JP2007076013A - Laminated film material - Google Patents

Laminated film material Download PDF

Info

Publication number
JP2007076013A
JP2007076013A JP2005263118A JP2005263118A JP2007076013A JP 2007076013 A JP2007076013 A JP 2007076013A JP 2005263118 A JP2005263118 A JP 2005263118A JP 2005263118 A JP2005263118 A JP 2005263118A JP 2007076013 A JP2007076013 A JP 2007076013A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
film material
laminated film
fine particles
inorganic oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005263118A
Other languages
Japanese (ja)
Inventor
Yasue Yamada
耕栄 山田
Ryuhei Saito
隆平 斎藤
Noriaki Ogawa
典昭 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanbo Pras Corp
Original Assignee
Kanbo Pras Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanbo Pras Corp filed Critical Kanbo Pras Corp
Priority to JP2005263118A priority Critical patent/JP2007076013A/en
Publication of JP2007076013A publication Critical patent/JP2007076013A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laminated film material that has no humidity independency, is free from a problem such as the stickiness of a surface, does not cause deterioration in performance in terms of a time lapse, is reduced in color difference between colors of surfaces of the film materials, and superior in both a design property and a charge preventive function, by forming an extremely thin conductive inorganic oxide film on the surface of a well-known film material such as a material for tarpaulin, canvas, a tent, a flexible container, a partition, a mesh sheet and truck hood cloth, and so on. <P>SOLUTION: The laminated film material is constituted such that: a thermoplastic resin layer is formed on at least the single side of cloth; a contamination-proof thermoplastic resin mixed with inorganic oxide particles having conductivity is coated on the surface of the thermoplastic resin layer; and the coating layer has a surface resistance value not larger than 1.0×10<SP>11</SP>Ω/m<SP>2</SP>. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ターポリン、帆布、テント、フレキシブルコンテナー、間仕切り、メッシュシート、トラック幌地などに使用される積層膜材料に関するものである。   The present invention relates to a laminated film material used for tarpaulins, canvases, tents, flexible containers, partitions, mesh sheets, truck hoods, and the like.

一般に、熱可塑性樹脂を材料として作られたシートなどの合成樹脂素材は非常に帯電しやすく、例えば工事用シートあるいは各種間仕切りなどに使用した場合、帯電してごみが付着しやすく、また人体にまとわり付くなどの静電気による問題が発生していた。   In general, a synthetic resin material such as a sheet made of a thermoplastic resin is very easily charged.For example, when it is used for a construction sheet or various partitions, it is easily charged and dust adheres to the human body. There was a problem due to static electricity.

この対策として、熱可塑性樹脂の中に帯電防止剤を混練する方法や、熱可塑性樹脂シートの表面にカーボンブラックをコーティングする方法などが採用されてきた。
熱可塑性樹脂の中に混練する帯電防止剤としては、低分子型であるスルホン酸塩基を有する長鎖アルキル化合物(特許文献1参照)などのような界面活性剤のアニオン系帯電防止剤が知られており、また高分子型の帯電防止剤としては、主鎖にイオン化された窒素元素を有するポリマー(特許文献2および特許文献3参照)や、スルホン酸塩変性ポリスチレン(特許文献4参照)などが知られている。これらの帯電防止剤は経時的に熱可塑性樹脂の表面に移行することによって空気中の水分を得て効果を発現する。また、熱可塑性樹脂シートの表面にカーボンブラックを含有する塗料をコーティングしたり、熱可塑性樹脂の中にカーボンブラックを練り込むことにより帯電防止効果を得る方法も知られているが、これらの方法はカーボンブラックにより透明性が阻害されるという問題があることから、透明性をあまり阻害しないようにする方法としてカーボンブラックを含有する塗料を連続模様としてコーティングする方法が採用されている。
特開平4−28729号公報 特開平3−255139号公報 特開平4−288127号公報 特開平5−320390号公報
As countermeasures, a method of kneading an antistatic agent in a thermoplastic resin, a method of coating carbon black on the surface of a thermoplastic resin sheet, and the like have been adopted.
As an antistatic agent kneaded in a thermoplastic resin, a surfactant anionic antistatic agent such as a long-chain alkyl compound having a low molecular weight sulfonate group (see Patent Document 1) is known. Polymeric antistatic agents include polymers having an ionized nitrogen element in the main chain (see Patent Document 2 and Patent Document 3), sulfonate-modified polystyrene (see Patent Document 4), and the like. Are known. These antistatic agents exhibit the effect by obtaining moisture in the air by shifting to the surface of the thermoplastic resin over time. Also known are methods of obtaining an antistatic effect by coating a coating containing carbon black on the surface of a thermoplastic resin sheet or kneading carbon black into a thermoplastic resin. Since there is a problem in that transparency is inhibited by carbon black, a method of coating a paint containing carbon black as a continuous pattern is employed as a method for preventing transparency from being disturbed so much.
JP-A-4-28729 JP-A-3-255139 JP-A-4-288127 JP-A-5-320390

前述のように低分子型の帯電防止剤を用いた場合、帯電防止剤が表面に移行することにより熱可塑性樹脂の表面に界面活性剤が移行し、空気中の湿度に依存する水分により帯電防止効果を維持できるが、熱可塑性樹脂の表面に移行することにより表面にべたつくことにより接触する物品への付着や汚染が発生するという問題や、帯電防止効果が経時的に低下するという問題がある。また、高分子型の帯電防止剤を用いた場合、多量の帯電防止剤の配合が必要であり、経済的ではない。高分子型の帯電防止剤を用いた場合、低分子型の帯電防止剤を用いた場合と比較して移行の問題は軽減されるが、この高分子型の帯電防止剤にも空気中の湿度に対する依存性が高いという問題があり、埃が舞うような乾燥状態では帯電防止効果が低くなり、十分な性能が得られないという問題がある。さらに、カーボンブラックを含有する塗料を熱可塑性樹脂シートの表面にコーティングする方法において透明性をあまり阻害しないようにするために連続模様としてコーティングする場合においても表面色が黒色となり、自由な色を選択できず、黒着色を問題視しない分野のみしか使えないという問題があった。   As described above, when a low molecular weight antistatic agent is used, the surfactant moves to the surface of the thermoplastic resin as the antistatic agent migrates to the surface, and the antistatic effect is caused by moisture depending on the humidity in the air. Although the effect can be maintained, there is a problem that adhesion or contamination to an article that comes into contact with the surface of the thermoplastic resin due to sticking to the surface occurs, and a problem that the antistatic effect decreases with time. Further, when a polymer type antistatic agent is used, a large amount of the antistatic agent needs to be blended, which is not economical. The use of a polymer antistatic agent reduces the problem of migration compared to the case of using a low molecular antistatic agent, but this polymer antistatic agent also has humidity in the air. There is a problem that the dependence on is high, and there is a problem that the antistatic effect is low in a dry state where dust is flying, and sufficient performance cannot be obtained. Furthermore, the surface color is black even when coating as a continuous pattern so that the transparency of the coating method containing carbon black on the surface of the thermoplastic resin sheet is not so hindered. There is a problem that it can only be used in a field where black coloring is not regarded as a problem.

本発明の目的は、このような課題を解決するものであり、ターポリン、帆布、テント、フレキシブルコンテナー、間仕切り、メッシュシート、トラック幌地などの公知の膜材料表面に極めて薄い導電性無機酸化物皮膜を形成するなどにより湿度依存性が無く、表面のべたつきなどの問題が無く、経時的に性能が低下することが無く、膜材料の表面色の色差が小さく、意匠性と帯電防止機能両面で優位性のある積層膜材料を提供することにある。   The object of the present invention is to solve such problems, and a very thin conductive inorganic oxide film on the surface of a known film material such as tarpaulin, canvas, tent, flexible container, partition, mesh sheet, truck hood, etc. The film does not depend on humidity, does not cause problems such as stickiness of the surface, does not deteriorate in performance over time, has a small color difference in the surface color of the film material, and is superior in both design and antistatic functions. An object of the present invention is to provide a laminated film material having a property.

本発明の請求項1に記載の積層膜材料は、布帛の片面に熱可塑性樹脂層を設け、この熱可塑性樹脂層の表面に、導電性を有する無機酸化物微粒子を混入させた耐汚染性熱可塑性樹脂をコーティングし、このコーティング層は1.0×1011Ω/m以下の表面抵抗値を持つように構成したことを特徴とする。 The laminated film material according to claim 1 of the present invention is a stain-resistant heat in which a thermoplastic resin layer is provided on one surface of a fabric, and conductive inorganic oxide fine particles are mixed on the surface of the thermoplastic resin layer. A plastic resin is coated, and this coating layer is configured to have a surface resistance value of 1.0 × 10 11 Ω / m 2 or less.

請求項2に記載の積層膜材料は、布帛の両面に熱可塑性樹脂層を設け、少なくとも何れか一方の熱可塑性樹脂層の表面に、導電性を有する無機酸化物微粒子を混入させた耐汚染性熱可塑性樹脂をコーティングし、このコーティング層は1.0×1011Ω/m以下の表面抵抗値を持つように構成したことを特徴とする。 The laminated film material according to claim 2, wherein a thermoplastic resin layer is provided on both surfaces of the fabric, and the surface of at least one of the thermoplastic resin layers is mixed with inorganic oxide fine particles having conductivity. A thermoplastic resin is coated, and this coating layer is characterized by having a surface resistance value of 1.0 × 10 11 Ω / m 2 or less.

請求項3に記載の積層膜材料は、導電性を有する無機酸化物微粒子はチタン、亜鉛、アンチモン、錫、セリウム、インジウム、リンなどの酸化物を含むものであり、粒子径が100nm以下の導電性を有する無機酸化物微粒子をアクリル系化合物またはフッ素系化合物またはこれらの混合物またはこれらの共重合物である耐汚染性熱可塑性樹脂に混入させてなることを特徴とする。   In the laminated film material according to claim 3, the conductive inorganic oxide fine particles include oxides such as titanium, zinc, antimony, tin, cerium, indium, and phosphorus, and have a particle diameter of 100 nm or less. It is characterized in that inorganic oxide fine particles having a property are mixed in a stain-resistant thermoplastic resin which is an acrylic compound, a fluorine compound, a mixture thereof, or a copolymer thereof.

請求項4に記載の積層膜材料は、導電性を有する無機酸化物微粒子を混入させた耐汚染性熱可塑性樹脂を、網目状または格子状などの連続した線状模様として熱可塑性樹脂層の表面にコーティングしたことを特徴とする。   The laminated film material according to claim 4, wherein the surface of the thermoplastic resin layer is formed by using a stain-resistant thermoplastic resin mixed with conductive inorganic oxide fine particles as a continuous linear pattern such as a mesh or lattice. It is characterized by being coated.

請求項5に記載の積層膜材料は、導電性を有する無機酸化物微粒子を混入させる耐汚染性熱可塑性樹脂にアルミニウムやステンレススチール、銅などからなる金属微粒子あるいは金属箔の小片を混入させてなることを特徴とする。   The laminated film material according to claim 5 is obtained by mixing metal fine particles made of aluminum, stainless steel, copper, or the like with a small piece of metal foil into a contamination-resistant thermoplastic resin into which conductive inorganic oxide fine particles are mixed. It is characterized by that.

以上のように、本発明の積層膜材料は、無機酸化物などの結晶中に発生させた自由電子が互いに接触した微粒子間を移動することで電気が流れ、帯電防止効果を図る機構であり、湿度の性能依存性が低い。   As described above, the laminated film material of the present invention is a mechanism for achieving an antistatic effect by causing electricity to flow by moving between fine particles in contact with each other by free electrons generated in a crystal such as an inorganic oxide, The performance dependency of humidity is low.

本発明で用いられる耐汚染性熱可塑性樹脂とは、耐候性、耐光性、耐擦傷性、透明性に優れ、且つ熱融着性に優れるもので、例えばアクリル系化合物またはフッ素系化合物またはこれらの混合物またはこれらの共重合物などがある。   The stain-resistant thermoplastic resin used in the present invention is excellent in weather resistance, light resistance, scratch resistance, transparency, and excellent heat-fusibility. For example, an acrylic compound, a fluorine-based compound, or these compounds There is a mixture or a copolymer thereof.

このような耐汚染性熱可塑性樹脂は、ターポリン、帆布、テント、フレキシブルコンテナー、間仕切り、メッシュ、トラック幌地などの公知の膜材料の表面に設けられる樹脂として軟質塩化ビニールやエチレン酢酸ビニール共重合体などの熱可塑性樹脂が熱融着が可能であることを考えて用いられるもので、この耐汚染性熱可塑性樹脂を用いることにより膜材料の表面に設けられる熱可塑性樹脂の熱融着性を阻害せず、且つ表面の耐汚染性に優れるという効果が得られる。また、この耐汚染性熱可塑性樹脂は、耐汚染性に優れると同時に軟質塩化ビニールからの可塑剤成分の移行を遅らせたり、防いだりする効果がある。   Such a stain-resistant thermoplastic resin is a soft vinyl chloride or ethylene vinyl acetate copolymer as a resin provided on the surface of known membrane materials such as tarpaulins, canvas, tents, flexible containers, partitions, meshes, truck hoods, etc. It is used in consideration of the fact that thermoplastic resins such as can be heat-sealed. By using this stain-resistant thermoplastic resin, the heat-sealing property of the thermoplastic resin provided on the surface of the film material is inhibited. And the effect of excellent surface contamination resistance is obtained. In addition, this stain-resistant thermoplastic resin is excellent in stain resistance and has the effect of delaying or preventing the migration of the plasticizer component from the soft vinyl chloride.

また、導電性を有する無機酸化物微粒子を混入させた耐汚染性熱可塑性樹脂を、網目状または格子状などの連続した線状模様として熱可塑性樹脂層の表面にコーティングすることによっても同様の効果を発揮できることは明白であるが、網目状または格子状などの連続した線状模様とすると使用する耐汚染性熱可塑性樹脂および無機酸化物微粒子の使用量が少なくて済む。   The same effect can be obtained by coating the surface of the thermoplastic resin layer with a stain-resistant thermoplastic resin mixed with conductive inorganic oxide fine particles as a continuous linear pattern such as a mesh or lattice. Obviously, the amount of the stain-resistant thermoplastic resin and inorganic oxide fine particles to be used is small when a continuous linear pattern such as a mesh or lattice is used.

無機酸化物微粒子の粒径は100nm以下が望ましく、好ましくは30nm以下が良い。無機酸化物の粒径が100nm以上になると着色が強くなり透明性が低下する。また、極度に粒径が小さくなると分散性の問題やコストの問題がある。   The particle size of the inorganic oxide fine particles is desirably 100 nm or less, preferably 30 nm or less. When the particle size of the inorganic oxide is 100 nm or more, coloring becomes strong and transparency is lowered. In addition, when the particle size is extremely small, there are a problem of dispersibility and a problem of cost.

さらに、耐汚染性熱可塑性樹脂に無機酸化物微粒子とともにアルミニウムやステンレススチール、銅などからなる金属微粒子あるいは金属箔の小片を混入させることにより、無機酸化物微粒子だけを用いる場合に比べてより大きな通電部分を有することになり、無機酸化物微粒子の添加量が少なくなっても高い静電気除去効果の向上が図れる。この金属微粒子の最大粒径は数100μm以下であり、金属箔の小片の最大幅は数1000μm以下である。   In addition, the contamination resistance thermoplastic resin is mixed with inorganic oxide fine particles as well as metal fine particles made of aluminum, stainless steel, copper, etc. or a small piece of metal foil, so that a larger energization than when only inorganic oxide fine particles are used. Therefore, even if the amount of inorganic oxide fine particles added is reduced, a high static elimination effect can be achieved. The maximum particle diameter of the metal fine particles is several hundreds μm or less, and the maximum width of the metal foil piece is several thousand μm or less.

無機酸化物微粒子による帯電防止加工を行なった膜材は、その積層膜厚が極めて薄く、加工を行なった面と行なっていない面の判別は困難であるが、無機酸化物微粒子とともに金属微粒子あるいは金属箔の小片を混入させることにより金属光沢を発現し、加工を行なった面と行なっていない面の判別が容易になる。   Film materials that have undergone antistatic processing with inorganic oxide fine particles have a very thin layer thickness, making it difficult to distinguish between the processed and non-processed surfaces. By mixing a small piece of foil, a metallic luster is developed, and it becomes easy to distinguish between a processed surface and a non-processed surface.

これは、布帛の片面にこれらの処理を行なったものにおいて帯電防止処理面の判別ができることから、帯電防止処理面を誤って使用されることが防げるフールプルーフ効果もある。   This also has a foolproof effect that prevents the antistatic treatment surface from being mistakenly used because the antistatic treatment surface can be discriminated in the case where these treatments are performed on one side of the fabric.

導電性を有する無機酸化物微粒子を混入させた耐汚染性熱可塑性樹脂を、網目状または格子状などの連続した線状模様として熱可塑性樹脂層の表面にコーティングする場合にも無機酸化物微粒子とともに金属微粒子あるいは金属箔の小片を混入させるようにしても良く、これにより同様の効果を得ることができる。   Even when the surface of the thermoplastic resin layer is coated with a stain-resistant thermoplastic resin mixed with conductive inorganic oxide fine particles as a continuous linear pattern such as mesh or lattice, together with inorganic oxide fine particles Metal fine particles or small pieces of metal foil may be mixed in, thereby obtaining the same effect.

以下、本発明の実施の形態について実施例および比較例に基づき具体的に説明する。
実施例1
ポリ塩化ビニル樹脂 100質量部、可塑剤としてジオクチルフタレート(以下D.O.Pと称す) 63質量部、安定剤 4質量部、充填剤として炭酸カルシウム 40質量部を混合したポリ塩化ビニル樹脂組成物を160℃に設定された2本ロールで溶融混合し、厚み0.2mmのフィルムを得た。厚み0.2mmのフィルムを155℃に設定された熱プレス機にて、ポリエステルスパン糸を使用した生地重量190g/mを布帛として片面に貼り合わせ、450g/mの積層シートを得た。
Hereinafter, embodiments of the present invention will be specifically described based on examples and comparative examples.
Example 1
Polyvinyl chloride resin composition in which 100 parts by mass of polyvinyl chloride resin, 63 parts by mass of dioctyl phthalate (hereinafter referred to as DOP) as plasticizer, 4 parts by mass of stabilizer, and 40 parts by mass of calcium carbonate as filler are mixed. Was melt-mixed with two rolls set at 160 ° C. to obtain a film having a thickness of 0.2 mm. A film having a thickness of 0.2 mm was bonded to one side as a fabric with a fabric weight of 190 g / m 2 using a polyester spun yarn in a hot press set at 155 ° C. to obtain a laminated sheet of 450 g / m 2 .

導電性を有する無機酸化物微粒子として酸化錫と三酸化アンチモンとを結合させたゾルである触媒化学工業株式会社製のELCOM(登録商標)P−3030固形分30.0%と固形分12%のアクリル系化合物の配合比率を25:75で混合した耐汚染性熱可塑性樹脂を、上記で得られた積層シートの片面にコーティングを実施し、120℃、30秒の熱処理を施し、これを固定化して付着量5g/mの積層膜材料を得た。この積層膜材料の表面抵抗値を測定したところ、1.3×1010Ω/mの表面抵抗値が得られた。 ELCOM (registered trademark) P-3030 manufactured by Catalytic Chemical Industry Co., Ltd., which is a sol in which tin oxide and antimony trioxide are combined as inorganic oxide fine particles having conductivity, solid content of 30.0% and solid content of 12% The contamination-resistant thermoplastic resin mixed at a mixing ratio of acrylic compound at 25:75 is coated on one side of the laminated sheet obtained above, and subjected to heat treatment at 120 ° C. for 30 seconds to fix it. Thus, a laminated film material having an adhesion amount of 5 g / m 2 was obtained. When the surface resistance value of this laminated film material was measured, a surface resistance value of 1.3 × 10 10 Ω / m 2 was obtained.

実施例2
ポリ塩化ビニル樹脂 100質量部、D.O.P 63質量部、安定剤 4質量部、炭酸カルシウム 40質量部を混合したポリ塩化ビニル樹脂組成物を160℃に設定された試験ロールで溶融混合し、厚み0.15mmの溶融フィルムを得た。厚み0.15mmのフィルムを155℃に設定された熱プレス機にて、ポリエステルスパン糸を使用した生地重量190g/mを布帛として両面に貼り合わせ、570g/mの積層シートを得た。
Example 2
100 parts by mass of polyvinyl chloride resin, D.I. O. A polyvinyl chloride resin composition obtained by mixing 63 parts by mass of P, 4 parts by mass of a stabilizer, and 40 parts by mass of calcium carbonate was melted and mixed with a test roll set at 160 ° C. to obtain a molten film having a thickness of 0.15 mm. At set a film having a thickness of 0.15mm to 155 ° C. hot press, the fabric weight 190 g / m 2 using polyester spun yarn bonded to both surfaces as cloth, to obtain a laminated sheet of 570 g / m 2.

実施例1と同様に作られた導電性を有する無機酸化物微粒子ゾルと固形分12%のアクリル系化合物の配合比率を25:75で混合した耐汚染性熱可塑性樹脂を、上記で得られた積層シートの片面にコーティングを実施し、120℃、30秒の熱処理を施し、これを固定化して付着量5g/mの積層膜材料を得た。この積層膜材料の表面抵抗値を測定したところ、1.2×1010Ω/mの表面抵抗値が得られた。 A contamination-resistant thermoplastic resin prepared by mixing the conductive inorganic oxide fine particle sol and the acrylic compound having a solid content of 12% in the same manner as in Example 1 at a mixing ratio of 25:75 was obtained as described above. Coating was performed on one side of the laminated sheet, heat treatment was performed at 120 ° C. for 30 seconds, and this was fixed to obtain a laminated film material having an adhesion amount of 5 g / m 2 . When the surface resistance value of this laminated film material was measured, a surface resistance value of 1.2 × 10 10 Ω / m 2 was obtained.

実施例3
実施例1と同様に作られた導電性を有する無機酸化物微粒子ゾルと固形分12%のフッ素系化合物の配合比率を25:75で混合した耐汚染性熱可塑性樹脂を、実施例2と同様に作られた積層シートの片面にコーティングを実施し、120℃、30秒の熱処理を施し、これを固定化して付着量5g/mの積層膜材料を得た。この積層膜材料の表面抵抗値を測定したところ、3.7×1010Ω/mの表面抵抗値が得られた。
Example 3
A contamination-resistant thermoplastic resin prepared by mixing the conductive inorganic oxide fine particle sol and the fluorine-containing compound having a solid content of 12% in the same manner as in Example 1 at a mixing ratio of 25:75 is the same as in Example 2. Coating was performed on one side of the laminated sheet prepared in (1) above, heat treatment was performed at 120 ° C. for 30 seconds, and this was fixed to obtain a laminated film material having an adhesion amount of 5 g / m 2 . When the surface resistance value of this laminated film material was measured, a surface resistance value of 3.7 × 10 10 Ω / m 2 was obtained.

実施例4
実施例1と同様に作られた導電性を有する無機酸化物微粒子ゾルと固形分12%のアクリル系化合物を混合して作られた耐汚染性熱可塑性樹脂100質量部に対して、金属微粒子であるアルミニウム粉 No.900(大和金属工業株式会社製)を0.5質量部添加したものを実施例2と同様に作られた積層シートの片面にコーティングを実施し、120℃、30秒の熱処理を施し、これを固定化して付着量5g/mの積層膜材料を得た。この積層膜材料の表面抵抗値を測定したところ、1.6×10Ω/mの表面抵抗値が得られた。
Example 4
With respect to 100 parts by mass of the contamination-resistant thermoplastic resin prepared by mixing the inorganic oxide fine particle sol having conductivity and the acrylic compound having a solid content of 12%, which is made in the same manner as in Example 1, with metal fine particles. A certain aluminum powder One side of a laminated sheet made in the same manner as in Example 2 was added with 0.5 part by weight of 900 (manufactured by Daiwa Metal Industry Co., Ltd.), and subjected to a heat treatment at 120 ° C. for 30 seconds. A laminated film material having an adhesion amount of 5 g / m 2 was obtained by immobilization. When the surface resistance value of this laminated film material was measured, a surface resistance value of 1.6 × 10 9 Ω / m 2 was obtained.

この実施例4によれば、金属微粒子を添加していない実施例に比べて表面抵抗値が向上する結果を得た。これは、金属微粒子を添加することによって通電部分が増加しているためである。また、金属微粒子を添加している面を判別できることにより、帯電防止効果を持つ面を誤って使用することが防止できる。   According to this Example 4, the result that the surface resistance value was improved as compared with the Example in which the metal fine particles were not added was obtained. This is because the energized portion is increased by adding metal fine particles. Further, since the surface to which the metal fine particles are added can be discriminated, it is possible to prevent erroneous use of the surface having the antistatic effect.

実施例5
実施例3と同様に作られた導電性を有する無機酸化物微粒子ゾルとフッ素系化合物を混合して作られた耐汚染性熱可塑性樹脂100質量部に対して、実施例4で用いた金属微粒子を0.5質量部添加した以外は実施例3と同様の積層膜材料を得た。この積層膜材料の表面抵抗値を測定したところ、1.4×10Ω/mの表面抵抗値が得られた。
Example 5
The metal fine particles used in Example 4 with respect to 100 parts by mass of the contamination-resistant thermoplastic resin produced by mixing the inorganic oxide fine particle sol having conductivity and the fluorine-based compound produced in the same manner as in Example 3. A laminated film material similar to that of Example 3 was obtained except that 0.5 part by mass of was added. When the surface resistance value of this laminated film material was measured, a surface resistance value of 1.4 × 10 9 Ω / m 2 was obtained.

この実施例5においても、金属微粒子を添加していない実施例に対して表面抵抗値の値が向上する結果を得た。これは金属微粒子を添加することによって通電部分が増加しているためである。また、金属微粒子を添加している面を判別できることにより、帯電防止効果を持つ面を誤って使用することが防止できる。   Also in this Example 5, the result that the value of the surface resistance value was improved as compared with the Example in which the metal fine particles were not added was obtained. This is because the energized portion is increased by adding metal fine particles. Further, since the surface to which the metal fine particles are added can be discriminated, it is possible to prevent erroneous use of the surface having the antistatic effect.

実施例6
実施例1と同様に作られた導電性を有する無機酸化物微粒子ゾルとアクリル系化合物を混合して作られた耐汚染性熱可塑性樹脂を格子幅15mm、線幅3mmの格子状のグラビヤロールにて実施例2で得られたポリ塩化ビニルシートの片面にコーティングし、120℃、30秒の熱処理を施し、これを固定化して付着量2g/mの積層膜材料を得た。この積層膜材料の表面抵抗値を測定したところ、2.9×1010Ω/mの表面抵抗値が得られた。
Example 6
A stain-resistant thermoplastic resin made by mixing an inorganic compound fine particle sol having conductivity and an acrylic compound made in the same manner as in Example 1 into a grid-like gravure roll having a grid width of 15 mm and a line width of 3 mm. Then, one surface of the polyvinyl chloride sheet obtained in Example 2 was coated, subjected to heat treatment at 120 ° C. for 30 seconds, and fixed to obtain a laminated film material having an adhesion amount of 2 g / m 2 . When the surface resistance value of this laminated film material was measured, a surface resistance value of 2.9 × 10 10 Ω / m 2 was obtained.

実施例7
実施例3と同様に作られた導電性を有する無機酸化物微粒子ゾルとフッ素系化合物を混合して作られた耐汚染性熱可塑性樹脂を実施例2で得られたポリ塩化ビニルシートの片面に実施例6と同様に格子状グラビヤロールにてコーティングし、120℃、30秒の熱処理を施し、これを固定化して付着量2g/mの積層膜材料を得た。この積層膜材料の表面抵抗値を測定したところ、5.8×1010Ω/mの表面抵抗値が得られた。
Example 7
A contamination-resistant thermoplastic resin made by mixing a conductive inorganic oxide fine particle sol made in the same manner as in Example 3 and a fluorine-based compound is applied to one side of the polyvinyl chloride sheet obtained in Example 2. In the same manner as in Example 6, coating was performed with a grid-like gravure roll, heat treatment was performed at 120 ° C. for 30 seconds, and this was fixed to obtain a laminated film material having an adhesion amount of 2 g / m 2 . When the surface resistance value of this laminated film material was measured, a surface resistance value of 5.8 × 10 10 Ω / m 2 was obtained.

実施例8
実施例4と同様に作られた導電性を有する無機酸化物微粒子ゾルと金属微粒子とアクリル系化合物を混合して作られたた耐汚染性熱可塑性樹脂を実施例2で得られたポリ塩化ビニルシートの片面に実施例6と同様に格子状グラビヤロールにてコーティングし、120℃、30秒の熱処理を施し、これを固定化して付着量2g/mの積層膜材料を得た。この積層膜材料の表面抵抗値を測定したところ、8.7×10Ω/mの表面抵抗値が得られた。
Example 8
Polyvinyl chloride obtained in Example 2 was prepared by using the same conductive inorganic oxide fine particle sol, metal fine particles, and acrylic compound made in the same manner as in Example 4 in a stain-resistant thermoplastic resin. One side of the sheet was coated with a lattice gravure roll in the same manner as in Example 6, heat-treated at 120 ° C. for 30 seconds, and fixed to obtain a laminated film material having an adhesion amount of 2 g / m 2 . When the surface resistance value of this laminated film material was measured, a surface resistance value of 8.7 × 10 9 Ω / m 2 was obtained.

比較例1
ポリ塩化ビニル樹脂 100質量部、D.O.P 83質量部、安定剤 4質量部、炭酸カルシウム 50質量部を混合したポリ塩化ビニル樹脂組成物に対して、界面活性剤型帯電防止剤TB−160(松本油脂製薬株式会社製)5質量部を添加したものを160℃に設定された試験ロールで溶融混合し、厚み0.15mmのフィルムを得た。厚み0.15mmのフィルムを155℃に設定された熱プレス機にて、ポリエステルスパン糸を使用した生地重量190g/mを布帛として片面に貼り合わせ、570g/mのシートを得た。このシートの表面抵抗値を測定したところ、1.2×10Ω/mであった。
Comparative Example 1
100 parts by mass of polyvinyl chloride resin, D.I. O. Surfactant type antistatic agent TB-160 (manufactured by Matsumoto Yushi Seiyaku Co., Ltd.) 5 parts by mass with respect to polyvinyl chloride resin composition in which 83 parts by mass of P, 4 parts by mass of stabilizer, and 50 parts by mass of calcium carbonate are mixed. Was added with a test roll set at 160 ° C. to obtain a film having a thickness of 0.15 mm. At a film having a thickness of 0.15 mm 155 ° C. set to thermal pressing machine, the fabric weight 190 g / m 2 using polyester spun yarn adhered to one side as the fabric, to obtain a sheet of 570 g / m 2. When the surface resistance value of this sheet was measured, it was 1.2 × 10 9 Ω / m 2 .

比較例2
実施例2で得られた積層シートの片面に大日精化工業株式会社製のVSKH導電性ブラック(C)固形分19%の導電性カーボンインクをコーティングし、120℃、30秒の熱処理を施し、付着量5.7g/mの膜材料を得た。この膜材料の表面抵抗値を測定したところ、1.6×10Ω/mであった。
Comparative Example 2
One side of the laminated sheet obtained in Example 2 was coated with a conductive carbon ink of 19% solid content of VSKH conductive black (C) manufactured by Dainichi Seika Kogyo Co., Ltd., and subjected to a heat treatment at 120 ° C. for 30 seconds. A film material having an adhesion amount of 5.7 g / m 2 was obtained. When the surface resistance value of this film material was measured, it was 1.6 × 10 6 Ω / m 2 .

以上述べた実施例1〜8および比較例1,2の試料において表面抵抗値、目視による判別時における表裏の差、耐汚染性、色差、表面べたつき状態について比較した結果を表1に示す。   Table 1 shows the results of comparison of the surface resistance values, the difference between the front and back surfaces during visual discrimination, the stain resistance, the color difference, and the surface stickiness of the samples of Examples 1 to 8 and Comparative Examples 1 and 2 described above.

なお、表面抵抗値については東亜電波工業株式会社製のSM10E型(設定電圧 500V)の表面抵抗値測定器を用いて測定した。表1に示す試料の表面抵抗値測定試験として、1.0×1011Ω/m以下の表面抵抗値が得られたものを帯電防止効果の合格とした。 In addition, about the surface resistance value, it measured using the surface resistance value measuring device of SM10E type (setting voltage 500V) by Toa Denpa Kogyo Co., Ltd. As a surface resistance value measurement test of the samples shown in Table 1, those having a surface resistance value of 1.0 × 10 11 Ω / m 2 or less were regarded as passing the antistatic effect.

目視による判別時における表裏の差は得られた積層膜材料の表裏の差を目視で判定した。金属微粒子を混入させた実施例4、5、8が金属光沢により表、裏を間違って使用することを防止できる。   The difference between the front and back of the laminated film material obtained by visual inspection was determined by visual observation. Examples 4, 5, and 8 in which metal fine particles are mixed can be prevented from being used by mistake due to the metallic luster.

また、耐汚染性については、防汚コンパウンドに各試料を投入し、1時間シェイクを実施した後、表面の汚れ性を確認した。この汚れ性の確認のために表面の色差の変化をミノルタカメラ株式会社製の色彩色差計(CR−200)を用いて測定し、判断基準とした。耐汚染性において、◎は耐汚染性が非常に優れるもの、○は耐汚染性が優れるもの、××は耐汚染性が非常に劣るもの、×は耐汚染性が劣るものを示す。なお、上記防汚コンパウンドは、畑土38質量部、カオリン17質量部、セメント17質量部、ホワイトカーボン1質量部、カーボンブラック1.75質量部、酸化第2鉄0.5質量部、メカニックオイル8.75質量部を乳鉢ですり潰し、150メッシュの篩に掛けたものを使用した。   As for stain resistance, each sample was put into an antifouling compound, shaken for 1 hour, and then the surface dirtiness was confirmed. In order to check the soiling, the change in the color difference of the surface was measured using a color difference meter (CR-200) manufactured by Minolta Camera Co., Ltd., and used as a judgment standard. In the stain resistance, ◎ indicates that the stain resistance is very excellent, ○ indicates that the stain resistance is excellent, xx indicates that the stain resistance is very poor, and × indicates that the stain resistance is poor. The antifouling compound comprises 38 parts by mass of field soil, 17 parts by mass of kaolin, 17 parts by mass of cement, 1 part by mass of white carbon, 1.75 parts by mass of carbon black, 0.5 part by mass of ferric oxide, mechanic oil. 8.75 parts by mass was crushed with a mortar and applied to a 150 mesh sieve.

また、実施例1〜8および比較例1,2の試料を80℃、90パーセントの湿熱オーブンにて1週間養生させ、20℃オーブン中にて24時間乾燥させた。この乾燥後、各試料の表面状態を見たところ、実施例1〜8および比較例2の試料については変化がなかったが、比較例1の界面活性剤型帯電防止剤を添加した試料についてはべたつきが発生した。表1の表面べたつき状態において、◎は全くなかったもの、○は少しべたつきがあるもの、××は非常にべたつきがあるものを示す。   Moreover, the samples of Examples 1 to 8 and Comparative Examples 1 and 2 were cured for 1 week in a 90% wet heat oven at 80 ° C. and dried in a 20 ° C. oven for 24 hours. When the surface state of each sample was observed after this drying, the samples of Examples 1 to 8 and Comparative Example 2 were not changed, but the sample to which the surfactant type antistatic agent of Comparative Example 1 was added was not changed. Stickiness occurred. In the surface stickiness state of Table 1, ◎ indicates that there is no stickiness, ○ indicates that there is a little stickiness, and xx indicates that there is very stickiness.

Figure 2007076013
以上のように、布帛の表面に設けた熱可塑性樹脂層の表面に、導電性を有する無機酸化物微粒子を混入させた耐汚染性熱可塑性樹脂をコーティングし、このコーティング層は1.0×1011Ω/m以下の表面抵抗値を持つように構成したことにより、耐汚染性に優れ、表面のべたつきも発生することがなく、着色することにより任意の色相の積層膜材料を得ることができる。
Figure 2007076013
As described above, the surface of the thermoplastic resin layer provided on the surface of the fabric is coated with a stain-resistant thermoplastic resin mixed with conductive inorganic oxide fine particles, and this coating layer has a thickness of 1.0 × 10. By being configured so as to have a surface resistance value of 11 Ω / m 2 or less, it is possible to obtain a laminated film material having an arbitrary hue by coloring, without being excellent in stain resistance and without causing surface stickiness. it can.

Claims (5)

布帛の片面に熱可塑性樹脂層を設け、この熱可塑性樹脂層の表面に、導電性を有する無機酸化物微粒子を混入させた耐汚染性熱可塑性樹脂をコーティングし、このコーティング層は1.0×1011Ω/m以下の表面抵抗値を持つように構成したことを特徴とする積層膜材料。 A thermoplastic resin layer is provided on one side of the fabric, and the surface of the thermoplastic resin layer is coated with a stain-resistant thermoplastic resin mixed with conductive inorganic oxide fine particles. A laminated film material having a surface resistance value of 10 11 Ω / m 2 or less. 布帛の両面に熱可塑性樹脂層を設け、少なくとも何れか一方の熱可塑性樹脂層の表面に、導電性を有する無機酸化物微粒子を混入させた耐汚染性熱可塑性樹脂をコーティングし、このコーティング層は1.0×1011Ω/m以下の表面抵抗値を持つように構成したことを特徴とする積層膜材料。 A thermoplastic resin layer is provided on both sides of the fabric, and the surface of at least one of the thermoplastic resin layers is coated with a stain-resistant thermoplastic resin mixed with conductive inorganic oxide fine particles. A laminated film material having a surface resistance value of 1.0 × 10 11 Ω / m 2 or less. 導電性を有する無機酸化物微粒子はチタン、亜鉛、アンチモン、錫、セリウム、インジウム、リンなどの酸化物を含むものであり、粒子径が100nm以下の導電性を有する無機酸化物微粒子をアクリル系化合物またはフッ素系化合物またはこれらの混合物またはこれらの共重合物である耐汚染性熱可塑性樹脂に混入させてなることを特徴とする請求項1または2記載の積層膜材料。 The conductive inorganic oxide fine particles include oxides such as titanium, zinc, antimony, tin, cerium, indium, and phosphorus, and the conductive inorganic oxide fine particles have a particle diameter of 100 nm or less. 3. The laminated film material according to claim 1, wherein the laminated film material is mixed with a contamination-resistant thermoplastic resin which is a fluorine-based compound, a mixture thereof or a copolymer thereof. 導電性を有する無機酸化物微粒子を混入させた耐汚染性熱可塑性樹脂を、網目状または格子状などの連続した線状模様として熱可塑性樹脂層の表面にコーティングしたことを特徴とする請求項1から請求項3までの何れか1項記載の積層膜材料。 2. The surface of the thermoplastic resin layer is coated with a stain-resistant thermoplastic resin mixed with conductive inorganic oxide fine particles as a continuous linear pattern such as a mesh or lattice. The laminated film material according to any one of claims 1 to 3. 導電性を有する無機酸化物微粒子を混入させる耐汚染性熱可塑性樹脂にアルミニウムやステンレススチール、銅などからなる金属微粒子あるいは金属箔の小片を混入させてなることを特徴とする請求項1から請求項4までの何れか1項記載の積層膜材料。 The metal fine particles made of aluminum, stainless steel, copper or the like or small pieces of metal foil are mixed into a contamination-resistant thermoplastic resin into which inorganic oxide fine particles having conductivity are mixed. 5. The laminated film material according to any one of 4 to 4.
JP2005263118A 2005-09-12 2005-09-12 Laminated film material Pending JP2007076013A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005263118A JP2007076013A (en) 2005-09-12 2005-09-12 Laminated film material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005263118A JP2007076013A (en) 2005-09-12 2005-09-12 Laminated film material

Publications (1)

Publication Number Publication Date
JP2007076013A true JP2007076013A (en) 2007-03-29

Family

ID=37936791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005263118A Pending JP2007076013A (en) 2005-09-12 2005-09-12 Laminated film material

Country Status (1)

Country Link
JP (1) JP2007076013A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018167498A (en) * 2017-03-30 2018-11-01 平岡織染株式会社 Film material for sheet shutter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018167498A (en) * 2017-03-30 2018-11-01 平岡織染株式会社 Film material for sheet shutter

Similar Documents

Publication Publication Date Title
JP6383926B2 (en) Industrial tarpaulin
WO2015081036A2 (en) A printable magnetic receptive composite sheet and method of making
DE60204904T2 (en) ELECTRICALLY CONDUCTIVE CEILING MATERIAL
JP2007076013A (en) Laminated film material
JP2019093622A (en) Static electricity countermeasure film material for industrial material
JP2014201024A (en) Natural lighting nonflammable sheet
JPS59204539A (en) Static electricity dispersing laminate having air permeability and clothing article
JP6534722B2 (en) Polyolefin-based tarpaulin for real-time printing and method for producing the same
JP4639301B2 (en) Dimensionally stable waterproof membrane material
JP3759004B2 (en) Antifouling mesh sheet
JP3868405B2 (en) Anti-fouling sheet for tents with excellent anti-fouling properties
JP6340611B2 (en) Anti-blocking effect durable flexible sheet and method for producing the same
JP6248010B2 (en) Transfer assist member, transfer assist blade and electrophotographic process
JPH02172734A (en) Conductive laminate
JP3871662B2 (en) Anti-fouling sheet for tents with excellent anti-fouling properties
JP5454888B2 (en) Antifouling wallpaper
JP2015212014A (en) Soft vinyl chloride resin made industrial material sheet
JP2003182001A (en) Anti-staining waterproof sheet excellent in rain streak anti-staining effect
JP3868394B2 (en) Anti-fouling sheet for tents with excellent anti-fouling properties
JP2012086401A (en) Self-cleaning stain preventive sheet
JP2016043640A (en) Tarpaulin with sustained effect of blocking resistance and manufacturing method therefor
JP2019072937A (en) Static electricity countermeasure film material for industrial material
JPH0418542B2 (en)
JP6385026B1 (en) Water-based paint composition, air purification mechanism and air purification method
JPH0423002Y2 (en)

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Effective date: 20080430

Free format text: JAPANESE INTERMEDIATE CODE: A7424