JP2007073356A - Solid oxide fuel cell - Google Patents

Solid oxide fuel cell Download PDF

Info

Publication number
JP2007073356A
JP2007073356A JP2005259587A JP2005259587A JP2007073356A JP 2007073356 A JP2007073356 A JP 2007073356A JP 2005259587 A JP2005259587 A JP 2005259587A JP 2005259587 A JP2005259587 A JP 2005259587A JP 2007073356 A JP2007073356 A JP 2007073356A
Authority
JP
Japan
Prior art keywords
pressure loss
separator
flow path
current collector
gas flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005259587A
Other languages
Japanese (ja)
Other versions
JP4899387B2 (en
Inventor
Hisafumi Kotani
尚史 小谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Mitsubishi Materials Corp
Original Assignee
Kansai Electric Power Co Inc
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Mitsubishi Materials Corp filed Critical Kansai Electric Power Co Inc
Priority to JP2005259587A priority Critical patent/JP4899387B2/en
Publication of JP2007073356A publication Critical patent/JP2007073356A/en
Application granted granted Critical
Publication of JP4899387B2 publication Critical patent/JP4899387B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid oxide fuel cell for improving the stability of output and output efficiency, by uniformizing quantity of reaction gas distributed and supplied to respective power generating cells from a manifold. <P>SOLUTION: A fuel cell stack is formed by constituting a power generating cell 5, by arranging a fuel electrode layer 3 and an air electrode layer 4 on both surfaces of a solid electrolyte layer 2, arranging a fuel electrode current collector 6 and an air electrode current collector 7 outside the power generating cell 5, and by arranging separators 8, having a gas flow passage 11, 12 outside the current collectors 6, 7. Unevenness of total pressure loss caused by separator flow passage pressure loss and current collector flow passage pressure loss is restrained to 10% or lower, by arranging at the separator 8 a pressure loss control means which increases the pressure loss of the gas flow passages 11, 12. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、各発電セルに対する反応用ガスの等流配を可能とした固体酸化物形燃料電池に関するものである。   The present invention relates to a solid oxide fuel cell that enables an equal flow distribution of reaction gas to each power generation cell.

近年、燃料の有する化学エネルギーを直接電気エネルギーに変換する燃料電池は高効率でクリーンな発電装置として注目されており、特に、固体酸化物形燃料電池は、第3世代の発電用燃料電池として研究開発が進められている。   In recent years, fuel cells that directly convert chemical energy of fuel into electrical energy have attracted attention as high-efficiency and clean power generation devices. In particular, solid oxide fuel cells have been researched as third-generation power generation fuel cells. Development is underway.

固体酸化物形燃料電池は、酸化物イオン導電体から成る固体電解質層を両側から空気極層(カソード)と燃料極層(アノード)で挟み込んだ積層構造を有し、発電時には、反応用ガスとして空気極層側に酸化剤ガス(酸素) が、また燃料極層側に燃料ガス (H2、CO等) が供給される。空気極層と燃料極層は、反応用ガスが固体電解質層との界面に到達することができるよう、何れも多孔質の層とされている。 A solid oxide fuel cell has a laminated structure in which a solid electrolyte layer made of an oxide ion conductor is sandwiched between an air electrode layer (cathode) and a fuel electrode layer (anode) from both sides. An oxidant gas (oxygen) is supplied to the air electrode layer side, and a fuel gas (H 2 , CO, etc.) is supplied to the fuel electrode layer side. The air electrode layer and the fuel electrode layer are both porous layers so that the reaction gas can reach the interface with the solid electrolyte layer.

発電セル内において、空気極層側に供給された酸素は、空気極層内の気孔を通って固体電解質層との界面近傍に到達し、この部分で空気極層から電子を受け取って酸化物イオン(O2-)にイオン化される。この酸化物イオンは、燃料極層に向かって固体電解質層内を拡散移動して燃料極層との界面近傍に到達し、この部分で、燃料ガスと反応して反応生成物(H2O、CO2等)を生じ、燃料極層に電子を放出する。電極反応で生じた電子は、別ルートの外部負荷にて起電力として取り出すことができる。 In the power generation cell, oxygen supplied to the air electrode layer passes through the pores in the air electrode layer and reaches the vicinity of the interface with the solid electrolyte layer. It is ionized to (O 2− ). This oxide ion diffuses and moves in the solid electrolyte layer toward the fuel electrode layer and reaches the vicinity of the interface with the fuel electrode layer, where it reacts with the fuel gas to produce reaction products (H 2 O, produce CO 2, etc.), releasing electrons to the fuel electrode layer. Electrons generated by the electrode reaction can be taken out as an electromotive force at an external load on another route.

平板積層型の固体酸化物形燃料電池は、多数の発電セルを両側に集電体(燃料極集電体、空気極集電体)とセパレータを介在して積層すると共に、その両端より積層方向に荷重を加えて積層体(スタック)の各構成要素を相互に圧接・密着させることにより構成されている。
セパレータは、発電セル間を電気的に接続すると共に、発電セルに対して反応用ガスを供給する機能を有し、内部に燃料ガスを燃料極層側に誘導する燃料ガス流路と酸化剤ガスを空気極層側に誘導する酸化剤ガス流路とを備えている。
また、集電体は、集電機能、ガス透過機能、均一ガス拡散機能、クッション機能等を兼ね備えるスポンジ状の多孔質金属で構成されている。
A flat-plate-type solid oxide fuel cell stacks a large number of power generation cells on both sides with a current collector (fuel electrode current collector, air electrode current collector) and separator interposed therebetween, and the stacking direction from both ends The load is applied to each component of the laminate (stack) so that the components are pressed and adhered to each other.
The separator has a function of electrically connecting the power generation cells and supplying a reaction gas to the power generation cells, and a fuel gas passage and an oxidant gas for guiding the fuel gas to the fuel electrode layer inside. And an oxidant gas flow path for guiding the gas to the air electrode layer side.
The current collector is composed of a sponge-like porous metal having a current collecting function, a gas permeation function, a uniform gas diffusion function, a cushion function, and the like.

燃料電池スタック内において安定した発電反応が継続的に行われるには、積層された多数の発電セルの各々に反応用ガスが均等に供給されること(等流配)が極めて重要であり、この反応ガスの等流配に係わる先行技術として、特許文献1、特許文献2等が開示されている。これらは、反応用ガスが流通するガス流路の圧損を調整してガス流量配分性能を向上することにより、電池性能の向上を図る技術である。
特開平6−267564号公報 特開平7−161366号公報
In order to continuously perform a stable power generation reaction in the fuel cell stack, it is extremely important that the reaction gas is uniformly supplied (equal flow distribution) to each of a large number of stacked power generation cells. Patent Documents 1 and 2 and the like are disclosed as prior arts related to the uniform flow of reaction gas. These are techniques for improving the battery performance by adjusting the pressure loss of the gas flow path through which the reaction gas flows to improve the gas flow distribution performance.
JP-A-6-267564 JP 7-161366 A

ところで、平板積層型燃料電池では、各反応用ガスがスタック積層方向に沿って設けたマニホールドを介して各セパレータ内に分配・供給され、各セパレータのガス流路より各々集電体を通過して各発電セルに供給される流通形態を有している。
上述のように集電体は、集電機能の他、ガス透過機能、均一ガス拡散機能、クッション機能等を兼ね備えるスポンジ状の多孔質金属体であるため、集電体の空隙率や内部骨格構造等のバラ付きや、スタック組立時に集電体に加わる荷重のバラ付き等により、集電体の流路圧損にバラ付きが生じる。因みに、現状では、集電体のロットによる圧損のバラ付きは15%程度と極めて大きいものである。
By the way, in a flat plate type fuel cell, each reaction gas is distributed and supplied into each separator through a manifold provided along the stacking direction, and passes through each current collector through a gas flow path of each separator. It has the distribution form supplied to each power generation cell.
As described above, the current collector is a sponge-like porous metal body having a gas permeation function, a uniform gas diffusion function, a cushion function, etc. in addition to the current collection function. Or the like, or the load applied to the current collector during stack assembly, for example, causes variations in the flow path pressure loss of the current collector. Incidentally, at present, the variation in the pressure loss due to the current collector lot is as large as about 15%.

このような各集電体の圧損差により、マニホールドから各発電セルへ導入されるガスの流量配分が不均一になり、ガス供給量が不足する(ガス流路の圧損が大)発電セルにおいては電圧が低下し、スタック全体として電池性能の低下を来す結果となっている。   In such a power generation cell, the flow rate distribution of the gas introduced from the manifold to each power generation cell becomes uneven due to such a pressure loss difference between the current collectors, and the gas supply amount is insufficient (the pressure loss of the gas flow path is large). As a result, the voltage drops, and the battery performance as a whole decreases.

本発明は、このような問題に鑑み成されたもので、マニホールドより各発電セルに分配・供給される反応用ガスの量を均等化することにより、電池出力の安定化と出力効率の向上を図った固体酸化物形燃料電池を提供することを目的としている。   The present invention has been made in view of such problems, and by stabilizing the amount of reaction gas distributed and supplied from the manifold to each power generation cell, the battery output is stabilized and the output efficiency is improved. An object of the present invention is to provide a solid oxide fuel cell.

すなわち、請求項1に記載の本発明は、固体電解質層の両面に燃料極層と空気極層を配置して発電セルを構成し、この発電セルの外側に燃料極集電体と空気極集電体を配置し、これら集電体の外側に反応用のガス流路を備えたセパレータを配置し、当該セパレータのガス流路より前記集電体を通して発電セルに反応用ガスを供給する固体酸化物形燃料電池において、前記セパレータに、前記ガス流路の圧損を増大する圧損制御手段を設けて、セパレータ流路圧損と集電体流路圧損とによる総圧損のバラ付きを10%以下に抑制したことを特徴としている。   That is, according to the present invention, the fuel cell layer and the air electrode layer are arranged on both surfaces of the solid electrolyte layer to constitute the power generation cell, and the fuel electrode current collector and the air electrode current collector are disposed outside the power generation cell. Solid oxidation is performed by arranging a current collector, placing a separator provided with a reaction gas flow path outside the current collector, and supplying the reaction gas from the gas flow path of the separator to the power generation cell through the current collector. In the solid fuel cell, the separator is provided with a pressure loss control means for increasing the pressure loss of the gas flow path, and the variation in the total pressure loss due to the separator flow path pressure drop and the collector flow path pressure drop is suppressed to 10% or less. It is characterized by that.

また、請求項2に記載の本発明は、請求項1に記載の固体酸化物形燃料電池において、前記ガス流路の断面積にて圧損を増大する圧損制御手段を有することを特徴としている。   The present invention described in claim 2 is characterized in that in the solid oxide fuel cell according to claim 1, pressure loss control means for increasing the pressure loss in the cross-sectional area of the gas flow path is provided.

また、請求項3に記載の本発明は、請求項1または請求項2の何れかに記載の固体酸化物形燃料電池において、前記ガス流路の長さにて圧損を増大する圧損制御手段を有することを特徴としている。   Further, according to a third aspect of the present invention, in the solid oxide fuel cell according to the first or second aspect, the pressure loss control means for increasing the pressure loss with the length of the gas flow path is provided. It is characterized by having.

また、請求項4に記載の本発明は、請求項1から請求項3までの何れかに記載の固体酸化物形燃料電池において、前記ガス流路の入口部のガス流絞り機構にて圧損を増大する圧損制御手段を有することを特徴としている。   According to a fourth aspect of the present invention, in the solid oxide fuel cell according to any one of the first to third aspects, the pressure loss is reduced by a gas flow restricting mechanism at an inlet portion of the gas flow path. It is characterized by having an increasing pressure loss control means.

本発明によれば、圧損制御手段によりセパレータ流路圧損を大きくして集電体流路圧損のバラ付きを吸収することにより、セパレータ流路圧損と集電体流路圧損とによる総圧損のバラ付きを10%以下に抑制することができる。これにより、各発電セルへに対する反応用ガスの等流配が可能となり、各発電セルの発電性能が均一化され、電池出力の安定化と出力効率の向上を図ることができる。   According to the present invention, the pressure loss control means increases the separator channel pressure loss and absorbs the variation in the collector channel pressure loss, whereby the total pressure loss due to the separator channel pressure loss and the collector channel pressure loss varies. The sticking can be suppressed to 10% or less. As a result, it is possible to distribute the reaction gas to each power generation cell in a uniform manner, the power generation performance of each power generation cell is made uniform, and the battery output can be stabilized and the output efficiency can be improved.

以下、図面に基づいて本発明の実施形態を説明する。
図1は本発明が適用された平板積層型の固体酸化物形燃料電池を示し、図2は本発明に係る単セルの構成を示し、図3はセパレータの一例を示し、図4はセパレータのガス導入部分の構造を示し、図5はセパレータ流路圧損に対するセパレータ流路圧損と集電体流路圧損とによる総圧損のバラ付きの割合を示している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a flat plate type solid oxide fuel cell to which the present invention is applied, FIG. 2 shows the structure of a single cell according to the present invention, FIG. 3 shows an example of a separator, and FIG. FIG. 5 shows the ratio of the total pressure loss due to the separator channel pressure loss and the collector channel pressure loss to the separator channel pressure loss.

