JP2007073341A - Induction heating cooker - Google Patents

Induction heating cooker Download PDF

Info

Publication number
JP2007073341A
JP2007073341A JP2005259327A JP2005259327A JP2007073341A JP 2007073341 A JP2007073341 A JP 2007073341A JP 2005259327 A JP2005259327 A JP 2005259327A JP 2005259327 A JP2005259327 A JP 2005259327A JP 2007073341 A JP2007073341 A JP 2007073341A
Authority
JP
Japan
Prior art keywords
circuit
resonance
relays
relay
resonance circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005259327A
Other languages
Japanese (ja)
Other versions
JP4450780B2 (en
Inventor
Koji Nakajima
浩二 中島
Takashi Kumagai
隆 熊谷
Noriyuki Matsubara
則幸 松原
Namihei Suzuki
浪平 鈴木
Koichi Kinoshita
広一 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Home Appliance Co Ltd
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Home Appliance Co Ltd
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Home Appliance Co Ltd, Mitsubishi Electric Corp filed Critical Mitsubishi Electric Home Appliance Co Ltd
Priority to JP2005259327A priority Critical patent/JP4450780B2/en
Publication of JP2007073341A publication Critical patent/JP2007073341A/en
Application granted granted Critical
Publication of JP4450780B2 publication Critical patent/JP4450780B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an induction heating cooker having a miniaturized resonance circuit in which heating is performed irrespective of a load type, and generation of heat is reduced. <P>SOLUTION: The induction heating cooker has the resonance circuit consisting of a heating coil and resonant capacitors, an inverter circuit comprising switching devices, and a load detection circuit which detects the load type. The resonance circuit is excited by the inverter circuit, and circuit connection of the resonance circuit is changed according to output of the load detection circuit. Plural capacitors that are connected in parallel mutually via relays respectively are prepared in the resonance circuit, and change action of the relays is carried out according to the output of the load detection circuit while stopping on/off action of the switching devices. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、一般家庭で使用される誘導加熱調理器に関するものである。   The present invention relates to an induction heating cooker used in general households.

誘導加熱調理器はスイッチング素子をオンオフし、加熱コイルと共振コンデンサを共振させることで、加熱コイルに高周波電流を発生させ、負荷を加熱している。
しかし、負荷の種類によって加熱コイルのインダクタンスが異なるため、加熱コイルと共振コンデンサの共振の仕方が異なり、負荷の種類によっては加熱コイルや共振コンデンサ、スイッチング素子などに大きな発熱が生じてしまう場合がある。
そういった場合には負荷への加熱を制限し、加熱コイルや共振コンデンサ、スイッチング素子などの発熱を制限している。
そのため、加熱コイルや共振コンデンサやスイッチング素子などに発熱が生じないように、負荷に応じて加熱コイルや共振コンデンサ、またはその両方を切り替えることを行っている。
例えば、特許文献1は加熱コイルのインダクタンスが大きい負荷(磁性材料)の場合は加熱コイルのターン数を減らし、加熱コイルのインダクタンスを低減させ、加熱コイルのインダクタンスが小さい負荷(非磁性材料)の場合は加熱コイルのターン数を増やし、加熱コイルのインダクタンスを増加させ、磁性材料と非磁性材料のどちらの場合でも加熱コイルのインダクタンスが同一となるようにしている。
The induction heating cooker turns on and off the switching element and resonates the heating coil and the resonance capacitor, thereby generating a high-frequency current in the heating coil and heating the load.
However, since the inductance of the heating coil differs depending on the type of load, the heating coil and the resonant capacitor resonate differently, and depending on the type of load, a large amount of heat may be generated in the heating coil, resonant capacitor, switching element, etc. .
In such a case, heating to the load is limited, and heat generation from the heating coil, the resonance capacitor, the switching element, and the like is limited.
For this reason, the heating coil, the resonance capacitor, or both are switched according to the load so that heat is not generated in the heating coil, the resonance capacitor, the switching element, and the like.
For example, in Patent Document 1, in the case of a load (magnetic material) where the inductance of the heating coil is large, the number of turns of the heating coil is reduced, the inductance of the heating coil is reduced, and the load (nonmagnetic material) where the inductance of the heating coil is small Increases the number of turns of the heating coil and increases the inductance of the heating coil so that the inductance of the heating coil is the same for both magnetic and non-magnetic materials.

特開2000−48945号公報JP 2000-48945

上記のように負荷によらない加熱を行うには共振回路を負荷に応じて切り替える必要があり、共振回路を切り替えるために共振回路切り替えスイッチが必要である。そして、共振回路切り替えスイッチには主にリレーが用いられるが、共振回路には大電流が流れるため共振回路切り替え用のリレーは大型のものを必要とし、また、大きな発熱が生じている。一般的に大電流パワー回路に使用されるリレーは電流の実効値が大きくなるほど体積が大きくなり、例えば2倍の電流実効値を流すには体積は2倍以上のものを必要とする。
この発明は、上記のような点に鑑み、誘導加熱調理器において、負荷の種類に拘わらず加熱を行え、共振回路の小型化と発熱の低減を図ることを目的とするものである。
In order to perform heating not depending on the load as described above, it is necessary to switch the resonance circuit according to the load, and a resonance circuit switching switch is necessary to switch the resonance circuit. A relay is mainly used as the resonance circuit changeover switch. However, since a large current flows through the resonance circuit, the resonance circuit changeover relay requires a large relay and generates a large amount of heat. In general, a relay used in a high-current power circuit has a larger volume as the effective value of current increases. For example, a volume that is twice or more is required to pass a current effective value that is twice as large.
In view of the above points, an object of the present invention is to reduce the size of a resonance circuit and reduce heat generation in an induction heating cooker regardless of the type of load.

この発明の誘導加熱調理器は、スイッチング素子からなるインバータ回路により加熱コイルと共振コンデンサとで形成される共振回路を励起すると共に、負荷の種類を検出する負荷検出回路の出力に応じて上記共振回路の回路接続を切り替える誘導加熱調理器において、上記共振回路にはそれぞれリレーを介して互いに並列接続される複数の共振コンデンサを設けると共に、上記スイッチング素子のオンオフを停止した状態で上記負荷検出回路の出力に応じて上記リレーの切り替え動作を行うようにしたものである。   The induction heating cooker according to the present invention excites a resonance circuit formed by a heating coil and a resonance capacitor by an inverter circuit composed of switching elements, and the resonance circuit according to the output of a load detection circuit that detects the type of load. In the induction heating cooker for switching the circuit connection, the resonance circuit is provided with a plurality of resonance capacitors connected in parallel to each other via a relay, and the output of the load detection circuit is turned on and off with the switching element stopped. In response to this, the switching operation of the relay is performed.

この発明の誘導加熱調理器によれば、共振回路にはそれぞれリレーを介して互いに並列接続される複数の共振コンデンサを設けると共に、スイッチング素子のオンオフを停止した状態で負荷検出回路の出力に応じてリレーの切り替え動作を行うようにしたので、一つのリレーに局部的に電流が流れることを防ぎ、従来の大型リレーに代えて複数個の小型リレーを用いることができ、共振回路の小型化が図れると共に、リレーの発熱を低減できる。     According to the induction heating cooker of the present invention, the resonance circuit is provided with a plurality of resonance capacitors connected in parallel to each other via relays, and the switching element is turned on and off according to the output of the load detection circuit. Since the switching operation of the relay is performed, it is possible to prevent a current from flowing locally through one relay, and a plurality of small relays can be used in place of the conventional large relay, and the resonance circuit can be downsized. At the same time, the heat generation of the relay can be reduced.

実施の形態1.
図1は、この発明の実施の形態1を示す回路図で、商用交流電源10に接続された整流回路11と平滑コンデンサ12、及びスイッチング素子31,31によって共振回路20を励起するハーフブリッジ形のインバータ回路30を備えている。
共振回路20は、加熱コイル21a,21bと、共振コンデンサ22a,22bと、共振コンデンサ22a,22bにそれぞれ直列接続されたリレー23a,23bにより形成され、共振コンデンサ22a,22bはリレー23a,23bを介して互いに並列接続され加熱コイル21a,21bと協働して直列共振回路を構成する。
更に共振回路20の出口端には電流トランス18が設けられ、この電流トランス40の出力は負荷検出回路50に供給される。負荷検出回路50は電流トランス40の出力によって共振回路20に流れる高周波電流の大きさを検出し、これにより加熱コイルのインピーダンスを判定し、その大きさによって鍋等の負荷100の材質を判定する。この負荷検出回路50の負荷判定結果は制御回路60に入力され、制御回路60はリレー23a, 23bのオンオフを制御、及び、インバータ駆動回路70の制御を行う。
Embodiment 1 FIG.
FIG. 1 is a circuit diagram showing a first embodiment of the present invention, which is a half-bridge type that excites a resonance circuit 20 by a rectifier circuit 11 and a smoothing capacitor 12 connected to a commercial AC power source 10 and switching elements 31 and 31. An inverter circuit 30 is provided.
The resonance circuit 20 is formed by heating coils 21a and 21b, resonance capacitors 22a and 22b, and relays 23a and 23b connected in series to the resonance capacitors 22a and 22b, respectively. The resonance capacitors 22a and 22b are connected via the relays 23a and 23b. Are connected in parallel to each other to form a series resonance circuit in cooperation with the heating coils 21a and 21b.
Further, a current transformer 18 is provided at the outlet end of the resonance circuit 20, and the output of the current transformer 40 is supplied to the load detection circuit 50. The load detection circuit 50 detects the magnitude of the high-frequency current flowing through the resonance circuit 20 based on the output of the current transformer 40, thereby judging the impedance of the heating coil, and judging the material of the load 100 such as a pan based on the magnitude. The load determination result of the load detection circuit 50 is input to the control circuit 60. The control circuit 60 controls ON / OFF of the relays 23a and 23b and controls the inverter drive circuit 70.

上記のような構成において、リレー23a,23bの接点をA側に切り替えた場合は、リレー23aと共振コンデンサ22aの直列接続体とリレー23bと共振コンデンサ22bの直列接続体とが並列に接続されたものと、加熱コイル21aの直列接続が形成され直列共振回路となる。
また、リレー23a,23bの接点をB側に切り替えた場合は、リレー23aと共振コンデンサ22aの直列接続体とリレー23bと共振コンデンサ22bの直列接続体とが並列に接続されたものと、両加熱コイル21a,21bの直列接続が形成され直列共振回路となる。
なお、共振回路20のインダクタンスはリレー23a,23bの接点をA側に切り替えたとき小さく、接点をB側に切り替えたとき大きくなる。
In the above configuration, when the contacts of the relays 23a and 23b are switched to the A side, the series connection body of the relay 23a and the resonance capacitor 22a and the series connection body of the relay 23b and the resonance capacitor 22b are connected in parallel. A serial connection of the heating coil 21a is formed to form a series resonance circuit.
In addition, when the contacts of the relays 23a and 23b are switched to the B side, the relay 23a and the series connection body of the resonance capacitor 22a, the relay body 23b and the series connection body of the resonance capacitor 22b are connected in parallel, and both heating A series connection of the coils 21a and 21b is formed to form a series resonance circuit.
The inductance of the resonance circuit 20 is small when the contact of the relays 23a and 23b is switched to the A side, and is large when the contact is switched to the B side.

ところで、このような構成において、リレー23a,23bを並列に接続すると接点抵抗のばらつきによって、電流が均等に分割されずに接点抵抗が小さい方のリレーに電流が集中してしまう場合がある。図2に示すように並列接続されたリレー23a,23bにそれぞれ流れる電流I,Iは接点抵抗R,Rの逆数比で分割される。
このため実施の形態1においては、図3に示すようにリレー23a,23bとコンデンサ22a,22bをそれぞれ直列に接続し、それらを並列に接続することで接点抵抗のばらつきによる電流集中を生じさせないようにしている。
並列接続されたリレー23a,23bとコンデンサ22a,22bの直列接続において、各リレー23a,23bの接点抵抗に生じる電圧VR1,VR2と各コンデンサ23a,23bに生じる電圧VC1,VC2の和は等しく、
V=VR1+VC1=VR2+VC2
の関係が成り立つ。
各コンデンサの両端に生じる電圧VC1,VC2はコンデンサに流れ込む電流が大きいほど速く増加し、コンデンサから流れ出る電流が大きいほど速く減少する。例えば、接点抵抗が小さい側のリレーに大きな電流が流れて、そのリレーと直列に接続されたコンデンサの電圧が増加するとリレーの接点抵抗に生じる電圧VR1,VR2は減少し、リレーに流れる電流は抑制される。
このため、各リレー23a,23bの接点抵抗が異なっていたとしても、上記の例のように、リレーと直列に接続されたコンデンサ22a,22bによって各リレーに流れる電流はバランスされ、各リレーに流れる電流の実効値は等しくなる。
By the way, in such a configuration, when the relays 23a and 23b are connected in parallel, the current may not be divided evenly due to variations in the contact resistance, and the current may concentrate on the relay with the smaller contact resistance. As shown in FIG. 2, the currents I 1 and I 2 flowing in the relays 23a and 23b connected in parallel are divided by the reciprocal ratio of the contact resistances R 1 and R 2 .
For this reason, in the first embodiment, as shown in FIG. 3, relays 23a and 23b and capacitors 22a and 22b are connected in series, and are connected in parallel so as not to cause current concentration due to contact resistance variation. I have to.
In the series connection of the relays 23a and 23b connected in parallel and the capacitors 22a and 22b, the sum of the voltages V R1 and V R2 generated at the contact resistances of the relays 23a and 23b and the voltages V C1 and V C2 generated at the capacitors 23a and 23b. Are equal,
V = V R1 + V C1 = V R2 + V C2
The relationship holds.
The voltages V C1 and V C2 generated at both ends of each capacitor increase faster as the current flowing into the capacitor increases, and decrease faster as the current flowing out of the capacitor increases. For example, when a large current flows through the relay having the smaller contact resistance and the voltage of the capacitor connected in series with the relay increases, the voltages V R1 and V R2 generated at the contact resistance of the relay decrease, and the current flowing through the relay Is suppressed.
For this reason, even if the contact resistances of the relays 23a and 23b are different, the currents flowing through the relays are balanced by the capacitors 22a and 22b connected in series with the relays and flow through the relays as in the above example. The effective current values are equal.

また、リレー23a,23bには接点切り替わり時間のばらつきも生じる。並列に接続されたリレー23a,23bに電流が流れている場合に接点を切り替えようとすると接点の切り替わりが遅れたリレーにこれまで各リレーに分散されて流れていた電流が集中することになる。
誘導加熱調理器はスイッチング素子31,31をオンオフさせることで共振回路20に高周波大電流を発生させているが、スイッチング素子31,31のオンオフを開始しなければ、共振回路20には電流は流れない。そこで、リレー23a,23bの接点の切り替え動作をスイッチング素子のオンオフを停止した状態で行う。
すなわち、負荷100への加熱を行う前に負荷検出回路50の検出結果により負荷判別を行い、負荷に応じて共振回路20を切り替えるが、この共振回路20の切り替え時において、リレー23a,23bの接点の切り替わりは数十ms以内には行われるため、共振回路切り替え開始から数十ms以上時間が経過してからスイッチング素子31,31のオンオフを開始し、共振回路21に電流を流し、負荷100への加熱を開始する。負荷100への加熱中に共振回路20を切り替える場合にはスイッチング素子31,31のオンオフを一度停止し、この状態でリレー23a,23bを切り替え、共振回路切り替え開始から数十ms以上時間が経過し、リレー23a,23bの接点が完全に切り替わってからスイッチング素子31,31のオンオフを開始する。
In addition, the relays 23a and 23b also vary in contact switching time. If the contacts are switched when current is flowing through the relays 23a and 23b connected in parallel, the current that has been distributed and distributed to the relays is concentrated on the relay that has delayed switching of the contacts.
The induction heating cooker generates a high-frequency large current in the resonance circuit 20 by turning on and off the switching elements 31 and 31. However, if the switching elements 31 and 31 are not turned on and off, current flows in the resonance circuit 20. Absent. Therefore, the switching operation of the contacts of the relays 23a and 23b is performed in a state where the on / off of the switching element is stopped.
That is, load determination is performed based on the detection result of the load detection circuit 50 before heating the load 100, and the resonance circuit 20 is switched according to the load. When the resonance circuit 20 is switched, the contacts of the relays 23a and 23b are switched. Is switched within several tens of milliseconds, so that switching elements 31 and 31 are turned on and off after a time of several tens of milliseconds has elapsed since the start of switching of the resonant circuit, and a current is passed through the resonant circuit 21 to the load 100. Start heating. When switching the resonance circuit 20 during heating to the load 100, the switching elements 31, 31 are once turned off and on, the relays 23a, 23b are switched in this state, and several tens of ms or more have elapsed since the resonance circuit switching start. The switching elements 31 and 31 are turned on and off after the contacts of the relays 23a and 23b are completely switched.

以上のようにこの実施の形態1の加熱調理器によれば、加熱コイルと共に直列共振回路を形成する共振コンデンサを複数に分割し、それらをリレーと直列に接続することで、リレーの接点抵抗のばらつきによる電流集中を抑制するためのコンデンサの役割を持たせて一つのリレーに局部的に電流が流れることを防ぎ、これにより従来の大型リレーに代えて複数個の小型リレーを用いることが可能となり、共振回路の小型化が図れると共に、リレーの発熱を低減できる。
また、共振コンデンサを分割することで共振コンデンサに流れる電流も分割することができるため、リレーと同様に共振コンデンサ発熱も低減され、さらに発熱源が分散されるので局部的な発熱が生じない。
As described above, according to the heating cooker of the first embodiment, the resonance capacitor that forms the series resonance circuit together with the heating coil is divided into a plurality of parts, and they are connected in series with the relay, so that the contact resistance of the relay can be reduced. It acts as a capacitor to suppress current concentration due to variation to prevent local current from flowing through one relay, which makes it possible to use multiple small relays instead of conventional large relays. The resonance circuit can be reduced in size, and the heat generation of the relay can be reduced.
Further, since the current flowing through the resonance capacitor can be divided by dividing the resonance capacitor, the heat generation of the resonance capacitor is reduced similarly to the relay, and the heat generation source is dispersed, so that no local heat generation occurs.

実施の形態2.
図4,図5は、実施の形態2として、異なる共振回路を用い負荷に応じて共振コンデンサの容量を切り替える場合の例を示す要部回路図である。
図4は、加熱コイル21cに直列に共振コンデンサ22c,22d,22eを接続した直列共振回路を示すもので、リレー23d,23eの接点を開放している場合、共振回路20は加熱コイル21cと共振コンデンサ22cの直列接続となり、リレー23d,23eの接点を閉成している場合、共振回路20は共振コンデンサ22cと、リレー23dが直列に接続されている共振コンデンサ22dと、リレー23eが直列に接続されている共振コンデンサ22eとの並列接続と、加熱コイル21cとの直列接続となる。
また、図5は、加熱コイル21dに並列に共振コンデンサ22c,22d,22eを接続した直列共振回路を示すもので、リレー23d,23eの接点を開放している場合、リレー23d,23eの接点を開放している場合、共振回路20は加熱コイル21dと共振コンデンサ22cの並列接続となり、リレー23d,23eの接点を閉成している場合、共振回路20は共振コンデンサ22dと、リレー23dが直列に接続されている共振コンデンサ22dと、リレー23eが直列に接続されている共振コンデンサ22eとの並列接続と、加熱コイル21dとの並列接続となる。
なお、共振回路20の容量はリレー23d,23eの接点を開放している時は小さく、接点を接続している時に大きくなる。
このような共振回路を用いても、実施の形態1と同様の作用効果が得られる。
Embodiment 2. FIG.
4 and 5 are main part circuit diagrams showing an example in which different resonant circuits are used and the capacitance of the resonant capacitor is switched according to the load as the second embodiment.
FIG. 4 shows a series resonance circuit in which resonance capacitors 22c, 22d, and 22e are connected in series to the heating coil 21c. When the contacts of the relays 23d and 23e are opened, the resonance circuit 20 resonates with the heating coil 21c. When the capacitor 22c is connected in series and the contacts of the relays 23d and 23e are closed, the resonance circuit 20 has the resonance capacitor 22c, the resonance capacitor 22d to which the relay 23d is connected in series, and the relay 23e is connected in series. The parallel connection with the resonance capacitor 22e and the heating coil 21c are connected in series.
FIG. 5 shows a series resonance circuit in which resonance capacitors 22c, 22d, and 22e are connected in parallel to the heating coil 21d. When the contacts of the relays 23d and 23e are opened, the contacts of the relays 23d and 23e are connected. When open, the resonance circuit 20 is connected in parallel with the heating coil 21d and the resonance capacitor 22c. When the contacts of the relays 23d and 23e are closed, the resonance circuit 20 includes the resonance capacitor 22d and the relay 23d in series. The parallel connection of the connected resonance capacitor 22d, the resonance capacitor 22e connected in series with the relay 23e, and the heating coil 21d.
The capacity of the resonance circuit 20 is small when the contacts of the relays 23d and 23e are open, and is large when the contacts are connected.
Even if such a resonance circuit is used, the same effects as those of the first embodiment can be obtained.

実施の形態3.
図6は、実施の形態3として、更に異なる共振回路を用い負荷に応じて共振コンデンサの容量を切り替える場合の例を示す要部回路図である。
図6において、リレー23f,23gの接点をC側に切り替えた場合、リレー23fが直列に接続されている共振コンデンサ22fと、リレー23gが直列に接続されている共振コンデンサ22gの並列接続と、加熱コイル21eとの直列接続が共振回路となる。
リレー23fとリレー23gの接点をD側に切り替えた場合、リレー23fが直列に接続されている共振コンデンサ22hと、リレー23gが直列に接続されている共振コンデンサ22iの並列接続と、両加熱コイル21e,21fとの直列接続が共振回路となる。
このような共振回路を用いても、実施の形態1と同様の作用効果が得られる。
Embodiment 3 FIG.
FIG. 6 is a main part circuit diagram showing an example in the case of switching the capacitance of a resonance capacitor according to a load using a further different resonance circuit as the third embodiment.
In FIG. 6, when the contacts of the relays 23f and 23g are switched to the C side, the resonance capacitor 22f to which the relay 23f is connected in series, the parallel connection of the resonance capacitor 22g to which the relay 23g is connected in series, and heating A series connection with the coil 21e is a resonance circuit.
When the contact between the relay 23f and the relay 23g is switched to the D side, the resonance capacitor 22h to which the relay 23f is connected in series, the parallel connection of the resonance capacitor 22i to which the relay 23g is connected in series, and both the heating coils 21e. , 21f is a resonance circuit.
Even if such a resonance circuit is used, the same effects as those of the first embodiment can be obtained.

実施の形態4.
図7,8は実施の形態4を説明する図である。
図7に示すように、リレー23a,23bと直列に接続されたコンデンサ22a,22bの容量がそれぞれ異なる場合、各リレー23a,23bに流れる電流I,Iの実効値はリレーと直列に接続されたコンデンサ22a,22bの容量C,Cの比となる。そのため、共振コンデンサの容量を変えることで、複数のリレーの組み合わせを自由に選択することができる。これによって、筐体内構成、風路構成に応じて、複数のリレーと複数の共振コンデンサの大きさと発熱を選択できるため、実装の自由度が大きくなる。
すなわち、図8に示すように、回路を冷却するための風は矢印の方向に流れているとすると、同一大きさのリレーを用いる場合(図8b)、風下側のリレー23bには風が当たらず効率よく冷却が行えないが、風上側のリレー23aを小型のリレーとし、風下側のリレー22bを大型のものとすることで両方のリレーに風を当てることができ、効率よく冷却が行える(図8a)。
Embodiment 4 FIG.
7 and 8 are diagrams for explaining the fourth embodiment.
As shown in FIG. 7, when the capacitors 22a and 22b connected in series with the relays 23a and 23b have different capacities, the effective values of the currents I 1 and I 2 flowing through the relays 23a and 23b are connected in series with the relays. It becomes the ratio of the capacitances C 1 and C 2 of the capacitors 22a and 22b. Therefore, a combination of a plurality of relays can be freely selected by changing the capacity of the resonance capacitor. Accordingly, the size and heat generation of the plurality of relays and the plurality of resonance capacitors can be selected according to the configuration inside the casing and the air path configuration, thereby increasing the degree of freedom in mounting.
That is, as shown in FIG. 8, if the wind for cooling the circuit is flowing in the direction of the arrow, when the same size relay is used (FIG. 8b), if the wind hits the leeward relay 23b, Although cooling cannot be performed efficiently, the windward relay 23a is a small relay and the leeward relay 22b is large, so that wind can be applied to both relays, and cooling can be performed efficiently ( FIG. 8a).

なお、上記実施の形態1では共振回路を励起するインバータ回路として、ハーフブリッジ回路を用いる場合を示したが、これに代えて図9に示すフルブリッジ回路や図10に示す電圧共振回路も用いることができる。
ハーフブリッジ回路とフルブリッジ回路は加熱コイルと共振コンデンサの直列接続を共振回路20とし、電圧共振回路は加熱コイルと共振コンデンサの並列接続を共振回路20とする。すなわち、共振回路は加熱コイルと共振コンデンサの直列接続、あるいは、並列接続となる。
また、上記各実施の形態において、共振回路の回路接続を切り替える複数のリレーの接点は同一の動作をさせるため、複数の接点と一つの操作コイルで構成し、複数の接点が同一の動作をするリレーを用いれば更に回路の小型化を実現することができる。
In the first embodiment, the case where the half bridge circuit is used as the inverter circuit for exciting the resonance circuit is shown. However, the full bridge circuit shown in FIG. 9 or the voltage resonance circuit shown in FIG. 10 is used instead. Can do.
In the half bridge circuit and the full bridge circuit, the series connection of the heating coil and the resonance capacitor is the resonance circuit 20, and in the voltage resonance circuit, the parallel connection of the heating coil and the resonance capacitor is the resonance circuit 20. That is, the resonance circuit is a series connection or a parallel connection of the heating coil and the resonance capacitor.
Further, in each of the above embodiments, the contact points of the plurality of relays that switch the circuit connection of the resonance circuit are configured to have the same operation. Therefore, the contact points are configured by a plurality of contacts and one operation coil, and the plurality of contacts perform the same operation. If a relay is used, the circuit can be further reduced in size.

この発明の実施の形態1による誘導加熱調理器を示す回路構成図である。It is a circuit block diagram which shows the induction heating cooking appliance by Embodiment 1 of this invention. 実施の形態1の作用を説明するための図である。FIG. 5 is a diagram for explaining the operation of the first embodiment. 実施の形態1の作用を説明するための図である。FIG. 5 is a diagram for explaining the operation of the first embodiment. この発明の実施の形態2における要部回路図である。It is a principal part circuit diagram in Embodiment 2 of this invention. 実施の形態2における要部回路構成図である。FIG. 6 is a main part circuit configuration diagram in the second embodiment. この発明の実施の形態3における要部回路図である。It is a principal part circuit diagram in Embodiment 3 of this invention. この発明の実施の形態4を説明する図である。It is a figure explaining Embodiment 4 of this invention. 実施の形態4を説明する図である。FIG. 10 is a diagram illustrating Embodiment 4; この発明に用いるインバータ回路の他の例を示す要部回路図である。It is a principal part circuit diagram which shows the other example of the inverter circuit used for this invention. この発明に用いる電圧共振回路の例を示す要部回路図である。It is a principal part circuit diagram which shows the example of the voltage resonance circuit used for this invention.

符号の説明Explanation of symbols

10 商用交流電源
11 整流回路
12 平滑コンデンサ
20 共振回路
21a,21b,21c,21d,21e,21f 加熱コイル
22a,22b,22c,22d,22e,22f,22g,22h,22i 共振コンデンサ
23a,23b,23c,23d,23e,23f,23g リレー
30 インバータ回路
31 スイッチング素子
40 電流トランス
50 負荷検出回路
60 制御回路
70 インバータ駆動回路
DESCRIPTION OF SYMBOLS 10 Commercial AC power supply 11 Rectification circuit 12 Smoothing capacitor 20 Resonance circuit 21a, 21b, 21c, 21d, 21e, 21f Heating coil 22a, 22b, 22c, 22d, 22e, 22f, 22g, 22h, 22i Resonance capacitor 23a, 23b, 23c , 23d, 23e, 23f, 23g Relay 30 Inverter circuit 31 Switching element 40 Current transformer 50 Load detection circuit 60 Control circuit 70 Inverter drive circuit

Claims (3)

スイッチング素子からなるインバータ回路により加熱コイルと共振コンデンサとで形成される共振回路を励起すると共に、負荷の種類を検出する負荷検出回路の出力に応じて上記共振回路の回路接続を切り替える誘導加熱調理器において、
上記共振回路にはそれぞれリレーを介して互いに並列接続される複数の共振コンデンサを設けると共に、
上記スイッチング素子のオンオフを停止した状態で上記負荷検出回路の出力に応じて上記リレーの切り替え動作を行う
ことを特徴とする誘導加熱調理器。
An induction heating cooker that excites a resonance circuit formed by a heating coil and a resonance capacitor by an inverter circuit composed of a switching element and switches the circuit connection of the resonance circuit according to the output of a load detection circuit that detects the type of load. In
The resonant circuit is provided with a plurality of resonant capacitors connected in parallel to each other via relays,
An induction heating cooker, wherein the switching operation of the relay is performed in accordance with the output of the load detection circuit in a state where the on / off of the switching element is stopped.
上記複数の共振コンデンサはそれぞれ異なる容量を有していることを特徴とする請求項1記載の誘導加熱調理器。   2. The induction heating cooker according to claim 1, wherein the plurality of resonant capacitors have different capacities. 上記複数のリレーは同一の操作コイルで操作されることを特徴とする請求項1または2記載の誘導加熱調理器。   The induction heating cooker according to claim 1 or 2, wherein the plurality of relays are operated by the same operation coil.
JP2005259327A 2005-09-07 2005-09-07 Induction heating cooker Expired - Fee Related JP4450780B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005259327A JP4450780B2 (en) 2005-09-07 2005-09-07 Induction heating cooker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005259327A JP4450780B2 (en) 2005-09-07 2005-09-07 Induction heating cooker

Publications (2)

Publication Number Publication Date
JP2007073341A true JP2007073341A (en) 2007-03-22
JP4450780B2 JP4450780B2 (en) 2010-04-14

Family

ID=37934629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005259327A Expired - Fee Related JP4450780B2 (en) 2005-09-07 2005-09-07 Induction heating cooker

Country Status (1)

Country Link
JP (1) JP4450780B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011044422A (en) * 2009-07-22 2011-03-03 Mitsubishi Electric Corp Induction heating cooker
KR20190001199A (en) * 2017-06-26 2019-01-04 엘지전자 주식회사 Induction heating apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011044422A (en) * 2009-07-22 2011-03-03 Mitsubishi Electric Corp Induction heating cooker
KR20190001199A (en) * 2017-06-26 2019-01-04 엘지전자 주식회사 Induction heating apparatus
KR102052704B1 (en) * 2017-06-26 2019-12-05 엘지전자 주식회사 Induction heating apparatus
US10869365B2 (en) 2017-06-26 2020-12-15 Lg Electronics Inc. Induction heating device

Also Published As

Publication number Publication date
JP4450780B2 (en) 2010-04-14

Similar Documents

Publication Publication Date Title
JP5658692B2 (en) Induction heating device
JP3687237B2 (en) Inverter device
JP4099593B2 (en) Switching power supply circuit
JP2009099350A (en) Induction heater
KR100707425B1 (en) Moving equipment for Single-phase induction motor
JP4450780B2 (en) Induction heating cooker
JP7001892B2 (en) Induction heating cooker
JP2009117200A (en) Induction heating apparatus
JP2007323886A (en) Induction heating device
JP3928587B2 (en) Induction heating device
JP4036266B2 (en) Induction heating cooker
KR20050059842A (en) Switching mode power supply
JP2009273228A (en) Power unit and air conditioner having the same
JPH11121159A (en) Induction heating cooker
KR20110009546A (en) Indution heating cooktop with a single inverter and control method thereof
JP4148073B2 (en) Induction heating device
JP2005258317A (en) Image forming apparatus
JP4358876B2 (en) Induction heating cooker
JPH08273822A (en) Induction heating cooking appliance
JP2011196589A (en) Controller of electric water heater
JP2007288823A (en) Switching power supply circuit
JP3937918B2 (en) Induction heating apparatus, induction heating cooker and rice cooker using the same
JPH11146645A (en) Power supply equipment
JP3744616B2 (en) Power factor improving reactor
JP2003061269A (en) Non-contact power supply unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071010

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100119

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100126

R150 Certificate of patent or registration of utility model

Ref document number: 4450780

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140205

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees