JP2007076927A - Method for producing glass preform - Google Patents

Method for producing glass preform Download PDF

Info

Publication number
JP2007076927A
JP2007076927A JP2005263078A JP2005263078A JP2007076927A JP 2007076927 A JP2007076927 A JP 2007076927A JP 2005263078 A JP2005263078 A JP 2005263078A JP 2005263078 A JP2005263078 A JP 2005263078A JP 2007076927 A JP2007076927 A JP 2007076927A
Authority
JP
Japan
Prior art keywords
exhaust
tube
gas
base material
glass base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005263078A
Other languages
Japanese (ja)
Other versions
JP4951906B2 (en
Inventor
Wataru Kikuchi
渉 菊地
Hisatsugu Kasai
久嗣 笠井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2005263078A priority Critical patent/JP4951906B2/en
Publication of JP2007076927A publication Critical patent/JP2007076927A/en
Application granted granted Critical
Publication of JP4951906B2 publication Critical patent/JP4951906B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • C03B37/0146Furnaces therefor, e.g. muffle tubes, furnace linings

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Thermal Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a glass preform where a high temperature exhaust gas can be exhausted without damaging an exhausting line. <P>SOLUTION: The exhausting amount of the high temperature gas is suppressed by initial exhausting from a small-diameter tube 20a (for example, inside diameter of about 10-20 mm) which is one of the two lines when the high temperature exhaust gas is exhausted. After the temperature of the exhaust gas is lowered to some degree, exhausting from a large-diameter tube 20b (for example, inside diameter of about 100-150 mm) starts and then the high temperature exhaust gas can be exhausted without damaging exhausting pipes 28a and 28b, valves 24 and 27, a packing at a connection part and the like. <P>COPYRIGHT: (C)2007,JPO&amp;INPIT

Description

本発明はガラス母材の製造方法に係り、例えば多孔質ガラス微粒子体を加熱して透明化処理を行うためのガラス母材の製造方法に関するものである。   The present invention relates to a method for manufacturing a glass base material, and for example, relates to a method for manufacturing a glass base material for heating a porous glass fine particle to perform a transparent treatment.

従来より、多孔質ガラス微粒子体を加熱して透明化処理するガラス母材の製造方法が知られている(例えば特許文献1参照)。
図3に示すように、このガラス母材の製造装置100では、シード棒101に支持された多孔質ガラス微粒子体102を熱処理するための炉心管103、炉心管103の外周にあって母材を加熱するためのヒータ104およびヒータ104の外周に設けられた断熱材105等を内包する炉体106が設けられている。炉心管103内および/または炉心管103外の炉体(真空容器)106内に不活性ガスを導入および排出する不活性ガス供給口107a、107bおよび不活性ガス排出口108a、108bが設けられており、不活性ガス排出口108a、108bには、自動弁111a、111bを介して真空ポンプ110a、110bが取り付けられている。また、炉体106の側壁は2重構造になっていて、冷却水を通して炉体106を冷却するための水冷ジャケット109が設けられている。なお、炉体106内の温度を測定するための温度センサ112が設けられている。
2. Description of the Related Art Conventionally, a method for producing a glass base material in which a porous glass fine particle body is heated and transparentized is known (see, for example, Patent Document 1).
As shown in FIG. 3, in the glass base material manufacturing apparatus 100, a core tube 103 for heat-treating the porous glass fine particles 102 supported by the seed rod 101, and a base material on the outer periphery of the core tube 103. A heater 104 for heating and a furnace body 106 including a heat insulating material 105 provided on the outer periphery of the heater 104 are provided. Inert gas supply ports 107a and 107b and inert gas discharge ports 108a and 108b for introducing and discharging an inert gas into the furnace core tube 103 and / or a furnace body (vacuum vessel) 106 outside the core tube 103 are provided. In addition, vacuum pumps 110a and 110b are attached to the inert gas discharge ports 108a and 108b via automatic valves 111a and 111b. Further, the side wall of the furnace body 106 has a double structure, and a water cooling jacket 109 for cooling the furnace body 106 through cooling water is provided. A temperature sensor 112 for measuring the temperature in the furnace body 106 is provided.

従って、炉心管103内部に納められた多孔質ガラス微粒子体102は、炉心管103内部および炉体106内部が真空または減圧状態にされてヒータ104により加熱され、透明化される。そして、透明化処理後は、不活性ガス供給口107a、107bから炉心管内および/または炉心管外の炉体106内に不活性ガスを導入し、炉心管103内および/または炉心管103外の炉体106内の圧力を上昇させた状態で冷却する
特開平11−35329号公報(図1)
Therefore, the porous glass fine particle body 102 housed in the core tube 103 is heated and made transparent by the inside of the core tube 103 and the furnace body 106 being evacuated or depressurized and heated by the heater 104. Then, after the clearing treatment, an inert gas is introduced into the reactor core tube and / or the furnace body 106 outside the reactor core tube from the inert gas supply ports 107a and 107b, and the reactor core tube 103 and / or the reactor core tube 103 outside. Cooling with the pressure in the furnace body 106 raised
Japanese Patent Laid-Open No. 11-35329 (FIG. 1)

ところで、不活性ガス排出口108a、108bから炉内のガスを排気することにより、加熱時の真空引きや処理後の不活性ガスの排気等を行う際に、排気管が高温にならないように水冷で冷却している。
しかしながら、炉体106内に高温ガスが大量に残留している場合には、排気管に設けた水冷だけでは排気ガスを十分に冷却することができない可能性がある。このため、排気管や排気管に設けられているパッキン、あるいは自動弁111a、111bの弁座パッキン等が破損したり劣化したりして排気ラインにダメージを与える場合がある。
By the way, by exhausting the gas in the furnace from the inert gas outlets 108a and 108b, water cooling is performed so that the exhaust pipe does not reach a high temperature when evacuating the heated gas or exhausting the inert gas after the treatment. Cooling with.
However, when a large amount of high-temperature gas remains in the furnace body 106, the exhaust gas may not be sufficiently cooled only by water cooling provided in the exhaust pipe. For this reason, the exhaust pipe, the packing provided in the exhaust pipe, or the valve seat packing of the automatic valves 111a and 111b may be damaged or deteriorated to cause damage to the exhaust line.

本発明の目的は、排気ラインを損傷させることなく炉内の高温ガスを排気することができるガラス母材の製造方法を提供することにある。   The objective of this invention is providing the manufacturing method of the glass base material which can exhaust the high temperature gas in a furnace, without damaging an exhaust line.

前述した目的を達成するために、本発明にかかるガラス母材の製造方法は、炉体に対し内部のガスを透過する炉心管および加熱手段を内部に含んでガスを密閉可能な炉体を有し、前記炉心管に多孔質ガラス微粒子体を収容し、前記多孔質ガラス微粒子体を前記加熱手段で加熱してガラス母材を製造するガラス母材の製造方法であって、前記炉体内部のガスを排気するために2系統の排気管を設け、前記2系統の排気管の一方を金属製の口径が小さい細管とし、他方を口径が大きい太管とし、前記細管のみを用いて初期段階での排気を行うことにある。   In order to achieve the above-described object, a method for producing a glass base material according to the present invention includes a furnace core tube that allows gas inside to pass through the furnace body and a heating means, and has a furnace body that can seal gas. And a method for producing a glass base material, wherein a porous glass fine particle body is accommodated in the furnace core tube, and the porous glass fine particle body is heated by the heating means to produce a glass base material. In order to exhaust gas, two exhaust pipes are provided, one of the two exhaust pipes is a thin metal pipe having a small diameter, and the other is a thick pipe having a large diameter, and only the narrow pipe is used at an initial stage. There is to exhaust.

このように構成されたガラス母材の製造方法においては、高温の排気ガスを排気する際に、まず初期段階での排気を2系統設けられている排気管のうちの細管(例えば、内径10〜20mm程度)で行うことにより、排気量を抑えて高温の排気ガスの排気を行う。そして、ある程度排気ガス温度が低下したら太管(例えば、内径100〜150mm程度)による排気を開始するようにする。これにより、排気管や弁および接続部のパッキン等を損傷させることなく高温の排気ガスを排気することができることになる。   In the method for manufacturing a glass base material configured as described above, when exhausting high-temperature exhaust gas, first of all, a narrow tube (for example, an inner diameter of 10 to 10) of exhaust pipes provided with two systems of exhaust in the initial stage is first provided. The exhaust gas is exhausted at a high temperature by suppressing the exhaust amount. And if exhaust gas temperature falls to some extent, it will start exhausting by a thick pipe (for example, about 100-150 mm in internal diameter). As a result, the high-temperature exhaust gas can be exhausted without damaging the exhaust pipe, the valve, the packing of the connecting portion, and the like.

また、本発明にかかるガラス母材の製造方法は、炉体に対し内部のガスが気密な炉心管および加熱手段を内部に含んでガスを密閉可能な炉体を有し、前記炉心管に多孔質ガラス微粒子体を収容し、前記多孔質ガラス微粒子体を前記加熱手段で加熱してガラス母材を製造するガラス母材の製造方法であって、前記炉体内部及び炉心管内部のガスを排気するためにそれぞれ2系統の排気管を設け、前記2系統の排気管の一方を金属製の口径が小さい細管とし、他方を口径が大きい太管とし、前記細管のみを用いて初期段階での排気を行うことにある。   The method for producing a glass base material according to the present invention includes a furnace core tube in which an internal gas is airtight with respect to the furnace body, and a furnace body capable of sealing the gas, and the porous core tube is porous. A method for producing a glass base material that contains a porous glass fine particle body and that heats the porous glass fine particle body by the heating means to produce a glass base material, wherein the gas inside the furnace body and the core tube is exhausted In order to achieve this, two exhaust pipes are provided, one of the two exhaust pipes is a thin metal tube with a small diameter, and the other is a thick tube with a large diameter. Is to do.

このように構成されたガラス母材の製造方法においては、高温の排気ガスを排気する際に、まず初期段階での排気をそれぞれ2系統設けられている排気管のうちの細管(例えば、内径10〜20mm程度)で行うことにより、排気量を抑えて高温の排気ガスの排気を行う。そして、ある程度排気ガス温度が低下したら太管(例えば、内径100〜150mm程度)による排気を開始するようにする。これにより、排気管や弁および接続部のパッキン等を損傷させることなく高温の排気ガスを排気することができることになる。   In the method of manufacturing a glass base material configured as described above, when exhausting high-temperature exhaust gas, first of all, a narrow tube (for example, an inner diameter of 10) of exhaust pipes each provided with two systems of exhaust in the initial stage is provided. ˜20 mm), exhaust of high-temperature exhaust gas is performed while suppressing the displacement. And if exhaust gas temperature falls to some extent, it will start exhausting by a thick pipe (for example, about 100-150 mm in internal diameter). As a result, the high-temperature exhaust gas can be exhausted without damaging the exhaust pipe, the valve, the packing of the connecting portion, and the like.

また、本発明にかかるガラス母材の製造方法は、前記細管によりガスの排気を開始した後、ガスの温度を前記細管の外表面に設けた熱電対の温度をもとに推定し、前記熱電対の温度が所定の温度まで降下してから、前記太管によりガスの排気を開始することが望ましい。   Further, in the method for producing a glass base material according to the present invention, after the exhaust of gas is started by the thin tube, the temperature of the gas is estimated based on the temperature of a thermocouple provided on the outer surface of the thin tube, and the thermoelectric It is desirable to start exhausting gas through the large pipe after the temperature of the pair has dropped to a predetermined temperature.

また、本発明にかかるガラス母材の製造方法は、前記細管を、この細管よりも大径の排気管を介して真空ポンプに接続して排気することが望ましい。   Further, in the method for producing a glass base material according to the present invention, it is desirable that the thin tube is exhausted by connecting it to a vacuum pump through an exhaust pipe having a diameter larger than that of the thin tube.

本発明によれば、排気ガスを排気するために2系統の排気管を設け、一方を細管とし他方を太管として、まず細管により少量の高温の排気ガスの排気を行ったので、従来のように、高温の排気ガスを排気することにより排気管や排気管に設けられているパッキン等が破損したり劣化したりするという問題を解消でき、排気管を損傷させることなく高温の排気ガスを排気することができるという効果が得られる。   According to the present invention, two exhaust pipes are provided to exhaust the exhaust gas. One is a narrow pipe and the other is a thick pipe. First, a small amount of high-temperature exhaust gas is exhausted through the narrow pipe. In addition, exhausting high-temperature exhaust gas can solve the problem that the exhaust pipe and packing provided in the exhaust pipe are damaged or deteriorated, and exhaust high-temperature exhaust gas without damaging the exhaust pipe. The effect that it can do is acquired.

以下、本発明に係る実施形態を図面に基づいて詳細に説明する。図1は本発明に係る実施形態のガラス母材の製造装置を示す構成図、図2は排気ガスの温度および真空度の経時変化を示すグラフである。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments according to the present invention will be described in detail with reference to the drawings. FIG. 1 is a block diagram showing an apparatus for producing a glass base material according to an embodiment of the present invention, and FIG. 2 is a graph showing temporal changes in exhaust gas temperature and degree of vacuum.