図2に示すように、単セル10は、固体電解質層2の両面に燃料極層3と空気極層4を配した発電セル5と、燃料極層3の外側に配した燃料極集電体6と、空気極層4の外側に配した空気極集電体7と、各集電体6、7の外側に配したセパレータ8とで構成されている。   As shown in FIG. 2, the unit cell 10 includes a power generation cell 5 in which a fuel electrode layer 3 and an air electrode layer 4 are disposed on both surfaces of a solid electrolyte layer 2, and a fuel electrode current collector disposed outside the fuel electrode layer 3. 6, an air electrode current collector 7 disposed outside the air electrode layer 4, and a separator 8 disposed outside each current collector 6, 7.

これら構成要素の内、固体電解質層2はイットリアを添加した安定化ジルコニア(YSZ)等で構成され、燃料極層3はNi等の金属、あるいはNi−YSZ等のサーメットで構成され、空気極層4はLaMnO3 、LaCoO3 等で構成され、燃料極集電体6はNi等のスポンジ状の多孔質焼結金属板で構成され、空気極集電体7はAg等のスポンジ状の多孔質焼結金属板で構成される。
上記多孔質金属は、集電機能、ガス透過機能、ガス拡散機能、クッション機能、熱膨脹差吸収機能等を兼ね備えている。
Among these components, the solid electrolyte layer 2 is composed of stabilized zirconia (YSZ) or the like to which yttria is added, and the fuel electrode layer 3 is composed of a metal such as Ni or a cermet such as Ni—YSZ, and the air electrode layer. 4 is composed of LaMnO 3 , LaCoO 3 or the like, the fuel electrode current collector 6 is composed of a sponge-like porous sintered metal plate such as Ni, and the air electrode current collector 7 is a sponge-like porous material such as Ag. It consists of a sintered metal plate.
The porous metal has a current collecting function, a gas permeation function, a gas diffusion function, a cushion function, a thermal expansion difference absorption function, and the like.

セパレータ8は、厚さ2〜3mmの角形ステンレス板等で構成され、発電セル5間を電気的に接続すると共に、発電セル5に対して反応用ガスを供給する機能を有し、内部に燃料ガスをセパレータ8の縁部から導入してセパレータ8の燃料極集電体6に対向する面のほぼ中央部11aから吐出する燃料ガス流路11と、酸化剤ガスをセパレータ8の縁部から導入してセパレータ8の空気極集電体7に対向する面のほぼ中央12aから吐出する酸化剤ガス流路12とを有する。
燃料ガス流路11と酸化剤ガス流路12は、流路断面が3×1.5mm程度の断面長方形であって、それぞれが渦巻状に形成されている(図3参照)。
The separator 8 is composed of a rectangular stainless steel plate having a thickness of 2 to 3 mm, and has a function of electrically connecting the power generation cells 5 and supplying a reaction gas to the power generation cells 5. The gas is introduced from the edge of the separator 8 and discharged from the substantially central portion 11 a of the surface of the separator 8 facing the anode current collector 6, and the oxidant gas is introduced from the edge of the separator 8. The separator 8 has an oxidant gas flow path 12 that is discharged from substantially the center 12a of the surface of the separator 8 that faces the air electrode current collector 7.
The fuel gas channel 11 and the oxidant gas channel 12 are rectangular in cross section with a cross section of about 3 × 1.5 mm, and each is formed in a spiral shape (see FIG. 3).

また、図2、図3によれば、セパレータ8の左右縁部には、板厚方向に貫通する一対のガス孔13、14が設けてあり、一方のガス孔13は燃料ガス流路11に、他方のガス孔14は酸化剤ガス流路12に連通し、各々のガス孔13、14からこれらのガス流路11、12を通して各発電セル5の各電極面に燃料ガスおよび酸化剤ガスが供給されるようなっている。   2 and 3, the left and right edges of the separator 8 are provided with a pair of gas holes 13 and 14 penetrating in the thickness direction, and one gas hole 13 is formed in the fuel gas passage 11. The other gas hole 14 communicates with the oxidant gas flow path 12, and fuel gas and oxidant gas are passed from the gas holes 13, 14 to the electrode surfaces of the power generation cells 5 through the gas flow paths 11, 12. To be supplied.

本実施形態の固体酸化物形燃料電池(燃料電池スタック1)は、図1に示すように、上述の単セル10を間に、リング状の絶縁性ガスケット15、16を介在して多数積層し、その上下両端に締付板20、20を配して周縁部をボルト21にて締め付けすることにより各構成要素を密着させた一体的構造としている。
スタックに荷重を加えることにより、多孔質金属で成る燃料極集電体6と空気極集電体7が幾分弾性変形し、上下セパレータ8の間にある程度の弾力を持って圧接・挟持された状態となると共に、各々のガスケット15、16は、セパレータ8の各ガス孔13、14と機械的に密着・固定された状態で多数積層方向に連結されて、スタック内部を縦方向に延びる燃料ガス用の内部マニホールド17と酸化剤ガス用の内部マニホールド18が形成される。
In the solid oxide fuel cell (fuel cell stack 1) of this embodiment, as shown in FIG. 1, a large number of the above-mentioned single cells 10 are stacked with ring-shaped insulating gaskets 15 and 16 interposed therebetween. The fastening plates 20 and 20 are arranged at both upper and lower ends, and the peripheral portion is fastened with bolts 21 to form an integrated structure in which the respective components are brought into close contact with each other.
By applying a load to the stack, the fuel electrode current collector 6 and the air electrode current collector 7 made of porous metal were elastically deformed somewhat, and were pressed and sandwiched between the upper and lower separators 8 with a certain degree of elasticity. Each of the gaskets 15 and 16 is connected in the stacking direction in a state where the gaskets 15 and 16 are mechanically closely attached and fixed to the gas holes 13 and 14 of the separator 8, and the fuel gas extending in the vertical direction inside the stack. An internal manifold 17 for the oxidant gas and an internal manifold 18 for the oxidant gas are formed.

運転時、各内部マニホールド17、18に外部から供給される燃料ガスと酸化剤ガス(空気)が流通し、各ガスが各セパレータ8のガス孔13、14より各ガス流路11、12を介して燃料極集電体6側と空気極集電体7側に噴出し、噴出ガスはこれら集電体6、7の内部を透過・拡散して各発電セル5の各電極面に分配・誘導される。   During operation, fuel gas and oxidant gas (air) supplied from the outside flow through the internal manifolds 17 and 18, and the gases pass through the gas passages 11 and 12 from the gas holes 13 and 14 of the separators 8. Then, the gas is ejected to the fuel electrode current collector 6 side and the air electrode current collector 7 side, and the ejected gas permeates and diffuses inside these current collectors 6 and 7 and is distributed and guided to each electrode surface of each power generation cell 5. Is done.

ところで、平板積層型の燃料電池スタック1では、集電体における圧損のバラ付きにより、各発電セルに対して反応用ガスの好ましい等流配が行われないという電池性能に係わる問題があった。
これは、集電体の構造上、集電体流路圧損のバラ付きがセパレータ流路圧損のバラ付きに比べて大きいため、集電体流路圧損のバラ付きがセパレータ流路圧損と集電体流路圧損とによる総圧損のバラ付きに大いに影響するためである。反応ガスの等流配は、発電反応に直接影響する燃料ガスの流路系において特に重要である。
発明者らの調査・実験により、この総圧損のバラ付きが10%以下であれば、各発電セルに対して良好な等流配性能が得られることが確認されている。
By the way, in the flat plate type fuel cell stack 1, there is a problem related to battery performance in that preferable uniform distribution of the reaction gas is not performed for each power generation cell due to variation in pressure loss in the current collector.
This is because the variation in the collector channel pressure loss is larger than the variation in the separator channel pressure loss due to the structure of the current collector. This is because it greatly affects the variation of the total pressure loss due to the body channel pressure loss. The uniform distribution of the reaction gas is particularly important in the fuel gas flow path system that directly affects the power generation reaction.
As a result of investigations and experiments by the inventors, it has been confirmed that if the variation in the total pressure loss is 10% or less, good uniform flow distribution performance can be obtained for each power generation cell.

そこで、本発明では、セパレータ8にガス流路の圧損を増大する圧損制御手段を設けて、セパレータ流路圧損h1と集電体流路圧損h2とによる総圧損(h1+h2)のバラ付きを10%以下に抑制するようにした。
即ち、図5に示すように、圧損制御手段によりセパレータ流路圧損h1を大きくすることで(望ましくは、セパレータ流路圧損h1を集電体流路圧損h2より大きくする)、集電体流路圧損h2自体の有する大きなバラ付きを吸収して総圧損(h1+h2)のバラ付きを10%以下に抑制することができる。バラ付きを10%以下にするには、セパレータ流路圧損h1を120Pa以上にすれば良い。因みに、定格流量における集電体流路圧損h2は230Pa程度であり、ロットによる圧損h2のバラ付きは約15%である。
尚、セパレータ流路圧損h1を大きくすると、燃料ガス流路11において定格流量を得るため、その分、燃料ガスマニホールド17内の燃料ガスの流圧を高くする必要があるため闇雲に大きくすることはできず、また、運転中の流路への目詰まりを防ぐためには、断面積は大きく長さは短くすることが好ましい。このようなことから、総圧損(h1+h2)のバラ付きの下限は10%(セパレータ流路圧損h1=120Pa)としている。
Therefore, in the present invention, the separator 8 is provided with a pressure loss control means for increasing the pressure loss of the gas flow path, and the total pressure loss (h1 + h2) due to the separator flow pressure pressure h1 and the current collector flow pressure pressure h2 is 10%. The following were suppressed.
That is, as shown in FIG. 5, the separator flow path pressure loss h1 is increased by the pressure loss control means (desirably, the separator flow path pressure loss h1 is made larger than the current collector flow path pressure loss h2). The large variation of the pressure loss h2 itself can be absorbed and the variation of the total pressure loss (h1 + h2) can be suppressed to 10% or less. In order to reduce the variation to 10% or less, the separator flow path pressure loss h1 may be set to 120 Pa or more. Incidentally, the current collector pressure loss h2 at the rated flow rate is about 230 Pa, and the variation in the pressure loss h2 due to the lot is about 15%.
When the separator flow path pressure loss h1 is increased, the rated flow rate is obtained in the fuel gas flow path 11, and accordingly, the flow pressure of the fuel gas in the fuel gas manifold 17 needs to be increased accordingly. In order to prevent clogging of the channel during operation, it is preferable that the cross-sectional area is large and the length is short. For this reason, the lower limit of the total pressure loss (h1 + h2) is 10% (separator flow path pressure loss h1 = 120 Pa).

次ぎに、上述した圧損制御手段の具体例について説明する。
セパレータ流路圧損h1は、
セパレータ入口部圧損:(V22−V12)/2g・・(I)と
流路圧損 :λl/d×V22/2g・・(II)とにより生じる。
ここで、λはガス流路の摩擦係数、lはガス流路長、dはガス流路径(等価直径)、V1はマニホールド内のガスの流速、V2はガス流路内のガスの流速、gは重力加速度である。
Next, a specific example of the above-described pressure loss control means will be described.
The separator flow path pressure loss h1 is
Separator inlet pressure loss: (V2 2 −V1 2 ) / 2 g ·· (I) and flow path pressure loss: λl / d × V2 2 g ·· (II).
Where λ is the friction coefficient of the gas flow path, l is the gas flow path length, d is the gas flow path diameter (equivalent diameter), V1 is the gas flow velocity in the manifold, V2 is the gas flow velocity in the gas flow path, g Is the gravitational acceleration.

そこで、本実施形態では、上述の式(I)、(II)に基づき、圧損制御手段として、(1)セパレータ8の燃料ガス流路11の断面積(すなわち、流路径d)を小さくして圧損を増大する方法(II式)、(2)セパレータ8の燃料ガス流路11のガス流路長lを長くして圧損を増大する方法(II式)、(3)図4に示すように、燃料ガスマニホールド17(ガス流速V1)からセパレータ8の燃料ガス流路11に分岐・連通する流路部分をオリフィス絞り19としてガス流量を制限する(ガス流速V2)ことにより圧損を増大する方法(I式)を採用した。
これら(1)〜(3)の圧損制御手段により、各発電セル5の発電性能が均一化され、燃料電池スタック1の出力安定と出力効率の向上を図ることができる。
Therefore, in the present embodiment, based on the above formulas (I) and (II), (1) the cross-sectional area of the fuel gas passage 11 of the separator 8 (that is, the passage diameter d) is reduced as pressure loss control means. Method of increasing pressure loss (formula II), (2) Method of increasing pressure loss by increasing the gas passage length l of the fuel gas passage 11 of the separator 8 (formula II), (3) As shown in FIG. A method of increasing the pressure loss by restricting the gas flow rate (gas flow rate V2) by using the orifice portion 19 as a flow passage portion that branches and communicates with the fuel gas flow passage 11 of the separator 8 from the fuel gas manifold 17 (gas flow velocity V1) ( Formula I) was adopted.
By the pressure loss control means (1) to (3), the power generation performance of each power generation cell 5 is made uniform, and the output stability of the fuel cell stack 1 and the output efficiency can be improved.

これら(1)〜(3)の圧損制御手段は、それぞれ個々に用いても良いが、それぞれを併用することも勿論可能である。
尚、上述の圧損制御手段の内、(1)および(2)は、作製時の加工公差の影響を受け難いため容易に作製可能であるが、(3)のオリフィス絞り19による圧損制御は、長期使用時の酸化スケールによる流路の目詰まりや、複雑で高精度な構造による加工性の悪さ等のデメリットを有することから、(1)(2)の圧損制御手段を用いるのが望ましい。
These pressure loss control means (1) to (3) may be used individually, but may be used in combination.
Of the pressure loss control means described above, (1) and (2) can be easily manufactured because they are not easily affected by the processing tolerance during the manufacturing, but the pressure loss control by the orifice restrictor 19 in (3) It is desirable to use the pressure loss control means (1) and (2) because it has disadvantages such as clogging of the flow path due to oxide scale during long-term use and poor workability due to a complicated and highly accurate structure.

本発明が適用された固体酸化物形燃料電池の外観を示す図。The figure which shows the external appearance of the solid oxide fuel cell to which this invention was applied. 本発明に係る単セルの構成を示す図。The figure which shows the structure of the single cell which concerns on this invention. セパレータの一例を示す平面図。The top view which shows an example of a separator. セパレータのガス導入部分を示す図。The figure which shows the gas introduction part of a separator. セパレータ流路圧損に対するセパレータ流路圧損と集電体流路圧損とによる総圧損のバラ付きの割合を示す図。The figure which shows the ratio of the dispersion | variation in the total pressure loss by the separator channel pressure loss and the collector channel pressure loss with respect to a separator channel pressure loss.

符号の説明Explanation of symbols

1 固体酸化物形燃料電池(燃料電池スタック)
2 固体電解質層
3 燃料極層
4 空気極層
5 発電セル
6 燃料極集電体
7 空気極集電体
8 セパレータ
11、12 ガス流路
19 ガス流絞り機構(オリフィス絞り)
1 Solid oxide fuel cell (fuel cell stack)
2 Solid Electrolyte Layer 3 Fuel Electrode Layer 4 Air Electrode Layer 5 Power Generation Cell 6 Fuel Electrode Current Collector 7 Air Electrode Current Collector 8 Separator 11, 12 Gas Channel 19 Gas Flow Restriction Mechanism (Orifice Restriction)

Claims (4)

固体電解質層の両面に燃料極層と空気極層を配置して発電セルを構成し、この発電セルの外側に燃料極集電体と空気極集電体を配置し、これら集電体の外側に反応用のガス流路を備えたセパレータを配置し、当該セパレータのガス流路より前記集電体を通して発電セルに反応用ガスを供給する固体酸化物形燃料電池において、
前記セパレータに、前記ガス流路の圧損を増大する圧損制御手段を設けて、セパレータ流路圧損と集電体流路圧損とによる総圧損のバラ付きを10%以下に抑制したことを特徴とする固体酸化物形燃料電池。
A power generation cell is configured by disposing a fuel electrode layer and an air electrode layer on both sides of the solid electrolyte layer, and a fuel electrode current collector and an air electrode current collector are disposed outside the power generation cell. In a solid oxide fuel cell, a separator having a reaction gas flow path is disposed, and a reaction gas is supplied from the gas flow path of the separator to the power generation cell through the current collector.
The separator is provided with a pressure loss control means for increasing the pressure loss of the gas flow path, and variation in the total pressure loss due to the separator flow path pressure loss and the current collector flow path pressure loss is suppressed to 10% or less. Solid oxide fuel cell.
前記ガス流路の断面積にて圧損を増大する圧損制御手段を有することを特徴とする請求項1に記載の固体酸化物形燃料電池。 2. The solid oxide fuel cell according to claim 1, further comprising pressure loss control means for increasing pressure loss with a cross-sectional area of the gas flow path. 前記ガス流路の長さにて圧損を増大する圧損制御手段を有することを特徴とする請求項1または請求項2の何れかに記載の固体酸化物形燃料電池。 3. The solid oxide fuel cell according to claim 1, further comprising a pressure loss control unit configured to increase a pressure loss depending on a length of the gas flow path. 前記ガス流路の入口部のガス流絞り機構にて圧損を増大する圧損制御手段を有することを特徴とする請求項1から請求項3までの何れかに記載の固体酸化物形燃料電池。 The solid oxide fuel cell according to any one of claims 1 to 3, further comprising pressure loss control means for increasing pressure loss by a gas flow restricting mechanism at an inlet portion of the gas flow path.
JP2005259587A 2005-09-07 2005-09-07 Solid oxide fuel cell Expired - Fee Related JP4899387B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005259587A JP4899387B2 (en) 2005-09-07 2005-09-07 Solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005259587A JP4899387B2 (en) 2005-09-07 2005-09-07 Solid oxide fuel cell

Publications (2)

Publication Number Publication Date
JP2007073356A true JP2007073356A (en) 2007-03-22
JP4899387B2 JP4899387B2 (en) 2012-03-21

Family

ID=37934641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005259587A Expired - Fee Related JP4899387B2 (en) 2005-09-07 2005-09-07 Solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP4899387B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008251239A (en) * 2007-03-29 2008-10-16 Mitsubishi Materials Corp Fuel cell
JP2015185303A (en) * 2014-03-24 2015-10-22 アイシン精機株式会社 Solid oxide fuel cell stack, solid oxide fuel cell module, and solid oxide fuel cell system
JP2019096443A (en) * 2017-11-21 2019-06-20 株式会社デンソー Fuel cell stack

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000003715A (en) * 1998-04-15 2000-01-07 Fuji Electric Corp Res & Dev Ltd Solid electrolyte fuel cell
JP2004178816A (en) * 2002-11-22 2004-06-24 Toshiba Corp Fuel cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000003715A (en) * 1998-04-15 2000-01-07 Fuji Electric Corp Res & Dev Ltd Solid electrolyte fuel cell
JP2004178816A (en) * 2002-11-22 2004-06-24 Toshiba Corp Fuel cell

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008251239A (en) * 2007-03-29 2008-10-16 Mitsubishi Materials Corp Fuel cell
WO2008126349A1 (en) * 2007-03-29 2008-10-23 Mitsubishi Materials Corporation Fuel cell
JP2015185303A (en) * 2014-03-24 2015-10-22 アイシン精機株式会社 Solid oxide fuel cell stack, solid oxide fuel cell module, and solid oxide fuel cell system
JP2019096443A (en) * 2017-11-21 2019-06-20 株式会社デンソー Fuel cell stack
JP7003598B2 (en) 2017-11-21 2022-02-04 株式会社デンソー Fuel cell cell stack

Also Published As

Publication number Publication date
JP4899387B2 (en) 2012-03-21

Similar Documents

Publication Publication Date Title
US7566511B2 (en) Solid polymer cell assembly
US7569301B2 (en) Fuel cell
JP5227543B2 (en) Fuel cell
JP2002260709A (en) Solid polymer cell assembly, fuel cell stack and operation method of fuel cell
US8735020B2 (en) Fuel cell
US20080274388A1 (en) Solid Oxide Type Fuel Cell
JP2009043665A (en) Fuel cell
JP4899387B2 (en) Solid oxide fuel cell
JP2006286494A (en) Polymer electrolyte fuel cell
JP4461949B2 (en) Solid oxide fuel cell
EP1852929B1 (en) Solid oxide fuel cell
JP2008251239A (en) Fuel cell
JP2008226704A (en) Solid oxide fuel cell, and supplying method of oxidizing gas
JP4516630B2 (en) Solid polymer cell assembly
JP4572252B2 (en) Fuel cell stack
JP5274908B2 (en) Fuel cell stack
JP4886128B2 (en) Fuel cell stack
JP2006086018A (en) Solid oxide fuel cell
JP5123824B2 (en) FUEL CELL STACK AND METHOD OF OPERATING FUEL CELL STACK
JP5265289B2 (en) Fuel cell stack
JP2008218279A (en) Solid oxide fuel cell, and supplying method of fuel gas
JP5840983B2 (en) Solid oxide fuel cell and fuel cell unit
JP5336221B2 (en) Fuel cell stack
JP4228895B2 (en) Solid oxide fuel cell
JP2006236597A (en) Separator for fuel cell and solid oxide fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111219

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees