JP2007076472A - Operation support device for vehicle - Google Patents

Operation support device for vehicle Download PDF

Info

Publication number
JP2007076472A
JP2007076472A JP2005265781A JP2005265781A JP2007076472A JP 2007076472 A JP2007076472 A JP 2007076472A JP 2005265781 A JP2005265781 A JP 2005265781A JP 2005265781 A JP2005265781 A JP 2005265781A JP 2007076472 A JP2007076472 A JP 2007076472A
Authority
JP
Japan
Prior art keywords
vehicle
preceding vehicle
region
deceleration
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005265781A
Other languages
Japanese (ja)
Inventor
Mamoru Sekiguchi
守 関口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP2005265781A priority Critical patent/JP2007076472A/en
Publication of JP2007076472A publication Critical patent/JP2007076472A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Regulating Braking Force (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enable a driver to use the operation support device of a vehicle with a natural feeling under smooth control by continuously reflecting the traveling status of a preceding vehicle on its own vehicle. <P>SOLUTION: In automatic follow-up control in a traveling control unit 5, the region map of the self-vehicle target deceleration arithmetic formula of preceding vehicle deceleration-preceding speed constituted of preliminarily set two regions is referred to, and the self-vehicle target deceleration arithmetic formula of the region to which the deceleration and speed of the current preceding vehicle are belonging is selected, and the self-vehicle target deceleration is calculated by the selected self-vehicle target deceleration arithmetic formula, and automatic brake control(including follow-up stop control) or automatic acceleration control(including follow-up start control) or the like is performed. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ステレオカメラ、単眼カメラ、ミリ波レーダ等で検出した自車両前方の先行車に対して自動追従制御を行う車両の運転支援装置に関する。   The present invention relates to a vehicle driving support device that performs automatic tracking control on a preceding vehicle ahead of the host vehicle detected by a stereo camera, a monocular camera, a millimeter wave radar, or the like.

近年、車載したカメラ等により前方の走行環境を検出し、この走行環境データから先行車を検出して、この先行車に対する追従走行制御や、先行車との車間距離等を一定以上に保つ走行制御装置が開発され、実用化されている。   In recent years, an on-board camera or the like detects the driving environment ahead, detects the preceding vehicle from the driving environment data, and follows the driving control for the preceding vehicle and the driving control for maintaining the distance between the preceding vehicle and the like above a certain level. Equipment has been developed and put into practical use.

例えば、特開2002−127781号公報では、車間距離及び自車速に基づき自車両が先行車の現在位置に到達するまでの時間差である車間時間を演算し、演算した車間時間を予め定めた目標車間時間(一定値)に保持すべく電子スロットル及びブレーキアクチュエータを制御する技術が開示されている。このとき、先行車の減速度の大きさが、第1の規定値以上になった場合は、所定の補正値を目標車間時間に加えて補正車間時間とし、この補正車間時間を目標として加減速制御する。
特開2002−127781号公報
For example, in Japanese Patent Application Laid-Open No. 2002-127781, the inter-vehicle time, which is the time difference until the host vehicle reaches the current position of the preceding vehicle, is calculated based on the inter-vehicle distance and the own vehicle speed. A technique for controlling an electronic throttle and a brake actuator to maintain time (a constant value) is disclosed. At this time, if the magnitude of the deceleration of the preceding vehicle exceeds the first specified value, a predetermined correction value is added to the target inter-vehicle time as the corrected inter-vehicle time, and acceleration / deceleration is performed using this corrected inter-vehicle time as a target. Control.
JP 2002-127781 A

しかしながら、上述の特許文献1のように目標車間時間を補正して制御する技術では、先行車の運転の影響を自車両も受けてしまい、例えば、先行車が急減速をした後、緩やかな減速を行うと、自車両も同様に制御されてしまう。このため、本来、先行車との車間距離を適切に保ちながら緩やかに減速することが好ましいのにもかかわらず、この補正で切り替わる部分での自車両の運転が円滑に行われずに不連続となり、不自然な感覚が生じてしまうという問題がある。   However, in the technique of correcting and controlling the target inter-vehicle time as in Patent Document 1 described above, the host vehicle is also affected by the driving of the preceding vehicle. For example, after the preceding vehicle suddenly decelerates, the vehicle gradually decelerates. If it performs, the own vehicle will also be controlled similarly. For this reason, although it is originally preferable to moderately decelerate while maintaining an appropriate inter-vehicle distance with the preceding vehicle, the operation of the vehicle at the portion switched by this correction is not smoothly performed and becomes discontinuous, There is a problem that an unnatural feeling is generated.

本発明は上記事情に鑑みてなされたもので、先行車の走行状態を連続的に自車両に反映し、円滑な制御によりドライバが自然な感覚で利用できる車両の運転支援装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and it is intended to provide a driving support device for a vehicle that continuously reflects the traveling state of a preceding vehicle on the host vehicle and can be used by a driver with a natural sense through smooth control. Objective.

本発明は、自車両の走行情報を検出する自車走行情報検出手段と、先行車を認識し、先行車情報を検出する先行車情報検出手段と、予め設定しておいた複数の演算式の中から、検出した先行車の走行状態に応じて自車両の目標とする減速度を演算する演算式を選択し、該選択した演算式に上記自車両の走行情報と上記先行車情報を代入して目標とする減速度を演算する目標減速度演算手段と、上記目標とする減速度に基づき加減速制御する加減速制御手段とを備え、上記複数の演算式は、上記現在の先行車の車速と減速度に応じて形成した領域毎に設定され、現在の領域から異なる領域に移行する場合と、上記異なる領域から上記現在の領域に移行する場合のそれぞれにヒステリシス特性を持たせたことを特徴としている。   The present invention includes a host vehicle traveling information detecting unit that detects traveling information of the host vehicle, a preceding vehicle information detecting unit that recognizes a preceding vehicle and detects preceding vehicle information, and a plurality of preset arithmetic expressions. The calculation formula for calculating the target deceleration of the host vehicle is selected from among the detected driving conditions of the preceding vehicle, and the driving information of the host vehicle and the preceding vehicle information are substituted into the selected calculation formula. Target deceleration calculation means for calculating the target deceleration, and acceleration / deceleration control means for controlling acceleration / deceleration based on the target deceleration, wherein the plurality of calculation formulas represent the vehicle speed of the current preceding vehicle. It is set for each area formed according to the deceleration and has a hysteresis characteristic in each of the case where the current area is shifted to the different area and the case where the different area is shifted to the current area. It is said.

本発明による車両の運転支援装置は、先行車の走行状態を連続的に自車両に反映し、円滑な制御によりドライバが自然な感覚で利用することが可能となる。   The vehicle driving support device according to the present invention continuously reflects the traveling state of the preceding vehicle on the host vehicle, and the driver can use it with a natural feeling through smooth control.

以下、図面に基づいて本発明の実施の形態を説明する。
図1乃至図6は本発明の実施の一形態を示し、図1は車両に搭載した運転支援装置の概略構成図、図2は自動追従制御プログラムのフローチャート、図3は先行車減速度−先行車速の自車目標減速度演算式の領域マップの説明図、図4は図3とは異なる例の先行車減速度−先行車速の自車目標減速度演算式の領域マップの説明図、図5は図3及び図4とは異なる例の先行車減速度−先行車速の自車目標減速度演算式の領域マップの説明図、図6は数式において用いるパラメータの説明図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1 to 6 show an embodiment of the present invention, FIG. 1 is a schematic configuration diagram of a driving support device mounted on a vehicle, FIG. 2 is a flowchart of an automatic tracking control program, and FIG. FIG. 4 is an explanatory diagram of an area map of the vehicle target deceleration calculation formula of the vehicle speed, FIG. 4 is an explanatory diagram of an area map of the preceding vehicle deceleration-preceding vehicle speed deceleration calculation formula of an example different from FIG. FIG. 6 is an explanatory diagram of an area map of a target vehicle deceleration calculation formula of preceding vehicle deceleration-preceding vehicle speed in an example different from FIGS. 3 and 4, and FIG. 6 is an explanatory diagram of parameters used in the formula.

図1において、符号1は自動車等の車両(自車両)で、この車両1には、車両用運転支援装置の一例としてのクルーズコントロールシステム(ACC(Adaptive Cruise Control)システム)2が搭載されている。   In FIG. 1, reference numeral 1 denotes a vehicle such as an automobile (own vehicle). The vehicle 1 is equipped with a cruise control system (ACC (Adaptive Cruise Control) system) 2 as an example of a vehicle driving support device. .

このACCシステム2は、ステレオカメラ3、ステレオ画像認識装置4、走行制御ユニット5等を有して主要に構成され、このACCシステム2では、基本的に、先行車が存在しない定速走行制御状態のときにはドライバが設定した車速を保持した状態で走行し、先行車が存在する場合には、後述の図2の自動追従制御プログラムにより制御される。   The ACC system 2 mainly includes a stereo camera 3, a stereo image recognition device 4, a travel control unit 5, and the like. In the ACC system 2, basically, a constant speed travel control state in which no preceding vehicle exists. In this case, the vehicle travels while maintaining the vehicle speed set by the driver. When there is a preceding vehicle, the vehicle is controlled by an automatic follow-up control program shown in FIG.

この自動追従制御プログラムは、詳細は後述するが、予め設定した2つの領域からなる先行車減速度af−先行車速Vfの自車目標減速度演算式の領域マップを参照し、現在の先行車の減速度afと速度Vfが属する領域の自車目標減速度演算式を選択し、この選択した自車目標減速度演算式により自車目標減速度aを演算して、自動ブレーキ制御(追従停止制御も含む)や自動加速制御(追従発進制御も含む)等を行うものである。この自動追従制御プログラムは、走行制御ユニット5にて実行されるものであり、従って、走行制御ユニット5は目標減速度演算手段及び加減速制御手段としての機能を備えて構成されるものである。   As will be described in detail later, this automatic tracking control program refers to an area map of a target vehicle deceleration calculation formula of preceding vehicle deceleration af−preceding vehicle speed Vf, which is composed of two preset areas, and The target vehicle deceleration calculation formula in the region to which the deceleration af and the speed Vf belong is selected, the target vehicle deceleration a is calculated using the selected target vehicle deceleration calculation formula, and automatic brake control (follow-up stop control) is performed. And automatic acceleration control (including follow-up start control) and the like. The automatic follow-up control program is executed by the traveling control unit 5, and therefore the traveling control unit 5 is configured to have functions as target deceleration calculation means and acceleration / deceleration control means.

ステレオカメラ3は、ステレオ光学系として例えば電荷結合素子(CCD)等の個体撮像素子を用いた1組の(左右の)CCDカメラで構成され、これら左右のCCDカメラは、それぞれ車室内の天井前方に一定の間隔をもって取り付けられ、車外の対象を異なる視点からステレオ撮像し、ステレオ画像認識装置4に出力される。   The stereo camera 3 is composed of a pair of (left and right) CCD cameras using a solid-state image pickup device such as a charge coupled device (CCD) as a stereo optical system. Are attached at regular intervals, and an object outside the vehicle is imaged in stereo from different viewpoints and output to the stereo image recognition device 4.

また、自車両1には、自車走行情報検出手段としての、自車速V0を検出する車速センサ6が設けられており、この自車速V0は、ステレオ画像認識装置4と走行制御ユニット5とに出力される。更に、自車両1のブレーキスイッチ7からのブレーキペダルのON−OFF信号は、走行制御ユニット5に入力される。   In addition, the host vehicle 1 is provided with a vehicle speed sensor 6 that detects the host vehicle speed V0 as a host vehicle travel information detection unit. The host vehicle speed V0 is transmitted to the stereo image recognition device 4 and the travel control unit 5. Is output. Furthermore, the brake pedal ON / OFF signal from the brake switch 7 of the host vehicle 1 is input to the travel control unit 5.

ステレオ画像認識装置4は、ステレオカメラ3からの画像、車速センサ6からの自車速V0が入力され、ステレオカメラ3からの画像に基づき自車両1前方の立体物データと白線データの前方情報を検出し、自車両1の進行路(自車進行路)を推定する。そして、自車両1前方の先行車を抽出して、先行車距離(車間距離)L、先行車速((車間距離Lの変化量)+(自車速V0))Vf、先行車減速度(先行車速Vfの微分値)af、先行車以外の静止物位置、白線座標、白線認識距離、自車進行路座標等の各データを走行制御ユニット5に出力する。   The stereo image recognition device 4 receives the image from the stereo camera 3 and the vehicle speed V0 from the vehicle speed sensor 6 and detects the front information of the three-dimensional object data and the white line data ahead of the vehicle 1 based on the image from the stereo camera 3. Then, the traveling path of the host vehicle 1 (the host vehicle traveling path) is estimated. Then, the preceding vehicle ahead of the host vehicle 1 is extracted, the preceding vehicle distance (inter-vehicle distance) L, the preceding vehicle speed ((change amount of the inter-vehicle distance L) + (own vehicle speed V0)) Vf, the preceding vehicle deceleration (preceding vehicle speed). Each data such as the differential value of Vf) af, the position of a stationary object other than the preceding vehicle, the white line coordinates, the white line recognition distance, and the own vehicle traveling path coordinates is output to the travel control unit 5.

ここで、ステレオ画像認識装置4における、ステレオカメラ3からの画像の処理は、例えば以下のように行われる。まず、ステレオカメラ3のCCDカメラで撮像した自車両1の進行方向の環境の1組のステレオ画像対に対し、対応する位置のずれ量から三角測量の原理によって距離情報を生成する。そして、この距離情報を基に、周知のグルーピング処理や、予め記憶しておいた三次元的な道路形状データ、立体物データ等と比較し、白線データ、道路に沿って存在するガードレール、縁石等の側壁データ、車両等の立体物データを抽出する。立体物データでは、立体物までの距離と、この距離の時間的変化(自車両1に対する相対速度)が求められ、特に自車進行路上にあるもっとも近い車両で、自車両1と略同じ方向に所定の速度(例えば、0km/h以上)で走行するものが先行車として抽出される。尚、先行車の中で速度Vfが略0km/hである車両は、停止した先行車として認識される。このように、ステレオカメラ3及びステレオ画像認識装置4は、先行車情報検出手段として設けられている。   Here, the processing of the image from the stereo camera 3 in the stereo image recognition device 4 is performed as follows, for example. First, distance information is generated on the basis of the principle of triangulation from a pair of stereo image pairs captured in the traveling direction environment of the host vehicle 1 captured by the CCD camera of the stereo camera 3 from the corresponding positional deviation amount. And based on this distance information, compared with well-known grouping processing and pre-stored three-dimensional road shape data, solid object data, etc., white line data, guardrails, curbs, etc. existing along the road Side wall data and three-dimensional object data such as vehicles are extracted. In the three-dimensional object data, a distance to the three-dimensional object and a temporal change (relative speed with respect to the own vehicle 1) of this distance are obtained. In particular, in the closest vehicle on the own vehicle traveling path, in the substantially same direction as the own vehicle 1. A vehicle traveling at a predetermined speed (for example, 0 km / h or more) is extracted as a preceding vehicle. Of the preceding vehicles, a vehicle having a speed Vf of approximately 0 km / h is recognized as a stopped preceding vehicle. Thus, the stereo camera 3 and the stereo image recognition device 4 are provided as preceding vehicle information detection means.

走行制御ユニット5は、ドライバの操作入力によって設定される走行速度を維持するよう定速走行制御を行う定速走行制御の機能、及び、後述の図2に示す自動追従制御の機能を実現するもので、ステアリングコラムの側部等に設けられた定速走行操作レバーに連結される複数のスイッチ類で構成された定速走行スイッチ8、ステレオ画像認識装置4、車速センサ6、ブレーキスイッチ7等が接続されている。   The traveling control unit 5 realizes a constant speed traveling control function for performing constant speed traveling control so as to maintain a traveling speed set by a driver's operation input, and an automatic tracking control function shown in FIG. Thus, there are a constant speed travel switch 8, a stereo image recognition device 4, a vehicle speed sensor 6, a brake switch 7 and the like composed of a plurality of switches connected to a constant speed travel operation lever provided on the side of the steering column. It is connected.

定速走行スイッチ8は、定速走行時の目標車速を設定する車速セットスイッチ、主に目標車速を下降側へ変更設定するコーストスイッチ、主に目標車速を上昇側へ変更設定するリジュームスイッチ等で構成されている。更に、この定速走行操作レバーの近傍には、定速走行制御及び自動追従制御のON/OFFを行うメインスイッチ(図示せず)が配設されている。   The constant speed travel switch 8 is a vehicle speed set switch for setting the target vehicle speed during constant speed travel, a coast switch for mainly changing the target vehicle speed to the lower side, a resume switch for changing the target vehicle speed to the upper side, etc. It is configured. Further, a main switch (not shown) for turning ON / OFF constant speed traveling control and automatic tracking control is disposed in the vicinity of the constant speed traveling operation lever.

ドライバが図示しないメインスイッチをONし、定速走行操作レバーにより、希望する車速をセットすると、定速走行スイッチ8からの信号が走行制御ユニット5に入力される。そして、車速センサ6で検出した車速が、ドライバのセットした設定車速に収束するように、スロットル弁制御装置9に信号出力してスロットル弁10の開度をフィードバック制御し、自車両1を定速状態で自動的に走行させ、或いは、自動ブレーキ制御装置11に減速信号を出力して自動ブレーキを作動させる。   When the driver turns on a main switch (not shown) and sets a desired vehicle speed by means of a constant speed traveling operation lever, a signal from the constant speed traveling switch 8 is input to the traveling control unit 5. Then, the vehicle speed detected by the vehicle speed sensor 6 is output as a signal to the throttle valve control device 9 so that the vehicle speed detected by the driver converges to the set vehicle speed set by the driver, and the opening degree of the throttle valve 10 is feedback-controlled. The vehicle is automatically driven in a state, or a deceleration signal is output to the automatic brake control device 11 to activate the automatic brake.

また、走行制御ユニット5は、定速走行制御を行っている際に、ステレオ画像認識装置4にて先行車を認識した場合には、所定の条件で後述する自動追従制御へ自動的に切り換えられる。尚、定速走行制御の機能、及び、自動追従制御の機能は、ドライバがブレーキを踏んだ場合や、自車速V0が予め設定しておいた上限値を超える場合、或いは、メインスイッチがOFFされた場合には、解除される。   Further, when the traveling control unit 5 performs constant speed traveling control and recognizes a preceding vehicle by the stereo image recognition device 4, the traveling control unit 5 is automatically switched to automatic tracking control described later under a predetermined condition. . The constant speed traveling control function and the automatic tracking control function are used when the driver steps on the brake, when the vehicle speed V0 exceeds a preset upper limit value, or the main switch is turned off. If it is canceled, it is canceled.

すなわち、走行制御ユニット5における自動追従制御プログラムは、図2に示すように、まず、ステップ(以下、「S」と略称)101で必要パラメータの読み込みを行い、S102に進み、演算式選択フラグFaを参照する。この演算式選択フラグFaは、前回、先行車の走行状態(減速度af、車速Vf)によって後述する第1の演算式が選択されている場合には「1」がセットされ、後述する第2の演算式が選択されている場合には「2」がセットされるフラグである。   That is, as shown in FIG. 2, the automatic tracking control program in the traveling control unit 5 first reads the necessary parameters in step (hereinafter abbreviated as “S”) 101, proceeds to S102, and selects the arithmetic expression selection flag Fa. Refer to This arithmetic expression selection flag Fa is set to “1” when a first arithmetic expression described later is selected last time according to the traveling state (deceleration af, vehicle speed Vf) of the preceding vehicle, and is set to a second described later. This flag is set when “2” is selected.

ここで、本実施の形態において、予め設定した2つの領域からなる先行車減速度af−先行車速Vfの自車目標減速度演算式の領域マップと、それぞれの領域に設定される演算式(第1の演算式及び第2の演算式)について説明する。   Here, in the present embodiment, the area map of the target vehicle deceleration calculation formula of preceding vehicle deceleration af−preceding vehicle speed Vf consisting of two regions set in advance, and the calculation formulas (first operation) set in the respective regions. 1 and 2) will be described.

先行車減速度af−先行車速Vfの自車目標減速度演算式の領域とは、例えば、図3(a)に示すように、先行車の減速度afと速度Vfとの関係において、Vf=1.0・afを境界線Tthとし、上側の領域(先行車の車速Vfが高いが減速度afが小さい領域)が第1の演算式を選択する第1の領域として設定され、下側の領域(先行車の車速Vfが低いが減速度afが高い領域)が第2の演算式を選択する第2の領域として予め設定されている。   For example, as shown in FIG. 3A, the region of the own vehicle target deceleration calculation formula of preceding vehicle deceleration af−preceding vehicle speed Vf is Vf = Vf = 1.0 · af is defined as the boundary line Tth, and the upper region (the region where the vehicle speed Vf of the preceding vehicle is high but the deceleration af is small) is set as the first region for selecting the first arithmetic expression. The region (region where the vehicle speed Vf of the preceding vehicle is low but the deceleration af is high) is set in advance as a second region for selecting the second arithmetic expression.

そして、第1の演算式とは、先行車が走行を継続することを前提に自車両が予め設定した車間距離を先行車に対し維持して追従走行するための演算式であり、自車両1と先行車とが、図6に示すような関係、すなわち、現在、自車速V0、自車減速度a0、先行車速Vf、先行車減速度af、車間距離Lである状態が、t秒後に、自車両1が距離Ls前進し、先行車が先行車予測位置まで距離Lf前進し、自車両1との車間距離が目標車間距離Dtgt(マップ或いは演算により設定される距離)となるとすると、以下の(1)式が成立する。
L+Lf=Ls+Dtgt …(1)
ここで、
Lf=Vf・t−(1/2)・af・t …(2)
Ls=V0・t−(1/2)・a0・t …(3)
であるから、これら(2)式、(3)式を、上述の(1)式に代入し、tを削除してa0について解き、このa0を自車両1の目標減速度aとすると、以下の(4)式を得る。
a=af+((V0−Vf)/(L−Dtgt)) …(4)
従って、この(4)式が、第1の領域における第1の演算式として定められている。
The first arithmetic expression is an arithmetic expression for following the vehicle while maintaining the distance between the vehicles set in advance with respect to the preceding vehicle on the assumption that the preceding vehicle continues to travel. 6 and the preceding vehicle are in the relationship shown in FIG. 6, that is, the current vehicle speed V0, the own vehicle deceleration a0, the preceding vehicle speed Vf, the preceding vehicle deceleration af, and the inter-vehicle distance L after t seconds. When the host vehicle 1 moves forward by a distance Ls, the preceding vehicle moves forward by a distance Lf to the preceding vehicle predicted position, and the inter-vehicle distance from the host vehicle 1 becomes a target inter-vehicle distance Dtgt (a distance set by a map or calculation), (1) Formula is materialized.
L + Lf = Ls + Dtgt (1)
here,
Lf = Vf · t− (1/2) · af · t 2 (2)
Ls = V0 · t− (1/2) · a0 · t 2 (3)
Therefore, substituting these equations (2) and (3) into the above equation (1), deleting t and solving for a0, and assuming that this a0 is the target deceleration a of the host vehicle 1, Equation (4) is obtained.
a = af + ((V0−Vf) 2 / (L−Dtgt)) (4)
Therefore, this equation (4) is defined as the first arithmetic expression in the first region.

同様に、第2の演算式とは、先行車が停止することを前提に自車両1が予め設定する車間距離で先行車に対して追従停止するための演算式であり、図6に示すような関係、すなわち、現在、自車速V0、自車減速度a0、先行車速Vf、先行車減速度af、車間距離Lである状態が、t秒後に、自車両1が距離Ls前進し、先行車が先行車予測位置まで距離Lf前進し、自車両1との車間距離が目標停止車間距離Dstop(一定値:例えば5m)となって停車すると仮定すると、以下の(5)式が成立する。
L+Lf=Ls+Dstop …(5)
ここで、
Lf=Vf/(2・af) …(6)
Ls=V0/(2・a0) …(7)
であるから、これら(6)式、(7)式を、上述の(5)式に代入し、a0について解き、このa0を自車両1の目標減速度aとすると、以下の(8)式を得る。
Similarly, the second arithmetic expression is an arithmetic expression for the vehicle 1 to follow and stop the preceding vehicle at a preset inter-vehicle distance on the assumption that the preceding vehicle stops. As shown in FIG. In other words, the current vehicle speed V0, the own vehicle deceleration a0, the preceding vehicle speed Vf, the preceding vehicle deceleration af, and the inter-vehicle distance L, the host vehicle 1 moves forward by the distance Ls after t seconds, and the preceding vehicle Is assumed to travel forward by a distance Lf to the predicted position of the preceding vehicle, and the distance between the vehicle 1 and the host vehicle 1 becomes the target stop distance Dstop (constant value: 5 m, for example), and the following equation (5) is established.
L + Lf = Ls + Dstop (5)
here,
Lf = Vf 2 / (2 · af) (6)
Ls = V0 2 / (2 · a0) (7)
Therefore, substituting these equations (6) and (7) into the above equation (5), solving for a0, and setting this a0 as the target deceleration a of the host vehicle 1, the following equation (8) Get.

a=(af・V0)/(Vf+2・af・(L−Dstop)) …(8)
従って、この(8)式が、第2の領域における第2の演算式として定められている。尚、上述の全ての減速度は、減速方向の符号を正とする。
a = (af · V0 2 ) / (Vf 2 + 2 · af · (L−Dstop)) (8)
Therefore, this equation (8) is defined as the second arithmetic expression in the second region. Note that all the decelerations described above have a positive sign in the deceleration direction.

また、予め設定した2つの領域からなる先行車減速度af−先行車速度Vfの自車目標減速度演算式の領域マップは、図3(a)の例に限ることは無く、図4(a)に示すような領域マップであっても良く、更に、図5(a)に示すような領域マップであっても良い。   In addition, the area map of the target vehicle deceleration calculation formula of preceding vehicle deceleration af−preceding vehicle speed Vf, which is composed of two preset areas, is not limited to the example of FIG. 3A, and FIG. ), Or an area map as shown in FIG. 5A.

すなわち、図4(a)の領域マップは、先行車速VfがVfc1(例えば35km/h以下の低速)になるまでは、Vf=Vfc1の境界線Tth11とし、それを超える領域は、Vf=1.0・afの境界線Tth12とするものである。そして、これら境界線Tth11、Tth12の上方を第1の領域とし、第1の演算式が設定される領域として定め、下方を第2の領域とし、第2の演算式が設定される領域として定めるのである。   That is, in the region map of FIG. 4A, until the preceding vehicle speed Vf becomes Vfc1 (for example, a low speed of 35 km / h or less), the boundary line Tth11 of Vf = Vfc1 is set, and the region exceeding that is Vf = 1. A boundary line Tth12 of 0 · af is used. Then, above the boundary lines Tth11 and Tth12 is defined as a first area, the first arithmetic expression is set as an area, and the lower area is set as a second area, and the second arithmetic expression is set as an area. It is.

また、図5(a)の領域マップは、先行車速VfがVfc1(例えば35km/h以下の低速)になるまでは、Vf=Vfc1の境界線Tth21とし、Vfc1<Vf≦Vfc2(例えば60km/h)の中低速域では、Vf=1.0・afの境界線Tth22とし、Vfc2<Vf≦Vfc3(例えば100km/h)の中高速では、Vf=1.3・afの境界線Tth23とし、Vfc3<Vfの高速域では、Vf=1.5・afの境界線Tth24とするものである。そして、これら境界線Tth21、Tth22、Tth23、Tth24の上方を第1の領域とし、第1の演算式が設定される領域として定め、下方を第2の領域とし、第2の演算式が設定される領域として定めるのである。更に、これら以外にも、境界線を曲線等で表現して設けても良い。   Further, in the area map of FIG. 5A, until the preceding vehicle speed Vf becomes Vfc1 (for example, a low speed of 35 km / h or less), the boundary line Tth21 of Vf = Vfc1 is used, and Vfc1 <Vf ≦ Vfc2 (for example, 60 km / h). ), The boundary line Tth22 of Vf = 1.0 · af is set in the medium / low speed range, and the boundary line Tth23 of Vf = 1.3 · af is set in the medium / high speed range of Vfc2 <Vf ≦ Vfc3 (for example, 100 km / h). In the high-speed region of <Vf, the boundary line Tth24 of Vf = 1.5 · af is used. Then, above the boundary lines Tth21, Tth22, Tth23, Tth24 is defined as a first area, a first arithmetic expression is set as an area, and a lower area is defined as a second area, and a second arithmetic expression is set. It is determined as an area. In addition to these, the boundary line may be expressed by a curve or the like.

図2のフローチャートのS102の判定の結果、演算式選択フラグFaが「1」であって、前回、第1の演算式が選択されている場合には、S103に進み、第1の領域から第2の領域に遷移するのにヒステリシス特性を持たせるため第1の領域を広げるようにS1だけ境界Tthを下方に移動させて補正設定する。例えば、図3(a)、或いは、図4(a)、或いは、図5(a)のように補正する。   As a result of the determination in S102 of the flowchart of FIG. 2, if the arithmetic expression selection flag Fa is “1” and the first arithmetic expression has been selected last time, the process proceeds to S103, and the first area is changed to the first area. In order to provide a hysteresis characteristic when transitioning to the region 2, correction is set by moving the boundary Tth downward by S1 so as to widen the first region. For example, the correction is performed as shown in FIG. 3 (a), FIG. 4 (a), or FIG. 5 (a).

逆に、S102の判定の結果、演算式選択フラグFaが「2」であって、前回、第2の演算式が選択されている場合には、S104に進み、第2の領域から第1の領域に遷移するのにヒステリシス特性を持たせるため第2の領域を広げるようにS2だけ境界Tthを上方に移動させて補正設定する。例えば、図3(b)、或いは、図4(b)、或いは、図5(b)のように補正する。ここで、ヒステリシスを設ける幅は、S1>S2であり、第1の演算式から第2の演算式への遷移の方が、第2の演算式から第1の演算式への遷移より、し難い特性に設定されている。   On the other hand, as a result of the determination in S102, if the arithmetic expression selection flag Fa is “2” and the second arithmetic expression has been selected last time, the process proceeds to S104, and the first area is selected from the second area. In order to give a hysteresis characteristic when transitioning to a region, the boundary Tth is moved upward by S2 so as to widen the second region, and correction is set. For example, the correction is performed as shown in FIG. 3B, FIG. 4B, or FIG. 5B. Here, the width for providing the hysteresis is S1> S2, and the transition from the first arithmetic expression to the second arithmetic expression is more effective than the transition from the second arithmetic expression to the first arithmetic expression. It is set to difficult characteristics.

S103、或いは、S104でヒステリシスを考慮した領域補正を行った後は、S105に進み、現在の先行車の走行状態(先行車減速度af−先行車速Vf)が第1の領域内か否か判定する。   After performing region correction in consideration of hysteresis in S103 or S104, the process proceeds to S105 to determine whether or not the current traveling state of the preceding vehicle (preceding vehicle deceleration af−preceding vehicle speed Vf) is within the first region. To do.

このS105の判定の結果、現在の先行車の走行状態(先行車減速度af−先行車速Vf)が第1の領域内の場合は、S106に進み、第1の演算式(上述の(4)式)により自車目標減速度aを演算し、S107に進んで、演算式選択フラグFaを「1」とし、S108に進んで、S106で演算した目標減速度aに基づき、スロットル弁制御装置9、或いは、自動ブレーキ制御装置11に指示信号を出力して加減速制御を行わせ、プログラムを抜ける。   As a result of the determination in S105, if the current traveling state of the preceding vehicle (preceding vehicle deceleration af−preceding vehicle speed Vf) is within the first region, the process proceeds to S106, and the first arithmetic expression (the above-mentioned (4) The own vehicle target deceleration a is calculated from the equation (1), the process proceeds to S107, the calculation formula selection flag Fa is set to "1", the process proceeds to S108, and the throttle valve control device 9 is operated based on the target deceleration a calculated in S106. Alternatively, an instruction signal is output to the automatic brake control device 11 to perform acceleration / deceleration control, and the program is exited.

また、S105の判定の結果、現在の先行車の走行状態(先行車減速度af−先行車速Vf)が第2の領域内の場合は、S109に進み、第2の演算式(上述の(8)式)により自車目標減速度aを演算し、S110に進んで、演算式選択フラグFaを「2」とし、S108に進んで、S109で演算した目標減速度aに基づき、スロットル弁制御装置9、或いは、自動ブレーキ制御装置11に指示信号を出力して加減速制御を行わせ、プログラムを抜ける。   Further, if the result of the determination in S105 is that the current traveling state of the preceding vehicle (preceding vehicle deceleration af−preceding vehicle speed Vf) is within the second region, the process proceeds to S109 and the second arithmetic expression ((8 )), The vehicle target deceleration a is calculated, the process proceeds to S110, the calculation formula selection flag Fa is set to "2", the process proceeds to S108, and the throttle valve control device based on the target deceleration a calculated in S109. 9 or output an instruction signal to the automatic brake control device 11 to perform acceleration / deceleration control and exit the program.

このように、本発明の実施の形態によれば、先行車の走行状態に応じて追従走行するための式を切り替えて追従走行制御させるようになっているので、制御が連続的に行われ、円滑な制御によりドライバが自然な感覚で利用することが可能となる。また、領域の設定も、境界線がヒステリシスを考慮して設定されるため、制御がハンチングすることもなく、安定した制御が行えるようになっている。   As described above, according to the embodiment of the present invention, the following traveling control is performed by switching the equation for following traveling according to the traveling state of the preceding vehicle. Smooth control allows the driver to use it with a natural feeling. In addition, since the boundary line is set in consideration of hysteresis, the control can be performed stably without hunting.

尚、本実施の形態では、先行車の認識をステレオカメラからの画像を基に行うようになっているが、他の技術、例えば、ミリ波レーダと単眼カメラからの情報を基に認識するものであっても良い。   In this embodiment, the preceding vehicle is recognized on the basis of the image from the stereo camera. However, other technologies, for example, recognition based on information from the millimeter wave radar and the monocular camera are performed. It may be.

車両に搭載した運転支援装置の概略構成図Schematic configuration diagram of a driving support device mounted on a vehicle 自動追従制御プログラムのフローチャートFlow chart of automatic tracking control program 先行車減速度−先行車速の自車目標減速度演算式の領域マップの説明図Explanation of the area map of the target vehicle deceleration calculation formula for the preceding vehicle deceleration-preceding vehicle speed 図3とは異なる例の先行車減速度−先行車速の自車目標減速度演算式の領域マップの説明図Explanatory drawing of the area | region map of the own vehicle target deceleration calculating formula of the preceding vehicle deceleration-preceding vehicle speed of the example different from FIG. 図3及び図4とは異なる例の先行車減速度−先行車速の自車目標減速度演算式の領域マップの説明図Explanatory drawing of the area | region map of the own vehicle target deceleration calculating formula of the preceding vehicle deceleration-preceding vehicle speed of the example different from FIG. 数式において用いるパラメータの説明図Explanatory diagram of parameters used in mathematical formula

符号の説明Explanation of symbols

1 自車両
2 ACCシステム(運転支援装置)
3 ステレオカメラ(先行車情報検出手段)
4 ステレオ画像認識装置(先行車情報検出手段)
5 走行制御ユニット(目標減速度演算手段、加減速制御手段)
6 車速センサ(自車走行情報検出手段)
9 スロットル弁制御装置
10 スロットル弁
11 自動ブレーキ制御装置
1 Vehicle 2 ACC system (driving support device)
3 Stereo camera (preceding vehicle information detection means)
4 Stereo image recognition device (preceding vehicle information detection means)
5 Travel control unit (target deceleration calculation means, acceleration / deceleration control means)
6 Vehicle speed sensor (own vehicle travel information detection means)
9 Throttle valve control device 10 Throttle valve 11 Automatic brake control device

Claims (2)

自車両の走行情報を検出する自車走行情報検出手段と、
先行車を認識し、先行車情報を検出する先行車情報検出手段と、
予め設定しておいた複数の演算式の中から、検出した先行車の走行状態に応じて自車両の目標とする減速度を演算する演算式を選択し、該選択した演算式に上記自車両の走行情報と上記先行車情報を代入して目標とする減速度を演算する目標減速度演算手段と、
上記目標とする減速度に基づき加減速制御する加減速制御手段とを備え、
上記複数の演算式は、上記現在の先行車の車速と減速度に応じて形成した領域毎に設定され、現在の領域から異なる領域に移行する場合と、上記異なる領域から上記現在の領域に移行する場合のそれぞれにヒステリシス特性を持たせたことを特徴とする車両の運転支援装置。
Own vehicle running information detecting means for detecting running information of the own vehicle;
A preceding vehicle information detecting means for recognizing a preceding vehicle and detecting preceding vehicle information;
An arithmetic expression for calculating a target deceleration of the host vehicle is selected from a plurality of preset arithmetic expressions in accordance with the detected traveling state of the preceding vehicle, and the host vehicle is selected as the selected arithmetic expression. Target deceleration calculation means for calculating the target deceleration by substituting the traveling information of the vehicle and the preceding vehicle information,
Acceleration / deceleration control means for performing acceleration / deceleration control based on the target deceleration,
The plurality of arithmetic expressions are set for each region formed in accordance with the current vehicle speed and deceleration of the preceding vehicle, and the transition from the current region to a different region and the transition from the different region to the current region. A driving support apparatus for a vehicle, characterized in that each has a hysteresis characteristic.
上記複数の演算式は 先行車が走行を継続することを前提に自車両が予め設定した車間距離を上記先行車に対し維持して追従走行するための第1の領域に設定する第1の演算式と、先行車が停止することを前提に自車両が予め設定する車間距離で上記先行車に対して追従停止するための第2の領域に設定する第2の演算式であり、
上記第1の領域から上記第2の領域に移行する場合と、上記第2の領域から上記第1の領域に移行する場合のそれぞれにヒステリシス特性を持たせることを特徴とする請求項1記載の車両の運転支援装置。
The plurality of calculation formulas are: a first calculation for setting a first inter-vehicle distance that is set in advance by the host vehicle to the preceding vehicle on the assumption that the preceding vehicle continues to travel, in the first region for following the vehicle. And a second calculation formula that is set in a second region for following and stopping the preceding vehicle at an inter-vehicle distance that the host vehicle sets in advance on the assumption that the preceding vehicle stops.
The hysteresis characteristic is given to each of the case of shifting from the first region to the second region and the case of shifting from the second region to the first region. Vehicle driving support device.
JP2005265781A 2005-09-13 2005-09-13 Operation support device for vehicle Pending JP2007076472A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005265781A JP2007076472A (en) 2005-09-13 2005-09-13 Operation support device for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005265781A JP2007076472A (en) 2005-09-13 2005-09-13 Operation support device for vehicle

Publications (1)

Publication Number Publication Date
JP2007076472A true JP2007076472A (en) 2007-03-29

Family

ID=37937198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005265781A Pending JP2007076472A (en) 2005-09-13 2005-09-13 Operation support device for vehicle

Country Status (1)

Country Link
JP (1) JP2007076472A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010228644A (en) * 2009-03-27 2010-10-14 Daihatsu Motor Co Ltd Following travel controller
DE102019108555A1 (en) 2018-04-03 2019-10-10 Toyota Jidosha Kabushiki Kaisha Vehicle control device
US11420627B2 (en) 2019-11-07 2022-08-23 Toyota Jidosha Kabushiki Kaisha Driving assistance device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11334554A (en) * 1998-05-29 1999-12-07 Mitsubishi Motors Corp Run controller for vehicle
JP2002029284A (en) * 2000-07-14 2002-01-29 Nissan Motor Co Ltd Follow-up travel control device for vehicle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11334554A (en) * 1998-05-29 1999-12-07 Mitsubishi Motors Corp Run controller for vehicle
JP2002029284A (en) * 2000-07-14 2002-01-29 Nissan Motor Co Ltd Follow-up travel control device for vehicle

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010228644A (en) * 2009-03-27 2010-10-14 Daihatsu Motor Co Ltd Following travel controller
DE102019108555A1 (en) 2018-04-03 2019-10-10 Toyota Jidosha Kabushiki Kaisha Vehicle control device
CN110356375A (en) * 2018-04-03 2019-10-22 丰田自动车株式会社 Controller of vehicle
US10946860B2 (en) 2018-04-03 2021-03-16 Toyota Jidosha Kabushiki Kaisha Vehicle control apparatus
CN110356375B (en) * 2018-04-03 2021-05-04 丰田自动车株式会社 Vehicle control device
US11420627B2 (en) 2019-11-07 2022-08-23 Toyota Jidosha Kabushiki Kaisha Driving assistance device

Similar Documents

Publication Publication Date Title
US8010274B2 (en) Vehicle driving support apparatus with target position arrival determination
JP4021344B2 (en) Vehicle driving support device
JP4037722B2 (en) Outside-of-vehicle monitoring device and travel control device equipped with this out-of-vehicle monitoring device
US7925415B2 (en) Vehicle drive assist system
US7177749B2 (en) Vehicle driving support apparatus
US7630819B2 (en) Vehicle driving support apparatus
JP2006298008A (en) Operation supporting device of vehicle
JP2005186813A (en) Drive assisting device for vehicle
JP6573526B2 (en) Vehicle driving support control device
JP4980030B2 (en) Vehicle travel control device
JP2006327531A (en) Automatic cruising device for vehicle
JP5042496B2 (en) Driving assistance device
US20200241527A1 (en) Vehicle control apparatus
JP2009018727A (en) Vehicular driving support apparatus
JP2019217846A (en) Vehicle control device, vehicle control method, and program
JP4824118B2 (en) Vehicle driving support device
JP2008030539A (en) Operation support device of vehicle
JP5118468B2 (en) Vehicle travel control device.
JP2007076472A (en) Operation support device for vehicle
JP2010228753A (en) Automatic cruising device for vehicle
JP7076492B2 (en) Vehicle control device and vehicle control method
JP2009169535A (en) Driving support device for vehicle
JP4884929B2 (en) Vehicle travel control device
JP2008280012A (en) Driving support device for vehicle
JP4824117B2 (en) Vehicle driving support device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100715

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110509

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111220