JP2007077088A - Physiologic saline and method for production of the same - Google Patents
Physiologic saline and method for production of the same Download PDFInfo
- Publication number
- JP2007077088A JP2007077088A JP2005267822A JP2005267822A JP2007077088A JP 2007077088 A JP2007077088 A JP 2007077088A JP 2005267822 A JP2005267822 A JP 2005267822A JP 2005267822 A JP2005267822 A JP 2005267822A JP 2007077088 A JP2007077088 A JP 2007077088A
- Authority
- JP
- Japan
- Prior art keywords
- hydrogen
- physiological saline
- months
- water
- redox potential
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 title claims abstract description 42
- 239000011780 sodium chloride Substances 0.000 title claims abstract description 25
- 238000004519 manufacturing process Methods 0.000 title claims description 19
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 68
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical group [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims abstract description 55
- YZCKVEUIGOORGS-UHFFFAOYSA-N Hydrogen atom Chemical compound [H] YZCKVEUIGOORGS-UHFFFAOYSA-N 0.000 claims abstract description 32
- 239000007864 aqueous solution Substances 0.000 claims abstract description 17
- 239000002504 physiological saline solution Substances 0.000 claims description 61
- 238000002347 injection Methods 0.000 claims description 13
- 239000007924 injection Substances 0.000 claims description 13
- 239000000243 solution Substances 0.000 abstract description 20
- 230000033116 oxidation-reduction process Effects 0.000 abstract description 13
- 230000003213 activating effect Effects 0.000 abstract 1
- 239000001257 hydrogen Substances 0.000 description 40
- 229910052739 hydrogen Inorganic materials 0.000 description 40
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 39
- 150000003254 radicals Chemical class 0.000 description 32
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 30
- 239000008280 blood Substances 0.000 description 26
- 210000004369 blood Anatomy 0.000 description 26
- 238000006243 chemical reaction Methods 0.000 description 24
- DDRJAANPRJIHGJ-UHFFFAOYSA-N creatinine Chemical compound CN1CC(=O)NC1=N DDRJAANPRJIHGJ-UHFFFAOYSA-N 0.000 description 24
- 241000282326 Felis catus Species 0.000 description 17
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 16
- 239000000084 colloidal system Substances 0.000 description 16
- 229910052760 oxygen Inorganic materials 0.000 description 16
- 239000001301 oxygen Substances 0.000 description 16
- 210000002700 urine Anatomy 0.000 description 16
- 229910052757 nitrogen Inorganic materials 0.000 description 15
- 229910052697 platinum Inorganic materials 0.000 description 15
- 238000006722 reduction reaction Methods 0.000 description 15
- 208000020832 chronic kidney disease Diseases 0.000 description 13
- 208000022831 chronic renal failure syndrome Diseases 0.000 description 13
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 12
- 229940109239 creatinine Drugs 0.000 description 12
- 238000007254 oxidation reaction Methods 0.000 description 11
- 230000009467 reduction Effects 0.000 description 11
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 10
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 10
- 238000000034 method Methods 0.000 description 10
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 9
- 239000003638 chemical reducing agent Substances 0.000 description 9
- 230000000694 effects Effects 0.000 description 9
- 150000002500 ions Chemical class 0.000 description 9
- 238000005259 measurement Methods 0.000 description 9
- 238000006479 redox reaction Methods 0.000 description 9
- 230000008859 change Effects 0.000 description 8
- 239000007800 oxidant agent Substances 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 7
- HHEAADYXPMHMCT-UHFFFAOYSA-N dpph Chemical compound [O-][N+](=O)C1=CC([N+](=O)[O-])=CC([N+]([O-])=O)=C1[N]N(C=1C=CC=CC=1)C1=CC=CC=C1 HHEAADYXPMHMCT-UHFFFAOYSA-N 0.000 description 7
- 238000001727 in vivo Methods 0.000 description 7
- 230000033001 locomotion Effects 0.000 description 7
- 230000003647 oxidation Effects 0.000 description 7
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 7
- 239000002585 base Substances 0.000 description 6
- 210000001124 body fluid Anatomy 0.000 description 6
- 239000010839 body fluid Substances 0.000 description 6
- 239000003054 catalyst Substances 0.000 description 6
- 230000003197 catalytic effect Effects 0.000 description 6
- 210000000056 organ Anatomy 0.000 description 6
- 230000001590 oxidative effect Effects 0.000 description 6
- 230000036542 oxidative stress Effects 0.000 description 6
- 230000001603 reducing effect Effects 0.000 description 6
- 238000012546 transfer Methods 0.000 description 6
- 239000002253 acid Substances 0.000 description 5
- -1 active oxygen Chemical class 0.000 description 5
- 235000019441 ethanol Nutrition 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- 239000000376 reactant Substances 0.000 description 5
- LRFVTYWOQMYALW-UHFFFAOYSA-N 9H-xanthine Chemical compound O=C1NC(=O)NC2=C1NC=N2 LRFVTYWOQMYALW-UHFFFAOYSA-N 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 4
- 230000009471 action Effects 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 210000004204 blood vessel Anatomy 0.000 description 4
- 210000004027 cell Anatomy 0.000 description 4
- 238000006356 dehydrogenation reaction Methods 0.000 description 4
- 201000010099 disease Diseases 0.000 description 4
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 4
- 229920000669 heparin Polymers 0.000 description 4
- 150000002431 hydrogen Chemical class 0.000 description 4
- 239000008399 tap water Substances 0.000 description 4
- 235000020679 tap water Nutrition 0.000 description 4
- 229910021642 ultra pure water Inorganic materials 0.000 description 4
- 239000012498 ultrapure water Substances 0.000 description 4
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 3
- 241000282412 Homo Species 0.000 description 3
- 241000124008 Mammalia Species 0.000 description 3
- 241001465754 Metazoa Species 0.000 description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 3
- 238000003776 cleavage reaction Methods 0.000 description 3
- CVSVTCORWBXHQV-UHFFFAOYSA-N creatine Chemical class NC(=[NH2+])N(C)CC([O-])=O CVSVTCORWBXHQV-UHFFFAOYSA-N 0.000 description 3
- 230000009615 deamination Effects 0.000 description 3
- 238000006481 deamination reaction Methods 0.000 description 3
- 230000008030 elimination Effects 0.000 description 3
- 238000003379 elimination reaction Methods 0.000 description 3
- 230000007760 free radical scavenging Effects 0.000 description 3
- 229960002897 heparin Drugs 0.000 description 3
- 238000001990 intravenous administration Methods 0.000 description 3
- 238000010253 intravenous injection Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052763 palladium Inorganic materials 0.000 description 3
- 230000005408 paramagnetism Effects 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 239000011574 phosphorus Substances 0.000 description 3
- CLSUSRZJUQMOHH-UHFFFAOYSA-L platinum dichloride Chemical compound Cl[Pt]Cl CLSUSRZJUQMOHH-UHFFFAOYSA-L 0.000 description 3
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 230000007017 scission Effects 0.000 description 3
- 235000000346 sugar Nutrition 0.000 description 3
- 150000008163 sugars Chemical class 0.000 description 3
- 230000002485 urinary effect Effects 0.000 description 3
- 239000008215 water for injection Substances 0.000 description 3
- KPGXRSRHYNQIFN-UHFFFAOYSA-N 2-oxoglutaric acid Chemical compound OC(=O)CCC(=O)C(O)=O KPGXRSRHYNQIFN-UHFFFAOYSA-N 0.000 description 2
- WHBMMWSBFZVSSR-UHFFFAOYSA-N 3-hydroxybutyric acid Chemical compound CC(O)CC(O)=O WHBMMWSBFZVSSR-UHFFFAOYSA-N 0.000 description 2
- IKHGUXGNUITLKF-UHFFFAOYSA-N Acetaldehyde Chemical compound CC=O IKHGUXGNUITLKF-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
- LCTONWCANYUPML-UHFFFAOYSA-N Pyruvic acid Chemical compound CC(=O)C(O)=O LCTONWCANYUPML-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 102000019197 Superoxide Dismutase Human genes 0.000 description 2
- 108010012715 Superoxide dismutase Proteins 0.000 description 2
- PNNCWTXUWKENPE-UHFFFAOYSA-N [N].NC(N)=O Chemical compound [N].NC(N)=O PNNCWTXUWKENPE-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- 238000007664 blowing Methods 0.000 description 2
- 239000004202 carbamide Substances 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 210000003722 extracellular fluid Anatomy 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- FDGQSTZJBFJUBT-UHFFFAOYSA-N hypoxanthine Chemical compound O=C1NC=NC2=C1NC=N2 FDGQSTZJBFJUBT-UHFFFAOYSA-N 0.000 description 2
- 208000017169 kidney disease Diseases 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000006241 metabolic reaction Methods 0.000 description 2
- 239000002105 nanoparticle Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 230000008092 positive effect Effects 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 239000010948 rhodium Substances 0.000 description 2
- 230000002000 scavenging effect Effects 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229940075420 xanthine Drugs 0.000 description 2
- WCBPJVKVIMMEQC-UHFFFAOYSA-N 1,1-diphenyl-2-(2,4,6-trinitrophenyl)hydrazine Chemical compound [O-][N+](=O)C1=CC([N+](=O)[O-])=CC([N+]([O-])=O)=C1NN(C=1C=CC=CC=1)C1=CC=CC=C1 WCBPJVKVIMMEQC-UHFFFAOYSA-N 0.000 description 1
- QNGVNLMMEQUVQK-UHFFFAOYSA-N 4-n,4-n-diethylbenzene-1,4-diamine Chemical compound CCN(CC)C1=CC=C(N)C=C1 QNGVNLMMEQUVQK-UHFFFAOYSA-N 0.000 description 1
- WDJHALXBUFZDSR-UHFFFAOYSA-N Acetoacetic acid Natural products CC(=O)CC(O)=O WDJHALXBUFZDSR-UHFFFAOYSA-N 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- 108010074122 Ferredoxins Proteins 0.000 description 1
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 229920000084 Gum arabic Polymers 0.000 description 1
- UGQMRVRMYYASKQ-UHFFFAOYSA-N Hypoxanthine nucleoside Natural products OC1C(O)C(CO)OC1N1C(NC=NC2=O)=C2N=C1 UGQMRVRMYYASKQ-UHFFFAOYSA-N 0.000 description 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 1
- LEVWYRKDKASIDU-IMJSIDKUSA-N L-cystine Chemical compound [O-]C(=O)[C@@H]([NH3+])CSSC[C@H]([NH3+])C([O-])=O LEVWYRKDKASIDU-IMJSIDKUSA-N 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 241000978776 Senegalia senegal Species 0.000 description 1
- 239000004280 Sodium formate Substances 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- LEHOTFFKMJEONL-UHFFFAOYSA-N Uric Acid Chemical compound N1C(=O)NC(=O)C2=C1NC(=O)N2 LEHOTFFKMJEONL-UHFFFAOYSA-N 0.000 description 1
- TVWHNULVHGKJHS-UHFFFAOYSA-N Uric acid Natural products N1C(=O)NC(=O)C2NC(=O)NC21 TVWHNULVHGKJHS-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 238000011481 absorbance measurement Methods 0.000 description 1
- 235000010489 acacia gum Nutrition 0.000 description 1
- 239000000205 acacia gum Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- HWXBTNAVRSUOJR-UHFFFAOYSA-N alpha-hydroxyglutaric acid Natural products OC(=O)C(O)CCC(O)=O HWXBTNAVRSUOJR-UHFFFAOYSA-N 0.000 description 1
- 229940009533 alpha-ketoglutaric acid Drugs 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 239000010425 asbestos Substances 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 210000001175 cerebrospinal fluid Anatomy 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- UZEDIBTVIIJELN-UHFFFAOYSA-N chromium(2+) Chemical compound [Cr+2] UZEDIBTVIIJELN-UHFFFAOYSA-N 0.000 description 1
- 239000005515 coenzyme Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229960003624 creatine Drugs 0.000 description 1
- 239000006046 creatine Substances 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- 229960003067 cystine Drugs 0.000 description 1
- WOWBFOBYOAGEEA-UHFFFAOYSA-N diafenthiuron Chemical compound CC(C)C1=C(NC(=S)NC(C)(C)C)C(C(C)C)=CC(OC=2C=CC=CC=2)=C1 WOWBFOBYOAGEEA-UHFFFAOYSA-N 0.000 description 1
- 235000005911 diet Nutrition 0.000 description 1
- 230000037213 diet Effects 0.000 description 1
- MGJZITXUQXWAKY-UHFFFAOYSA-N diphenyl-(2,4,6-trinitrophenyl)iminoazanium Chemical compound [O-][N+](=O)C1=CC([N+](=O)[O-])=CC([N+]([O-])=O)=C1N=[N+](C=1C=CC=CC=1)C1=CC=CC=C1 MGJZITXUQXWAKY-UHFFFAOYSA-N 0.000 description 1
- 238000003411 electrode reaction Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000029142 excretion Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000008098 formaldehyde solution Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- ZFGMDIBRIDKWMY-PASTXAENSA-N heparin Chemical compound CC(O)=N[C@@H]1[C@@H](O)[C@H](O)[C@@H](COS(O)(=O)=O)O[C@@H]1O[C@@H]1[C@@H](C(O)=O)O[C@@H](O[C@H]2[C@@H]([C@@H](OS(O)(=O)=O)[C@@H](O[C@@H]3[C@@H](OC(O)[C@H](OS(O)(=O)=O)[C@H]3O)C(O)=O)O[C@@H]2O)CS(O)(=O)=O)[C@H](O)[C@H]1O ZFGMDIBRIDKWMY-PASTXAENSA-N 0.000 description 1
- 229960001008 heparin sodium Drugs 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 230000000968 intestinal effect Effects 0.000 description 1
- 210000000936 intestine Anatomy 0.000 description 1
- 210000002977 intracellular fluid Anatomy 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 210000002751 lymph Anatomy 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229930182817 methionine Natural products 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 230000004118 muscle contraction Effects 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 1
- 238000001139 pH measurement Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 229920006267 polyester film Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 235000018102 proteins Nutrition 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 239000008262 pumice Substances 0.000 description 1
- 229940107700 pyruvic acid Drugs 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 229910052895 riebeckite Inorganic materials 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 235000010378 sodium ascorbate Nutrition 0.000 description 1
- PPASLZSBLFJQEF-RKJRWTFHSA-M sodium ascorbate Substances [Na+].OC[C@@H](O)[C@H]1OC(=O)C(O)=C1[O-] PPASLZSBLFJQEF-RKJRWTFHSA-M 0.000 description 1
- 229960005055 sodium ascorbate Drugs 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- HLBBKKJFGFRGMU-UHFFFAOYSA-M sodium formate Chemical compound [Na+].[O-]C=O HLBBKKJFGFRGMU-UHFFFAOYSA-M 0.000 description 1
- 235000019254 sodium formate Nutrition 0.000 description 1
- PPASLZSBLFJQEF-RXSVEWSESA-M sodium-L-ascorbate Chemical compound [Na+].OC[C@H](O)[C@H]1OC(=O)C(O)=C1[O-] PPASLZSBLFJQEF-RXSVEWSESA-M 0.000 description 1
- 239000008279 sol Substances 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- CMWCOKOTCLFJOP-UHFFFAOYSA-N titanium(3+) Chemical compound [Ti+3] CMWCOKOTCLFJOP-UHFFFAOYSA-N 0.000 description 1
- 229940116269 uric acid Drugs 0.000 description 1
- 230000036325 urinary excretion Effects 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Landscapes
- Medicinal Preparation (AREA)
Abstract
Description
本発明は、新規な生理食塩水およびその製造方法に関する。より詳細に述べれば、本発明は、原子状水素を大量に含んでいて酸化還元電位が−400mV〜−600mV、pHが4.5〜8.0の生理食塩水およびそれを製造する方法に関する。 The present invention relates to a novel physiological saline and a method for producing the same. More specifically, the present invention relates to a physiological saline containing a large amount of atomic hydrogen, having a redox potential of -400 mV to -600 mV, and a pH of 4.5 to 8.0, and a method for producing the same.
日本薬局方は、「生理食塩水」を、「本品は水性の注射剤で、定量するとき、塩化ナトリウム(NaCl:58.44)0.85〜0.95%を含む。製法は塩化ナトリウム9gを注射用水適量に溶解して全量を1000mLとし、注射剤の製法により製造する。本品には保存剤を加えない。本品の性状は、無色透明の液で、弱い塩味がある。pHは4.5〜8.0である。」と記載しているのみで、その他細かな規定あるいは規制を記載していない。 The Japanese Pharmacopoeia says “physiological saline”, “this product is an aqueous injection and contains 0.85 to 0.95% sodium chloride (NaCl: 58.44). Dissolve 9 g in an appropriate amount of water for injection to make a total volume of 1000 mL, and manufacture by injection manufacturing method.No preservative is added to this product.The property of this product is a colorless transparent liquid with a weak salty pH. Is 4.5 to 8.0 ", and no other detailed regulations or regulations are described.
これを受けて、添加剤を入れた生理食塩水が各種開発され、上市されている。たとえば、従来、ヘパリン生食液を、病院内でヘパリンナトリウム注射液を生理食塩水に入れ、10倍〜100倍に希釈して使用していたが、テルモ株式会社から、予めヘパリン生食液を注射器に充填し、調整、保存時の細菌汚染のリスクを低減した、いわゆる「ヘパリン入り生理食塩水」が提案されている。 In response, various saline solutions containing additives have been developed and marketed. For example, in the past, heparin saline was used in hospitals with heparin sodium injection in physiological saline and diluted 10 to 100 times. However, from Terumo Corporation, heparin saline was used as a syringe in advance. So-called “heparin-containing physiological saline” has been proposed which reduces the risk of bacterial contamination during filling, adjustment and storage.
しかしながら、生理食塩水を、生体内の臓器、特に体液の酸化還元電位に着目した研究開発は未だなされていない。人体の臓器、或いは生体内反応の酸化還元反応は電位が低く、通常−100mV〜−400mVの範囲であり、そのpHは、3〜7の範囲である。体液の酸化還元電位が高くなると活性酸素が滞留し易く、器官に障害が出てくると云われている。とくに、腸内微生物が活発に活動して栄養成分を消化吸収する腸内は、嫌気性の還元雰囲気に維持されている必要がある。 However, research and development have not yet been conducted on physiological saline focusing on the redox potential of organs in the body, particularly body fluids. The redox reaction of human organs or in vivo reactions has a low potential, usually in the range of −100 mV to −400 mV, and the pH is in the range of 3 to 7. It is said that when the oxidation-reduction potential of the body fluid increases, active oxygen tends to stay and damage the organ. In particular, the intestines where the intestinal microorganisms actively act to digest and absorb nutrients must be maintained in an anaerobic reducing atmosphere.
たとえば、生体内における、(酢酸+CO2+2H+/α−ケトグルタル酸反応)の酸化還元電位は−673mV、(酢酸+CO2/ピルビン酸反応)の酸化還元電位は−699mV、(酢酸+2H+/アセトアルデヒド反応)の酸化還元電位は−581mV、フェレドキシンの酸化還元電位は−413mV、(キサンチン+H+/ヒポキサンチン+H2O)の酸化還元電位は−371mV、(尿酸+H+/キサンチン+H2O)の酸化還元電位は−360mV、(アセト酢酸+2H+/β−ヒドロキシ酪酸反応)の酸化還元電位は−346mV(シスチン+2H+/2システイン反応)の酸化還元電位は−340mVである。 For example, the redox potential of (acetic acid + CO 2 + 2H + / α-ketoglutaric acid reaction) is −673 mV, and the redox potential of (acetic acid + CO 2 / pyruvic acid reaction) is −699 mV, (acetic acid + 2H + / acetaldehyde) in vivo. The redox potential of (reaction) is −581 mV, the redox potential of ferredoxin is −413 mV, the redox potential of (xanthine + H + / hypoxanthine + H 2 O) is −371 mV, and the oxidation of (uric acid + H + / xanthine + H 2 O). The reduction potential is −360 mV, and the redox potential of (acetoacetic acid + 2H + / β-hydroxybutyric acid reaction) is −346 mV (cystine + 2H + / 2 cysteine reaction) is −340 mV.
このように生体内における酵素、補酵素、代謝関連物質の反応は、酸化還元電位が低い環境下にある。また、酸化還元電位が低い水、または食品は、身体を酸化させる活性酸素や、1個又はそれ以上の不対電子を有する分子或いは原子、即ち、フリーラジカルを分離、消去する作用があって、SOD(スーパーオキシドジムスターゼ)という活性酸素消去酵素の反応を促進させると云われている。 Thus, the reactions of enzymes, coenzymes, and metabolism-related substances in the living body are in an environment where the redox potential is low. In addition, water or food having a low redox potential has an action of separating and eliminating active oxygen that oxidizes the body and molecules or atoms having one or more unpaired electrons, that is, free radicals, It is said to promote the reaction of an active oxygen scavenging enzyme called SOD (superoxide dismutase).
ところで、水道水の酸化還元電位は+400〜+800mV、pHが6.5〜8の範囲である。従って、水道水は、酸化還元電位が−100mV〜−400mVの範囲の生体臓器とバランスがとれないと考えられる。 By the way, the redox potential of tap water is +400 to +800 mV, and the pH is in the range of 6.5 to 8. Therefore, it is considered that tap water cannot be balanced with a living organ having a redox potential in the range of −100 mV to −400 mV.
酸化還元反応を始めとする体内の代謝反応の場を提供しているのが、体液である。体液は生体のほぼ60%を占めている。体液は、水を中心として、電解質、タンパク質等を重要な構成要素としている。これが、酸化還元電位が低い水が生体内にとって有効な理由である。 Body fluids provide a place for metabolic reactions in the body, including redox reactions. Body fluids occupy almost 60% of the living body. Body fluids are composed mainly of water, and electrolytes, proteins, and the like as important components. This is the reason why water having a low redox potential is effective in vivo.
人体を構成する元素は、酸素が66.0%、炭素が17.5%、水素が10.2%、窒素が2.4%で、総計96.1%、その余はミネラルである。酸素、炭素、水素、窒素で生成される物質は水と有機化合物である。ヒト男子では体重の約60%が、女子では約50%が水分で占められている。 The elements constituting the human body are 66.0% oxygen, 17.5% carbon, 10.2% hydrogen, 2.4% nitrogen, and 96.1% in total, and the rest is mineral. Substances produced by oxygen, carbon, hydrogen, and nitrogen are water and organic compounds. About 60% of body weight is occupied by water for human boys and about 50% for girls.
そして、体内水分量の約2/3は細胞内に存在し、細胞内液と呼ばれる。これに対して残余の1/3は細胞の外に存在し、細胞外液と呼ばれている。細胞外液の1/3が血液の水分(血漿)であり、2/3が組織液である。この他に少量の脳脊髄液、関節液、リンパ液が存在する。 And about 2/3 of the amount of water in the body exists in the cell and is called intracellular fluid. On the other hand, the remaining 1/3 exists outside the cell and is called extracellular fluid. 1/3 of the extracellular fluid is blood water (plasma) and 2/3 is tissue fluid. In addition, there are small amounts of cerebrospinal fluid, joint fluid, and lymph.
従って、主として血管内に点滴注射されて、血液と混合される生理食塩水の酸化還元電位も、上述した生体内反応の酸化還元電位である−400mV〜−600mVの範囲に維持されていれば、生物適合性(Bio−affinity)の観点からも好ましいと考えられる。 Therefore, if the redox potential of physiological saline that is mainly instilled into blood vessels and mixed with blood is also maintained within the range of −400 mV to −600 mV, which is the redox potential of the in vivo reaction described above, It is considered preferable from the viewpoint of biocompatibility.
他方、生理食塩水を、生体内における活性酸素の除去作用という点から考察すると、前述したように、人体の臓器、或いは生体内反応の酸化還元反応は電位が低く、通常−100mV〜−400mVの範囲であるので、体液の酸化還元電位が高くなると活性酸素が滞留し易く、器官に障害が出てくると云われている。 On the other hand, when considering physiological saline in terms of the action of removing active oxygen in the living body, as described above, the redox reaction of the human organ or in vivo reaction has a low potential and is usually from −100 mV to −400 mV. Since it is within the range, it is said that when the redox potential of the body fluid increases, active oxygen tends to stay and damage the organ.
生体内に活性酸素等遊離基が発生する全ての原因は完全には解明されていない。然しながら、その一つとして、たとえば、紫外線が皮膚に照射されると、皮膚を構成する細胞の内外に存在する水分子に作用して、正負の水分子イオンを発生する。これらのイオンは更に分解してH+、OH−の安定イオンの他に、OH・、H・の遊離基を生成する。反応物質が無い場合は、これらの遊離基の間に、OH・+H・→H2O(水)、H・+H・→H2(水素ガス)、OH・+OH・→H2O2(過酸化水素)のような反応がおこる。 All causes of the generation of free radicals such as active oxygen in the living body have not been completely elucidated. However, as one of them, for example, when the skin is irradiated with ultraviolet rays, it acts on water molecules existing inside and outside the cells constituting the skin to generate positive and negative water molecule ions. These ions are then further decomposed H +, OH - in addition to the stable ions, to produce a OH ·, free radicals H ·. When there is no reactant, between these free radicals, OH · + H · → H 2 O (water), H · + H · → H 2 (hydrogen gas), OH · + OH · → H 2 O 2 (excess Reaction such as hydrogen oxide occurs.
ところで、OH・、H・等遊離基は最外殻軌道に不対電子を有しているため、電子のスピンはうち消されずに残る。即ち、スピン角運動がゼロではなく、種々の磁気的性質を示す。たとえば、全ての電子が対をなしている分子は、反磁性を示すが、不対電子をもったものは常磁性を示す。通常、遊離基は、他の不対電子をもったものと電子対を作って結合し安定化しようとするために反応性が大きい。従って、生体内のように、周囲に反応物質が存在する場合には、OH・、H・、H2O2はそれらと反応し、その結果、生体内に様々な異常現象を起こす。たとえば、DNAに作用する場合は、脱アミノ、脱水素、塩基結合の分裂、塩基の開裂、糖の酸化、無機リンの遊離等を引き起こし、種々の疾病の原因となる。 By the way, OH., H., etc. free radicals have unpaired electrons in the outermost orbital, so that the electron spin remains without being erased. That is, the spin angular motion is not zero and exhibits various magnetic properties. For example, molecules in which all electrons are paired show diamagnetism, while those with unpaired electrons show paramagnetism. Usually, free radicals are highly reactive because they attempt to bind and stabilize electron pairs with other unpaired electrons. Therefore, when there are reactive substances in the surroundings as in the living body, OH ·, H ·, H 2 O 2 react with them, and as a result, various abnormal phenomena occur in the living body. For example, when acting on DNA, it causes deamination, dehydrogenation, breakage of base bonds, cleavage of bases, oxidation of sugars, release of inorganic phosphorus, etc., causing various diseases.
次に、遊離基の消去法に関して、理論的考察を説明する。生体も熱力学の法則の例外ではなく、仕事をするためのエネルギーの尺度としての自由エネルギー(Gibbsの自由エネルギー)の変化、即ちΔG=ΔH−TΔS(ΔHはエンタルピー変化、Tは絶対温度、ΔSはエントロピー変化)で表される変化(単位J)が、生体エネルギーの出発点とされている。生体における自由エネルギー産生は、自然界における濃度変化よりは、そのほとんどが酸化還元反応における反応物質の酸化還元電位の差により放出される自由エネルギーによっている。ここに、酸化とは電子を失う反応、還元とは電子を得る反応である。たとえば、1/2H2+Fe3+⇔H++Fe2+という反応は、1/2H2−e→H+(または、1/2H2→H++e)という酸化反応と、Fe3++e→Fe2+という還元反応に分けて考えることができる。この場合、酸化される、すなわち電子を失って他に与える1/2H2は、還元剤として働き、還元される、すなわち電子を受け取るFe3+は、酸化剤として働いているといういい方をする。また、一般的にAH+B⇔A+BHという水素の授受による酸化還元反応も、AH→A+H++eという酸化反応と、B+H++e→BHという還元反応に分解して考えることができる。水素の授受をH++eという電子の授受と見なすことができる。このように考えれば、電子の動きと水素の動きは等価と見なすことができる。 Next, theoretical considerations will be described regarding the elimination method of free radicals. The living body is not an exception to the laws of thermodynamics, and changes in free energy (Gibbs free energy) as a measure of energy for work, that is, ΔG = ΔH−TΔS (ΔH is enthalpy change, T is absolute temperature, ΔS The change (unit J) represented by the entropy change is the starting point of bioenergy. Most of the free energy production in the living body depends on the free energy released by the difference in the redox potential of the reactant in the redox reaction rather than the concentration change in nature. Here, oxidation is a reaction for losing electrons, and reduction is a reaction for obtaining electrons. For example, the reaction of 1 / 2H 2 + Fe 3+ ⇔H + + Fe 2+ is an oxidation reaction of 1 / 2H 2 −e → H + (or 1 / 2H 2 → H + + e) and Fe 3+ + e → Fe 2+. It can be divided into reduction reactions. In this case, ½H 2 that is oxidized, that is, loses electrons and gives to others acts as a reducing agent, and Fe 3+ that is reduced, that is, receives electrons, acts as an oxidizing agent. In general, the oxidation-reduction reaction of AH + B⇔A + BH by the transfer of hydrogen can also be considered by decomposing into an oxidation reaction of AH → A + H + + e and a reduction reaction of B + H + + e → BH. Transfer of hydrogen can be regarded as transfer of electrons H + + e. In this way, the movement of electrons and the movement of hydrogen can be regarded as equivalent.
このように考えれば、活性酸素等遊離基を消去するには、それを原子状水素(H⇔H++e)により還元して安定化すればよいことになる。 In view of this, in order to eliminate free radicals such as active oxygen, it is only necessary to stabilize them by reducing them with atomic hydrogen (H H + + e).
以上を総覧すると、血液に注射される生理食塩水にも、血液内に発生する活性酸素による酸化ストレス度を低下する能力がある事が好ましいことが理解される。この能力は、生理食塩水の酸化還元電位が−400mV〜−600mVの範囲にあることと、分子状ではなく原子状水素が大量に含有されていることの要件が必要である。 When the above is reviewed, it is understood that it is preferable that the physiological saline injected into the blood also has the ability to reduce the degree of oxidative stress due to active oxygen generated in the blood. This capability requires the requirement that the redox potential of physiological saline is in the range of -400 mV to -600 mV and that a large amount of atomic hydrogen is contained rather than molecular.
生理食塩水の酸化還元電位を対象にした発明は未だ少ないが、特許文献1は、0℃〜100℃の生理食塩水に、−180℃〜90℃の水素ガスを0.1気圧〜1000気圧に加圧して溶解せしめ、常温常圧に戻すことにより酸化還元電位が−10mV以下−2000mV以上の生理食塩水を開示している。 Although there are still few inventions targeting the redox potential of physiological saline, Patent Document 1 discloses that 0.1 to 1000 atmospheres of hydrogen gas at −180 to 90 ° C. is applied to physiological saline at 0 to 100 ° C. A physiological saline having an oxidation-reduction potential of −10 mV or less and −2000 mV or more is disclosed by pressurizing and dissolving the solution at normal temperature and normal pressure.
しかしながら、特許文献1に記載された発明において、生理食塩水に吹き込まれた水素は原子状水素ではなく、全量が分子状水素である。従って、特許文献1に記載された生理食塩水は、血管内の活性酸素等遊離基を消去する能力はない。また、特許文献1は、生理食塩水の酸化還元電位を−10mV以下−2000mV以上に設定することによる理論的説明および効果が実証されていないので、どのような産業上の利用可能性があるのか不明である。 However, in the invention described in Patent Document 1, the hydrogen blown into the physiological saline is not atomic hydrogen but the total amount is molecular hydrogen. Therefore, the physiological saline described in Patent Document 1 has no ability to eliminate free radicals such as active oxygen in blood vessels. Moreover, since patent document 1 has not demonstrated the theoretical explanation and effect by setting the oxidation-reduction potential of physiological saline to -10 mV or less and -2000 mV or more, what kind of industrial applicability is there? It is unknown.
特許文献2は、原料水に、シリカ系石英斑岩にアルカリ金属、マグネシウム、カルシウム、アルミニウム、亜鉛などの電気陰性度の大きい金属、或いは鉄(II)、スズ(II)、チタン(III)、クロム(II)などの低原子価状態にある還元性金属を担持させた触媒と接触させて、水素を吹き込んで水素水を製造する装置を開示している。しかしながら、特許文献2が開示している還元性金属は、分子状水素を原子状水素に変換する触媒作用が弱い。
従って、発明が解決しようとする課題は、原子状水素を大量に含んでいて酸化還元電位が−400mV〜−600mV、pHが4.5〜8.0の生理食塩水を提供することである。 Accordingly, the problem to be solved by the invention is to provide a physiological saline containing a large amount of atomic hydrogen, having a redox potential of -400 mV to -600 mV, and a pH of 4.5 to 8.0.
発明が解決しようとする別の課題は、原子状水素を大量に含んでいて酸化還元電位が−400mV〜−600mV、pHが4.5〜8.0の生理食塩水を製造する方法を提供することである。
発明が解決しようとする別の課題および利点は以下逐次明らかにされるであろう。
Another problem to be solved by the invention is to provide a method for producing a physiological saline containing a large amount of atomic hydrogen, having a redox potential of -400 mV to -600 mV, and a pH of 4.5 to 8.0. That is.
Other problems and advantages to be solved by the invention will be clarified in the following.
本発明者は理論に拘束されることを好まないが、課題を解決するための手段を策定するために、遊離基の発生、その作用、及び消去に関して以下のように理論的考察を行った。生体内に活性酸素等遊離基が発生する全ての原因は完全には解明されていない。然しながら、その一つとして、たとえば、紫外線が皮膚に照射されると、皮膚を構成する細胞の内外に存在する水分子に作用して、正負の水分子イオンを発生する。これらのイオンは更に分解してH+、OH−の安定イオンの他に、OH・、H・の遊離基を生成する。反応物質が無い場合は、これらの遊離基の間に、OH・+H・→H2O(水)、H・+H・→H2(水素ガス)、OH・+OH・→H2O2(過酸化水素)のような反応がおこる。ところで、OH・、H・等遊離基は最外殻軌道に不対電子を有しているため、電子のスピンはうち消されずに残る。即ち、スピン角運動がゼロではなく、種々の磁気的性質を示す。たとえば、全ての電子が対をなしている分子は、反磁性を示すが、不対電子をもったものは常磁性を示す。通常、遊離基は、他の不対電子をもったものと電子対を作って結合し安定化しようとするために反応性が大きい。従って、生体内のように、周囲に反応物質が存在する場合には、OH・、H・、H2O2はそれらと反応し、その結果、生体内に様々な異常現象を起こす。たとえば、DNAに作用する場合は、脱アミノ、脱水素、塩基結合の分裂、塩基の開裂、糖の酸化、無機リンの遊離等を引き起こし、種々の疾病の原因となる。 The present inventor does not like to be bound by theory, but in order to formulate means for solving the problem, the following theoretical consideration was made with respect to generation of free radicals, action thereof, and elimination. All causes of the generation of free radicals such as active oxygen in the living body have not been completely elucidated. However, as one of them, for example, when the skin is irradiated with ultraviolet rays, it acts on water molecules existing inside and outside the cells constituting the skin to generate positive and negative water molecule ions. These ions are then further decomposed H +, OH - in addition to the stable ions, to produce a OH ·, free radicals H ·. When there is no reactant, between these free radicals, OH · + H · → H 2 O (water), H · + H · → H 2 (hydrogen gas), OH · + OH · → H 2 O 2 (excess Reaction such as hydrogen oxide occurs. By the way, OH., H., etc. free radicals have unpaired electrons in the outermost orbital, so that the electron spin remains without being erased. That is, the spin angular motion is not zero and exhibits various magnetic properties. For example, molecules in which all electrons are paired show diamagnetism, while those with unpaired electrons show paramagnetism. Usually, free radicals are highly reactive because they attempt to bind and stabilize electron pairs with other unpaired electrons. Therefore, when there are reactive substances in the surroundings as in the living body, OH ·, H ·, H 2 O 2 react with them, and as a result, various abnormal phenomena occur in the living body. For example, when acting on DNA, it causes deamination, dehydrogenation, breakage of base bonds, cleavage of bases, oxidation of sugars, release of inorganic phosphorus, etc., causing various diseases.
次に、遊離基の消去法に関して、理論的考察を説明する。生体も熱力学の法則の例外ではなく、仕事をするためのエネルギーの尺度としての自由エネルギー(Gibbsの自由エネルギー)の変化、即ちΔG=ΔH−TΔS(ΔHはエンタルピー変化、Tは絶対温度、ΔSはエントロピー変化)で表される変化(単位J)が、生体エネルギーの出発点とされている。生体における自由エネルギー産生は、自然界における濃度変化よりは、そのほとんどが酸化還元反応における反応物質の酸化還元電位の差により放出される自由エネルギーによっている。ここに、酸化とは電子を失う反応、還元とは電子を得る反応である。たとえば、1/2H2+Fe3+⇔H++Fe2+という反応は、1/2H2−e→H+(または、1/2H2→H++e)という酸化反応と、Fe3++e→Fe2+という還元反応に分けて考えることができる。この場合、酸化される、すなわち電子を失って他に与える1/2H2は、還元剤として働き、還元される、すなわち電子を受け取るFe3+は、酸化剤として働いているといういい方をする。また、一般的にAH+B⇔A+BHという水素の授受による酸化還元反応も、AH→A+H++eという酸化反応と、B+H++e→BHという還元反応に分解して考えることができる。水素の授受をH++eという電子の授受と見なすことができる。このように考えれば、電子の動きと水素の動きは等価と見なすことができる。 Next, theoretical considerations will be described regarding the elimination method of free radicals. The living body is not an exception to the laws of thermodynamics, and changes in free energy (Gibbs free energy) as a measure of energy for work, that is, ΔG = ΔH−TΔS (ΔH is enthalpy change, T is absolute temperature, ΔS The change (unit J) represented by the entropy change is the starting point of bioenergy. Most of the free energy production in the living body depends on the free energy released by the difference in the redox potential of the reactant in the redox reaction rather than the concentration change in nature. Here, oxidation is a reaction for losing electrons, and reduction is a reaction for obtaining electrons. For example, the reaction of 1 / 2H 2 + Fe 3+ ⇔H + + Fe 2+ is an oxidation reaction of 1 / 2H 2 −e → H + (or 1 / 2H 2 → H + + e) and Fe 3+ + e → Fe 2+. It can be divided into reduction reactions. In this case, ½H 2 that is oxidized, that is, loses electrons and gives to others acts as a reducing agent, and Fe 3+ that is reduced, that is, receives electrons, acts as an oxidizing agent. In general, the oxidation-reduction reaction of AH + B⇔A + BH by the transfer of hydrogen can also be considered by decomposing into an oxidation reaction of AH → A + H + + e and a reduction reaction of B + H + + e → BH. Transfer of hydrogen can be regarded as transfer of electrons H + + e. In this way, the movement of electrons and the movement of hydrogen can be regarded as equivalent.
ところで、共立出版株式会社発行「化学大辞典2」は、「活性水素」を、「放電、高熱、紫外線により水素分子の安定な共有結合が切れて、原子状水素が生成したため化学反応を起こしやすくなった水素をいう。また、いわゆる発生期状態の水素およびパラジウムやニッケルなど、還元触媒上の水素は原子状またはそれに近い状態にあると考えられ、反応性に富み、これらも広義の活性水素に含まれる。」と定義し、強力な還元作用を示すと説明している。 By the way, Kyoritsu Shuppan Co., Ltd. published “Chemical Dictionary 2”, “Active hydrogen”, “Discharge, high heat, and ultraviolet rays cause the stable covalent bond of hydrogen molecules to break, and atomic hydrogen is generated, so chemical reactions are likely to occur. In addition, hydrogen on the reduction catalyst such as so-called nascent hydrogen and palladium or nickel is considered to be in an atomic state or a state close to it, and is highly reactive. It is defined as “included” and explains that it exhibits a strong reducing action.
生体反応の中には、酸化還元反応を伴う反応が多く、代謝反応等に極めて重要な役割を担っている。また、生体に限らず、酸化体と還元体を含んだ系(溶液)において、白金のようにそれ自体は酸化還元反応に関与しない不活性な電極を、その溶液に浸すと、電極間に電位差が現れる。この電位差が、酸化還元電位(Oxidation−Reduction Potential=ORP)で、単位はmVで表す。今、ある物質の酸化体の活量を[Ox]、還元体の活量を[Red]と表すと、両者の混合状態は、式(1)で表される。
[Ox]+ne→[Red] (1)
(eは電子、nは移動する電子数)
(1)で表した電極反応式の酸化還元電位(EmV)は、ネルンスト(Nernst)の式(2)で表される。
E=E0+(RT/nF)ln[Ox]/[Red] (2)
Many biological reactions involve oxidation-reduction reactions and play an extremely important role in metabolic reactions and the like. In addition, in a system (solution) containing an oxidant and a reductant, not limited to a living body, an inactive electrode that itself does not participate in the oxidation-reduction reaction, such as platinum, is immersed in the solution. Appears. This potential difference is an oxidation-reduction potential (Oxidation-Reduction Potential = ORP), and the unit is expressed in mV. Now, when the activity of an oxidant of a certain substance is represented as [Ox] and the activity of a reductant is represented as [Red], the mixed state of both is represented by the formula (1).
[Ox] + ne → [Red] (1)
(E is an electron, n is the number of moving electrons)
The oxidation-reduction potential (EmV) of the electrode reaction equation represented by (1) is represented by the Nernst equation (2).
E = E 0 + (RT / nF) ln [Ox] / [Red] (2)
式(2)において、Rは、気体定数(8.31Jmol−1K−1), Tは絶対温度(K)、Fはファラデー定数(96406JV−1)である。E0は、[Ox]=[Red]の時の標準酸化還元電位である。 In the formula (2), R is a gas constant (8.31 Jmol −1 K −1 ), T is an absolute temperature (K), and F is a Faraday constant (96406 JV −1 ). E 0 is a standard redox potential when [Ox] = [Red].
式(2)において、ln[Ox]/[Red]は、自然対数である。従って、分母、即ち[Red]を、分子、即ち[Ox]より、極端に大きくすればするほど、酸化還元電位Eのマイナス(−)値を大きくすることができることになる。即ち、理論的には、還元体[Red]の活量を、酸化体[Ox]の活量より、大きくすればするほど、酸化還元電位をマイナス(−)値にすることができる。そこで、酸化体と還元体の混合状態にある原料水に水素を吹き込んで、原料水の酸化還元電位をマイナス電位に低下させる方法において、還元体[Red]の活量を、酸化体[Ox]の活量より大きくすることである。この場合、酸化体と還元体の混合状態にある原料水を、白金族元素を触媒として水素を吹き込むと、効率が良くなるので好ましい。 In equation (2), ln [Ox] / [Red] is a natural logarithm. Therefore, the negative (−) value of the oxidation-reduction potential E can be increased as the denominator, that is, [Red] is made extremely larger than the numerator, that is, [Ox]. That is, theoretically, the greater the activity of the reductant [Red] than the activity of the oxidant [Ox], the more the redox potential can be made negative (−) value. Therefore, in the method of reducing the oxidation-reduction potential of the raw material water to a negative potential by blowing hydrogen into the raw material water in a mixed state of the oxidant and the reductant, the activity of the reductant [Red] is changed to the oxidant [Ox]. It is to make it larger than the activity. In this case, it is preferable to blow raw material water in a mixed state of an oxidant and a reductant with a platinum group element as a catalyst because efficiency is improved.
そこで、本発明者は、0.9%の塩化ナトリウム水溶液にできるだけ大量の水素を吹き込んで溶存させ、白金族元素と接触させることを検討した。単に、0.9%の塩化ナトリウム水溶液に水素を吹き込んで溶存させただけでは、分子状水素(H2)で、原子状水素(H)ではないので、そのままでは、活性酸素等遊離基を還元する能力はない。そこで、本発明は、0.9%の塩化ナトリウム水溶液に水素ガスを注入し、現場(in site)で白金族元素と接触させることにより活性水素にして、活性酸素等遊離基を還元することを主旨とするものである。 Therefore, the present inventor studied that as much hydrogen as possible was blown into a 0.9% sodium chloride aqueous solution to be dissolved and contacted with a platinum group element. Simply blowing hydrogen into a 0.9% sodium chloride aqueous solution to dissolve it is molecular hydrogen (H 2 ), not atomic hydrogen (H). There is no ability to do. Therefore, the present invention is to inject hydrogen gas into a 0.9% sodium chloride aqueous solution and bring it into contact with a platinum group element in situ to reduce active radicals such as active oxygen. It is intended.
本発明において、0.9%の塩化ナトリウム水溶液に水素ガス気泡を注入する方法は特段に限定されない。たとえば、本発明者の一人が出願した特願2003−436591号明細書に記載した水素水製造装置を利用することができる。この概略を説明する。水素供給装置として、大容量の水素ボンベを使用すると、産業用大規模生産装置として利用できるが、水素充填圧力が0.98MPa以下のボンベを使用すると病院、家庭等小規模生産用として使用の範囲が拡大する。水素ガスの注入圧は、装置の規模によって変更されるが、たとえば、水素ガスの注入圧が0.1〜0.95MPaの範囲ならば、−550mVの酸化還元電位、0.5mg/lの溶存水素量が確保できる。水素ガスの注入時間は、たとえば、10秒〜10分、好ましくは2〜5分の範囲である。水素ガスの注入時間がこの範囲ならば、−620mVの酸化還元電位、1.5mg/lの溶存水素量が確保できる。水素ガスの注入時間が短過ぎると、電位が不安定であり、長すぎても、電位低下効果に特段の影響はなく、逆にコストを引き上げる。 In the present invention, the method of injecting hydrogen gas bubbles into a 0.9% sodium chloride aqueous solution is not particularly limited. For example, the hydrogen water production apparatus described in Japanese Patent Application No. 2003-436591 filed by one of the inventors can be used. This outline will be described. If a large-capacity hydrogen cylinder is used as the hydrogen supply apparatus, it can be used as an industrial large-scale production apparatus, but if a cylinder with a hydrogen filling pressure of 0.98 MPa or less is used, the range of use for small-scale production such as hospitals and homes Expands. The hydrogen gas injection pressure varies depending on the scale of the apparatus. For example, if the hydrogen gas injection pressure is in the range of 0.1 to 0.95 MPa, a redox potential of −550 mV and a dissolution of 0.5 mg / l. The amount of hydrogen can be secured. The injection time of hydrogen gas is, for example, in the range of 10 seconds to 10 minutes, preferably 2 to 5 minutes. If the injection time of hydrogen gas is within this range, a redox potential of -620 mV and a dissolved hydrogen amount of 1.5 mg / l can be secured. If the injection time of hydrogen gas is too short, the potential is unstable. If it is too long, the potential lowering effect is not particularly affected, and the cost is increased.
0.9%の塩化ナトリウム水溶液に、水素ガスを注入する場合、所定の孔径を有する細孔膜を利用して、径がそろった水素ガスバブルを形成して、0.9%の塩化ナトリウム水溶液への溶解性、水中での滞留時間等を向上させることができる。この際、注意しなければならないことは、水素のバブルがナノサイズに成らないようにすることである。この理由は、水素のバブルがナノサイズになると、バブルの表面が帯電し、遊離基になることがあるからである。 When hydrogen gas is injected into a 0.9% sodium chloride aqueous solution, a hydrogen gas bubble having a uniform diameter is formed using a pore membrane having a predetermined pore size, and the 0.9% sodium chloride aqueous solution is formed. Solubility, residence time in water, and the like can be improved. At this time, care must be taken to prevent hydrogen bubbles from becoming nano-sized. This is because when the hydrogen bubble becomes nano-sized, the surface of the bubble may become charged and become free radicals.
本発明で使用する0.9%の塩化ナトリウム水溶液を製造するための原料水は、日本薬局方収載の注射用水、およびそれと等価の細菌濾過した蒸留水、イオン交換水等である。 The raw material water for producing the 0.9% sodium chloride aqueous solution used in the present invention is water for injection listed in the Japanese Pharmacopoeia, equivalent bacteria-filtered distilled water, ion-exchanged water and the like.
本発明で使用する白金族元素に関して説明する。白金族元素とは周期律表第VIII族に属する元素のうち、ルテニウム(Ru)、ロジウム(Rh)、パラジウム(Pd)、オスミウム(Os)、イリジウム(Ir)、白金(Pt)の6元素の総称である。これらの白金族元素は、水素添加、脱水素、酸化の諸反応に活性を示す。いわゆる還元触媒としての機能がある。従って、分子状水素が白金族元素と接触すると、分子状水素が原子状またはそれに近い状態になる。従って、本明細書では、白金族元素が、分子状水素を原子状またはそれに近い状態にする作用を「触媒作用」という。 The platinum group element used in the present invention will be described. Among the elements belonging to Group VIII of the Periodic Table, the platinum group element includes six elements of ruthenium (Ru), rhodium (Rh), palladium (Pd), osmium (Os), iridium (Ir), and platinum (Pt). It is a generic name. These platinum group elements are active in various reactions such as hydrogenation, dehydrogenation, and oxidation. It functions as a so-called reduction catalyst. Therefore, when molecular hydrogen comes into contact with a platinum group element, molecular hydrogen becomes atomic or in a state close thereto. Therefore, in this specification, the action of the platinum group element to bring molecular hydrogen into an atomic state or a state close thereto is called “catalytic action”.
本発明において、白金族元素の触媒作用を向上させたり、或いは使用効率を高めたりするには、白金族元素を、各種の担体に担持させた担体付白金族元素或いはネットの形で使用することが好ましい。担体としては、アルミナ、アスベスト、活性炭、シリカゲル、硫酸バリウム、炭酸カルシウム、軽石等がある。 In the present invention, in order to improve the catalytic action of the platinum group element or increase the use efficiency, the platinum group element is used in the form of a platinum group element with a carrier carried on various supports or in the form of a net. Is preferred. Examples of the carrier include alumina, asbestos, activated carbon, silica gel, barium sulfate, calcium carbonate, and pumice.
また、本発明で特に好ましく使用される白金族元素は、白金であり、その形状は、白金コロイド、白金黒、白金ゾルである。触媒能は粒子の大きさに反比例し、白金コロイド>白金黒>白金海綿の順になる。以下それぞれに関して説明する。 The platinum group element particularly preferably used in the present invention is platinum, and the shape thereof is platinum colloid, platinum black, or platinum sol. Catalytic activity is inversely proportional to the size of the particles, and is in the order of platinum colloid> platinum black> platinum sponge. Each will be described below.
本発明で特に好ましく使用される白金コロイドは、たとえば、(1)ヘキサクロロ白金(IV)酸水溶液の表面にブンゼンバーナーの外炎をあてて還元する、(2)ヘキサクロロ白金(IV)酸水溶液に保護コロイドとしてアスコルビン酸ナトリウム、アラビアゴム或いはゼラチン等を添加し、ヒドラジン等還元剤で還元する、(3)蒸発皿に純水を入れ、冷却しながら、この中に浸した2本の白金線の間にアークを放電するブレディッヒ法等の方法で製造される。ブレディッヒ法で製造した白金コロイドは不安定であるが、コロイド粒子が保護コロイドで被覆されていないので、触媒能が強い。一方、保護コロイドを含むものは、ブレディッヒ法で製造した白金コロイドに比べて触媒能は低いが、安定である。 The platinum colloid particularly preferably used in the present invention is, for example, (1) reduced by applying a Bunsen burner flame to the surface of the hexachloroplatinum (IV) acid aqueous solution, and (2) protected by the hexachloroplatinum (IV) acid aqueous solution. Add sodium ascorbate, gum arabic, or gelatin as a colloid and reduce with a reducing agent such as hydrazine. (3) Put pure water into the evaporating dish and cool it between two platinum wires immersed in it. It is manufactured by a method such as a Bledich method in which an arc is discharged. The platinum colloid produced by the Bredig method is unstable, but the catalytic ability is strong because the colloidal particles are not coated with a protective colloid. On the other hand, those containing protective colloids are stable although their catalytic ability is lower than that of platinum colloids produced by the Bredig method.
同じく、本発明で特に好ましく使用される白金黒は、たとえば、(1)ヘキサクロロ白金(IV)酸の水溶液を加熱し、炭酸ナトリウムで中和し、これを煮沸したギ酸ナトリウム溶液中に注ぐ、(2)塩化白金(IV)或いはヘキサクロロ白金(IV)酸の水溶液に、ホルムアルデヒド水溶液を加え、冷却しながら、水酸化ナトリウム水溶液を徐々に加える等の方法で製造される。さらに、この白金黒を水素気流中で加熱すると白金微粒子が半融して白金海綿となる。 Similarly, platinum black particularly preferably used in the present invention includes, for example, (1) heating an aqueous solution of hexachloroplatinic (IV) acid, neutralizing with sodium carbonate, and pouring it into a boiled sodium formate solution, ( 2) It is produced by a method in which an aqueous formaldehyde solution is added to an aqueous solution of platinum chloride (IV) or hexachloroplatinum (IV) acid, and an aqueous sodium hydroxide solution is gradually added while cooling. Further, when this platinum black is heated in a hydrogen stream, the platinum fine particles are half melted to form a platinum sponge.
従って、上記課題は、下記に記載する手段によって解決することができる。
1.原子状水素を大量に含んでいて酸化還元電位が−400mV〜−600mV、pHが4.5〜8.0の生理食塩水。
Therefore, the above problem can be solved by the means described below.
1. A physiological saline containing a large amount of atomic hydrogen, having a redox potential of -400 mV to -600 mV, and a pH of 4.5 to 8.0.
2.前記1項において、原子状水素の量が、1.5mg/Lである。 2. In the item 1, the amount of atomic hydrogen is 1.5 mg / L.
3.0.9%の塩化ナトリウム水溶液に、注入圧が0.1〜0.95MPa、注入時間が10秒〜10分で水素ガスを注入して分子状水素のバブルを生成する工程、及び分子状水素のバブルと白金族元素を接触させて、分子状水素を活性化させて原子状水素に変換させる工程を含む原子状水素を大量に含んでいて酸化還元電位が−400mV〜−600mV、pHが4.5〜8.0の生理食塩水を製造する方法。 3. A step of generating molecular hydrogen bubbles by injecting hydrogen gas into a 0.9% sodium chloride aqueous solution with an injection pressure of 0.1 to 0.95 MPa and an injection time of 10 seconds to 10 minutes, and molecules A large amount of atomic hydrogen including a step of bringing molecular hydrogen into contact with a platinum group element and bringing it into contact with a platinum group element to convert it into atomic hydrogen, and a redox potential of -400 mV to -600 mV, pH Manufacturing a physiological saline having a pH of 4.5 to 8.0.
4.前記3項において、原子状水素の量が、1.5mg/Lである。 4). In the above item 3, the amount of atomic hydrogen is 1.5 mg / L.
請求項1の発明によれば、生理食塩水が原子状水素を大量に含んでいて酸化還元電位が−400mV〜−600mV、pHが4.5〜8.0であるので、生物適合性(Bio−affinity)がよく、血液内に発生する活性酸素による酸化ストレス度、クレアチニン、血中尿窒素量等を低下することができる。 According to the invention of claim 1, the physiological saline contains a large amount of atomic hydrogen, the oxidation-reduction potential is -400 mV to -600 mV, and the pH is 4.5 to 8.0. -Affinity) is good, and the degree of oxidative stress due to active oxygen generated in blood, creatinine, blood urinary nitrogen amount and the like can be reduced.
請求項2の発明によれば、原子状水素の量が1.5mg/Lであるので、製造後168時間経過後もほぼ製造直後の酸化還元電位を維持することができる。 According to the invention of claim 2, since the amount of atomic hydrogen is 1.5 mg / L, the oxidation-reduction potential immediately after the production can be maintained even after 168 hours have passed since the production.
請求項3の発明によれば、原子状水素を大量に含んでいて酸化還元電位が−400mV〜−600mV、pHが4.5〜8.0の生理食塩水を効率よく、ほぼ100%の再現性をもって製造することができる。 According to the invention of claim 3, physiological saline containing a large amount of atomic hydrogen, having a redox potential of -400 mV to -600 mV, and a pH of 4.5 to 8.0 is efficiently reproduced with almost 100% reproduction. It can be manufactured with good characteristics.
請求項4の発明によれば、原子状水素の量が1.5mg/Lであるので、製造後168時間経過後もほぼ製造直後の酸化還元電位を維持することができる。 According to the invention of claim 4, since the amount of atomic hydrogen is 1.5 mg / L, the oxidation-reduction potential immediately after the production can be maintained even after 168 hours have passed since the production.
以下に、実施例を記載して本発明の効果を明らかにする。 Hereinafter, the effects of the present invention will be clarified by describing examples.
[塩化ナトリウム水溶液の調製]
最終目的の生理食塩水用の塩化ナトリウム水溶液を、日本薬局方に収載に従って、(NaCl:58.44)9gを注射用水(蒸留水)に溶解して全量を1000mLとして調製した。この塩化ナトリウム水溶液のNa+当量は154meq/L、Cl−当量は155meq/Lであった。
[Preparation of aqueous sodium chloride solution]
A final sodium chloride aqueous solution for physiological saline was prepared by dissolving 9 g of (NaCl: 58.44) in water for injection (distilled water) to a total volume of 1000 mL according to the description in the Japanese Pharmacopoeia. This sodium chloride aqueous solution had an Na + equivalent of 154 meq / L and a Cl − equivalent of 155 meq / L.
[生理食塩水の調製]
特許文献2に記載されている水素水製造装置において、触媒を、アルミナに白金コロイドを展着させたものに代えて使用した。5Lの貯留能力がある反応槽に上記の塩化ナトリウム水溶液3Lを封入し、岩谷ガス株式会社製食品衛生法適合品の水素ボンベ(水素:99.99VOL%)から、注入圧0.35MPa、流量0.5L/minで水素ガスを5分間で総量2.5Lの水素を注入して、所期の生理食塩水を調製した。
[Preparation of physiological saline]
In the hydrogen water production apparatus described in Patent Document 2, the catalyst was used in place of the one obtained by spreading platinum colloid on alumina. 3 L of the above sodium chloride aqueous solution is sealed in a reaction tank having a storage capacity of 5 L, and an injection pressure of 0.35 MPa and a flow rate of 0 from a hydrogen cylinder (hydrogen: 99.99 VOL%) conforming to the Food Sanitation Law manufactured by Iwatani Gas Co., Ltd. A total amount of 2.5 L of hydrogen gas was injected at 5 L / min in 5 minutes to prepare the desired physiological saline.
[生理食塩水の容器への密封]
このようにして調製した生理食塩水を、特開2005−901号に記載されている容器、たとえば、最外層が2軸延伸ポリエチレンテレフタレートフィルム(厚さ:12μm)、中間層がアルミ箔(厚さ:9μm)、最内層が特殊ポリエステルフィルム(厚さ:40μm)の3層構造の容量300mLの容積可変型容器(アルミパウチ)に空気が入らないように注意して満杯に充填した。
[Sealing in saline container]
The physiological saline prepared in this manner was used in a container described in JP-A-2005-901, for example, the outermost layer was a biaxially stretched polyethylene terephthalate film (thickness: 12 μm), and the intermediate layer was an aluminum foil (thickness). : 9 μm), and the innermost layer was filled with a special polyester film (thickness: 40 μm) in a three-layer structure with a capacity of 300 mL, which is a variable volume container (aluminum pouch).
[密封生理食塩水の殺菌]
このようにして密封した生理食塩水を、85℃で30分間熱湯中でボイル殺菌した。
[Sterilization of sealed saline]
The physiological saline thus sealed was boil sterilized in hot water at 85 ° C. for 30 minutes.
[生理食塩水の性能測定]
このようにして調製した生理食塩水の酸化還元電位(単位:mV)、pH、溶存水素量、水温(℃)を測定し得た結果を表−1に示す。
[Performance measurement of physiological saline]
Table 1 shows the results obtained by measuring the redox potential (unit: mV), pH, amount of dissolved hydrogen, and water temperature (° C.) of the physiological saline thus prepared.
尚、酸化還元電位の測定には、東亜ディーケーケー工業(株)製「ポータブルORP計RM−20P」(登録商標)を使用した。 For measurement of the oxidation-reduction potential, “Portable ORP Meter RM-20P” (registered trademark) manufactured by Toa DKK Industry Co., Ltd. was used.
pHの測定には、東亜ディーケーケー工業(株)製「ポータブルpH計HM−20P」(登録商標)を使用した。 For the measurement of pH, “Portable pH Meter HM-20P” (registered trademark) manufactured by Toa DKK Industry Co., Ltd. was used.
溶存水素量の測定には、東亜ディーケーケー工業(株)製「DHD1−1型溶存水素計」(登録商標)を使用した。 To measure the amount of dissolved hydrogen, “DHD1-1 type dissolved hydrogen meter” (registered trademark) manufactured by Toa DKK Industry Co., Ltd. was used.
[遊離基消去能力の測定]
1.使用した測定機器
日立製作所製分光光度計
2.使用試薬類
2−1:遊離基の発生源
遊離基モデルとして1,1−ジフェニル−2−ピクリルヒドラジル(DPPH)を使用した。DPPHは、下記の化学式1で示される構造を有する比較的安定な遊離基であるが、他の遊離基と容易に結合するので、熱、放射線等によって生成される遊離基の存在の確認、濃度の決定等に使用されている。本発明では、本発明の遊離基消去機能水が、DPPHが発生する遊離基を消去する能力を測定することにより、遊離基消去能力の目安とした。
1. Measuring equipment used: Hitachi spectrophotometer Reagents used 2-1: Source of free radical 1,1-diphenyl-2-picrylhydrazyl (DPPH) was used as a free radical model. DPPH is a relatively stable free radical having a structure represented by the following chemical formula 1, but easily binds to other free radicals, so the presence of free radicals generated by heat, radiation, etc., concentration It is used to determine In the present invention, the free radical scavenging functional water of the present invention is used as a measure of the free radical scavenging ability by measuring the ability of scavenging free radicals generated by DPPH.
2−2:DPPH溶液の調製
2−2−1:100μM−DPPH(50%エチルアルコール溶液)
DPPH 0.0010gを精秤し、アルミホイルで遮光した50mLメスフラスコに入れた。次いで、99%エタノールを約25mL入れ、溶解させた。完全に溶解した後で、全量を超純水で50mLにした。溶解作業中は、メスフラスコを完全に遮光した。
2−2−2:25μM−DPPH(50%エチルアルコール溶液)
100μM−DPPH溶液(50%エチルアルコール溶液)を3mLとり、9mLの50%エタノールに添加した。
2−3:白金コロイド溶液
白金(Pt)−PVP(ポリビニルピロリドン)コロイド(4.0wt%)を超純水で100倍に希釈した。
2-2: Preparation of DPPH solution 2-2-1: 100 μM-DPPH (50% ethyl alcohol solution)
0.0010 g of DPPH was precisely weighed and placed in a 50 mL volumetric flask that was shielded from light with aluminum foil. Next, about 25 mL of 99% ethanol was added and dissolved. After complete dissolution, the total volume was made up to 50 mL with ultrapure water. During the melting operation, the measuring flask was completely shielded from light.
2-2-2: 25 μM-DPPH (50% ethyl alcohol solution)
3 mL of 100 μM DPPH solution (50% ethyl alcohol solution) was taken and added to 9 mL of 50% ethanol.
2-3: Platinum colloid solution Platinum (Pt) -PVP (polyvinylpyrrolidone) colloid (4.0 wt%) was diluted 100 times with ultrapure water.
[測定方法]
25μM−DPPH溶液2mLと、実施例1で調製した生理食塩水、水道水、超純水を各2mLをボルテックスミキサーを使用して試験管内で混合し、測定15秒前に100倍に希釈したPt−PVPコロイドを10μL入れ、攪拌し、520nmの波長で吸光度を測定した。
[Measuring method]
2 mL of the 25 μM-DPPH solution and 2 mL each of the physiological saline solution, tap water, and ultrapure water prepared in Example 1 were mixed in a test tube using a vortex mixer, and Pt diluted 100 times 15 seconds before measurement. -10 μL of PVP colloid was added and stirred, and the absorbance was measured at a wavelength of 520 nm.
[測定結果]
実施例1、参考例、及び対照例で使用した試験水の520nmにおける吸光度測定結果を表−2に示した。
[Measurement result]
The absorbance measurement results at 520 nm of the test water used in Example 1, Reference Example, and Control Example are shown in Table 2.
[考察]
Pt−PVPコロイド溶液を添加した実施例1の場合、共にPt−PVPコロイド溶液を添加直後に、DPPHラジカルの色である紫色が退色し、ジフェニルピクリルヒドラジンの黄色へ変色した。一方、福山市水道水(上水)及び超純水の場合は、Pt−PVPコロイド溶液を添加直後には、退色せず、約5〜6分後に退色した。数回の実験の結果、2mLの加水素水と10μLのPt−PVPコロイド溶液で、2mLの25μM−DPPH溶液のラジカルを完全に消去できることが確認された。
[Discussion]
In Example 1 to which the Pt-PVP colloid solution was added, immediately after the addition of the Pt-PVP colloid solution, the purple color of the DPPH radical faded and the diphenylpicrylhydrazine changed to yellow. On the other hand, in the case of Fukuyama city tap water (clean water) and ultrapure water, the color did not fade immediately after the addition of the Pt-PVP colloidal solution, but faded after about 5 to 6 minutes. As a result of several experiments, it was confirmed that 2 mL of hydrogenated water and 10 μL of Pt-PVP colloid solution can completely eliminate radicals in 2 mL of 25 μM-DPPH solution.
以上の結果から、実施例1の生理食塩水に吹き込まれた水素は、水中では分子状態で存在しているが、白金コロイドが存在すると、分子状態の水素が活性化され、それが原子状または原子状に近い状態になり、それによりDPPHのラジカルが完全に消去できることが確認された。このことは、前記共立出版株式会社発行「化学大辞典2」による、「活性水素とは、放電、高熱、紫外線により水素分子の安定な共有結合が切れて、原子状水素が生成したため化学反応を起こしやすくなった水素をいう。また、いわゆる発生期状態の水素およびパラジウムやニッケルなど、還元触媒上の水素は原子状またはそれに近い状態にあると考えられ、反応性に富み、これらも広義の活性水素に含まれる。」を検証したことになる。 From the above results, the hydrogen blown into the physiological saline of Example 1 exists in a molecular state in water, but when a platinum colloid exists, the molecular state hydrogen is activated, and it is atomic or It was confirmed that the radicals of DPPH can be completely erased due to the close to atomic state. This is due to the fact that "active hydrogen is a chemical reaction because active hydrogen is generated by atomic hydrogen generation by breaking stable covalent bonds of hydrogen molecules due to discharge, high heat, and ultraviolet rays," published by Kyoritsu Publishing Co., Ltd. Hydrogen that is easily generated, and so-called nascent hydrogen and hydrogen on the reduction catalyst, such as palladium and nickel, are considered to be in an atomic state or a state close to it, and are highly reactive. Included in hydrogen. ”
[IN VIVO TEST1]
実施例で調製した生理食塩水を使用して、活性酸素による酸化ストレス低下度、クレアチニン低下度、血液尿窒素低下度を測定した。
[IN VIVO TEST1]
Using the physiological saline prepared in the Examples, the degree of reduction in oxidative stress due to active oxygen, the degree of reduction in creatinine, and the degree of reduction in blood urine nitrogen were measured.
[酸化ストレス低下度の測定]
血中のヒドロペルオキシドを測定した。即ち、呈色液クロモゲン(N、N−ジエチルパラフェニレンジアミン)が、遊離基により酸化されると無色から赤紫色の陽イオンになるが、この陽イオンを光度計によって計測し、ヒドロペルオキシドを定量測定した。
[Measurement of reduction in oxidative stress]
Blood hydroperoxide was measured. In other words, when the colored liquid chromogen (N, N-diethylparaphenylenediamine) is oxidized by a free radical, it becomes a colorless to reddish purple cation. This cation is measured with a photometer to quantify hydroperoxide. It was measured.
[投与スケジュール]
(1)投与動物群
グループ1:生後6ヶ月、8ケ月、10ケ月、12ヶ月の健康な猫4匹。
グループ2:生後14ヶ月、16ヶ月、18ケ月、20ヶ月の健康な猫4匹。
グループ3:生後36ヶ月、42ヶ月、48ケ月、54ヶ月の健康な猫4匹。
グループ4:生後60ヶ月、66ヶ月、72ケ月、108ヶ月の健康な猫4匹。
[Dosage schedule]
(1) Administration animal group group 1: 4 healthy cats 6 months, 8 months, 10 months and 12 months after birth.
Group 2: Four healthy cats 14 months, 16 months, 18 months, and 20 months old.
Group 3: 4 healthy cats 36 months, 42 months, 48 months, 54 months old.
Group 4: 4 healthy cats 60 months, 66 months, 72 months and 108 months old.
各グループの猫それぞれから採血して、生理食塩水投与前の血中のヒドロペルオキシドを測定した。次いで、実施例1で調製した生理食塩水を1mL/kgの投与量で静脈注射で投与した。静脈投与10分後、採血して血中のヒドロペルオキシドを測定した。生理食塩水投与前と投与後の血中のヒドロペルオキシドのそれぞれの測定値の平均値を取り表−3に記載した。 Blood was collected from each group of cats, and the hydroperoxide in the blood before physiological saline administration was measured. Subsequently, the physiological saline prepared in Example 1 was administered by intravenous injection at a dose of 1 mL / kg. Ten minutes after intravenous administration, blood was collected and the hydroperoxide in the blood was measured. The average value of each measured value of hydroperoxide in blood before and after physiological saline administration was taken and listed in Table-3.
血中のヒドロペルオキシドの測定値は250〜300U.CARRの範囲が正常値とされているが、実施例1の生理食塩水を投与した結果、投与前より約6〜11%低下してことが明らかである。この結果より、本発明の生理食塩水に含まれている原子状水素が、酸化ストレスの低下に顕著に寄与していることが明らかである。 The measured value of hydroperoxide in blood is 250-300 U. Although the range of CARR is a normal value, it is apparent that the physiological saline of Example 1 is administered and is about 6 to 11% lower than before administration. From this result, it is clear that atomic hydrogen contained in the physiological saline of the present invention significantly contributes to the reduction of oxidative stress.
[IN VIVO TEST2]
[血液尿窒素の測定]
実施例1で調製した生理食塩水を使用して、慢性腎不全の猫に対する、生理食塩水の血液尿窒素を測定した。
[IN VIVO TEST2]
[Measurement of blood urine nitrogen]
Using the physiological saline prepared in Example 1, the blood urine nitrogen of physiological saline for cats with chronic renal failure was measured.
健常人血漿の残余窒素のうち約半分9〜18mg/100mLは尿素としての窒素であり、また尿では排泄全窒素量の80%以上を占める。尿素窒素量、特に尿中排泄量は食事中のタンパク含量によって大きく変動する。尿素排泄疾患のある腎疾患では血液中尿素窒素量は増加する。従って、尿窒素量を測定することによって腎臓疾患の軽重の程度を知ることができる。 About half of residual nitrogen in healthy human plasma, 9-18 mg / 100 mL is nitrogen as urea, and urine occupies 80% or more of total excreted nitrogen. The amount of urea nitrogen, especially urinary excretion, varies greatly depending on the protein content in the diet. In kidney disease with urea excretion disease, the amount of urea nitrogen in the blood increases. Therefore, it is possible to know the severity of kidney disease by measuring the amount of urinary nitrogen.
[投与スケジュール]
(1)投与動物群
グループ1:生後6ヶ月、8ケ月、10ケ月、12ヶ月の慢性腎不全の猫4匹。
グループ2:生後14ヶ月、16ヶ月、18ケ月、20ヶ月の慢性腎不全の猫4匹。
グループ3:生後36ヶ月、42ヶ月、48ケ月、54ヶ月の慢性腎不全の猫4匹。
グループ4:生後60ヶ月、66ヶ月、72ケ月、108ヶ月の慢性腎不全の猫4匹。
[Dosage schedule]
(1) Administered animal group group 1: 4 cats with chronic renal failure 6 months, 8 months, 10 months, 12 months old.
Group 2: Four cats with chronic renal failure 14 months, 16 months, 18 months, and 20 months old.
Group 3: 4 cats with chronic renal failure 36 months, 42 months, 48 months, 54 months old.
Group 4: 4 cats with chronic renal failure 60 months, 66 months, 72 months, 108 months old.
各グループの猫それぞれから採血して、生理食塩水投与前の血液尿窒素を測定した。次いで、実施例1で調製した生理食塩水を1mL/kgの投与量で静脈注射で投与した。静脈投与10分後、採血して血液尿窒素を測定した。生理食塩水投与前と投与後の血液尿窒素のそれぞれの測定値の平均値を取り表−4に記載した。 Blood was collected from each group of cats and blood urine nitrogen before physiological saline administration was measured. Subsequently, the physiological saline prepared in Example 1 was administered by intravenous injection at a dose of 1 mL / kg. Ten minutes after intravenous administration, blood was collected and blood urine nitrogen was measured. The average value of each measured value of blood urine nitrogen before and after physiological saline administration was taken and listed in Table-4.
表−4からも明らかなように、実施例1の生理食塩水を投与した結果、血液尿窒素の量が投与前より約70〜80%低下したことが明らかである。この結果より、本発明の生理食塩水に含まれている原子状水素および酸化還元電位の低さが何らかの好影響を与えていることが推断される。 As is clear from Table-4, it is clear that the amount of blood urine nitrogen was reduced by about 70 to 80% as compared to the pre-administration as a result of administration of the physiological saline of Example 1. From this result, it can be inferred that the atomic hydrogen contained in the physiological saline of the present invention and the low redox potential have some positive effects.
[IN VIVO TEST3]
[クレアチニンの測定]
実施例1で調製した生理食塩水を使用して、慢性腎不全の猫に対する、クレアチニンを測定した。
[IN VIVO TEST3]
[Measurement of creatinine]
Using the physiological saline prepared in Example 1, creatinine was measured for cats with chronic renal failure.
クレアチニンは、生体内ではクレアチンの生理的代謝物として尿中に含まれる。クレアチンは生体内でアルギニン、グリシン、メチオニンから合成され、筋肉中に多く(全体の98%)、大部分はクレアチリン酸として存在し、筋肉収縮のためのエネルギー貯蔵の役割を果たしている。血中にも僅かに存在する。健康男子尿にほとんど現れないが、婦人、子供の尿中に僅かに出現する。従って、尿中のクレアチニンの量が少なければすくないほど健康状態に近いということが言える。 Creatinine is contained in urine as a physiological metabolite of creatine in vivo. Creatine is synthesized in vivo from arginine, glycine, and methionine, and is abundant in muscle (98% of the whole) and mostly exists as creatylic acid, and plays a role of energy storage for muscle contraction. Slightly present in blood. It hardly appears in healthy male urine, but it appears slightly in the urine of women and children. Therefore, it can be said that the smaller the amount of creatinine in the urine, the closer it is to a healthy state.
[投与スケジュール]
(1)投与動物群
グループ1:生後6ヶ月、8ケ月、10ケ月、12ヶ月の慢性腎不全の猫4匹。
グループ2:生後14ヶ月、16ヶ月、18ケ月、20ヶ月の慢性腎不全の猫4匹。
グループ3:生後36ヶ月、42ヶ月、48ケ月、54ヶ月の慢性腎不全の猫4匹。
グループ4:生後60ヶ月、66ヶ月、72ケ月、108ヶ月の慢性腎不全の猫4匹。
[Dosage schedule]
(1) Administered animal group group 1: 4 cats with chronic renal failure 6 months, 8 months, 10 months, 12 months old.
Group 2: Four cats with chronic renal failure 14 months, 16 months, 18 months, and 20 months old.
Group 3: 4 cats with chronic renal failure 36 months, 42 months, 48 months, 54 months old.
Group 4: 4 cats with chronic renal failure 60 months, 66 months, 72 months, 108 months old.
各グループの猫それぞれから採尿して、生理食塩水投与前のクレアチニン量を測定した。次いで、実施例1で調製した生理食塩水を1mL/kgの投与量で静脈注射で投与した。静脈投与10分後、採尿してクレアチニン量を測定した。生理食塩水投与前と投与後のクレアチニン量の平均値を取り表−5に記載した。 Urine was collected from each group of cats, and the amount of creatinine before physiological saline administration was measured. Subsequently, the physiological saline prepared in Example 1 was administered by intravenous injection at a dose of 1 mL / kg. Ten minutes after intravenous administration, urine was collected to measure the amount of creatinine. The average value of the amount of creatinine before and after physiological saline administration was taken and listed in Table-5.
表−5からも明らかなように、実施例1の生理食塩水を投与した結果、クレアチニンの量が投与前より約19〜30%低下したことが明らかである。この結果より、本発明の生理食塩水に含まれている原子状水素および酸化還元電位の低さが何らかの好影響を与えていることが推断される。 As is clear from Table-5, as a result of administering the physiological saline of Example 1, it is clear that the amount of creatinine was reduced by about 19 to 30% from before administration. From this result, it can be inferred that the atomic hydrogen contained in the physiological saline of the present invention and the low redox potential have some positive effects.
以上説明したように、本発明の生理食塩水は、製造直後は1.315mg/L、168時間経過後は0.747mg/Lという多量の原子状水素を大量に含んでいて、酸化還元電位が−400mV〜−600mV、pHが4.5〜8.0であるので、下記に例示する産業上の利用可能性がある。 As described above, the physiological saline of the present invention contains a large amount of atomic hydrogen of 1.315 mg / L immediately after production and 0.747 mg / L after 168 hours, and has a redox potential. Since −400 mV to −600 mV and pH is 4.5 to 8.0, there is industrial applicability exemplified below.
1.紫外線が生体に照射されると、生体を構成する一部である血管内に存在する水分子に作用して、正負の水分子イオンを発生する。これらのイオンは更に分解してH+、OH−の安定イオンの他に、OH・、H・の遊離基を生成する。反応物質が無い場合は、これらの遊離基の間に、OH・+H・→H2O(水)、H・+H・→H2(水素ガス)、OH・+OH・→H2O2(過酸化水素)のような反応がおこる。ところで、OH・、H・等遊離基は最外殻軌道に不対電子を有しているため、電子のスピンはうち消されずに残る。即ち、スピン角運動がゼロではなく、種々の磁気的性質を示す。たとえば、全ての電子が対をなしている分子は、反磁性を示すが、不対電子をもったものは常磁性を示す。通常、遊離基は、他の不対電子をもったものと電子対を作って結合し安定化しようとするために反応性が大きい。従って、血管内のように、周囲に反応物質が存在する場合には、OH・、H・、H2O2はそれらと反応し、その結果、様々な異常現象を起こす。たとえば、DNAに作用する場合は、脱アミノ、脱水素、塩基結合の分裂、塩基の開裂、糖の酸化、無機リンの遊離等を引き起こし、種々の疾病の原因となる。しかしながら、本発明の生理食塩水を、ヒトを含む哺乳動物に、1mL/kgの投与量を所定の投与スケジュールに従って投与すると、血漿内遊離基を消去し、その結果、活性酸素による酸化ストレス度を低下する。このことは前記ヒドロペルオキシド量の測定により立証された。従って、新規な生理食塩水としての利用可能性がある。 1. When the living body is irradiated with ultraviolet rays, positive and negative water molecule ions are generated by acting on water molecules present in blood vessels that are part of the living body. These ions are then further decomposed H +, OH - in addition to the stable ions, to produce a OH ·, free radicals H ·. When there is no reactant, between these free radicals, OH · + H · → H 2 O (water), H · + H · → H 2 (hydrogen gas), OH · + OH · → H 2 O 2 (excess Reaction such as hydrogen oxide occurs. By the way, OH., H., etc. free radicals have unpaired electrons in the outermost orbital, so that the electron spin remains without being erased. That is, the spin angular motion is not zero and exhibits various magnetic properties. For example, molecules in which all electrons are paired show diamagnetism, while those with unpaired electrons show paramagnetism. Usually, free radicals are highly reactive because they attempt to bind and stabilize electron pairs with other unpaired electrons. Therefore, when there are reactive substances in the surroundings as in the blood vessel, OH., H., H.sub.2O.sub.2 reacts with them, and as a result, various abnormal phenomena occur. For example, when acting on DNA, it causes deamination, dehydrogenation, breakage of base bonds, cleavage of bases, oxidation of sugars, release of inorganic phosphorus, etc., causing various diseases. However, when the physiological saline of the present invention is administered to mammals including humans at a dose of 1 mL / kg according to a predetermined administration schedule, plasma free radicals are eliminated, and as a result, the degree of oxidative stress due to active oxygen is reduced. descend. This was verified by measuring the amount of hydroperoxide. Therefore, it can be used as a new physiological saline.
2.本発明の生理食塩水を、ヒトを含む慢性腎不全の哺乳動物に、1mL/kgの投与量を所定の投与スケジュールに従って投与すると、慢性腎不全の緩和に効果がある。このことは前記血液尿窒素の測定により立証された。従って、新規な生理食塩水としての利用可能性がある。 2. When the physiological saline of the present invention is administered to mammals with chronic renal failure including humans at a dose of 1 mL / kg according to a predetermined administration schedule, it is effective in alleviating chronic renal failure. This was verified by the measurement of blood urine nitrogen. Therefore, it can be used as a new physiological saline.
3.本発明の生理食塩水を、ヒトを含む慢性腎不全の哺乳動物に、1mL/kgの投与量を所定の投与スケジュールに従って投与すると、尿中クレアチニン量を低減する。このことは前記血液尿クレアチニン量の測定により立証された。従って、新規な生理食塩水としての利用可能性がある。
3. When the physiological saline of the present invention is administered at a dose of 1 mL / kg to mammals including chronic renal failure including humans according to a predetermined administration schedule, the amount of urinary creatinine is reduced. This was verified by measuring the blood urine creatinine level. Therefore, it can be used as a new physiological saline.
Claims (4)
The method for producing a physiological saline solution according to claim 3, wherein the amount of atomic hydrogen is 1.5 mg / L.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005267822A JP2007077088A (en) | 2005-09-15 | 2005-09-15 | Physiologic saline and method for production of the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005267822A JP2007077088A (en) | 2005-09-15 | 2005-09-15 | Physiologic saline and method for production of the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007077088A true JP2007077088A (en) | 2007-03-29 |
Family
ID=37937739
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005267822A Pending JP2007077088A (en) | 2005-09-15 | 2005-09-15 | Physiologic saline and method for production of the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007077088A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2023505959A (en) * | 2019-11-25 | 2023-02-14 | デカ・プロダクツ・リミテッド・パートナーシップ | Systems, methods and apparatus for producing and packaging fluids |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003002466A1 (en) * | 2001-06-29 | 2003-01-09 | Miz Co., Ltd. | Method for antioxidation and antioxidative functional water |
WO2005082384A1 (en) * | 2004-02-27 | 2005-09-09 | Nihon Trim Co., Ltd. | Artificial physiological salt solution and process for producing the same |
-
2005
- 2005-09-15 JP JP2005267822A patent/JP2007077088A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003002466A1 (en) * | 2001-06-29 | 2003-01-09 | Miz Co., Ltd. | Method for antioxidation and antioxidative functional water |
WO2005082384A1 (en) * | 2004-02-27 | 2005-09-09 | Nihon Trim Co., Ltd. | Artificial physiological salt solution and process for producing the same |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2023505959A (en) * | 2019-11-25 | 2023-02-14 | デカ・プロダクツ・リミテッド・パートナーシップ | Systems, methods and apparatus for producing and packaging fluids |
JP7423776B2 (en) | 2019-11-25 | 2024-01-29 | デカ・プロダクツ・リミテッド・パートナーシップ | Systems, methods and apparatus for producing and packaging fluids |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4272054B2 (en) | Antioxidant method and antioxidant functional water | |
JP4511361B2 (en) | Method and apparatus for quantitative analysis of dissolved hydrogen concentration in test water | |
JP4653945B2 (en) | Pharmacologically functional water and its use | |
Wang et al. | Employing noble metal–porphyrins to engineer robust and highly active single‐atom nanozymes for targeted catalytic therapy in nasopharyngeal carcinoma | |
WO2006038528A1 (en) | Composition and method for therapy or prevention of mental symptom | |
CN102249041A (en) | Storage container holding water dissolved with active hydrogen molecules amd supply device | |
JP4600889B2 (en) | Method for producing lotion | |
JP2007314496A (en) | Method for producing gel, and gel | |
JP2017196611A (en) | Composite mineralized ceramic materials capable of producing health-active hydrogen water | |
Sun et al. | Nanozymes with Osteochondral Regenerative effects: an overview of mechanisms and recent applications | |
JP4783466B2 (en) | Pharmacologically functional water and its use | |
JP2011190276A (en) | Pharmacologically functional water and use thereof | |
JP2007077088A (en) | Physiologic saline and method for production of the same | |
Makhzoumi et al. | Diabetic ketoacidosis associated with aripiprazole | |
JPS62277325A (en) | Antidote for acetaldehyde | |
IZUMI et al. | Preventive effect of taurine against acute paraquat intoxication in beagles | |
Zhang et al. | A pH/GSH Dual‐Responsive Triple Synergistic Bimetallic Nanocatalyst for Enhanced Tumor Chemodynamic Therapy | |
JP2019210237A (en) | Age-related macular degeneration therapeutic composition containing hydrogen | |
JP2006348010A (en) | Free radical scavenging functional water and method for producing the same | |
Russell | A Study into the Biological Activity and Therapeutic Potential of Molecular Hydrogen and Oxyhydrogen Gases. | |
Mishra et al. | Effect of sulphite on the oxidative metabolism of human neutrophils: studies with lucigenin‐and luminol‐dependent chemiluminescence | |
JP2005021875A (en) | Method for maintaining oxidation-reduction potential of water | |
CN114713259B (en) | Preparation of cobalt carbon nitrogen hollow polyhedral catalyst and application thereof in degradation of emerging pollutants | |
Jefferson et al. | Lithium in psychiatry: a review | |
TW200819389A (en) | Manufacturing method of emergency oxygen apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080812 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20110330 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110906 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20120110 |