図1に示すように、本発明の実施形態であるガラス母材の製造装置10は、多孔質ガラス微粒子体11を収容する炉心管12と、この炉心管12を介して多孔質ガラス微粒子体11を加熱する加熱手段としてのヒータ13と、炉心管12およびヒータ13を内部に含んで密閉可能な炉体14とを有している。そして、炉体14内部のガスを排気するために2系統の排気管20a、20bを設け、一方を口径が小さい細管(以下、単に細管ともいう)20aとし他方を口径が大きい太管(以下、単に太管ともいう)20bとして、初期段階での排気は細管20aを用いて行うようにした。細管20aとしては、一例として、内径10〜20mm、太管20bとしては、一例として、内径100〜150mm程度のものを使用する。
なお、炉体14内においては、ヒータ13の外側に断熱材15が設けられている。また、炉心管12内部にはガス供給管16aが接続されており、炉体14内部にはガス供給管16bが接続されている。
As shown in FIG. 1, a glass base material manufacturing apparatus 10 according to an embodiment of the present invention includes a furnace core tube 12 containing a porous glass particulate body 11, and a porous glass particulate body 11 via the furnace core tube 12. And a furnace body 14 that can be hermetically sealed including the core tube 12 and the heater 13 therein. Then, two exhaust pipes 20a and 20b are provided in order to exhaust the gas inside the furnace body 14, one is a small pipe (hereinafter also referred to simply as a thin pipe) 20a, and the other is a large pipe (hereinafter referred to as a thin pipe). The exhaust in the initial stage was performed using the thin tube 20a. As an example, the thin tube 20a has an inner diameter of 10 to 20 mm, and the thick tube 20b has an inner diameter of about 100 to 150 mm.
Note that a heat insulating material 15 is provided outside the heater 13 in the furnace body 14. Further, a gas supply pipe 16 a is connected inside the furnace core tube 12, and a gas supply pipe 16 b is connected inside the furnace body 14.

細管20aは金属製(例えばステンレス製)の管であり、その先端は炉体14を貫通して炉心管12の内部に接続されており、炉心管12内部の高温の排気ガスを排気するようになっている。炉体14の外側面近傍における細管20aの外表面には熱電対21が設けられており、この熱電対21によって細管20aの外側における温度を測定している。細管20aは金属製であるとともに細径であるので、細管20aの外側面における温度を測定して排気ガスの温度とみなすことができる。このように、細管20aの外表面の温度を熱電対21により測定して排気ガスの温度に代替するので、設備コストを下げることができる。   The thin tube 20a is a metal tube (for example, stainless steel tube), and the tip of the tube 20a penetrates the furnace body 14 and is connected to the inside of the core tube 12, so that the high-temperature exhaust gas inside the core tube 12 is exhausted. It has become. A thermocouple 21 is provided on the outer surface of the thin tube 20a in the vicinity of the outer surface of the furnace body 14, and the temperature outside the thin tube 20a is measured by the thermocouple 21. Since the thin tube 20a is made of metal and has a small diameter, the temperature on the outer surface of the thin tube 20a can be measured and regarded as the exhaust gas temperature. Thus, since the temperature of the outer surface of the thin tube 20a is measured by the thermocouple 21 and replaced with the temperature of the exhaust gas, the equipment cost can be reduced.

熱電対21よりも炉体14から遠い側の細管20aには、水冷による冷却手段22が設けられており、炉体14内から排気した高温ガスの温度を下げるようにしている。さらに、細管20aは急激に内径が拡がる大径の排気管としての拡径排気管23に接続されており、排気された高温ガスは拡径排気管23を通過することにより、断熱膨張で温度が低下するようになっている。拡径排気管23は、自動弁24および排気管28aを介して真空ポンプ25に接続されている。従って、真空ポンプ25を常時一定に作動させておき、自動弁24の開閉によって細管20aによる真空引きの量を制御する。   The thin tube 20a farther from the furnace body 14 than the thermocouple 21 is provided with cooling means 22 by water cooling so as to lower the temperature of the hot gas exhausted from the furnace body 14. Further, the thin tube 20a is connected to a large-diameter exhaust pipe 23 as a large-diameter exhaust pipe whose inner diameter abruptly expands. The exhausted high-temperature gas passes through the large-diameter exhaust pipe 23, so that the temperature is increased by adiabatic expansion. It has come to decline. The expanded exhaust pipe 23 is connected to the vacuum pump 25 via an automatic valve 24 and an exhaust pipe 28a. Therefore, the vacuum pump 25 is always operated constantly, and the amount of evacuation by the thin tube 20a is controlled by opening and closing the automatic valve 24.

なお、太管20bの先端も炉体14を貫通して炉心管12の内部に接続されており、水冷による冷却手段26、自動弁27、排気管28bを介して真空ポンプ25に接続されている。真空ポンプ25は一定に作動しているので、細管20aと同様に、自動弁27の開閉によって太管20bによる真空引きの量を制御するようになっている。   The tip of the thick tube 20b is also connected to the inside of the core tube 12 through the furnace body 14, and is connected to the vacuum pump 25 through a cooling means 26 by water cooling, an automatic valve 27, and an exhaust pipe 28b. . Since the vacuum pump 25 operates constantly, the amount of evacuation by the thick tube 20b is controlled by opening and closing the automatic valve 27, as with the thin tube 20a.

また、先端が炉体14内部に接続されている細管30aおよび太管30bをも設けるのが望ましい。この細管30aには、前述した細管20aと同様に、熱電対31、冷却手段32、自動弁33が設けられており、真空ポンプ25に接続されている。また、太管30bには、前述した太管20bと同様に、冷却手段34および自動弁35を介して真空ポンプ25に接続されている。これにより、単時間で炉体14内部の真空引きを行うことができる。本実施形態で記載した細管とは、管28、20b、30bの排気量に対し、管20a、30aの排気量が絶対的に小さいことをいい、太管とは、この逆のことをいう。   It is also desirable to provide a thin tube 30a and a thick tube 30b whose tips are connected to the inside of the furnace body 14. The thin tube 30 a is provided with a thermocouple 31, a cooling means 32, and an automatic valve 33, similar to the thin tube 20 a described above, and is connected to the vacuum pump 25. Further, the thick pipe 30b is connected to the vacuum pump 25 through the cooling means 34 and the automatic valve 35 in the same manner as the thick pipe 20b described above. Thereby, the inside of the furnace body 14 can be evacuated in a single hour. The narrow tube described in the present embodiment means that the exhaust amount of the tubes 20a, 30a is absolutely smaller than the exhaust amount of the tubes 28, 20b, 30b, and the thick tube means the opposite.

次に、図2に基づいて、ガラス母材の製造動作について説明する。
まず、多孔質ガラス微粒子体11を炉心管12に収容し、蓋14aを閉じて炉体14内部を密封する。真空ポンプ25により炉体14内部の空気を排気して真空状態(例えば20Pa程度)とするとともに、ヒータ13により800℃程度に加熱する(時間t1)。その後、ヒータ13により1200℃まで加熱するとともに、ガス供給管16a、16bから不活性ガス(例えば、窒素、ヘリウム)の供給を開始して(時間t2)、炉体14内部の圧力を10万Pa(略大気圧)まで上昇させる。このとき、不活性ガスの注入により温度が一旦下降するが、加熱しながら10万Paの状態を所定時間(例えば260分)維持して脱水を行い、炉体14内部の真空引きを開始する(時間t3)。
Next, the manufacturing operation of the glass base material will be described based on FIG.
First, the porous glass fine particle body 11 is accommodated in the furnace core tube 12, the lid 14a is closed, and the inside of the furnace body 14 is sealed. The air inside the furnace body 14 is exhausted by the vacuum pump 25 to be in a vacuum state (for example, about 20 Pa), and heated to about 800 ° C. by the heater 13 (time t1). Then, while heating to 1200 degreeC with the heater 13, supply of inert gas (for example, nitrogen, helium) is started from gas supply pipe | tube 16a, 16b (time t2), and the pressure inside the furnace body 14 is 100,000 Pa. Increase to (approximately atmospheric pressure). At this time, the temperature once decreases due to the injection of the inert gas, but dehydration is performed while maintaining a state of 100,000 Pa for a predetermined time (for example, 260 minutes) while heating, and evacuation inside the furnace body 14 is started ( Time t3).

この真空引きにおいては、1200℃以上(例えば1300℃)に加熱されている高温の不活性ガス等を排気する際に、高温の不活性ガスにより排気管28a、28bや自動弁24、27のパッキン等の排気ラインにダメージを与えないようにするために、まず細管20aにより炉心管12内部の高温ガスの少量の吸引を開始して徐々に減圧し(時間t3)、炉体14内部の温度が所定の温度(例えば1200℃)まで下降したら太管20bによる大量の排気を開始する(時間t4)。
なお、太管20bによる排気を開始した後は温度を下げる必要がないので、例えば1200℃で維持し、排気が完了して真空状態となったら(時間t5)、再びヒータ13により1500℃まで加熱して、多孔質ガラス微粒子体11の透明化処理を行う。
In this evacuation, when exhausting a high-temperature inert gas heated to 1200 ° C. or higher (for example, 1300 ° C.), packing of exhaust pipes 28a and 28b and automatic valves 24 and 27 is performed by the high-temperature inert gas. In order to avoid damaging the exhaust line, etc., first, a small amount of hot gas inside the core tube 12 is started to be sucked by the thin tube 20a and gradually reduced in pressure (time t3). When the temperature drops to a predetermined temperature (for example, 1200 ° C.), a large amount of exhaust is started by the thick tube 20b (time t4).
Since it is not necessary to lower the temperature after the exhaust through the thick tube 20b is started, the temperature is maintained at 1200 ° C., for example, and when the exhaust is completed and the vacuum state is reached (time t5), the heater 13 is again heated to 1500 ° C. Then, the transparent processing of the porous glass fine particle body 11 is performed.

以上、前述したガラス母材の製造装置10によれば、排気ガスを排気する際に、まず初期段階での排気を2系統の排気管のうちの細管20aで少量ずつ行うことにより、排気量を抑えて高温ガスの排気を行うとともに、ある程度炉体14内部の温度が低下したら太管20bによる大量の排気を開始するようにする。これにより、排気管20a、20bや自動弁24、27等を損傷させることなく高温の排気ガスを排気することができることになる。   As described above, according to the glass base material manufacturing apparatus 10 described above, when exhaust gas is exhausted, first, exhaust in the initial stage is performed little by little in the narrow pipe 20a of the two exhaust pipes, thereby reducing the exhaust amount. The high-temperature gas is exhausted while being suppressed, and a large amount of exhaust by the thick tube 20b is started when the temperature inside the furnace body 14 decreases to some extent. As a result, the high-temperature exhaust gas can be exhausted without damaging the exhaust pipes 20a, 20b, the automatic valves 24, 27, and the like.

なお、本発明のガラス母材の製造方法は、前述した実施形態に限定されるものでなく、適宜な変形,改良等が可能である。
例えば、炉心管12としては、カーボン製、石英製のいずれも用いることができる。炉心管12がカーボン製の場合は、カーボン筒を積み上げているので、炉体に対し内部のガスが透過できる。従って、炉体14の細管30a、太管30bの排気管のみを用いても、炉心管12内のガスが炉体14に透過することができ、炉体14内、炉心管12内のガスを排気できる。また、石英製の炉心管12を用いた場合は、炉体14に対し内部のガスが気密となるため、炉心管12内のガスを排気するために、細管20a、太管20bを用い、炉体14のガスを排気するために細管30a、太管30bを用いる。
また、前述した実施形態において、真空引きする排気ラインである細管20aおよび太管20bを、同じ1個の真空ポンプ25を用いて排気する場合について説明したが、各々別個の真空ポンプ25を用いて真空引きを行うようにすることもできる。
また、前述した製造動作における高温の排気ガスの吸引動作については、炉心管12に接続されている細管20aおよび太管20bを用いた場合について説明したが、炉体14内に接続されている細管30aおよび太管30bが設けられている場合には、細管20aおよび太管20bと同様に制御することができる。
In addition, the manufacturing method of the glass base material of this invention is not limited to embodiment mentioned above, A suitable deformation | transformation, improvement, etc. are possible.
For example, the furnace core tube 12 can be made of either carbon or quartz. In the case where the furnace core tube 12 is made of carbon, carbon tubes are stacked, so that the internal gas can permeate the furnace body. Accordingly, even if only the exhaust pipes of the thin tube 30a and the thick tube 30b of the furnace body 14 are used, the gas in the furnace core tube 12 can permeate the furnace body 14, and the gas in the furnace body 14 and the furnace core tube 12 can be transferred. Can exhaust. Further, when the quartz core tube 12 made of quartz is used, the internal gas becomes airtight with respect to the furnace body 14, and therefore, a thin tube 20 a and a large tube 20 b are used to exhaust the gas in the core tube 12. A narrow tube 30a and a large tube 30b are used to exhaust the gas from the body 14.
Further, in the above-described embodiment, the case where the thin tube 20a and the thick tube 20b, which are exhaust lines to be evacuated, are exhausted using the same single vacuum pump 25, but each using a separate vacuum pump 25 is described. An evacuation may be performed.
Further, the suction operation of the high-temperature exhaust gas in the above-described manufacturing operation has been described for the case where the narrow tube 20a and the large tube 20b connected to the furnace core tube 12 are used, but the narrow tube connected to the furnace body 14 is used. When 30a and the large tube 30b are provided, it can be controlled in the same manner as the thin tube 20a and the large tube 20b.

本発明に係るガラス母材の製造装置の実施形態を示す構成図である。It is a block diagram which shows embodiment of the manufacturing apparatus of the glass base material which concerns on this invention. ガラス母材の製造工程における排気ガスの温度と圧力との関係を示すグラフである。It is a graph which shows the relationship between the temperature and pressure of exhaust gas in the manufacturing process of a glass base material. 従来のガラス母材の製造装置を示す断面図である。It is sectional drawing which shows the manufacturing apparatus of the conventional glass base material.

符号の説明Explanation of symbols

10 ガラス母材の製造装置
11 多孔質ガラス微粒子体
12 炉心管
13 ヒータ(加熱手段)
14 炉体
20a 細管
20b 太管
21 熱電対
23 拡径排気管(大径の排気管)
25 真空ポンプ
DESCRIPTION OF SYMBOLS 10 Glass base material manufacturing apparatus 11 Porous glass particulate body 12 Furnace core tube 13 Heater (heating means)
14 furnace body 20a thin tube 20b large tube 21 thermocouple 23 expanded exhaust pipe (large exhaust pipe)
25 Vacuum pump

Claims (4)

炉体に対し内部のガスを透過する炉心管および加熱手段を内部に含んでガスを密閉可能な炉体を有し、前記炉心管に多孔質ガラス微粒子体を収容し、前記多孔質ガラス微粒子体を前記加熱手段で加熱してガラス母材を製造するガラス母材の製造方法であって、
前記炉体内部のガスを排気するために2系統の排気管を設け、前記2系統の排気管の一方を金属製の口径が小さい細管とし、他方を口径が大きい太管とし、前記細管のみを用いて初期段階での排気を行うことを特徴とするガラス母材の製造方法。
A furnace core tube that allows internal gas to permeate the furnace body and a heating body that contains gas and that can be sealed, and contains the porous glass particulate body in the furnace core tube, and the porous glass particulate body A glass base material manufacturing method for manufacturing a glass base material by heating with the heating means,
In order to exhaust the gas inside the furnace body, two exhaust pipes are provided, one of the two exhaust pipes is a thin tube having a small metal diameter, the other is a thick tube having a large diameter, and only the narrow tube is provided. A method for producing a glass base material, characterized in that exhaust in an initial stage is performed.
炉体に対し内部のガスが気密な炉心管および加熱手段を内部に含んでガスを密閉可能な炉体を有し、前記炉心管に多孔質ガラス微粒子体を収容し、前記多孔質ガラス微粒子体を前記加熱手段で加熱してガラス母材を製造するガラス母材の製造方法であって、
前記炉体内部及び炉心管内部のガスを排気するためにそれぞれ2系統の排気管を設け、前記2系統の排気管の一方を金属製の口径が小さい細管とし、他方を口径が大きい太管とし、前記細管のみを用いて初期段階での排気を行うことを特徴とするガラス母材の製造方法。
A furnace core tube in which an internal gas is hermetically sealed with respect to the furnace body and a furnace body capable of sealing the gas, and containing the porous glass particulate body in the furnace core tube, the porous glass particulate body A glass base material manufacturing method for manufacturing a glass base material by heating with the heating means,
Two exhaust pipes are provided in order to exhaust the gas inside the furnace body and the core tube, and one of the two exhaust pipes is a thin metal tube having a small diameter, and the other is a large pipe having a large diameter. A method for producing a glass base material, characterized in that exhaust is performed at an initial stage using only the thin tubes.
前記細管によりガスの排気を開始した後、ガスの温度を前記細管の外表面に設けた熱電対の温度をもとに推定し、前記熱電対の温度が所定の温度まで降下してから、前記太管によりガスの排気を開始することを特徴とする請求項1又は2に記載のガラス母材の製造方法。   After starting the exhaust of gas by the narrow tube, the temperature of the gas is estimated based on the temperature of the thermocouple provided on the outer surface of the narrow tube, and after the temperature of the thermocouple has dropped to a predetermined temperature, 3. The method for producing a glass base material according to claim 1, wherein exhaust of gas is started by a thick tube. 前記細管を、この細管よりも大径の排気管を介して真空ポンプに接続して排気することを特徴とする請求項1又は2に記載のガラス母材の製造方法。
3. The method for producing a glass base material according to claim 1, wherein the thin tube is exhausted by being connected to a vacuum pump through an exhaust pipe having a diameter larger than that of the thin tube.
JP2005263078A 2005-09-09 2005-09-09 Manufacturing method of glass base material Expired - Fee Related JP4951906B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005263078A JP4951906B2 (en) 2005-09-09 2005-09-09 Manufacturing method of glass base material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005263078A JP4951906B2 (en) 2005-09-09 2005-09-09 Manufacturing method of glass base material

Publications (2)

Publication Number Publication Date
JP2007076927A true JP2007076927A (en) 2007-03-29
JP4951906B2 JP4951906B2 (en) 2012-06-13

Family

ID=37937598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005263078A Expired - Fee Related JP4951906B2 (en) 2005-09-09 2005-09-09 Manufacturing method of glass base material

Country Status (1)

Country Link
JP (1) JP4951906B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102531377A (en) * 2012-01-16 2012-07-04 宁波大学 Equipment and method for preparing micro-structured fiber preform of chalcogenide glass

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05163038A (en) * 1991-12-16 1993-06-29 Sumitomo Electric Ind Ltd Method for heating and clarifying porous preform for optical fiber
JPH06234529A (en) * 1991-07-19 1994-08-23 Sumitomo Electric Ind Ltd Production of glass article
JPH06345469A (en) * 1993-06-08 1994-12-20 Sumitomo Electric Ind Ltd Production of high-purity transparent glass
JPH0985076A (en) * 1995-09-28 1997-03-31 Kokusai Electric Co Ltd Vacuum container exhausting control apparatus
JPH10265235A (en) * 1997-03-26 1998-10-06 Sumitomo Electric Ind Ltd Production of transparent glass preform and apparatus for its production
JP2000271469A (en) * 1999-03-26 2000-10-03 Matsushita Electronics Industry Corp Vacuum treating device
JP2003137584A (en) * 2001-11-01 2003-05-14 Furukawa Electric Co Ltd:The Method and device for heat treatment of optical fiber preform
JP2004210598A (en) * 2003-01-06 2004-07-29 Furukawa Electric Co Ltd:The Apparatus and method for producing optical fiber preform, and optical fiber

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06234529A (en) * 1991-07-19 1994-08-23 Sumitomo Electric Ind Ltd Production of glass article
JPH05163038A (en) * 1991-12-16 1993-06-29 Sumitomo Electric Ind Ltd Method for heating and clarifying porous preform for optical fiber
JPH06345469A (en) * 1993-06-08 1994-12-20 Sumitomo Electric Ind Ltd Production of high-purity transparent glass
JPH0985076A (en) * 1995-09-28 1997-03-31 Kokusai Electric Co Ltd Vacuum container exhausting control apparatus
JPH10265235A (en) * 1997-03-26 1998-10-06 Sumitomo Electric Ind Ltd Production of transparent glass preform and apparatus for its production
JP2000271469A (en) * 1999-03-26 2000-10-03 Matsushita Electronics Industry Corp Vacuum treating device
JP2003137584A (en) * 2001-11-01 2003-05-14 Furukawa Electric Co Ltd:The Method and device for heat treatment of optical fiber preform
JP2004210598A (en) * 2003-01-06 2004-07-29 Furukawa Electric Co Ltd:The Apparatus and method for producing optical fiber preform, and optical fiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102531377A (en) * 2012-01-16 2012-07-04 宁波大学 Equipment and method for preparing micro-structured fiber preform of chalcogenide glass

Also Published As

Publication number Publication date
JP4951906B2 (en) 2012-06-13

Similar Documents

Publication Publication Date Title
TW440955B (en) Oxidation treatment method and apparatus
JPH02245232A (en) High-vacuum apparatus
CN103372559B (en) Boiler tube cleaning method
TW201603160A (en) Substrate processing apparatus
JP2007147327A (en) Air leakage inspection device
JPWO2007111351A1 (en) Manufacturing method of semiconductor device
JP4951906B2 (en) Manufacturing method of glass base material
CN106636586A (en) Vacuum sealing container, vacuum sealing method and vacuum heat treatment method
JP2007131936A (en) Burnout method for vacuum carburizing furnace
KR100980533B1 (en) Atmosphere opening method of processing chamber and recording medium
JPH04306824A (en) Heat treatment device
JP6183965B2 (en) Silicon oxide film, manufacturing method thereof, and silicon oxide film manufacturing apparatus
JP6532360B2 (en) Semiconductor device manufacturing method
JP2018125466A (en) Ozone gas heating mechanism, substrate processing device, and substrate processing method
JP2008214688A (en) Thermal cvd system and film deposition method
JP2002305190A (en) Heat treating apparatus and method for cleaning the same
CN103937943A (en) Thermal treatment furnace vacuum system used in industry
JP3791648B2 (en) High pressure furnace and operating method thereof
CN203758276U (en) Industrial thermal treatment furnace vacuum system
CN208750280U (en) Air inlet pipe and Wafer processing apparatus for Wafer processing apparatus
JP4186763B2 (en) Process tube leak inspection method
JP2765609B2 (en) How to purge bell type coil annealing furnace
JP2019163912A (en) Heat processing device
KR20210151691A (en) Degreasing furnace and method for degreasing
JP2015132500A (en) heat-resistant container

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120227

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees