JP2007073948A - Method of fabricating semiconductor device - Google Patents

Method of fabricating semiconductor device Download PDF

Info

Publication number
JP2007073948A
JP2007073948A JP2006217695A JP2006217695A JP2007073948A JP 2007073948 A JP2007073948 A JP 2007073948A JP 2006217695 A JP2006217695 A JP 2006217695A JP 2006217695 A JP2006217695 A JP 2006217695A JP 2007073948 A JP2007073948 A JP 2007073948A
Authority
JP
Japan
Prior art keywords
layer
conductive layer
substrate
insulating layer
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006217695A
Other languages
Japanese (ja)
Other versions
JP5352048B2 (en
Inventor
Hidekazu Takahashi
秀和 高橋
Eiji Sugiyama
栄二 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP2006217695A priority Critical patent/JP5352048B2/en
Publication of JP2007073948A publication Critical patent/JP2007073948A/en
Application granted granted Critical
Publication of JP5352048B2 publication Critical patent/JP5352048B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of fabricating a semiconductor device with higher reliability. <P>SOLUTION: The method of fabricating the semiconductor device includes a step of forming a first conductive layer on a substrate; a step of forming a second conductive layer containing conductive particles (also referred to as conductive fine particles) of gold, silver, or copper, and a resin on the first conductive layer; and a step of irradiating the second conductive layer with a laser beam to expand an area (part), where the first conductive layer and the second conductive layer come into contact with each other. Since the method includes the step of irradiating the second conductive layer with the laser beam, even when the second conductive layer composed of the conductive particles and the resin is formed on the first conductive layer, it is possible to expand the part where the first conductive layer and the second conductive layer come into contact with each other, and to repair an faulty electrical connection between the first conductive layer and the second conductive layer. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、半導体装置の作製方法、半導体装置に関する。半導体装置とは、トランジスタを含むものである。 The present invention relates to a method for manufacturing a semiconductor device and a semiconductor device. A semiconductor device includes a transistor.

近年、非接触でデータの送信と受信を行うことが可能な半導体装置の開発が進められている。このような半導体装置は、RFID(Radio Frequency IDentification)、RFチップ、RFタグ、ICチップ、ICタグ、ICラベル、無線チップ、無線タグ、電子チップ、電子タグ、無線プロセッサ、無線メモリ等と呼ばれ(例えば、特許文献1参照)、既に一部の分野において導入が開始されている。
特開2004−282050号公報
In recent years, development of semiconductor devices capable of transmitting and receiving data without contact has been underway. Such a semiconductor device is called an RFID (Radio Frequency IDentification), an RF chip, an RF tag, an IC chip, an IC tag, an IC label, a wireless chip, a wireless tag, an electronic chip, an electronic tag, a wireless processor, a wireless memory, or the like. (For example, see Patent Document 1), introduction has already begun in some fields.
JP 2004-282050 A

本発明は、信頼性を向上することができる半導体装置及びその作製方法の提供を課題とする。また、本発明は、生産性を向上することができる半導体装置の作製方法の提供を課題とする。 An object of the present invention is to provide a semiconductor device and a manufacturing method thereof that can improve reliability. It is another object of the present invention to provide a method for manufacturing a semiconductor device that can improve productivity.

また、本発明は、電気的な接続不良を改善することにより、信頼性を向上させた半導体装置及びその作製方法の提供を課題とする。特に、第1の導電層上に、導電性粒子を含む第2の導電層を形成した場合における、第1の導電層と第2の導電層の電気的な接続不良を改善することを課題とする。 It is another object of the present invention to provide a semiconductor device and a manufacturing method thereof in which reliability is improved by improving an electrical connection failure. In particular, it is an object to improve poor electrical connection between the first conductive layer and the second conductive layer when the second conductive layer containing conductive particles is formed on the first conductive layer. To do.

本発明の半導体装置の作製方法は、基板上に第1の導電層を形成する工程と、第1の導電層上に第2の導電層を形成する工程と、第1の導電層と第2の導電層の積層体にレーザービームを照射する工程を有する。レーザービームを照射することにより、第1の導電層と第2の導電層とが接する部分を増大させ、電気的な接続をより確実なものとすることができる。従って、信頼性を向上させることができる。第1の導電層としては、チタン、タングステン、クロム、アルミニウム、タンタル、ニッケル、ジルコニウム、ハフニウム、バナジウム、イリジウム、ニオブ、鉛、白金、モリブデン、コバルト又はロジウムを含む層を形成する。第2の導電層としては、銀、金又は銅を含む層を形成する。 The method for manufacturing a semiconductor device of the present invention includes a step of forming a first conductive layer over a substrate, a step of forming a second conductive layer over the first conductive layer, a first conductive layer, and a second conductive layer. A step of irradiating the laminate of the conductive layers with a laser beam. By irradiating the laser beam, the portion where the first conductive layer and the second conductive layer are in contact with each other can be increased, and electrical connection can be made more reliable. Therefore, reliability can be improved. As the first conductive layer, a layer containing titanium, tungsten, chromium, aluminum, tantalum, nickel, zirconium, hafnium, vanadium, iridium, niobium, lead, platinum, molybdenum, cobalt, or rhodium is formed. As the second conductive layer, a layer containing silver, gold, or copper is formed.

本発明の半導体装置の作製方法は、第1の基板上に薄膜トランジスタを含む積層体を設ける工程と、加熱処理を行って、第1の基板から積層体を分離すると共に、第2の基板上に積層体を設ける工程とを有する。第1の基板には加熱処理により接着力が低下する接着層が設けられており、第2の基板には加熱処理により接着力が増す接着層が設けられている。そのため、加熱処理を行うことにより、第1の基板から積層体を分離する工程と、第2の基板上に積層体を設ける工程の2つの工程を同時に行うことができる。このように、性質が異なる接着層が設けられた2枚の基板を用いることにより、工程を簡略化し、生産性を向上させることができる。 In the method for manufacturing a semiconductor device of the present invention, a stacked body including a thin film transistor is provided over a first substrate, and heat treatment is performed to separate the stacked body from the first substrate, and over the second substrate. Providing a laminate. The first substrate is provided with an adhesive layer whose adhesive force is reduced by heat treatment, and the second substrate is provided with an adhesive layer whose adhesive force is increased by heat treatment. Therefore, by performing heat treatment, two steps of separating the stacked body from the first substrate and providing the stacked body over the second substrate can be performed simultaneously. In this manner, by using two substrates provided with adhesive layers having different properties, the process can be simplified and productivity can be improved.

本発明の半導体装置の作製方法は、上記の2つの工程の少なくとも1つを含む。本発明の半導体装置の作製方法は、第1の基板上に剥離層を形成する工程と、剥離層上に第1の絶縁層を形成する工程と、第1の絶縁層上にトランジスタを形成する工程と、トランジスタ上に第2の絶縁層を形成する工程と、第2の絶縁層に設けられた開口部を介してトランジスタのソース又はドレインに接続された第1の導電層を形成する工程と、第1の導電層と同じ層に第2の導電層を形成する工程と、第2の導電層に接するように第3の導電層を形成する工程と、第3の導電層にレーザービームを照射する工程とを有する。第2の導電層は、ソース配線又はドレイン配線である。第3の導電層は、外部と接続される接続端子である。第2の導電層と第3の導電層は電気的に接続されている。第2の導電層を形成する工程と第3の導電層を形成する工程は、同時に行われてもよい。 The method for manufacturing a semiconductor device of the present invention includes at least one of the above two steps. In the method for manufacturing a semiconductor device of the present invention, a step of forming a peeling layer over a first substrate, a step of forming a first insulating layer over the peeling layer, and a transistor over the first insulating layer are formed. A step, a step of forming a second insulating layer over the transistor, and a step of forming a first conductive layer connected to the source or drain of the transistor through an opening provided in the second insulating layer. A step of forming a second conductive layer on the same layer as the first conductive layer, a step of forming a third conductive layer so as to be in contact with the second conductive layer, and a laser beam on the third conductive layer And irradiating. The second conductive layer is a source wiring or a drain wiring. The third conductive layer is a connection terminal connected to the outside. The second conductive layer and the third conductive layer are electrically connected. The step of forming the second conductive layer and the step of forming the third conductive layer may be performed simultaneously.

また、上記工程に加えて、第2の絶縁層、第1の導電層及び第3の導電層上に、前記第3の導電層の一部が露出するように、第3の絶縁層を選択的に形成する工程と、第2の絶縁層と第3の絶縁層にレーザービームを照射して剥離層が露出するような開口部を形成する工程と、第3の絶縁層の表面に第2の基板を設ける工程と、第2の基板を用いて、剥離層の内部又は剥離層と第1の絶縁層の界面を境界として、第1の基板から第1の絶縁層とトランジスタを含む積層体を分離する工程と、第1の絶縁層の表面に第3の基板を設けると共に、第2の絶縁層の表面から第2の基板を分離する工程と、第3の絶縁層に設けられた開口部を介して、第3の導電層に接続された第4の導電層を形成する工程と、第4の導電層と第4の基板上の第5の導電層とが電気的に接続されるように、第3の絶縁層上に第4の基板を設ける工程とを有する。 In addition to the above steps, the third insulating layer is selected so that a part of the third conductive layer is exposed on the second insulating layer, the first conductive layer, and the third conductive layer. Forming the first insulating layer, irradiating the second insulating layer and the third insulating layer with a laser beam to form an opening that exposes the release layer, and the second insulating layer on the surface of the third insulating layer. And a laminated body including the first insulating layer and the transistor from the first substrate, using the second substrate as a boundary with the inside of the peeling layer or the interface between the peeling layer and the first insulating layer as a boundary. Separating the substrate, providing a third substrate on the surface of the first insulating layer, separating the second substrate from the surface of the second insulating layer, and an opening provided in the third insulating layer Forming a fourth conductive layer connected to the third conductive layer through the portion, and a fifth conductive layer on the fourth conductive layer and the fourth substrate. As is the layer are electrically connected, and a step of providing a fourth substrate on the third insulating layer.

上記の半導体装置の作製方法において、第1の基板はガラス基板である。また、剥離層としてタングステン又はモリブデンを含む層を形成する。また、第2の導電層として、チタン、タングステン、クロム、アルミニウム、タンタル、ニッケル、ジルコニウム、ハフニウム、バナジウム、イリジウム、ニオブ、鉛、白金、モリブデン、コバルト又はロジウムを含む層を形成する。また、第3の導電層として、銀、金又は銅を含む層を形成する。また、第4の導電層として、銀、金又は銅を含む層を形成する。 In the above method for manufacturing a semiconductor device, the first substrate is a glass substrate. Further, a layer containing tungsten or molybdenum is formed as the separation layer. In addition, a layer containing titanium, tungsten, chromium, aluminum, tantalum, nickel, zirconium, hafnium, vanadium, iridium, niobium, lead, platinum, molybdenum, cobalt, or rhodium is formed as the second conductive layer. In addition, a layer containing silver, gold, or copper is formed as the third conductive layer. In addition, a layer containing silver, gold, or copper is formed as the fourth conductive layer.

本発明の半導体装置は、トランジスタと、トランジスタ上に設けられた第1の絶縁層と、第1の絶縁層に設けられた開口部を介してトランジスタのソース又はドレインに接続された第1の導電層と、第1の導電層と同じ層に設けられた第2の導電層と、第1の絶縁層、第1の導電層及び第2の導電層上に設けられた第2の絶縁層を有する。また、第2の絶縁層に設けられた開口部を充填するように設けられ第2の導電層に接する第3の導電層と、第2の絶縁層に設けられた開口部を充填するように設けられ第3の導電層に接する第4の導電層と、第2の絶縁層と第4の導電層上に設けられた第3の絶縁層と、第3の絶縁層に設けられた開口部を介して第4の導電層に電気的に接続された第5の導電層と、第3の絶縁層と第5の導電層上に設けられた基板とを有する。 The semiconductor device of the present invention includes a transistor, a first insulating layer provided on the transistor, and a first conductive layer connected to the source or drain of the transistor through an opening provided in the first insulating layer. A second conductive layer provided on the same layer as the first conductive layer, a first insulating layer, a first conductive layer, and a second conductive layer provided on the second conductive layer. Have. Further, a third conductive layer provided so as to fill the opening provided in the second insulating layer and in contact with the second conductive layer, and an opening provided in the second insulating layer are filled. A fourth conductive layer provided in contact with the third conductive layer; a second insulating layer; a third insulating layer provided on the fourth conductive layer; and an opening provided in the third insulating layer A fifth conductive layer electrically connected to the fourth conductive layer through the third conductive layer, a third insulating layer, and a substrate provided on the fifth conductive layer.

上記構成の半導体装置において、第2の導電層は、チタン、タングステン、クロム、アルミニウム、タンタル、ニッケル、ジルコニウム、ハフニウム、バナジウム、イリジウム、ニオブ、鉛、白金、モリブデン、コバルト又はロジウムを含む層である。また、第3の導電層は、銀、金又は銅を含む層である。また、第4の導電層は、銀、金又は銅を含む層である。また、第5の導電層は、アンテナとして機能する。 In the semiconductor device having the above structure, the second conductive layer is a layer containing titanium, tungsten, chromium, aluminum, tantalum, nickel, zirconium, hafnium, vanadium, iridium, niobium, lead, platinum, molybdenum, cobalt, or rhodium. . The third conductive layer is a layer containing silver, gold, or copper. The fourth conductive layer is a layer containing silver, gold, or copper. Further, the fifth conductive layer functions as an antenna.

本発明の半導体装置の作製方法は、基板上に第1の導電層を形成する工程と、第1の導電層上に、金、銀または銅の導電性粒子(導電性微粒子ともよぶ)と樹脂を含む第2の導電層を形成する工程と、第2の導電層にレーザービームを照射して、前記第1の導電層と前記第2の導電層が接する面積(部分)を増加させる工程とを含む。第1の導電層は、スパッタリング法、蒸着法、CVD法または液滴吐出法を用いて形成する。好ましくは、第1の導電層は、スパッタリング法により形成する。また、第2の導電層は、印刷法により形成する。好ましくは、第2の導電層は、スクリーン印刷法により形成する。第2の導電層は、導電性粒子と樹脂からなり、ペースト状のものである。本発明の半導体装置の作製方法は、レーザービームを照射する工程を含むことにより、第1の導電層上に、導電性粒子と樹脂からなる第2の導電層を形成した場合でも、第1の導電層と第2の導電層が接する部分を増加させ、第1の導電層と第2の導電層の間の電気的な接続不良を改善することができる。 The method for manufacturing a semiconductor device of the present invention includes a step of forming a first conductive layer on a substrate, gold, silver, or copper conductive particles (also referred to as conductive fine particles) and a resin on the first conductive layer. A step of forming a second conductive layer including: a step of irradiating the second conductive layer with a laser beam to increase an area (part) where the first conductive layer and the second conductive layer are in contact with each other; including. The first conductive layer is formed by a sputtering method, an evaporation method, a CVD method, or a droplet discharge method. Preferably, the first conductive layer is formed by a sputtering method. Further, the second conductive layer is formed by a printing method. Preferably, the second conductive layer is formed by a screen printing method. The second conductive layer is made of conductive particles and resin, and is in a paste form. The method for manufacturing a semiconductor device of the present invention includes the step of irradiating a laser beam, so that the first conductive layer and the second conductive layer made of resin are formed on the first conductive layer. The portion where the conductive layer and the second conductive layer are in contact with each other can be increased, and an electrical connection failure between the first conductive layer and the second conductive layer can be improved.

上記構成を有する本発明により、複数の導電層の積層体の電気的な接続をより確実にすることにより、信頼性を向上させることができる。また、性質が異なる接着層が設けられた基板を活用することにより、複数の工程を同時に行い、生産性を向上させることができる。 According to the present invention having the above-described configuration, reliability can be improved by making the electrical connection of the stacked body of the plurality of conductive layers more reliable. In addition, by using a substrate provided with an adhesive layer having different properties, a plurality of steps can be performed at the same time to improve productivity.

本発明の実施の形態について、図面を用いて詳細に説明する。但し、本発明は以下の説明に限定されず、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。なお、以下に説明する本発明の構成において、同じものを指す符号は異なる図面間で共通して用いる。 Embodiments of the present invention will be described in detail with reference to the drawings. However, the present invention is not limited to the following description, and it is easily understood by those skilled in the art that modes and details can be variously changed without departing from the spirit and scope of the present invention. Therefore, the present invention should not be construed as being limited to the description of the embodiments below. Note that in the structures of the present invention described below, the same reference numerals are used in common in different drawings.

本発明の半導体装置及びその作製方法について、図1〜7の断面図と図8〜10の上面図を参照して説明する。なお、図1(A)は図8(A)、図1(B)は図8(B)、図2(B)は図8(C)、図5(A)は図9(A)、図5(B)は図9(B)(C)、図6(A)は図10(A)(B)、図6(B)は図10(C)の上面図の点Aから点Bの断面図である。 A semiconductor device of the present invention and a manufacturing method thereof will be described with reference to cross-sectional views of FIGS. 1 to 7 and top views of FIGS. 1A is FIG. 8A, FIG. 1B is FIG. 8B, FIG. 2B is FIG. 8C, FIG. 5A is FIG. FIGS. 5B and 9B are FIGS. 9B and 9C, FIGS. 6A and 10B are FIGS. 10A and 10B, and FIG. 6B is a top view of FIG. FIG.

まず、基板10の一方の面上に、絶縁層11を形成する(図1(A)参照)。次に、絶縁層11上に剥離層12を形成する。続いて、剥離層12上に絶縁層13を形成する。 First, the insulating layer 11 is formed over one surface of the substrate 10 (see FIG. 1A). Next, the peeling layer 12 is formed over the insulating layer 11. Subsequently, an insulating layer 13 is formed on the release layer 12.

基板10は、絶縁表面を有する基板であり、例えば、ガラス基板、プラスチック基板、石英基板等である。好適には、基板10として、ガラス基板又はプラスチック基板を用いるとよい。ガラス基板とプラスチック基板は、1辺が1メートル以上のものを作成することが容易であり、また、四角形状等の所望の形状のものを作成することが容易であるからである。そうすると、例えば、四角形状で、1辺が1メートル以上のガラス基板やプラスチック基板を用いると、生産性を大幅に向上させることができる。このような利点は、円形で、最大で直径が30センチ程度のシリコン基板を用いる場合と比較すると、大きな優位点である。 The substrate 10 is a substrate having an insulating surface, for example, a glass substrate, a plastic substrate, a quartz substrate, or the like. Preferably, a glass substrate or a plastic substrate is used as the substrate 10. This is because it is easy to create a glass substrate and a plastic substrate having a side of 1 meter or more, and it is easy to create a desired shape such as a square shape. Then, for example, when a glass substrate or a plastic substrate having a square shape and one side of 1 meter or more is used, productivity can be significantly improved. Such an advantage is a great advantage as compared with the case of using a circular silicon substrate having a diameter of about 30 cm at the maximum.

絶縁層11、13は、気相成長法(CVD法)やスパッタリング法等により、珪素の酸化物、珪素の窒化物、窒素を含む珪素の酸化物、酸素を含む珪素の窒化物などを形成する。絶縁層11は、基板10からの不純物元素が上層に侵入してしまうことを防止する役目を担う。但し、絶縁層11は、必要がなければ、形成しなくてもよい。 The insulating layers 11 and 13 are formed of silicon oxide, silicon nitride, silicon oxide containing nitrogen, silicon nitride containing oxygen, or the like by vapor deposition (CVD), sputtering, or the like. . The insulating layer 11 serves to prevent the impurity element from the substrate 10 from entering the upper layer. However, the insulating layer 11 may not be formed if it is not necessary.

剥離層12は、スパッタリング法等により、タングステン(W)、モリブデン(Mo)、チタン(Ti)、タンタル(Ta)、ニオブ(Nb)、ニッケル(Ni)、コバルト(Co)、ジルコニウム(Zr)、亜鉛(Zn)、ルテニウム(Ru)、ロジウム(Rh)、パラジウム(Pd)、オスミウム(Os)、イリジウム(Ir)、珪素(Si)等から選択された元素または前記元素を主成分とする合金材料若しくは化合物材料を含む層を、単層又は積層して形成する。なお、珪素を含む層は、非晶質、微結晶、多結晶のいずれでもよい。 The release layer 12 is formed by sputtering or the like using tungsten (W), molybdenum (Mo), titanium (Ti), tantalum (Ta), niobium (Nb), nickel (Ni), cobalt (Co), zirconium (Zr), An element selected from zinc (Zn), ruthenium (Ru), rhodium (Rh), palladium (Pd), osmium (Os), iridium (Ir), silicon (Si) or the like, or an alloy material containing the element as a main component Alternatively, a layer containing a compound material is formed as a single layer or a stacked layer. Note that the layer containing silicon may be amorphous, microcrystalline, or polycrystalline.

剥離層12が単層構造の場合、好ましくは、タングステン、モリブデン、タングステンとモリブデンの混合物、タングステンの酸化物、タングステンの酸化窒化物、タングステンの窒化酸化物、モリブデンの酸化物、モリブデンの酸化窒化物、モリブデンの窒化酸化物、タングステンとモリブデンの混合物の酸化物、タングステンとモリブデンの混合物の酸化窒化物、タングステンとモリブデンの混合物の窒化酸化物のいずれかを含む層を形成する。 When the separation layer 12 has a single-layer structure, preferably tungsten, molybdenum, a mixture of tungsten and molybdenum, tungsten oxide, tungsten oxynitride, tungsten nitride oxide, molybdenum oxide, molybdenum oxynitride Forming a layer containing any one of molybdenum nitride oxide, oxide of tungsten and molybdenum mixture, oxynitride of tungsten and molybdenum mixture, and nitride oxide of tungsten and molybdenum mixture.

剥離層12が積層構造の場合、好ましくは、1層目として、タングステン、モリブデン、又はタングステンとモリブデンの混合物を含む層を形成し、2層目として、タングステンの酸化物、モリブデンの酸化物、タングステンとモリブデンの混合物の酸化物、タングステンの酸化窒化物、モリブデンの酸化窒化物、又はタングステンとモリブデンの混合物の酸化窒化物を含む層を形成する。 In the case where the separation layer 12 has a stacked structure, it is preferable that a layer containing tungsten, molybdenum, or a mixture of tungsten and molybdenum be formed as the first layer, and a tungsten oxide, a molybdenum oxide, or tungsten be formed as the second layer. A layer containing an oxide of a mixture of molybdenum and molybdenum, an oxynitride of tungsten, an oxynitride of molybdenum, or an oxynitride of a mixture of tungsten and molybdenum is formed.

剥離層12として、タングステンとタングステンの酸化物の積層構造を形成する場合、まず、剥離層12としてタングステンを含む層を形成し、その上層の絶縁層13として、珪素の酸化物を含む層を形成することにより、タングステンを含む層と珪素の酸化物を含む層との間に、タングステンの酸化物を含む層が形成されることを活用してもよい。タングステンの窒化物、タングステンの酸化窒化物、又はタングステンの酸化窒化物等を含む層を形成する場合も同様であり、タングステンを含む層を形成後、その上層に珪素の窒化物を含む層、酸素を含む窒化珪素層、窒素を含む酸化珪素層を形成するとよい。 In the case of forming a stacked structure of tungsten and tungsten oxide as the peeling layer 12, first, a layer containing tungsten is formed as the peeling layer 12, and a layer containing silicon oxide is formed as the insulating layer 13 thereabove. By doing so, the fact that a layer containing tungsten oxide is formed between the layer containing tungsten and the layer containing silicon oxide may be utilized. The same applies to the case where a layer containing tungsten nitride, tungsten oxynitride, tungsten oxynitride, or the like is formed. After forming a layer containing tungsten, a layer containing silicon nitride on the upper layer, oxygen A silicon nitride layer containing nitrogen and a silicon oxide layer containing nitrogen are preferably formed.

次に、絶縁層13上に複数のトランジスタ14を形成する。この工程では、複数のトランジスタ14として、薄膜トランジスタ(Thin Film Transistor)を形成する。 Next, a plurality of transistors 14 are formed over the insulating layer 13. In this step, thin film transistors are formed as the plurality of transistors 14.

複数のトランジスタ14の各々は、半導体層50、ゲート絶縁層(絶縁層ともいう)51、ゲート(ゲート電極ともいう)である導電層52を有する。半導体層50は、ソース又はドレインとして機能する不純物領域53、54、チャネル形成領域55を有する。不純物領域53、54には、N型を付与する不純物元素(例えばリン(P)、砒素(As))、又はP型を付与する不純物元素(例えばボロン(B))が添加されている。不純物領域54は、LDD(Lightly Doped Drain)領域である。 Each of the plurality of transistors 14 includes a semiconductor layer 50, a gate insulating layer (also referred to as an insulating layer) 51, and a conductive layer 52 that is a gate (also referred to as a gate electrode). The semiconductor layer 50 includes impurity regions 53 and 54 that function as a source or a drain, and a channel formation region 55. An impurity element imparting N-type (for example, phosphorus (P) or arsenic (As)) or an impurity element imparting P-type (for example, boron (B)) is added to the impurity regions 53 and 54. The impurity region 54 is an LDD (Lightly Doped Drain) region.

複数のトランジスタ14の各々は、半導体層50上にゲート絶縁層51が設けられ、ゲート絶縁層51上に導電層52が設けられたトップゲート型、導電層52上にゲート絶縁層51が設けられ、ゲート絶縁層51上に半導体層50が設けられたボトムゲート型のどちらのタイプでもよい。また、複数のトランジスタ14から選択された1つ又は複数のトランジスタは、ゲート電極が2つ以上、チャネル形成領域が2つ以上あるマルチゲート型のトランジスタでもよい。 In each of the plurality of transistors 14, a gate insulating layer 51 is provided on the semiconductor layer 50, a top gate type in which a conductive layer 52 is provided on the gate insulating layer 51, and a gate insulating layer 51 is provided on the conductive layer 52. The bottom gate type in which the semiconductor layer 50 is provided on the gate insulating layer 51 may be used. Further, the one or more transistors selected from the plurality of transistors 14 may be multi-gate transistors having two or more gate electrodes and two or more channel formation regions.

また、基板10上に複数のトランジスタ14のみを形成しているが、本発明はこの構成に制約されない。基板10上に設ける素子は、半導体装置の用途によって適宜調整される。例えば、非接触でデータの送信と受信を行う機能を有する場合、基板10上に複数のトランジスタのみ、又は基板10上に複数のトランジスタとアンテナとして機能する導電層を形成するとよい。また、データを記憶する機能を有する場合、基板10上に複数のトランジスタと記憶素子(例えば、トランジスタ、メモリトランジスタ等)を形成するとよい。また、回路を制御する機能や信号を生成する機能等を有する場合(例えば、CPU、信号生成回路等)、基板10上に複数のトランジスタを形成するとよい。また、上記以外にも、必要に応じて、抵抗素子(抵抗ともいう)や容量素子(容量ともいう)などの他の素子を形成するとよい。 Further, although only the plurality of transistors 14 are formed on the substrate 10, the present invention is not limited to this configuration. Elements provided on the substrate 10 are appropriately adjusted depending on the use of the semiconductor device. For example, in the case of having a function of transmitting and receiving data without contact, a plurality of transistors may be formed over the substrate 10 or a plurality of transistors and a conductive layer functioning as an antenna may be formed over the substrate 10. In the case of having a function of storing data, a plurality of transistors and memory elements (eg, transistors and memory transistors) may be formed over the substrate 10. In the case where the circuit has a function of controlling a circuit, a function of generating a signal, or the like (for example, a CPU or a signal generation circuit), a plurality of transistors may be formed over the substrate 10. In addition to the above, other elements such as a resistor (also referred to as a resistor) and a capacitor (also referred to as a capacitor) may be formed as needed.

次に、複数のトランジスタ14上に、絶縁層15〜17を形成する。絶縁層15〜17は、気相成長法、スパッタリング法、SOG(スピン オン グラス)法、液滴吐出法(例えば、インクジェット法)等を用いて、珪素の酸化物、珪素の窒化物、ポリイミド、アクリル、シロキサン、オキサゾール樹脂等を用いて形成する。シロキサンは、例えば、シリコンと酸素との結合で骨格構造が構成され、置換基に、少なくとも水素を含む有機基(例えばアルキル基、芳香族炭化水素)、フルオロ基、又は少なくとも水素を含む有機基とフルオロ基を用いたものである。オキサゾール樹脂は、例えば、感光性ポリベンゾオキサゾール等である。オキサゾール樹脂は、ポリイミド等の比誘電率(3.2〜3.4程度)と比較すると、比誘電率が低いため(2.9程度)、半導体装置の寄生容量の発生を抑制することができる。また、寄生容量の発生を抑制することにより、半導体装置は、高速動作を行うことができる。 Next, insulating layers 15 to 17 are formed over the plurality of transistors 14. The insulating layers 15 to 17 are formed using a silicon oxide, a silicon nitride, a polyimide, a vapor deposition method, a sputtering method, an SOG (spin on glass) method, a droplet discharge method (for example, an ink jet method), or the like. It is formed using acrylic, siloxane, oxazole resin, or the like. Siloxane has, for example, a skeleton structure formed of a bond of silicon and oxygen, and has an organic group containing at least hydrogen (eg, an alkyl group or aromatic hydrocarbon), a fluoro group, or an organic group containing at least hydrogen as a substituent. A fluoro group is used. The oxazole resin is, for example, photosensitive polybenzoxazole. Oxazole resin has a low relative dielectric constant (about 2.9) compared to a relative dielectric constant (about 3.2 to 3.4) of polyimide or the like, and thus can suppress the generation of parasitic capacitance of the semiconductor device. . Further, by suppressing the generation of parasitic capacitance, the semiconductor device can perform high-speed operation.

また上記の構成では、複数のトランジスタ14上に3層の絶縁層(絶縁層15〜17)を形成しているが、本発明はこの構成に制約されない。複数のトランジスタ14上に設けられる絶縁層の数は制約されない。 In the above configuration, three insulating layers (insulating layers 15 to 17) are formed over the plurality of transistors 14, but the present invention is not limited to this configuration. The number of insulating layers provided on the plurality of transistors 14 is not limited.

次に、絶縁層15〜17に開口部を形成して、複数のトランジスタ14の各々のソース(ソース領域、ソース電極ともいう)又はドレイン(ドレイン領域、ドレイン電極ともいう)に接続された導電層19〜24と、導電層18、25を形成する(図1(A)、図8(A)参照)。導電層18、25と、導電層19〜24は、同じ層に設けられている。また、導電層18、25は外部と接続する端子であり、導電層19〜24はソース配線又はドレイン配線である。導電層18、25は、導電層19〜24と電気的に接続されている。外部から供給される信号は、導電層18、25と、導電層19〜24を介して、複数のトランジスタ14に供給される。 Next, openings are formed in the insulating layers 15 to 17, and conductive layers connected to the sources (also referred to as source regions and source electrodes) or drains (also referred to as drain regions and drain electrodes) of the plurality of transistors 14. 19 to 24 and conductive layers 18 and 25 are formed (see FIGS. 1A and 8A). The conductive layers 18 and 25 and the conductive layers 19 to 24 are provided in the same layer. The conductive layers 18 and 25 are terminals connected to the outside, and the conductive layers 19 to 24 are source wirings or drain wirings. The conductive layers 18 and 25 are electrically connected to the conductive layers 19 to 24. A signal supplied from the outside is supplied to the plurality of transistors 14 via the conductive layers 18 and 25 and the conductive layers 19 to 24.

導電層18〜25は、スパッタリング法等により、チタン、タングステン、クロム、アルミニウム、タンタル、ニッケル、ジルコニウム、ハフニウム、バナジウム、イリジウム、ニオブ、鉛、白金、モリブデン、コバルト又はロジウム等から選択された元素、又はこれらの元素を主成分とする合金材料、又はこれらの元素を主成分とする酸化物や窒化物などの化合物材料で、単層又は積層で形成する。導電層18〜25の積層構造の例を挙げると、例えば、チタン、アルミニウム、チタンの3層構造、チタン、窒化チタン、アルミニウム、チタン、窒化チタンの5層構造、チタン、窒化チタン、シリコンが添加されたアルミニウム、チタン、窒化チタンの5層構造等がある。 The conductive layers 18 to 25 are elements selected from, for example, titanium, tungsten, chromium, aluminum, tantalum, nickel, zirconium, hafnium, vanadium, iridium, niobium, lead, platinum, molybdenum, cobalt, or rhodium by sputtering, Alternatively, an alloy material containing these elements as a main component or a compound material such as an oxide or nitride containing these elements as a main component is formed as a single layer or a stacked layer. Examples of the laminated structure of the conductive layers 18 to 25 include, for example, a three-layer structure of titanium, aluminum, and titanium, a five-layer structure of titanium, titanium nitride, aluminum, titanium, and titanium nitride, titanium, titanium nitride, and silicon added. And a five-layer structure of aluminum, titanium, and titanium nitride.

次に、導電層18、25に接するように、導電層26、27を形成する(図1(B)、図8(B)参照)。導電層26、27は、スクリーン印刷法、液滴吐出法等を用いて、金、銀又は銅を含む層を形成する。好ましくは、スクリーン印刷法を用いて、銀の微粒子を含むペースト(銀の微粒子と樹脂が混合した材料)で形成するとよい。スクリーン印刷法は、作製時間を短縮することができ、装置が安価であるからである。また、銀は抵抗値が低いからである。 Next, conductive layers 26 and 27 are formed so as to be in contact with the conductive layers 18 and 25 (see FIGS. 1B and 8B). As the conductive layers 26 and 27, a layer containing gold, silver, or copper is formed by a screen printing method, a droplet discharge method, or the like. Preferably, a screen printing method may be used to form a paste containing silver fine particles (a material in which silver fine particles and a resin are mixed). This is because the screen printing method can reduce the production time and the apparatus is inexpensive. Moreover, it is because silver has a low resistance value.

次に、導電層26、27と、導電層18、25の一方もしくは双方を、溶融させることのできるレーザービームを照射する(図2(A)参照)。レーザービームを照射する前は、導電層18と導電層26、導電層25と導電層27とは部分的に接していたが、レーザービームの照射により、導電層18と導電層26、導電層25と導電層27の接する部分を増大させることができる。そのため、導電層18と導電層26、導電層25と導電層27の電気的な接続をより確実なものとして、信頼性を向上させることができる。レーザービームには、媒質により分類すると、気体レーザー、液体レーザー、固体レーザーがあり、発振の特徴により分類すると、自由電子レーザー、半導体レーザー、X線レーザーがあるが、本発明では、いずれのレーザーを用いてもよい。但し、好ましくは気体レーザー又は固体レーザーを用いるとよく、さらに好ましくは固体レーザーを用いるとよい。また本発明には、連続発振型のレーザービーム、パルス発振型のレーザービームのどちらを用いてもよい。 Next, a laser beam capable of melting one or both of the conductive layers 26 and 27 and the conductive layers 18 and 25 is irradiated (see FIG. 2A). Before the laser beam irradiation, the conductive layer 18 and the conductive layer 26 and the conductive layer 25 and the conductive layer 27 were in partial contact. However, the conductive layer 18, the conductive layer 26, and the conductive layer 25 are irradiated by the laser beam irradiation. And the portion where the conductive layer 27 contacts can be increased. Therefore, the electrical connection between the conductive layer 18 and the conductive layer 26 and the conductive layer 25 and the conductive layer 27 can be made more reliable, and the reliability can be improved. Laser beams are classified into gas lasers, liquid lasers, and solid lasers according to the medium. Free lasers, semiconductor lasers, and X-ray lasers are classified according to oscillation characteristics. It may be used. However, a gas laser or a solid laser is preferably used, and a solid laser is more preferably used. In the present invention, either a continuous wave laser beam or a pulsed laser beam may be used.

次に、絶縁層17と導電層19〜24上に、絶縁層28を選択的に形成する(図2(B)、図8(C)参照)。絶縁層28には、開口部29、30が設けられている。導電層26、27は、開口部29、30を介して露出されている。 Next, the insulating layer 28 is selectively formed over the insulating layer 17 and the conductive layers 19 to 24 (see FIGS. 2B and 8C). Openings 29 and 30 are provided in the insulating layer 28. The conductive layers 26 and 27 are exposed through the openings 29 and 30.

なお、開口部29、30は、導電層26、27の全ての表面が露出されるような形状ではなく、導電層26、27の一部の表面が露出されるような形状とするとよい。具体的には、開口部29、30は、導電層26、27の中心部が露出されるような形状とするとよい。これは、後の工程において、正確な位置に歩留まりよく転置を行うためである。仮に、導電層26、27の一表面の全てが露出されるように、絶縁層28を設けると、導電層26、27と絶縁層28の両方が設けられていない領域が生じてしまう場合がある。後に行う転置の工程では、絶縁層28と基板48とを接着させて行うため、導電層26、27と絶縁層28の一方が設けられていない領域があると、正確に転置を行うことができない場合がある。しかしながら、上記の工程では、絶縁層28は、導電層26、27の中心部が露出されるように、選択的に設けられている。そうすると、導電層26、27と絶縁層28の一方が設けられていない領域がないため、正確に転置を行うことができる。 Note that the openings 29 and 30 are not in a shape that exposes the entire surface of the conductive layers 26 and 27 but in a shape that exposes a part of the surfaces of the conductive layers 26 and 27. Specifically, the openings 29 and 30 are preferably shaped so that the central portions of the conductive layers 26 and 27 are exposed. This is because in a later process, transposition is performed at an accurate position with a high yield. If the insulating layer 28 is provided so that the entire surface of the conductive layers 26 and 27 is exposed, a region where both the conductive layers 26 and 27 and the insulating layer 28 are not provided may occur. . In the subsequent transposition process, since the insulating layer 28 and the substrate 48 are bonded, if there is a region where one of the conductive layers 26 and 27 and the insulating layer 28 is not provided, the transposition cannot be performed accurately. There is a case. However, in the above process, the insulating layer 28 is selectively provided so that the central portions of the conductive layers 26 and 27 are exposed. Then, since there is no region where one of the conductive layers 26 and 27 and the insulating layer 28 is not provided, transposition can be performed accurately.

絶縁層28は、エポキシ樹脂、アクリル樹脂及びポリイミド樹脂等の絶縁性の樹脂により、5〜200μm、好適には15〜35μmの厚さで形成する。また、絶縁層28は、スクリーン印刷法、液滴吐出法等を用いて、均一に形成する。好ましくは、スクリーン印刷法を用いるとよい。スクリーン印刷法は、作製時間を短縮することができ、装置が安価であるからである。次に、必要に応じて、加熱処理を行う。 The insulating layer 28 is formed of an insulating resin such as an epoxy resin, an acrylic resin, and a polyimide resin with a thickness of 5 to 200 μm, preferably 15 to 35 μm. In addition, the insulating layer 28 is formed uniformly using a screen printing method, a droplet discharge method, or the like. Preferably, a screen printing method is used. This is because the screen printing method can reduce the production time and the apparatus is inexpensive. Next, heat treatment is performed as necessary.

次に、少なくとも、剥離層12の一部が露出するような開口部31を形成する(図3(A)、図8(D)参照)。この工程は、処理時間が短い点から、レーザービームの照射により行うとよい。レーザービームは、基板10、絶縁層11、剥離層12、絶縁層13、15〜17、28に対して照射される。また、レーザービームは、絶縁層28の表面から照射される。開口部29は、少なくとも、剥離層12の一部が露出するように形成される。そのため、少なくとも、絶縁層13、15〜17、28には、開口部29が設けられる。図示する構成では、レーザービームが、絶縁層11にまで達し、絶縁層11、13、15〜17、28が分断された場合を示す。なお、レーザービームは、基板10まで分断してもよい。 Next, an opening 31 is formed so that at least a part of the peeling layer 12 is exposed (see FIGS. 3A and 8D). This step is preferably performed by laser beam irradiation because the processing time is short. The laser beam is applied to the substrate 10, the insulating layer 11, the release layer 12, and the insulating layers 13, 15 to 17 and 28. Further, the laser beam is irradiated from the surface of the insulating layer 28. The opening 29 is formed so that at least a part of the release layer 12 is exposed. Therefore, an opening 29 is provided at least in the insulating layers 13, 15 to 17 and 28. In the illustrated configuration, the laser beam reaches the insulating layer 11, and the insulating layers 11, 13, 15-17, and 28 are divided. The laser beam may be divided up to the substrate 10.

上記のレーザービームを照射する工程では、アブレーション加工が用いられる。アブレーション加工とは、レーザービームを照射した部分、つまり、レーザービームを吸収した部分の分子結合が切断されて、光分解し、気化する現象を用いた加工である。つまり、レーザービームを照射して、絶縁層11、剥離層12、絶縁層13、15〜17、28のある部分の分子結合を切断し、光分解し、気化させることにより、開口部31を形成している。 Ablation processing is used in the step of irradiating the laser beam. Ablation processing is processing using a phenomenon in which a molecular bond of a portion irradiated with a laser beam, that is, a portion absorbing a laser beam is cut, photodecomposed and vaporized. In other words, the opening 31 is formed by irradiating a laser beam to break molecular bonds at certain portions of the insulating layer 11, the peeling layer 12, the insulating layers 13, 15 to 17, 28, photodecompose, and vaporize. is doing.

また、レーザーは、紫外領域である150〜380nmの波長の固体レーザーを用いるとよい。好ましくは、150〜380nmの波長のNd:YVOレーザーを用いるとよい。その理由は、150〜380nmの波長のNd:YVOレーザーは、他の高波長側のレーザーに比べ、基板に光が吸収されやすく、アブレーション加工が可能であるからである。また、加工部の周辺に影響を与えず、加工性がよいからである。 The laser may be a solid-state laser having a wavelength of 150 to 380 nm in the ultraviolet region. Preferably, an Nd: YVO 4 laser with a wavelength of 150 to 380 nm may be used. The reason is that the Nd: YVO 4 laser having a wavelength of 150 to 380 nm is more easily absorbed by the substrate than other high wavelength lasers and can be ablated. Moreover, it is because the workability is good without affecting the periphery of the processed part.

次に、絶縁層28上に、基板48を設ける(図3(B)参照)。基板48は、絶縁層32と接着層43が積層された基板であり、熱剥離型の基板である。接着層43は、加熱処理により接着力が低下する層であり、例えば、熱可塑性接着剤の加熱時の軟化を活用する材料からなる層、加熱により膨張するマイクロカプセルや発泡剤を混入した材料からなる層、熱硬化性樹脂に熱溶融性や熱分解性を付与した材料からなる層、水の侵入による界面強度劣化やそれに伴う吸水性樹脂の膨張を用いた層である。 Next, a substrate 48 is provided over the insulating layer 28 (see FIG. 3B). The substrate 48 is a substrate in which the insulating layer 32 and the adhesive layer 43 are stacked, and is a heat-peelable substrate. The adhesive layer 43 is a layer whose adhesive strength is reduced by heat treatment, for example, a layer made of a material that utilizes softening during heating of a thermoplastic adhesive, a material mixed with microcapsules or a foaming agent that expands by heating. A layer made of a material obtained by imparting heat melting property or heat decomposability to a thermosetting resin, or a layer using deterioration of interface strength due to water intrusion and accompanying expansion of the water absorbent resin.

次に、基板48を用いて、基板10から、複数のトランジスタ14を含む積層体を分離する(図4(A)参照)。基板10から、複数のトランジスタ14を含む積層体の分離は、剥離層12の内部又は剥離層12と絶縁層13を境界として行われる。図示する構成では、分離は、剥離層12と絶縁層13の界面を境界として行われた場合を示す。このように、基板48を用いることにより、分離の工程を容易にかつ短時間で行うことができる。 Next, the stacked body including the plurality of transistors 14 is separated from the substrate 10 using the substrate 48 (see FIG. 4A). Separation of the stacked body including the plurality of transistors 14 from the substrate 10 is performed inside the separation layer 12 or with the separation layer 12 and the insulating layer 13 as a boundary. In the configuration shown in the figure, the separation is performed using the interface between the peeling layer 12 and the insulating layer 13 as a boundary. Thus, by using the substrate 48, the separation process can be performed easily and in a short time.

次に、加熱処理を行って、絶縁層13の表面に基板49を設けると共に、基板48から複数のトランジスタ14を含む積層体を分離する(図4(B)参照)。基板49は、絶縁層33と接着層44が積層された基板である。接着層44は、加熱処理により接着力が増す層であり、熱可塑性の樹脂を含む層に相当する。熱可塑性の樹脂とは、例えば、ポリエチレン、ポリスチレン、ポリプロピレン、ポリ塩化ビニル等に相当する。 Next, heat treatment is performed to provide a substrate 49 on the surface of the insulating layer 13 and separate the stacked body including the plurality of transistors 14 from the substrate 48 (see FIG. 4B). The substrate 49 is a substrate in which the insulating layer 33 and the adhesive layer 44 are laminated. The adhesive layer 44 is a layer whose adhesive force is increased by heat treatment, and corresponds to a layer containing a thermoplastic resin. The thermoplastic resin corresponds to, for example, polyethylene, polystyrene, polypropylene, polyvinyl chloride, or the like.

上述したように、基板48は、熱剥離型の基板であるため、加熱処理により、基板48と絶縁層28の間の接着力が低下し、基板48から複数のトランジスタ14を含む積層体が分離される。同時に、加熱処理により、基板49の表面の熱可塑性の樹脂が硬化し、絶縁層13と基板49の一表面との接着力が増す。このように、性質が異なる接着層が設けられた2枚の基板48、49を用いることにより、基板48から積層体を分離する工程と、積層体を基板49上に設ける工程とを同時に行うことができる。従って、作製時間を短縮することができる。 As described above, since the substrate 48 is a heat-peeling substrate, the adhesive force between the substrate 48 and the insulating layer 28 is reduced by heat treatment, and the stacked body including the plurality of transistors 14 is separated from the substrate 48. Is done. At the same time, the thermoplastic resin on the surface of the substrate 49 is cured by the heat treatment, and the adhesive force between the insulating layer 13 and one surface of the substrate 49 is increased. Thus, by using the two substrates 48 and 49 provided with the adhesive layers having different properties, the step of separating the laminate from the substrate 48 and the step of providing the laminate on the substrate 49 are performed simultaneously. Can do. Accordingly, the manufacturing time can be shortened.

次に、必要に応じて、再度、導電層26、27にレーザービームを照射する。これは、上記の分離の工程の影響により、導電層18と導電層26、導電層25と導電層27との電気的な接続に不良が生じる可能性があり、そのような不良を改善するためである。従って、必要がなければ、レーザービームを照射する工程を行わなくてもよい。 Next, if necessary, the conductive layers 26 and 27 are again irradiated with a laser beam. This is because the electrical connection between the conductive layer 18 and the conductive layer 26 and between the conductive layer 25 and the conductive layer 27 may be defective due to the influence of the above-described separation process, in order to improve such a defect. It is. Therefore, if not necessary, the step of irradiating the laser beam may not be performed.

次に、導電層26、27に接するように、導電層34、35を形成する(図5(A)、図9(A)参照)。導電層34、35は、スクリーン印刷法、液滴吐出法等を用いて、金、銀又は銅を含む層を形成する。好ましくは、スクリーン印刷法を用いて、銀の微粒子を含むペースト(銀の微粒子と樹脂が混合した材料)で形成する。スクリーン印刷法は、作製時間を短縮することができ、装置が安価であるからである。また、銀は抵抗値が低いからである。次に、必要に応じて、加熱処理を行う。 Next, conductive layers 34 and 35 are formed so as to be in contact with the conductive layers 26 and 27 (see FIGS. 5A and 9A). As the conductive layers 34 and 35, a layer containing gold, silver, or copper is formed using a screen printing method, a droplet discharge method, or the like. Preferably, a screen printing method is used to form a paste containing silver fine particles (a material in which silver fine particles and a resin are mixed). This is because the screen printing method can reduce the production time and the apparatus is inexpensive. Moreover, it is because silver has a low resistance value. Next, heat treatment is performed as necessary.

次に、基板49、絶縁層13、15〜17、28に、レーザービームを照射して、開口部36を形成する(図5(B)、図9(B)(C)参照)。 Next, the substrate 49 and the insulating layers 13, 15 to 17, and 28 are irradiated with a laser beam to form openings 36 (see FIGS. 5B, 9 B, and 9 C).

次に、アンテナ(アンテナとして機能する導電層)45、容量素子46が設けられた基板37を準備する(図6(A)、図10(A)参照)。アンテナ45、容量素子46の各々は、スクリーン印刷法、液滴吐出法等を用いて形成する。図6(A)には、アンテナ45の一部である導電層38、39を図示する。異方性導電層40は、接着剤中に導電性フィラーが設けられた材料であり、ACP(Anisotropic Conductive Paste)ともよばれる。異方性導電層40は、スクリーン印刷法、液滴吐出法等を用いて、均一に形成する。 Next, a substrate 37 provided with an antenna (a conductive layer functioning as an antenna) 45 and a capacitor 46 is prepared (see FIGS. 6A and 10A). Each of the antenna 45 and the capacitor 46 is formed using a screen printing method, a droplet discharge method, or the like. FIG. 6A illustrates conductive layers 38 and 39 that are part of the antenna 45. The anisotropic conductive layer 40 is a material in which a conductive filler is provided in an adhesive, and is also referred to as ACP (Anisotropic Conductive Paste). The anisotropic conductive layer 40 is uniformly formed using a screen printing method, a droplet discharge method, or the like.

次に、異方性導電層40を用いて、基板49と基板37とを貼り合わせる(図6(B)、図10(B)参照)。次に、必要があれば、絶縁層28と異方性導電層40とを接着する。この際、フリップチップボンダー、ダイボンダー、ACF貼り付け機、圧着機等により、加圧処理と加熱処理の一方又は両方を行う。 Next, the substrate 49 and the substrate 37 are attached to each other using the anisotropic conductive layer 40 (see FIGS. 6B and 10B). Next, if necessary, the insulating layer 28 and the anisotropic conductive layer 40 are bonded. At this time, one or both of the pressure treatment and the heat treatment are performed by a flip chip bonder, a die bonder, an ACF bonding machine, a crimping machine, or the like.

なお、導電層35と導電層39は、直接接してもよい(図6(B)参照)。また、導電層35と導電層39の間に、異方性導電層40が設けられていてもよい。 Note that the conductive layer 35 and the conductive layer 39 may be in direct contact (see FIG. 6B). An anisotropic conductive layer 40 may be provided between the conductive layer 35 and the conductive layer 39.

なお、複数のトランジスタ14を含む積層体の表面に、さらに基板を設けてもよい(図7参照)。具体的には、基板49と基板37の一方又は両方の表面に、新たに、基板を設けてもよい。図示する構成では、基板49の表面に基板41を設け、基板37の表面に基板42を設けている。基板41、42を設けることにより、さらに強度を向上させることができる。基板41、42による複数のトランジスタ14を含む積層体の封止は、基板41、42の各々の表面の層、又は基板41、42の各々の表面の接着層を加熱処理によって溶かすことにより行われる。また必要に応じて、加圧処理も行われる。 Note that a substrate may be further provided over the surface of the stacked body including the plurality of transistors 14 (see FIG. 7). Specifically, a substrate may be newly provided on one or both surfaces of the substrate 49 and the substrate 37. In the illustrated configuration, the substrate 41 is provided on the surface of the substrate 49, and the substrate 42 is provided on the surface of the substrate 37. By providing the substrates 41 and 42, the strength can be further improved. Sealing of the stacked body including the plurality of transistors 14 by the substrates 41 and 42 is performed by melting a surface layer of each of the substrates 41 and 42 or an adhesive layer of each surface of the substrates 41 and 42 by heat treatment. . Moreover, a pressurizing process is also performed as needed.

上記の実施の形態では、基板10から、複数のトランジスタ14を含む積層体を分離するが(図4(A)参照)、本発明はこの形態に制約されない。導電層18〜25を形成した後(図1(A)参照)に、基板10を薄型化してもよい。 In the above embodiment mode, the stacked body including the plurality of transistors 14 is separated from the substrate 10 (see FIG. 4A); however, the present invention is not limited to this mode. After forming the conductive layers 18 to 25 (see FIG. 1A), the substrate 10 may be thinned.

基板10を薄型化するためには、基板10の他方の面を、研削装置(例えば研削盤)を用いて研削する。好適には、基板10の厚さが100μm以下になるまで研削する。次に、研削した基板10の他方の面を、研磨装置(例えば、研磨パッド、研磨砥粒(例えば酸化セリウム等))を用いて研磨する。好適には、基板10の厚さが50μm以下、好ましくは20μm以下、より好ましくは5μm以下になるまで研磨する。なお、基板10を薄型化するためには、基板10の研削と研磨の一方又は両方を行うとよい。また、研削工程と研磨工程を行う前に、必要に応じて、導電層18〜25上に保護を目的とした層を設けるとよい。また、研削工程と研磨工程の後は、必要に応じて、ゴミを除去するための洗浄工程、乾燥工程の一方又は両方を行うとよい。 In order to reduce the thickness of the substrate 10, the other surface of the substrate 10 is ground using a grinding device (for example, a grinding machine). Preferably, grinding is performed until the thickness of the substrate 10 becomes 100 μm or less. Next, the other surface of the ground substrate 10 is polished using a polishing apparatus (for example, a polishing pad, polishing abrasive grains (for example, cerium oxide)). Preferably, polishing is performed until the thickness of the substrate 10 is 50 μm or less, preferably 20 μm or less, more preferably 5 μm or less. In order to reduce the thickness of the substrate 10, one or both of grinding and polishing of the substrate 10 may be performed. Moreover, before performing a grinding process and a grinding | polishing process, it is good to provide the layer for the purpose of protection on the conductive layers 18-25 as needed. In addition, after the grinding process and the polishing process, one or both of a cleaning process and a drying process for removing dust may be performed as necessary.

薄型化した基板10の厚さは、研削工程と研磨工程に必要な時間、後に行う切断工程に必要な時間、半導体装置の用途、半導体装置の用途に必要な強度などを考慮して、適宜決めるとよい。例えば、研削工程と研磨工程の時間を短縮して生産性を向上させる場合は、研磨後の基板10の厚さは50μm程度にするとよい。また、後に行う切断工程に必要な時間を短縮して生産性を向上させる場合、研磨後の基板10の厚さは、20μm以下、より好適には5μm以下とするとよい。また、半導体装置を薄い物品に貼り付けたり、埋め込んだりする場合、研磨後の基板10の厚さは20μm以下、より好適には5μm以下とするとよい。また、薄型化した基板10の厚さの下限は特に制約されない。基板10が除去されるまで(基板10の厚さが0μmになるまで)、薄型化してもよい。 The thickness of the thinned substrate 10 is appropriately determined in consideration of the time required for the grinding process and the polishing process, the time required for the subsequent cutting process, the use of the semiconductor device, the strength required for the use of the semiconductor device, and the like. Good. For example, when improving the productivity by shortening the time of the grinding process and the polishing process, the thickness of the substrate 10 after polishing is preferably about 50 μm. In the case where the time required for the subsequent cutting step is shortened to improve productivity, the thickness of the substrate 10 after polishing is preferably 20 μm or less, more preferably 5 μm or less. Further, when the semiconductor device is attached to a thin article or embedded, the thickness of the substrate 10 after polishing is preferably 20 μm or less, more preferably 5 μm or less. Further, the lower limit of the thickness of the thinned substrate 10 is not particularly limited. The substrate 10 may be thinned until the substrate 10 is removed (until the thickness of the substrate 10 becomes 0 μm).

次に、導電層18、25に接するように、導電層26、27を形成する(図1(B)参照)。次に、導電層26、27にレーザービームを照射する(図2(A)参照)。次に、絶縁層28を選択的に形成する(図2(B)参照)。次に、レーザービームを照射して、開口部31を形成する(図3(A)参照)。図示する構成では、開口部31の形成の際に、基板10を切断していないが、基板10を薄型化した場合は、基板10も切断するとよい。そして、基板10から、複数のトランジスタ14を含む積層体を分離する工程を省略するとよい。その後の工程は、上述の工程と同様である(図3(B)、図4、図5、図6参照)。基板10から複数のトランジスタ14を含む積層体を分離せずに、薄型化した基板10を残存させておくと、有害な気体の侵入、水の侵入、不純物元素の侵入を抑制することができる。従って、劣化や破壊を抑制し、信頼性を向上させることができる。また、バリア性を向上させることができる。 Next, conductive layers 26 and 27 are formed so as to be in contact with the conductive layers 18 and 25 (see FIG. 1B). Next, the conductive layers 26 and 27 are irradiated with a laser beam (see FIG. 2A). Next, the insulating layer 28 is selectively formed (see FIG. 2B). Next, a laser beam is irradiated to form the opening 31 (see FIG. 3A). In the illustrated configuration, the substrate 10 is not cut when the opening 31 is formed. However, when the substrate 10 is thinned, the substrate 10 may be cut. Then, the step of separating the stacked body including the plurality of transistors 14 from the substrate 10 may be omitted. Subsequent steps are similar to those described above (see FIGS. 3B, 4, 5, and 6). If the thinned substrate 10 is left without separating the stacked body including the plurality of transistors 14 from the substrate 10, entry of harmful gas, water, and impurity elements can be suppressed. Therefore, deterioration and destruction can be suppressed and reliability can be improved. Further, the barrier property can be improved.

本発明の半導体装置の構成について、図11を参照して説明する。本発明の半導体装置100は、演算処理回路101、記憶回路103、アンテナ104、電源回路109、復調回路110、変調回路111を有する。 The structure of the semiconductor device of the present invention will be described with reference to FIG. The semiconductor device 100 of the present invention includes an arithmetic processing circuit 101, a memory circuit 103, an antenna 104, a power supply circuit 109, a demodulation circuit 110, and a modulation circuit 111.

演算処理回路101は、復調回路110から入力される信号に基づき、命令の解析、記憶回路103の制御、外部に送信するデータの変調回路111への出力などを行う。 The arithmetic processing circuit 101 performs instruction analysis, control of the storage circuit 103, output of data to be transmitted to the modulation circuit 111, and the like based on a signal input from the demodulation circuit 110.

記憶回路103は、記憶素子を含む回路と、データの書き込みやデータの読み出しを制御する制御回路を有する。記憶回路103には、少なくとも、半導体装置自体の識別番号が記憶されている。識別番号は、他の半導体装置と区別するために用いられる。記憶回路103は、有機メモリ、DRAM(Dynamic Random Access Memory)、SRAM(Static Random Access Memory)、FeRAM(Ferroelectric Random Access Memory)、マスクROM(Read Only Memory)、PROM(Programmable Read Only Memory)、EPROM(Electrically Programmable Read Only Memory)、EEPROM(Electrically Erasable Programmable Read Only Memory)及びフラッシュメモリから選択された一種又は複数種である。有機メモリは、一対の導電層間に有機化合物を含む層が挟まれた構造を有するメモリである。有機メモリは、構造が単純であるため、作製工程を簡略化することができ、費用を削減することができる。また、構造が単純であるため、積層体の面積を小型化することが容易であり、高集積化を容易に実現することができる。また、不揮発性であり、電池を内蔵する必要がない。従って、記憶回路103として、有機メモリを用いることが好ましい。 The memory circuit 103 includes a circuit including a memory element and a control circuit that controls data writing and data reading. The memory circuit 103 stores at least an identification number of the semiconductor device itself. The identification number is used to distinguish from other semiconductor devices. The memory circuit 103 includes an organic memory, a DRAM (Dynamic Random Access Memory), a SRAM (Static Random Access Memory), a FeRAM (Ferroelectric Random Access Memory), a mask ROM (Read Only Memory ROM). One or a plurality of types selected from Electrically Programmable Read Only Memory (EEPROM), EEPROM (Electrically Erasable Programmable Read Only Memory), and flash memory. An organic memory is a memory having a structure in which a layer containing an organic compound is sandwiched between a pair of conductive layers. Since the organic memory has a simple structure, the manufacturing process can be simplified and the cost can be reduced. Further, since the structure is simple, the area of the stacked body can be easily reduced, and high integration can be easily realized. Moreover, it is non-volatile and does not need to contain a battery. Therefore, it is preferable to use an organic memory as the memory circuit 103.

アンテナ104は、リーダ/ライタ112から供給された搬送波を、交流の電気信号に変換する。また、アンテナ104は、変調回路111により、負荷変調が加えられる。電源回路109は、アンテナ104が変換した交流の電気信号を用いて電源電圧を生成し、各回路に電源電圧を供給する。 The antenna 104 converts the carrier wave supplied from the reader / writer 112 into an AC electrical signal. The antenna 104 is subjected to load modulation by the modulation circuit 111. The power supply circuit 109 generates a power supply voltage using the AC electrical signal converted by the antenna 104 and supplies the power supply voltage to each circuit.

復調回路110は、アンテナ104が変換した交流の電気信号を復調し、復調した信号を、演算処理回路101に供給する。変調回路111は、演算処理回路101から供給される信号に基づき、アンテナ104に負荷変調を加える。 The demodulation circuit 110 demodulates the AC electrical signal converted by the antenna 104 and supplies the demodulated signal to the arithmetic processing circuit 101. The modulation circuit 111 applies load modulation to the antenna 104 based on the signal supplied from the arithmetic processing circuit 101.

リーダ/ライタ112は、アンテナ104に加えられた負荷変調を、搬送波として受信する。また、リーダ/ライタ112は、搬送波を半導体装置100に送信する。なお、搬送波とは、リーダ/ライタ112が発する電磁波である。 The reader / writer 112 receives the load modulation applied to the antenna 104 as a carrier wave. Further, the reader / writer 112 transmits a carrier wave to the semiconductor device 100. The carrier wave is an electromagnetic wave emitted from the reader / writer 112.

本発明の半導体装置が含むトランジスタを用いて、上記回路を構成することにより、非接触でデータの送信と受信を行う機能をもたせることができる。 By using the transistor included in the semiconductor device of the present invention to form the above circuit, a function of transmitting and receiving data without contact can be provided.

本発明の半導体装置125は、非接触でデータの送信と受信を行うことができるという機能を活用することにより、様々な物品、様々なシステムに用いることができる。物品とは、例えば、鍵(図12(A)参照)、紙幣、硬貨、有価証券類、無記名債券類、証書類(運転免許証や住民票等)、書籍類、容器類(シャーレ等、図12(B)参照)、装身具(鞄や眼鏡等、図12(C)参照)、包装用容器類(包装紙やボトル等、図12(D)参照)、記録媒体(ディスクやビデオテープ等)、乗物類(自転車等)、食品類、衣類、生活用品類、電子機器(液晶表示装置、EL表示装置、テレビジョン装置、携帯端末等)等である。本発明の半導体装置は、上記のような様々な形状の物品の表面に貼り付けたり、埋め込んだりして、固定される。 The semiconductor device 125 of the present invention can be used for various articles and various systems by utilizing a function of transmitting and receiving data without contact. Articles include, for example, keys (see FIG. 12A), banknotes, coins, securities, bearer bonds, certificates (driver's license, resident's card, etc.), books, containers (pets, etc.) 12 (B)), accessories (such as bags and glasses, see FIG. 12 (C)), packaging containers (wrapping paper, bottles, etc., see FIG. 12 (D)), recording media (discs, video tapes, etc.) Vehicles (bicycles, etc.), foods, clothing, daily necessities, electronic devices (liquid crystal display devices, EL display devices, television devices, portable terminals, etc.). The semiconductor device of the present invention is fixed by being attached or embedded on the surface of an article having various shapes as described above.

また、システムとは、物流・在庫管理システム、認証システム、流通システム、生産履歴システム、書籍管理システム等であり、本発明の半導体装置の機能を活用することにより、システムの高機能化、多機能化、高付加価値化を図ることができる。例えば、本発明の半導体装置を身分証明証の内部に設けておき、かつ、建物の入り口などに、リーダ/ライタ121を設けておく(図12(E)参照)。リーダ/ライタ121は、各人が所有する身分証明証内の認証番号を読み取り、その読み取った認証番号に関する情報を、コンピュータ122に供給する。コンピュータ122では、リーダ/ライタ121から供給された情報に基づき、入室又は退室を許可するか否かを判断する。このように、本発明の半導体装置の機能を活用することにより、使用者の利便性を向上させ、高付加価値化を実現した入退室管理システムを提供することができる。 The system is a distribution / inventory management system, an authentication system, a distribution system, a production history system, a book management system, and the like. By utilizing the functions of the semiconductor device of the present invention, the system is highly functional and multifunctional. And high added value. For example, a semiconductor device of the present invention is provided inside an identification card, and a reader / writer 121 is provided at the entrance of a building or the like (see FIG. 12E). The reader / writer 121 reads an authentication number in an identification card owned by each person and supplies information related to the read authentication number to the computer 122. Based on the information supplied from the reader / writer 121, the computer 122 determines whether to permit entry or exit from the room. As described above, by utilizing the function of the semiconductor device of the present invention, it is possible to provide an entrance / exit management system that improves user convenience and realizes high added value.

本発明の半導体装置に用いられる、導電層が設けられた基板の例について説明する。導電層が設けられた基板は、例えば、以下の2つのようなものがある。導電層は、アンテナや接続配線として機能する。 An example of a substrate provided with a conductive layer used in the semiconductor device of the present invention will be described. Examples of the substrate provided with the conductive layer include the following two. The conductive layer functions as an antenna or connection wiring.

1つは、基板上に、導電層が設けられたものである。導電層は、銅、銀、金、アルミニウム、チタンなどにより形成されている。導電層の露出された部分は、酸化防止のため、金などによりメッキが施されている。 One is that a conductive layer is provided on a substrate. The conductive layer is made of copper, silver, gold, aluminum, titanium, or the like. The exposed portion of the conductive layer is plated with gold or the like to prevent oxidation.

もう1つは、基板上に、導電層が設けられ、当該導電層上に保護層が設けられたものである。保護層は、絶縁性の樹脂を含み、絶縁性の樹脂とは、例えば、エポキシ樹脂、シリコン樹脂、合成ゴム系樹脂である。保護層には、所望の箇所に開口部が設けられており、その開口部を介して、導電層が露出されている。 The other is that a conductive layer is provided over a substrate and a protective layer is provided over the conductive layer. The protective layer includes an insulating resin, and the insulating resin is, for example, an epoxy resin, a silicon resin, or a synthetic rubber resin. The protective layer has an opening at a desired location, and the conductive layer is exposed through the opening.

なお、基板220上の導電層221をアンテナとして機能させる場合、導電層221の形状は制約されない(図16(A)〜(D)参照)。例えば、線状(ダイポールアンテナ等、図16(A)参照)、直方体で平坦なもの(パッチアンテナ等、図16(B)参照)、輪状(ループアンテナ、スパイラルアンテナ等、図16(C)参照)、リボン状(図16(D)参照)などがある。そして、導電層221が設けられた基板220上に、複数のトランジスタを含む積層体222を貼り付ければ、非接触でデータの送信と受信が可能な半導体装置が完成する。 Note that when the conductive layer 221 over the substrate 220 functions as an antenna, the shape of the conductive layer 221 is not limited (see FIGS. 16A to 16D). For example, linear (dipole antenna, etc., see FIG. 16A), rectangular parallelepiped (patch antenna, etc., see FIG. 16B), ring (loop antenna, spiral antenna, etc., see FIG. 16C) ), Ribbon shape (see FIG. 16D), and the like. Then, when a stacked body 222 including a plurality of transistors is attached to the substrate 220 over which the conductive layer 221 is provided, a semiconductor device capable of transmitting and receiving data without contact is completed.

また、導電層を形成する材料も特に制約されない。材料には、例えば、金、銀、銅等を用いればよく、そのうち、抵抗値が低い銀を用いるとよい。また、その作製方法も特に制約されず、スパッタリング法、スクリーン印刷法、液滴吐出法等を用いるとよい。 Further, the material for forming the conductive layer is not particularly limited. For example, gold, silver, copper, or the like may be used as the material, and silver having a low resistance value may be used. There is no particular limitation on the manufacturing method, and a sputtering method, a screen printing method, a droplet discharge method, or the like is preferably used.

なお、アンテナを、直接、金属膜の表面に貼り付けると、金属膜の表面を通る磁束によって、金属膜にうず電流が発生する。このようなうず電流は、リーダ/ライタの磁界に対して、逆向きに発生してしまう。そこで、アンテナと導電層の間に、高い透磁率で高周波損失の少ないフェライトや金属薄膜シートを挟み、うず電流の発生を防止するとよい。 Note that when the antenna is directly attached to the surface of the metal film, an eddy current is generated in the metal film by the magnetic flux passing through the surface of the metal film. Such an eddy current is generated in the opposite direction to the magnetic field of the reader / writer. Therefore, it is preferable to prevent the generation of eddy current by sandwiching a ferrite or metal thin film sheet having high magnetic permeability and low high-frequency loss between the antenna and the conductive layer.

本発明の半導体装置には、静電気による影響を抑制するために、電荷の発生を抑制することができる帯電防止型の基板を用いることが好ましい。そこで、帯電防止型の基板について、図17を参照して説明する。以下には、帯電防止型の基板を5つに大別して説明する。 In the semiconductor device of the present invention, it is preferable to use an antistatic substrate capable of suppressing the generation of electric charges in order to suppress the influence of static electricity. An antistatic substrate will be described with reference to FIG. In the following description, the antistatic substrate is roughly divided into five.

1つ目は、絶縁層251と、絶縁層251上に導電性材料を含む層252が設けられた基板である(図17(A)参照)。導電性材料を含む層252は、めっき法、蒸着法及びスパッタリング法などを用いて、アルミニウム、金、亜鉛、インジウム錫酸化物等の金属を含む層を形成する。又は、導電性材料を含む層252として、導電性塗料を含む層を形成する。導電性塗料とは、塗料に導電性材料(カーボンブラックや銀の粒子など)の微粉が混入された材料である。 The first is a substrate in which an insulating layer 251 and a layer 252 containing a conductive material are provided over the insulating layer 251 (see FIG. 17A). As the layer 252 containing a conductive material, a layer containing a metal such as aluminum, gold, zinc, or indium tin oxide is formed by a plating method, an evaporation method, a sputtering method, or the like. Alternatively, a layer including a conductive paint is formed as the layer 252 including a conductive material. The conductive paint is a material in which fine powder of a conductive material (carbon black, silver particles, etc.) is mixed in the paint.

2つ目は、絶縁層253が設けられており、絶縁層253の表面に親水化された層254が設けられた基板である(図17(B)参照)。親水化するためには、酸による処理、プラズマによる表面処理を用いる。3つ目は、導電性材料が混入された絶縁層255を含む基板である(図17(C)参照)。導電性材料とは、金属粉、カーボンブラック、カーボン繊維などを用いる。 The second is a substrate in which an insulating layer 253 is provided and a hydrophilic layer 254 is provided on the surface of the insulating layer 253 (see FIG. 17B). In order to make it hydrophilic, treatment with acid and surface treatment with plasma are used. The third is a substrate including an insulating layer 255 mixed with a conductive material (see FIG. 17C). As the conductive material, metal powder, carbon black, carbon fiber, or the like is used.

上記の3つの基板のように、基板に帯電された電荷を放電し、その一端を接地することにより、容易に電荷を除去することができる。従って、静電気による影響を抑制することができる。 As in the above three substrates, the electric charge charged on the substrate is discharged and one end thereof is grounded, whereby the electric charge can be easily removed. Therefore, the influence of static electricity can be suppressed.

4つ目は、絶縁層256と、絶縁層256上に帯電防止剤を含む層257が設けられた基板である(図17(D)参照)。5つ目は、帯電防止剤が混入された絶縁層258を含む基板である(図17(E)参照)。帯電防止剤は、アニオン系帯電防止剤、カチオン系帯電防止剤、両性帯電防止剤、非イオン系帯電防止剤に分類される。アニオン系帯電防止剤にはアルキルスルホン酸塩等があり、カチオン系帯電防止剤にはテトラアルキルアンモニウム塩等があり、両性帯電防止剤にはアルキルベタイン等があり、非イオン系帯電防止剤にはグリセリン脂肪酸エステル等がある。 The fourth is a substrate in which an insulating layer 256 and a layer 257 containing an antistatic agent are provided over the insulating layer 256 (see FIG. 17D). The fifth is a substrate including an insulating layer 258 mixed with an antistatic agent (see FIG. 17E). Antistatic agents are classified into anionic antistatic agents, cationic antistatic agents, amphoteric antistatic agents, and nonionic antistatic agents. Anionic antistatic agents include alkyl sulfonates, cationic antistatic agents include tetraalkylammonium salts, amphoteric antistatic agents include alkylbetaines, and nonionic antistatic agents. Examples include glycerin fatty acid esters.

上記の2つの基板のように、帯電防止剤を用いることにより、基板に帯電された電荷の漏洩を促進することができる。従って、静電気による影響を抑制することができる。 By using an antistatic agent like the above two substrates, leakage of charges charged on the substrate can be promoted. Therefore, the influence of static electricity can be suppressed.

絶縁層251、253、256には、シリコーン、ポリエチレン、ポリプロピレン、ポリスチレン、AS樹脂、ABS樹脂(アクリルニトリル、ブタジエン、スチレンの三つが重合した樹脂)、アクリル樹脂、ポリ塩化ビニル、ポリアセタール、ポリアミド、ポリカーボネート、変性ポリフェニレンエーテル、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリエチレンテレフタレート、ポリサルフォン、ポリエーテルサルフォン、ポリフェニレンサルファイド、ポリアミドイミド、ポリメチルペンテン、フェノール樹脂、ユリア樹脂、メラミン樹脂、エポキシ樹脂、ジアリルフタレート樹脂、不飽和ポリエステル樹脂、ポリイミド、ポリウレタン等を用いて形成する。 For the insulating layers 251, 253, 256, silicone, polyethylene, polypropylene, polystyrene, AS resin, ABS resin (resin in which three of acrylonitrile, butadiene and styrene are polymerized), acrylic resin, polyvinyl chloride, polyacetal, polyamide, polycarbonate , Modified polyphenylene ether, polybutylene terephthalate, polyethylene naphthalate, polyethylene terephthalate, polysulfone, polyethersulfone, polyphenylene sulfide, polyamideimide, polymethylpentene, phenol resin, urea resin, melamine resin, epoxy resin, diallyl phthalate resin, It is formed using a saturated polyester resin, polyimide, polyurethane or the like.

また、上記の基板は、基板(基体、フィルム、テープとよぶこともできる)は、可撓性の性質を有することが好ましい。また、基板の表面には、接着層が設けられていてもよい。接着層は、接着剤を含む層である。また、基板の表面は、二酸化珪素(シリカ)により、コーティングされていてもよい。コーティングにより、高温で高湿度の環境下においても防水性を保つことができる。また、その表面は、炭素を主成分とする材料(例えば、ダイヤモンドライクカーボン)によりコーティングされていてもよい。コーティングにより強度が増し、複数のトランジスタ14を含む積層体の劣化や破壊を抑制することができる。 In addition, the substrate (also referred to as a base, a film, or a tape) is preferably flexible. An adhesive layer may be provided on the surface of the substrate. The adhesive layer is a layer containing an adhesive. The surface of the substrate may be coated with silicon dioxide (silica). The coating can maintain waterproofness even in a high temperature and high humidity environment. The surface may be coated with a material containing carbon as a main component (for example, diamond-like carbon). The strength is increased by the coating, and deterioration and destruction of the stacked body including the plurality of transistors 14 can be suppressed.

本発明の半導体装置は、複数のトランジスタを有する。複数のトランジスタの各々は、半導体層、ゲート絶縁層及びゲート電極を有する。以下には、複数のトランジスタの各々が含む半導体層の作製方法の一例について説明する。 The semiconductor device of the present invention has a plurality of transistors. Each of the plurality of transistors includes a semiconductor layer, a gate insulating layer, and a gate electrode. An example of a method for manufacturing a semiconductor layer included in each of the plurality of transistors is described below.

まず、スパッタリング法、LPCVD法、プラズマCVD法等により非晶質半導体層を形成する。次に、レーザー結晶化法、RTA(Rapid Thermal Anneal)法、ファーネスアニール炉を用いる熱結晶化法、結晶化を助長する金属元素を用いる熱結晶化法、結晶化を助長する金属元素を用いる熱結晶化法とレーザー結晶化法を組み合わせた方法などを用いて、非晶質半導体層を結晶化し、結晶化された半導体層を形成する。次に、結晶化された半導体層を所望の形状に加工する。 First, an amorphous semiconductor layer is formed by sputtering, LPCVD, plasma CVD, or the like. Next, laser crystallization, RTA (Rapid Thermal Anneal), thermal crystallization using a furnace annealing furnace, thermal crystallization using a metal element that promotes crystallization, heat using a metal element that promotes crystallization The amorphous semiconductor layer is crystallized by using a combination of a crystallization method and a laser crystallization method, and a crystallized semiconductor layer is formed. Next, the crystallized semiconductor layer is processed into a desired shape.

なお上記の作製方法のうち、好ましくは、熱処理を伴った結晶化法と、連続発振レーザー又は10MHz以上の周波数で発振するレーザービームを照射する結晶化法とを組み合わせた方法を用いるとよい。連続発振レーザー又は10MHz以上の周波数で発振するレーザービームを照射することで、結晶化された半導体層の表面を平坦なものとすることができる。結晶化された半導体層の表面を平坦化することにより、当該半導体層の上層のゲート絶縁層を薄膜化し、また、前記ゲート絶縁層の耐圧を向上させることができる。 Note that among the above manufacturing methods, a method in which a crystallization method accompanied by heat treatment and a crystallization method in which a continuous wave laser or a laser beam oscillated at a frequency of 10 MHz or higher is irradiated is preferably used. By irradiation with a continuous wave laser or a laser beam oscillated at a frequency of 10 MHz or higher, the surface of the crystallized semiconductor layer can be flattened. By planarizing the surface of the crystallized semiconductor layer, the gate insulating layer above the semiconductor layer can be thinned, and the breakdown voltage of the gate insulating layer can be improved.

また上記の作製方法のうち、好ましくは、連続発振レーザー又は10MHz以上の周波数で発振するレーザービームを用いるとよい。連続発振レーザー又は10MHz以上の周波数で発振するレーザービームを照射しながら、一方向に走査して結晶化させた半導体層は、そのビームの走査方向に結晶が成長する特性がある。その走査方向をチャネル長方向(チャネル形成領域が形成されたときにキャリアが流れる方向)に合わせてトランジスタを配置し、なおかつ、ゲート絶縁層の作製方法に下記の方法を採用することにより、特性のばらつきが小さく、しかも電界効果移動度が高いトランジスタを得ることができる。 Of the above manufacturing methods, a continuous wave laser or a laser beam that oscillates at a frequency of 10 MHz or higher is preferably used. A semiconductor layer which is crystallized by scanning in one direction while irradiating a continuous wave laser or a laser beam oscillating at a frequency of 10 MHz or more has a characteristic that crystals grow in the scanning direction of the beam. By arranging the transistor in accordance with the scanning direction in the channel length direction (the direction in which carriers flow when the channel formation region is formed) and adopting the following method as a method for forming the gate insulating layer, A transistor with small variation and high field-effect mobility can be obtained.

次に、複数のトランジスタの各々が含むゲート絶縁層の作製方法の一例について説明する。ゲート絶縁層は、半導体層に対し、プラズマ処理を行うことにより、表面を酸化又は窒化することで形成するとよい。例えば、希ガス(He、Ar、Kr、Xeなど)と混合ガス(酸素、酸化窒素、アンモニア、窒素、水素など)を導入したプラズマ処理で形成する。この場合のプラズマの励起は、マイクロ波の導入により行うと、低電子温度で高密度のプラズマを生成することができる。このような高密度プラズマで生成された酸素ラジカル(OHラジカルを含む場合もある)や窒素ラジカル(NHラジカルを含む場合もある)によって、半導体層の表面を酸化又は窒化することにより、5〜10nmの絶縁層が半導体層に形成される。この5〜10nmの絶縁層をゲート絶縁層として用いるとよい。 Next, an example of a method for manufacturing a gate insulating layer included in each of the plurality of transistors is described. The gate insulating layer is preferably formed by oxidizing or nitriding the surface of the semiconductor layer by performing plasma treatment. For example, the plasma treatment is performed by introducing a rare gas (He, Ar, Kr, Xe, or the like) and a mixed gas (oxygen, nitrogen oxide, ammonia, nitrogen, hydrogen, or the like). When excitation of plasma in this case is performed by introducing microwaves, high-density plasma can be generated at a low electron temperature. By oxidizing or nitriding the surface of the semiconductor layer with oxygen radicals (which may include OH radicals) or nitrogen radicals (which may also include NH radicals) generated by such high-density plasma, 5 to 10 nm. The insulating layer is formed on the semiconductor layer. This insulating layer having a thickness of 5 to 10 nm is preferably used as the gate insulating layer.

なお、この場合の高密度プラズマを用いた処理による反応は、固相反応であるため、当該ゲート絶縁層と半導体層との界面準位密度はきわめて低くすることができる。このような高密度プラズマ処理は、半導体層(結晶性シリコン、或いは多結晶シリコン)を直接酸化(若しくは窒化)するため、形成されるゲート絶縁層の厚さのばらつきをきわめて小さくすることができる。また、結晶性シリコンの結晶粒界でも、強く酸化されることがないため、非常に好ましい状態となる。すなわち、ここで示す高密度プラズマ処理で、半導体層の表面を固相酸化することにより、結晶粒界において異常に酸化反応をさせることなく、均一性が良く、界面準位密度が低いゲート絶縁層を形成することができる。 Note that the reaction by the treatment using the high-density plasma in this case is a solid-phase reaction, and thus the interface state density between the gate insulating layer and the semiconductor layer can be extremely low. Such a high-density plasma treatment directly oxidizes (or nitrides) a semiconductor layer (crystalline silicon or polycrystalline silicon), so that variation in thickness of the formed gate insulating layer can be extremely reduced. In addition, since it is not strongly oxidized even at the crystal grain boundary of crystalline silicon, a very preferable state is obtained. That is, by performing solid-phase oxidation of the surface of the semiconductor layer by the high-density plasma treatment shown here, the gate insulating layer has good uniformity and low interface state density without causing an abnormal oxidation reaction at the grain boundary. Can be formed.

なお、トランジスタが含むゲート絶縁層は、高密度プラズマ処理によって形成される絶縁層のみを用いてもよいし、高密度プラズマ処理によって形成される絶縁層に加えて、プラズマや熱反応を利用したCVD法で酸化シリコン、酸窒化シリコン、窒化シリコンなどの絶縁層を積層させて形成してもよい。いずれにしても、高密度プラズマで形成した絶縁層をゲート絶縁層の一部又は全部に含むトランジスタは、その特性のばらつきを小さくすることができる。 Note that as the gate insulating layer included in the transistor, only an insulating layer formed by high-density plasma treatment may be used, or in addition to an insulating layer formed by high-density plasma treatment, CVD using plasma or thermal reaction is used. Alternatively, an insulating layer such as silicon oxide, silicon oxynitride, or silicon nitride may be stacked by a method. In any case, a transistor including an insulating layer formed by high-density plasma as part or all of a gate insulating layer can reduce variation in characteristics.

また、トランジスタが含む半導体層とゲート絶縁層や、その他の絶縁層は、プラズマ処理を用いて形成する場合がある。このようなプラズマ処理は、電子密度が1×1011cm−3以上であり、プラズマの電子温度が1.5eV以下で行うことが好ましい。より詳しくは、電子密度が1×1011cm−3以上1×1013cm−3以下で、プラズマの電子温度が0.5eV以上1.5eV以下で行うことが好ましい。 In some cases, a semiconductor layer and a gate insulating layer included in the transistor and other insulating layers are formed by plasma treatment. Such plasma treatment is preferably performed at an electron density of 1 × 10 11 cm −3 or more and an electron temperature of plasma of 1.5 eV or less. More specifically, it is preferable that the electron density is 1 × 10 11 cm −3 or more and 1 × 10 13 cm −3 or less and the plasma electron temperature is 0.5 eV or more and 1.5 eV or less.

プラズマの電子密度が高密度であり、被処理物(例えば、トランジスタが含む半導体層、ゲート絶縁層等)付近での電子温度が低いと、被処理物に対するプラズマによる損傷を防止することができる。また、プラズマの電子密度が1×1011cm−3以上と高密度であるため、プラズマ処理を用いて、被処理物を酸化または窒化することよって形成される酸化物または窒化物は、CVD法やスパッタリング法等により形成された薄膜と比較して、膜厚等が均一性に優れ、緻密な膜を形成することができる。また、プラズマの電子温度が1.5eV以下と低いため、従来のプラズマ処理や熱酸化法と比較して、低温度で酸化または窒化処理を行うことができる。例えば、ガラス基板の歪点よりも100度以上低い温度でプラズマ処理を行っても、被処理物を十分に酸化または窒化することによって、酸化物または窒化物を形成することができる。 When the electron density of plasma is high and the electron temperature in the vicinity of an object to be processed (for example, a semiconductor layer included in a transistor, a gate insulating layer, or the like) is low, damage to the object to be processed can be prevented. In addition, since the electron density of plasma is as high as 1 × 10 11 cm −3 or higher, an oxide or nitride formed by oxidizing or nitriding an object to be processed using plasma treatment is a CVD method. Compared with a thin film formed by sputtering or the like, the film thickness is excellent in uniformity and a dense film can be formed. In addition, since the electron temperature of plasma is as low as 1.5 eV or less, oxidation or nitridation treatment can be performed at a lower temperature than conventional plasma treatment or thermal oxidation. For example, even when plasma treatment is performed at a temperature lower than 100 degrees below the strain point of a glass substrate, an oxide or nitride can be formed by sufficiently oxidizing or nitriding the object to be processed.

積層された導電層にレーザービームを照射する前と照射した後とで抵抗値の相違を調べた実験とその結果、また、積層された導電層にレーザービームを照射した後の断面構造について、図13〜15を参照して説明する。 The experiment and the result of examining the difference in resistance value before and after irradiating the laminated conductive layer with the laser beam, and the cross-sectional structure after irradiating the laminated conductive layer with the laser beam Description will be made with reference to 13 to 15.

実験では、サンプルAとサンプルBの2つのサンプルを準備した。サンプルAは、基板221上に、第1の導電層222、第2の導電層223、第3の導電層224、第4の導電層225及び第5の導電層226を積層して形成した。また、第5の導電層226上に、第6の導電層227、228を形成した(図13(A)のサンプルAの断面の概略図参照)。 In the experiment, two samples, sample A and sample B, were prepared. Sample A was formed by stacking a first conductive layer 222, a second conductive layer 223, a third conductive layer 224, a fourth conductive layer 225, and a fifth conductive layer 226 over a substrate 221. In addition, sixth conductive layers 227 and 228 were formed over the fifth conductive layer 226 (see a schematic cross-sectional view of the sample A in FIG. 13A).

サンプルBは、サンプルAと同様、基板221上に、第1の導電層222、第2の導電層223、第3の導電層224、第4の導電層225及び第5の導電層226を積層して形成した。また、第5の導電層226上に、2つの第6の導電層を形成し、その後、当該第6の導電層の表面に、266nmの波長のNd:YVOレーザーを照射した。その結果、レーザービームに照射された第6の導電層229、230が形成された(図13(B)のサンプルBの断面の概略図参照)。 In the sample B, similarly to the sample A, the first conductive layer 222, the second conductive layer 223, the third conductive layer 224, the fourth conductive layer 225, and the fifth conductive layer 226 are stacked over the substrate 221. Formed. In addition, two sixth conductive layers were formed over the fifth conductive layer 226, and then the surface of the sixth conductive layer was irradiated with an Nd: YVO 4 laser having a wavelength of 266 nm. As a result, sixth conductive layers 229 and 230 irradiated with the laser beam were formed (see the schematic diagram of the cross section of the sample B in FIG. 13B).

なお、第1の導電層222はチタンを含む層であり、第2の導電層223は窒化チタンを含む層であり、第3の導電層224はアルミニウムを含む層であり、第4の導電層225はチタンを含む層であり、第5の導電層226は窒化チタンを含む層であった。また、第6の導電層227、228、229、230は、銀ペーストを含む層であった。銀ペーストは、エポキシ樹脂と銀の微粒子を含むものであった。 Note that the first conductive layer 222 is a layer containing titanium, the second conductive layer 223 is a layer containing titanium nitride, the third conductive layer 224 is a layer containing aluminum, and the fourth conductive layer. 225 is a layer containing titanium, and the fifth conductive layer 226 is a layer containing titanium nitride. The sixth conductive layers 227, 228, 229, and 230 were layers containing silver paste. The silver paste contained epoxy resin and silver fine particles.

次に、サンプルAの第6の導電層227、228の間の抵抗値と、サンプルBの第6の導電層229、230の間の抵抗値を測定した。その結果、サンプルAの抵抗値は4.00Ωであり、サンプルBの抵抗値は0.14Ωであった。この結果から、レーザービームを照射することにより、抵抗値が低くなることが分かった。 Next, the resistance value between the sixth conductive layers 227 and 228 of Sample A and the resistance value between the sixth conductive layers 229 and 230 of Sample B were measured. As a result, the resistance value of Sample A was 4.00Ω, and the resistance value of Sample B was 0.14Ω. From this result, it was found that the resistance value was lowered by irradiating the laser beam.

次に、サンプルCを準備した。サンプルCは、基板201上に、第1の導電層202、第2の導電層203、第3の導電層204、第4の導電層205及び第5の導電層206を積層して形成した。また、第5の導電層206上に、第6の導電層207を形成した(図14(A)(B)のサンプルCの断面と上面の概略図参照)。第1の導電層202はチタンを含む層であり、第2の導電層203は窒化チタンを含む層であり、第3の導電層204はアルミニウムを含む層であり、第4の導電層205はチタンを含む層であり、第5の導電層206は窒化チタンを含む層であり、第6の導電層207は銀ペーストを含む層であった。 Next, sample C was prepared. Sample C was formed by stacking a first conductive layer 202, a second conductive layer 203, a third conductive layer 204, a fourth conductive layer 205, and a fifth conductive layer 206 over a substrate 201. In addition, a sixth conductive layer 207 was formed over the fifth conductive layer 206 (see schematic views of the cross section and the top surface of the sample C in FIGS. 14A and 14B). The first conductive layer 202 is a layer containing titanium, the second conductive layer 203 is a layer containing titanium nitride, the third conductive layer 204 is a layer containing aluminum, and the fourth conductive layer 205 is The fifth conductive layer 206 was a layer containing titanium nitride, and the sixth conductive layer 207 was a layer containing silver paste.

次に、第6の導電層207に、266nmの波長のNd:YVOレーザーを照射した(図14(C)(D)のサンプルCの断面と上面の概略図、図15(A)(B)参照)。図14(C)と図15(B)において、領域211はレーザービームが照射された領域であり、領域213はレーザービームが照射されていない領域である。 Next, the sixth conductive layer 207 was irradiated with an Nd: YVO 4 laser having a wavelength of 266 nm (a schematic view of a cross section and an upper surface of the sample C in FIGS. 14C and 14D, FIGS. 15A and 15B). )reference). 14C and 15B, a region 211 is a region irradiated with a laser beam, and a region 213 is a region not irradiated with a laser beam.

図15(A)は、図14(C)の領域210のFIB(Focused Ion Beam System:集束イオンビーム加工観察装置)像である。図15(B)は、図15(A)の概略図であり、図15(B)中、導電層212は、第1の導電層202〜第5の導電層206の積層体に相当する。サンプルCの断面の観察の結果、レーザービームの照射により、第5の導電層206と第6の導電層207との接する部分208が増大していた。また、レーザービームの照射により、第3の導電層204の一部、第4の導電層205の一部及び第5の導電層206の一部が溶融され、第3の導電層204と第6の導電層207の接する部分209が形成されていた。このように、レーザービームを照射することにより、第1の導電層202〜第5の導電層206の積層体と第6の導電層207とが接する部分を増大することができた。そのため、第1の導電層202〜第5の導電層206の積層体と第6の導電層207との間の抵抗値を低くすることができた。 FIG. 15A is a FIB (Focused Ion Beam System) image of the area 210 in FIG. 14C. FIG. 15B is a schematic diagram of FIG. 15A. In FIG. 15B, the conductive layer 212 corresponds to a stacked body of the first conductive layer 202 to the fifth conductive layer 206. As a result of observing the cross section of the sample C, the portion 208 where the fifth conductive layer 206 and the sixth conductive layer 207 are in contact with each other was increased by the laser beam irradiation. In addition, by irradiation with the laser beam, part of the third conductive layer 204, part of the fourth conductive layer 205, and part of the fifth conductive layer 206 are melted, and the third conductive layer 204 and the sixth conductive layer 206 are melted. A portion 209 in contact with the conductive layer 207 was formed. In this manner, by irradiating the laser beam, the portion where the stacked body of the first conductive layer 202 to the fifth conductive layer 206 and the sixth conductive layer 207 are in contact with each other can be increased. Therefore, the resistance value between the stacked body of the first conductive layer 202 to the fifth conductive layer 206 and the sixth conductive layer 207 can be reduced.

本発明の半導体装置及びその作製方法を示す図。4A and 4B illustrate a semiconductor device and a manufacturing method thereof according to the present invention. 本発明の半導体装置及びその作製方法を示す図。4A and 4B illustrate a semiconductor device and a manufacturing method thereof according to the present invention. 本発明の半導体装置及びその作製方法を示す図。4A and 4B illustrate a semiconductor device and a manufacturing method thereof according to the present invention. 本発明の半導体装置及びその作製方法を示す図。4A and 4B illustrate a semiconductor device and a manufacturing method thereof according to the present invention. 本発明の半導体装置及びその作製方法を示す図。4A and 4B illustrate a semiconductor device and a manufacturing method thereof according to the present invention. 本発明の半導体装置及びその作製方法を示す図。4A and 4B illustrate a semiconductor device and a manufacturing method thereof according to the present invention. 本発明の半導体装置及びその作製方法を示す図。4A and 4B illustrate a semiconductor device and a manufacturing method thereof according to the present invention. 本発明の半導体装置及びその作製方法を示す図。4A and 4B illustrate a semiconductor device and a manufacturing method thereof according to the present invention. 本発明の半導体装置及びその作製方法を示す図。4A and 4B illustrate a semiconductor device and a manufacturing method thereof according to the present invention. 本発明の半導体装置及びその作製方法を示す図。4A and 4B illustrate a semiconductor device and a manufacturing method thereof according to the present invention. 本発明の半導体装置を示す図。FIG. 11 illustrates a semiconductor device of the present invention. 本発明の半導体装置を示す図。FIG. 11 illustrates a semiconductor device of the present invention. 実験とその結果を示す図。The figure which shows an experiment and its result. 実験とその結果を示す図。The figure which shows an experiment and its result. 実験とその結果を示す図。The figure which shows an experiment and its result. 本発明の半導体装置を示す図。FIG. 11 illustrates a semiconductor device of the present invention. 帯電防止型の基板を示す図。The figure which shows the board | substrate of an antistatic type.

Claims (10)

基板上に第1の導電層を形成し、
前記第1の導電層に接するように、金、銀または銅の導電性粒子と樹脂を含む第2の導電層を形成し、
前記第2の導電層にレーザービームを照射して、前記第1の導電層と前記第2の導電層が接する面積を増加させることを特徴とする半導体装置の作製方法。
Forming a first conductive layer on the substrate;
Forming a second conductive layer containing conductive particles of gold, silver or copper and a resin so as to be in contact with the first conductive layer;
A method for manufacturing a semiconductor device, comprising: irradiating the second conductive layer with a laser beam to increase an area where the first conductive layer and the second conductive layer are in contact with each other.
基板上にトランジスタを形成し、
前記トランジスタ上に絶縁層を形成し、
前記絶縁層に設けられた開口部を介して、前記トランジスタのソース又はドレインに接続された第1の導電層を形成し、
前記第1の導電層に接するように、金、銀または銅の導電性粒子と樹脂を含む第2の導電層を形成し、
前記第2の導電層にレーザービームを照射して、前記第1の導電層と前記第2の導電層が接する面積を増加させることを特徴とする半導体装置の作製方法。
Forming transistors on the substrate,
Forming an insulating layer on the transistor;
Forming a first conductive layer connected to a source or a drain of the transistor through an opening provided in the insulating layer;
Forming a second conductive layer containing conductive particles of gold, silver or copper and a resin so as to be in contact with the first conductive layer;
A method for manufacturing a semiconductor device, comprising: irradiating the second conductive layer with a laser beam to increase an area where the first conductive layer and the second conductive layer are in contact with each other.
基板上に剥離層を形成し、
前記剥離層上に第1の絶縁層を形成し、
前記第1の絶縁層上にトランジスタを形成し、
前記トランジスタ上に第2の絶縁層を形成し、
前記第2の絶縁層に設けられた開口部を介して、前記トランジスタのソース又はドレインに接続された第1の導電層を形成し、
前記第1の導電層に接するように、金、銀または銅の導電性粒子と樹脂を含む第2の導電層を形成し、
前記第2の導電層にレーザービームを照射して、前記第1の導電層と前記第2の導電層が接する面積を増加させ、
前記第2の絶縁層と前記第2の導電層上に、前記第2の導電層の一部が露出するように、第3の絶縁層を選択的に形成し、
前記第2の絶縁層と前記第3の絶縁層にレーザービームを照射して、前記剥離層が露出するような開口部を形成し、
前記剥離層の内部又は前記剥離層と前記第1の絶縁層の界面を境界として、前記基板から、前記第1の絶縁層と前記トランジスタを含む積層体を分離することを特徴とする半導体装置の作製方法。
Forming a release layer on the substrate,
Forming a first insulating layer on the release layer;
Forming a transistor on the first insulating layer;
Forming a second insulating layer on the transistor;
Forming a first conductive layer connected to a source or a drain of the transistor through an opening provided in the second insulating layer;
Forming a second conductive layer containing conductive particles of gold, silver or copper and a resin so as to be in contact with the first conductive layer;
Irradiating the second conductive layer with a laser beam to increase the contact area between the first conductive layer and the second conductive layer;
A third insulating layer is selectively formed on the second insulating layer and the second conductive layer so that a part of the second conductive layer is exposed;
Irradiating the second insulating layer and the third insulating layer with a laser beam to form an opening that exposes the release layer;
In the semiconductor device, the stacked body including the first insulating layer and the transistor is separated from the substrate with the inside of the peeling layer or the interface between the peeling layer and the first insulating layer as a boundary. Manufacturing method.
第1の基板上に剥離層を形成し、
前記剥離層上に第1の絶縁層を形成し、
前記第1の絶縁層上にトランジスタを形成し、
前記トランジスタ上に第2の絶縁層を形成し、
前記第2の絶縁層に設けられた開口部を介して、前記トランジスタのソース又はドレインに接続された第1の導電層を形成し、
前記第1の導電層に接するように、金、銀または銅の導電性粒子と樹脂を含む第2の導電層を形成し、
前記第2の導電層にレーザービームを照射して、前記第1の導電層と前記第2の導電層が接する面積を増加させ、
前記第2の絶縁層と前記第2の導電層上に、前記第2の導電層の一部が露出するように、第3の絶縁層を選択的に形成し、
前記第2の絶縁層と前記第3の絶縁層にレーザービームを照射して、前記剥離層が露出するような開口部を形成し、
前記第3の絶縁層の表面に設けた第2の基板を用いて、前記剥離層の内部又は前記剥離層と前記第1の絶縁層の界面を境界として、前記第1の基板から、前記第1の絶縁層と前記トランジスタを含む積層体を分離し、
前記第1の絶縁層の表面に第3の基板を設けると共に、前記第2の絶縁層の表面から前記第2の基板を分離し、
前記第3の絶縁層に設けられた開口部を介して、前記第2の導電層に接続された第3の導電層を形成し、
前記第3の導電層と、第4の基板上の第4の導電層とが電気的に接続されるように、前記第3の絶縁層上に前記第4の基板を設けることを特徴とする半導体装置の作製方法。
Forming a release layer on the first substrate;
Forming a first insulating layer on the release layer;
Forming a transistor on the first insulating layer;
Forming a second insulating layer on the transistor;
Forming a first conductive layer connected to a source or a drain of the transistor through an opening provided in the second insulating layer;
Forming a second conductive layer containing conductive particles of gold, silver or copper and a resin so as to be in contact with the first conductive layer;
Irradiating the second conductive layer with a laser beam to increase the contact area between the first conductive layer and the second conductive layer;
A third insulating layer is selectively formed on the second insulating layer and the second conductive layer so that a part of the second conductive layer is exposed;
Irradiating the second insulating layer and the third insulating layer with a laser beam to form an opening that exposes the release layer;
Using the second substrate provided on the surface of the third insulating layer, the inside of the release layer or the interface between the release layer and the first insulating layer as a boundary from the first substrate, the first substrate Separating the insulating layer and the stacked body including the transistor;
Providing a third substrate on the surface of the first insulating layer and separating the second substrate from the surface of the second insulating layer;
Forming a third conductive layer connected to the second conductive layer through an opening provided in the third insulating layer;
The fourth substrate is provided on the third insulating layer so that the third conductive layer is electrically connected to the fourth conductive layer on the fourth substrate. A method for manufacturing a semiconductor device.
請求項1乃至請求項4のいずれか一項において、
前記第1の導電層として、チタン、タングステン、クロム、アルミニウム、タンタル、ニッケル、ジルコニウム、ハフニウム、バナジウム、イリジウム、ニオブ、鉛、白金、モリブデン、コバルト又はロジウムを含む層を形成することを特徴とする半導体装置の作製方法。
In any one of Claims 1 thru | or 4,
A layer containing titanium, tungsten, chromium, aluminum, tantalum, nickel, zirconium, hafnium, vanadium, iridium, niobium, lead, platinum, molybdenum, cobalt, or rhodium is formed as the first conductive layer. A method for manufacturing a semiconductor device.
請求項1乃至請求項4のいずれか一項において、
前記第1の導電層は、スパッタリング法により形成することを特徴とする半導体装置の作製方法。
In any one of Claims 1 thru | or 4,
The method for manufacturing a semiconductor device, wherein the first conductive layer is formed by a sputtering method.
請求項1乃至請求項4のいずれか一項において、
前記第2の導電層は、スクリーン印刷法により形成することを特徴とする半導体装置の作製方法。
In any one of Claims 1 thru | or 4,
The method for manufacturing a semiconductor device, wherein the second conductive layer is formed by a screen printing method.
請求項1乃至請求項3のいずれか一項において、
前記基板は、ガラス基板であることを特徴とする半導体装置の作製方法。
In any one of Claims 1 thru | or 3,
The method for manufacturing a semiconductor device, wherein the substrate is a glass substrate.
請求項4において、
前記第1の基板は、ガラス基板であることを特徴とする半導体装置の作製方法。
In claim 4,
The method for manufacturing a semiconductor device, wherein the first substrate is a glass substrate.
請求項3又は請求項4において、
前記剥離層として、タングステンを含む層を形成することを特徴とする半導体装置の作製方法。
In claim 3 or claim 4,
A method for manufacturing a semiconductor device, wherein a layer containing tungsten is formed as the separation layer.
JP2006217695A 2005-08-12 2006-08-10 Method for manufacturing semiconductor device Expired - Fee Related JP5352048B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006217695A JP5352048B2 (en) 2005-08-12 2006-08-10 Method for manufacturing semiconductor device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005235017 2005-08-12
JP2005235017 2005-08-12
JP2006217695A JP5352048B2 (en) 2005-08-12 2006-08-10 Method for manufacturing semiconductor device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012196755A Division JP5600714B2 (en) 2005-08-12 2012-09-07 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JP2007073948A true JP2007073948A (en) 2007-03-22
JP5352048B2 JP5352048B2 (en) 2013-11-27

Family

ID=37935096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006217695A Expired - Fee Related JP5352048B2 (en) 2005-08-12 2006-08-10 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP5352048B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009021322A (en) * 2007-07-11 2009-01-29 Hitachi Displays Ltd Method of manufacturing semiconductor device
JP2009081426A (en) * 2007-09-07 2009-04-16 Semiconductor Energy Lab Co Ltd Method of manufacturing semiconductor device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04162641A (en) * 1990-10-26 1992-06-08 Nec Corp Laser bonding method
JPH04213833A (en) * 1990-12-11 1992-08-04 Oki Electric Ind Co Ltd Manufacture of bump electrode and conductive bonding film electrode
JPH06204230A (en) * 1992-12-28 1994-07-22 Rohm Co Ltd Forming method and manufacturing device of bump
JP2001255551A (en) * 2000-03-10 2001-09-21 Seiko Epson Corp Liquid crystal device and its manufacturing method
JP2002261439A (en) * 2001-02-28 2002-09-13 Kyocera Corp Insulating sheet, its manufacturing method, wiring board, and its manufacturing method
JP2005004388A (en) * 2003-06-10 2005-01-06 Kawaguchiko Seimitsu Co Ltd Touch panel and its manufacturing method, and screen input type display device equipped therewith
JP2005204493A (en) * 2003-12-19 2005-07-28 Semiconductor Energy Lab Co Ltd Semiconductor device and driving method therefor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04162641A (en) * 1990-10-26 1992-06-08 Nec Corp Laser bonding method
JPH04213833A (en) * 1990-12-11 1992-08-04 Oki Electric Ind Co Ltd Manufacture of bump electrode and conductive bonding film electrode
JPH06204230A (en) * 1992-12-28 1994-07-22 Rohm Co Ltd Forming method and manufacturing device of bump
JP2001255551A (en) * 2000-03-10 2001-09-21 Seiko Epson Corp Liquid crystal device and its manufacturing method
JP2002261439A (en) * 2001-02-28 2002-09-13 Kyocera Corp Insulating sheet, its manufacturing method, wiring board, and its manufacturing method
JP2005004388A (en) * 2003-06-10 2005-01-06 Kawaguchiko Seimitsu Co Ltd Touch panel and its manufacturing method, and screen input type display device equipped therewith
JP2005204493A (en) * 2003-12-19 2005-07-28 Semiconductor Energy Lab Co Ltd Semiconductor device and driving method therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009021322A (en) * 2007-07-11 2009-01-29 Hitachi Displays Ltd Method of manufacturing semiconductor device
JP2009081426A (en) * 2007-09-07 2009-04-16 Semiconductor Energy Lab Co Ltd Method of manufacturing semiconductor device
US9508619B2 (en) 2007-09-07 2016-11-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same

Also Published As

Publication number Publication date
JP5352048B2 (en) 2013-11-27

Similar Documents

Publication Publication Date Title
JP5600714B2 (en) Method for manufacturing semiconductor device
US7727859B2 (en) Semiconductor device and manufacturing method thereof
TWI447822B (en) Semiconductor device and product tracing system utilizing the semiconductor device having top and bottom fibrous sealing layers and method for manufacturing the same
TWI442513B (en) Method for manufacturing semiconductor device
JP5331917B2 (en) Semiconductor device
KR20120102819A (en) Semiconductor device and manufacturing method thereof
US8232181B2 (en) Manufacturing method of semiconductor device
JP5298216B2 (en) Semiconductor device
JP2008112988A (en) Semiconductor device, and method for manufacturing same
US7719103B2 (en) Semiconductor device
JP5352048B2 (en) Method for manufacturing semiconductor device
JP4845623B2 (en) Method for manufacturing semiconductor device
JP5004537B2 (en) Semiconductor device
JP5159053B2 (en) Semiconductor device
JP5004503B2 (en) Semiconductor device
JP5127167B2 (en) Semiconductor device and manufacturing method thereof

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090527

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090527

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130326

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130826

R150 Certificate of patent or registration of utility model

Ref document number: 5352048

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees