converted into an ultrafine layered carbide, whereby machinability and galling resistance are improved for the following reasons.
「被削性」
一般にSKD11系材料の焼きなまし状態の組織は、粗大な1次炭化物と微細な球状化2次炭化物とフェライトとからなる。炭化物は硬いため、工具摩耗及び欠損の原因となり、被削性を劣化させる。また、フェライトは粘く、工具に凝着し、構成刃先が発生し、加工中に構成刃先が剥離するときに、工具も欠損するため、被削性を劣化させる。なお、構成刃先とは、切削時に工具のすくい面上に切りくずの一部が付着し、切削の進行にともなって切りくずが層状に堆積し凝着したもののことをいい、極めて硬い組織になっている。この堆積物が二次刃先になって切れ刃の代わりに切削を行うことがあり、このため、これが構成刃先といわれている。
"Machinability"
In general, the annealed structure of the SKD11 material is composed of coarse primary carbide, fine spheroidized secondary carbide, and ferrite. Since the carbide is hard, it causes tool wear and chipping and deteriorates machinability. In addition, ferrite is sticky, adheres to the tool, and a component edge is generated. When the component edge is peeled off during processing, the tool is also lost, which deteriorates machinability. In addition, the component cutting edge means that a part of the chip adheres to the rake face of the tool at the time of cutting, and the chip accumulates and adheres in layers as the cutting progresses, resulting in an extremely hard structure. ing. This deposit may become a secondary cutting edge and cut instead of the cutting edge, and for this reason, this is called a constituent cutting edge.
被削性を向上させるには、粗大な1次炭化物の径を小さくしたり、1次炭化物量を減らす方法があるが、これでは耐摩耗性が悪くなってしまうという不具合が生じる。また、フェライトの面積率を減少させるためには、炭化物を多く析出させればよいが、これではかえって被削性を悪化させてしまう。 In order to improve the machinability, there are methods of reducing the diameter of coarse primary carbides or reducing the amount of primary carbides, but this causes a problem that wear resistance deteriorates. Moreover, in order to reduce the area ratio of ferrite, it is sufficient to precipitate a large amount of carbide, but this deteriorates the machinability.
円相当径で2μm以下の2次炭化物を超微細な層状炭化物にすることによって、フェライトと炭化物がサンドイッチ状態になり、フェライトの幅が細くなることにより、工具がフェライトを削ってもすぐに炭化物を削るため、工具へのフェライトの凝着が防げる。また、炭化物も細長く脆いため、工具摩耗への影響が少なくなり、工具寿命が大幅に向上する。本発明は、このような新規の知見により、2次炭化物の形状を規定している。 By making secondary carbides with an equivalent circle diameter of 2 μm or less into ultra-fine layered carbides, ferrite and carbides are sandwiched, and the width of the ferrite is reduced, so that even if the tool cuts the ferrite, the carbides are immediately removed. Because it cuts, adhesion of ferrite to the tool can be prevented. In addition, since the carbide is elongated and brittle, the influence on tool wear is reduced, and the tool life is greatly improved. The present invention defines the shape of the secondary carbide based on such new findings.
「耐かじり性」
焼きなまし材の組織は炭化物と極めてやわらかいフェライト組織とからなる。焼きなまし材で仕打ちを実施した場合、金型のやわらかいフェライトの部分が原因となり、局所的に焼き付きが起こり、素材のむしれが発生し、かじりとなる。これを防止するため、炭化物形状を、円相当径で2μm以下の2次炭化物を超微細な層状炭化物にすることによって、フェライトと炭化物がサンドイッチ状態になり、工具がフェライト部を摺動した後、直ちに炭化物部を摺動するため、局所的な焼き付きを防止でき、耐かじり性が向上する。本発明は、前述と同様に、このような新規の知見により、2次炭化物の形状を規定するものである。
"Scratch resistance"
The structure of the annealed material is composed of carbide and a very soft ferrite structure. When finishing with an annealed material, the soft ferrite portion of the mold causes the seizure locally, causing material flaking and galling. In order to prevent this, the carbide and the carbide becomes a sandwiched state by making the secondary carbide having an equivalent circle diameter of 2 μm or less into an ultrafine layered carbide, and after the tool slides on the ferrite part, Since the carbide portion is immediately slid, local seizure can be prevented and galling resistance is improved. As described above, the present invention defines the shape of the secondary carbide based on such novel findings.
また、一次炭化物が面積率で3%未満及び平均粒径が10μm以下になると、耐摩耗性が悪化し、金型寿命が悪くなるため、耐摩耗性を維持し、かつ耐かじり性と被削性を向上させるためには、面積率が3〜7%の範囲であり、平均粒径を11μm以上とすることが好ましい。 Also, when the primary carbide is less than 3% in area ratio and the average particle size is 10 μm or less, the wear resistance deteriorates and the mold life deteriorates, so that the wear resistance is maintained and the galling resistance and the machinability are reduced. In order to improve the property, the area ratio is preferably in the range of 3 to 7%, and the average particle size is preferably 11 μm or more.
次に、本発明の効果を実証する実施例について、詳細に説明する。 Next, examples that demonstrate the effects of the present invention will be described in detail.
下記表1に示した成分組成の本発明の実施例及び比較例の鋼を高周波誘導炉にて溶解し、10kgのインゴットを得、そのインゴットを1140〜1170℃で鍛造加熱した後、45×65mmの角断面に鍛造し、焼きなましを実施した。この鋼からミクロ組織観察用試験片、被削性試験片、耐かじり性試験及び大越式摩耗試験片を切取り、採取した。 The steels of Examples and Comparative Examples having the composition shown in Table 1 below were melted in a high-frequency induction furnace to obtain a 10 kg ingot. The ingot was forged and heated at 1140 to 1170 ° C., and then 45 × 65 mm. Was forged into a square cross section and annealed. Microstructure observation specimens, machinability specimens, galling resistance tests, and Ogoshi-type wear specimens were cut from this steel and collected.
炭化物の測定は、寸法が15×20×10mmの試験片を研磨した後、ピクリン酸で腐食し、1次炭化物は200倍、2次炭化物は8000倍の倍率で写真撮影し、この写真をコンピュータに取り込み、画像解析を実施した。 The carbide was measured by polishing a test piece having a size of 15 × 20 × 10 mm, then corroded with picric acid, taking a photograph at a magnification of 200 times for the primary carbide and 8000 times for the secondary carbide, and taking this photograph on a computer. And image analysis was performed.
被削性試験は厚さ40mm×幅60mm×長さ200mmの試験片を直径が10mmのハイスのエンドミルを使用して、潤滑油を使用せずにドライ加工した。切削速度は16m/分、送り量は0.07mm/刃、切り込み量は15mm×1mmである。この切削条件で加工を実施し、6m加工したときの工具摩耗量を測定した。 In the machinability test, a test piece having a thickness of 40 mm, a width of 60 mm, and a length of 200 mm was dry-processed without using a lubricating oil by using a high-speed end mill having a diameter of 10 mm. The cutting speed is 16 m / min, the feed amount is 0.07 mm / tooth, and the cut amount is 15 mm × 1 mm. Machining was performed under these cutting conditions, and the amount of tool wear when machining 6 m was measured.
耐かじり性は下記条件でハット形状の絞り型で成形を実施し、ワーク材よりかじりの有無を確認した。
被加工材:SPCC 厚さ1.2mm
潤滑油:水溶性プレス加工油
金型表面粗さ:Ry:0.5〜0.7μm
成型数:20枚
大越式摩耗試験片は1030℃で熱処理した後、焼戻しを行い、60HRCの硬さを得、仕上げ加工を実施した後、下記条件により常温で試験を行い、比摩耗量を評価した。
相手材:SUJ2(45HRC)
摩擦速度:1.95/秒
最終荷重:6.3kgf
摩擦距離:400m
その結果を下記表2に示す。
The anti-galling property was formed with a hat-shaped drawing die under the following conditions, and the presence or absence of galling was confirmed from the workpiece material.
Workpiece: SPCC thickness 1.2mm
Lubricating oil: Water-soluble press working oil Mold surface roughness: Ry: 0.5 to 0.7 μm
Number of moldings: 20 Ogoshi-type wear test pieces were heat-treated at 1030 ° C, then tempered to obtain a hardness of 60 HRC, after finishing, and then tested at room temperature under the following conditions to evaluate specific wear. did.
Opponent material: SUJ2 (45HRC)
Friction speed: 1.95 / sec Final load: 6.3 kgf
Friction distance: 400m
The results are shown in Table 2 below.
表2の結果において、比較例11、16、18及び従来材20は、CとCrの双方か又はいずれか1方の含有量が、本発明のC:0.9%以上、Cr:9%以上より低く、1次炭化物の面積率が3%未満と少ないため、比摩耗量の値が大きくなっている。また、かじりが発生している。 In the results of Table 2, in Comparative Examples 11, 16, 18 and the conventional material 20, the content of both or one of C and Cr is C: 0.9% or more of the present invention, Cr: 9% Since the area ratio of the primary carbide is as low as less than 3%, the specific wear amount is large. In addition, galling has occurred.
比較例12、13、14、15は組成が本発明鋼の限定範囲内であるが、超微細層状炭化物の面積率が本発明の規定範囲外であるため、工具摩耗量が多く、被削性が劣る。またかじりが発生している。 In Comparative Examples 12, 13, 14, and 15, the composition is within the limited range of the steel of the present invention, but the area ratio of the ultrafine layered carbide is outside the specified range of the present invention. Is inferior. In addition, galling has occurred.
比較例17はC量及びCr量が本発明の上限値よりも高いため、工具摩耗量が多く、被削性が劣る。 In Comparative Example 17, the amount of C and the amount of Cr are higher than the upper limit of the present invention, so that the amount of tool wear is large and the machinability is inferior.
これらに対して、本発明の実施例の冷間工具鋼は、いずれも工具摩耗量が少なく、被削性が優れており、かじりも発生していない。 On the other hand, the cold tool steels of the examples of the present invention all have a small amount of tool wear, excellent machinability, and no galling.
Claims (2)
C: 0.9-1.4 mass%, Si: 0.1-1.0 mass%, Mn: 0.1-1.0 mass%, S: 0.01-0.12 mass%, Cr: 9-12% by mass, (Mo + 1 / 2W): 0.4-1.5% by mass, Ni: 1.5% by mass or less, and V: 0.1-1.0% by mass, the balance Fe and A step of melting and casting a steel material having a composition composed of inevitable impurities, a step of heating the obtained ingot to a temperature of 1140 to 1170 ° C. for 4 hours or more and forging to a predetermined size, and then 780 A cold work tool steel comprising: an annealing step of heating and holding at a temperature of ˜810 ° C. for 3 hours or more and then cooling to a temperature of 400 to 500 ° C. at a cooling rate of 20 to 45 ° C./hour. Manufacturing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005266090A JP4322239B2 (en) | 2005-09-13 | 2005-09-13 | Cold tool steel and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005266090A JP4322239B2 (en) | 2005-09-13 | 2005-09-13 | Cold tool steel and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007077442A true JP2007077442A (en) | 2007-03-29 |
JP4322239B2 JP4322239B2 (en) | 2009-08-26 |
Family
ID=37938047
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005266090A Active JP4322239B2 (en) | 2005-09-13 | 2005-09-13 | Cold tool steel and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4322239B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012251189A (en) * | 2011-06-01 | 2012-12-20 | Japan Steel Works Ltd:The | Cold tool steel, and manufacturing method therefor |
WO2016047396A1 (en) * | 2014-09-26 | 2016-03-31 | 日立金属株式会社 | Cold tool material and method for manufacturing cold tool |
KR101852316B1 (en) | 2016-03-18 | 2018-04-25 | 히타치 긴조쿠 가부시키가이샤 | Method for manufacturing cold tool material and cold tool |
-
2005
- 2005-09-13 JP JP2005266090A patent/JP4322239B2/en active Active
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012251189A (en) * | 2011-06-01 | 2012-12-20 | Japan Steel Works Ltd:The | Cold tool steel, and manufacturing method therefor |
WO2016047396A1 (en) * | 2014-09-26 | 2016-03-31 | 日立金属株式会社 | Cold tool material and method for manufacturing cold tool |
JP6057141B2 (en) * | 2014-09-26 | 2017-01-11 | 日立金属株式会社 | Cold tool material and method for manufacturing cold tool |
KR101828228B1 (en) | 2014-09-26 | 2018-02-09 | 히타치 긴조쿠 가부시키가이샤 | Cold tool material and method for manufacturing cold tool |
US9890435B2 (en) | 2014-09-26 | 2018-02-13 | Hitachi Metals, Ltd. | Cold work tool material and method of manufacturing cold work tool |
KR101852316B1 (en) | 2016-03-18 | 2018-04-25 | 히타치 긴조쿠 가부시키가이샤 | Method for manufacturing cold tool material and cold tool |
Also Published As
Publication number | Publication date |
---|---|
JP4322239B2 (en) | 2009-08-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI412606B (en) | Steel for induction hardening | |
KR100765661B1 (en) | Low carbon martensitic stainless steel and production method thereof | |
JP2006193790A (en) | Cold working tool steel | |
JP4274177B2 (en) | Steel pipe for bearing element parts, manufacturing method and cutting method thereof | |
CN102884212A (en) | Case hardened steel and method for producing the same | |
JP4403875B2 (en) | Cold work tool steel | |
JP4860774B1 (en) | Cold work tool steel | |
TWI447237B (en) | Hot work tool steel with superior toughness and method for manufacturing the same | |
JP5029942B2 (en) | Hot work tool steel with excellent toughness | |
JP4322239B2 (en) | Cold tool steel and manufacturing method thereof | |
JP5273952B2 (en) | Hot forging die and manufacturing method thereof | |
JP2005336553A (en) | Hot tool steel | |
JP2012126953A (en) | Alloy steel for machine structural use | |
JP5345415B2 (en) | Steel for cold press dies and press dies excellent in machinability, heat treatment sizing characteristics and impact characteristics | |
JP2018154884A (en) | Cold tool steel | |
JP6416624B2 (en) | Method for cutting cold tool steel and method for producing cold mold material | |
JP2001123247A (en) | Cold tool steel excellent in machinability | |
JP5565696B2 (en) | Die steel excellent in hole workability and method for producing the same | |
JP5907416B2 (en) | Method for producing hot work tool steel with excellent toughness | |
JP6345945B2 (en) | Powdered high-speed tool steel with excellent wear resistance and method for producing the same | |
JP3830030B2 (en) | High-hardness pre-hardened steel for cold working with excellent machinability, cold working mold using the same, and method for machining steel | |
JP6359241B2 (en) | Corrosion-resistant plastic molding steel with excellent specularity | |
JP2004315840A (en) | Cold working tool steel superior in machinability, and manufacturing method therefor | |
JP2000192195A (en) | Free cutting cold working tool steel | |
JP2008050632A (en) | Steel for plastic molding die |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070427 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090526 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090602 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090602 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4322239 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120612 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130612 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |