JP2007071800A - Boiling water type nuclear power generation plant and its piping cleaning method - Google Patents

Boiling water type nuclear power generation plant and its piping cleaning method Download PDF

Info

Publication number
JP2007071800A
JP2007071800A JP2005261499A JP2005261499A JP2007071800A JP 2007071800 A JP2007071800 A JP 2007071800A JP 2005261499 A JP2005261499 A JP 2005261499A JP 2005261499 A JP2005261499 A JP 2005261499A JP 2007071800 A JP2007071800 A JP 2007071800A
Authority
JP
Japan
Prior art keywords
pipe
reactor
water
injection
core cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005261499A
Other languages
Japanese (ja)
Inventor
Kazuo Owada
一雄 大和田
Motohiro Aizawa
元浩 会沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2005261499A priority Critical patent/JP2007071800A/en
Publication of JP2007071800A publication Critical patent/JP2007071800A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for cleaning stagnant water in an emergency core cooling water system of a nuclear power plant. <P>SOLUTION: An equalizing valve 19 is connected with an injection check valve 14 of the emergency core cooling system injection pipe 12 and a pipe for cleaning 101 is branched between upper and lower two step drain valves 21 provided to the drain pipe 20 connected with the equalizing pipe 18 of the equalizing valve 19 to connect to a reactor coolant purification system suction pipe 31 in the constitution. In regular inspection of the nuclear power plant, water in the emergency core cooling system injection pipe 12 is passed in the equalizing pipe 18, the drain pipe 20 and the pipe for cleaning 101 in turn together with reactor water with a reactor coolant cleaning system pump 32 by opening the equalizing valve 19. Thus, water is purified with a reactor coolant purification system equipment 33 and is returned to the reactor pressure vessel 1 by way of a reactor water supply system pipe 34. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、沸騰水型原子力発電プラントにおける非常用炉心冷却系注入配管内の浄化技術に関する。   The present invention relates to a purification technique in an emergency core cooling system injection pipe in a boiling water nuclear power plant.

沸騰水型原子力発電プラントの非常用炉心冷却系は、残留熱除去系による低圧注水系の3系列と、低圧炉心スプレイ系及び高圧炉心スプレイ系の合計5系列構成となっている。   The emergency core cooling system of the boiling water nuclear power plant has a total of five systems including three series of low-pressure water injection systems using a residual heat removal system, a low-pressure core spray system, and a high-pressure core spray system.

その非常用炉心冷却系は原子炉圧力容器内の冷却材喪失事故時に、原子炉圧力容器へサプレッションプール水を供給して原子炉圧力容器内の水位を安全な水位に維持する機能を有する。   The emergency core cooling system has a function of supplying suppression pool water to the reactor pressure vessel and maintaining the water level in the reactor pressure vessel at a safe water level in the event of loss of coolant in the reactor pressure vessel.

よって、事故時状態で無い原子炉通常運転中には非常用炉心冷却系は待機状態であり、非常用炉心冷却系ポンプは停止し、原子炉への注入隔離弁も全閉状態であり、注入隔離弁と原子炉格納容器との間の注入配管内の流体(水)は、原子炉通常運転中の約1年間は常時停滞状態となっている。   Therefore, during the normal operation of the reactor that is not in the state of the accident, the emergency core cooling system is in a standby state, the emergency core cooling system pump is stopped, and the injection isolation valve to the reactor is fully closed. The fluid (water) in the injection pipe between the isolation valve and the reactor containment vessel is always stagnant for about one year during normal operation of the reactor.

また、原子炉定期検査中において、原子炉格納容器内の非常用炉心冷却系注入配管上に設置している注入逆止弁等の点検頻度や計画工程にもよるが、注入隔離弁と原子炉格納容器との間の注入配管内の流体(水)は数年間停滞状態となって、錆び等の腐食生成物が注入配管内に発生する可能性がある。   In addition, during the periodic inspection of the reactor, depending on the inspection frequency of the injection check valve installed on the emergency core cooling system injection pipe in the reactor containment and the planning process, the injection isolation valve and the reactor The fluid (water) in the injection pipe between the containment vessel is stagnant for several years, and corrosion products such as rust may be generated in the injection pipe.

なお、非常用炉心冷却系の配管および弁等の材質は、一般的に炭素鋼材料を使用している。   Note that carbon steel materials are generally used as materials for piping and valves of the emergency core cooling system.

原子炉通常運転時および定期検査中における一般的な操作においては、この非常用炉心冷却系の注入配管内で発生した錆び等の腐食生成物は非常時以外には原子炉へ注水されることはない。   In general operations during normal operation of the reactor and during regular inspections, corrosion products such as rust generated in the injection pipes of this emergency core cooling system are not poured into the reactor except in an emergency. Absent.

なお、近年は原子力発電プラントの点検期間を短縮しそのプラントの稼動期間を多く確保することによりそのプラントの利用効率を向上させる取り組みが行われるようになった。点検期間短縮には点検作業の合理化,作業手順の見直し,交代勤務体制の導入等が検討されている。   In recent years, efforts have been made to improve the utilization efficiency of the nuclear power plant by shortening the inspection period of the nuclear power plant and securing a long operation period of the plant. To shorten the inspection period, rationalization of inspection work, review of work procedures, introduction of shift work system, etc. are being studied.

非常用炉心冷却系注入隔離弁と原子炉格納容器との間の注入配管内の水質を浄化することに関する先行技術は無いと考えますが、原子炉冷却材浄化系と非常用炉心冷却系の一部である残留熱除去系間を配管にて接続し、原子炉停止時冷却機能としての残留熱除去系熱交換器の放射能を低減して、定検時の作業員が受ける放射線量を低減する発明を記載したものが公知である(例えば、特許文献1参照)。   Although there is no prior art related to purifying the water quality in the injection pipe between the emergency core cooling system injection isolation valve and the containment vessel, there is no prior art for the reactor coolant purification system and the emergency core cooling system. The residual heat removal system, which is the main part, is connected by piping, reducing the radiation of the residual heat removal system heat exchanger as a cooling function when the reactor is shut down, reducing the radiation dose received by workers during regular inspections The invention that describes the invention to be performed is known (see, for example, Patent Document 1).

特許文献1では、原子炉通常運転中に原子炉水を浄化する原子炉冷却材浄化系と、原子炉停止時に原子炉水を循環冷却する残留熱除去系間に接続管を設けることで、非常用炉心冷却系の一つである残留熱除去系の注入隔離弁上流側配管や熱交換器等に対し、原子炉冷却材浄化系出口の浄化された高温冷却水を常時通水させることで残留熱除去系に付着する放射能を低減し、定期検査時の作業員が受ける放射線量を低減できることが可能としているものである。   In Patent Document 1, an emergency pipe is provided between a reactor coolant purification system that purifies reactor water during normal reactor operation and a residual heat removal system that circulates and cools reactor water when the reactor is shut down. Residual heat removal system, which is one of the core heat cooling systems, is made to flow by constantly passing purified high-temperature cooling water at the outlet of the reactor coolant purification system to the piping and heat exchanger upstream of the injection isolation valve. It is possible to reduce the radioactivity adhering to the heat removal system and reduce the radiation dose received by the workers during the periodic inspection.

特開平9−68590号公報JP-A-9-68590

原子力発電プラントの定期検査時には、原子炉圧力容器内と、原子炉圧力容器の上方を覆う位置に形成されている原子炉ウエルというプールに水を張って原子炉圧力容器内からの放射線を水で遮蔽することを実施する。   During regular inspections of nuclear power plants, water is applied to the reactor pressure vessel and a pool called a reactor well formed at a position covering the reactor pressure vessel, and the radiation from the reactor pressure vessel is flushed with water. Implement shielding.

原子炉圧力容器および原子炉ウェルへの水張りは復水貯蔵タンクより、補給水系の配管を経由して復水を供給することで行っている。その水張りに約1日を要していた。   Water filling to the reactor pressure vessel and reactor well is performed by supplying condensate from the condensate storage tank via the makeup water system piping. It took about a day to fill the water.

原子力発電プラントの点検期間を短縮し、そのプラントの利用効率を向上させる取り組みとして、定期検査時の原子炉圧力容器および原子炉ウェルへの水張り時間を短縮する工夫も行う必要がある。   In order to shorten the inspection period of a nuclear power plant and improve the utilization efficiency of the plant, it is also necessary to devise measures to shorten the water filling time to the reactor pressure vessel and the reactor well at the time of periodic inspection.

補給水系の配管は非常用炉心冷却系の配管および機器等の保守・点検前の洗浄用として、非常用炉心冷却系の注入隔離弁の上流側にも洗浄用配管が接続してあることから、この非常用炉心冷却水系の洗浄用配管を利用して原子炉圧力容器および原子炉ウェルへ復水を供給することにより、水張り時間の短縮を図る運用が考えられる。   Since the piping of the make-up water system is for cleaning before maintenance and inspection of the emergency core cooling system piping and equipment, etc., the cleaning piping is also connected upstream of the injection isolation valve of the emergency core cooling system. An operation for shortening the water filling time can be considered by supplying condensate to the reactor pressure vessel and the reactor well using the cleaning pipe of the emergency core cooling water system.

しかし、このような運用を行うと以下の課題に直面する。即ち、原子炉圧力容器および原子炉ウェルへの水張り時間短縮のため、非常用炉心冷却水系の洗浄用配管を利用して原子炉圧力容器および原子炉ウェルへの水張りラインとして使用する場合、非常用炉心冷却系注入配管のうち、注入隔離弁と原子炉圧力容器の間の配管内に長期間停滞した停滞水が原子炉圧力容器および原子炉ウェルに腐食生成物とともに供給され、一時的に原子炉水の透明度が低下する。そのために、水張り後に行われる原子炉内の点検作業および燃料装荷作業の実施が困難となる。各作業の実施を早めるためにも、原子炉冷却材浄化系による原子炉圧力容器内や原子炉ウェル内の水を浄化するが、その浄化が進むまで作業着手時間が遅れ、水張り時間の短縮効果が損なわれることが考えられる。   However, the following issues are encountered when such operations are performed. In other words, in order to shorten the water filling time to the reactor pressure vessel and the reactor well, when using as the water filling line to the reactor pressure vessel and the reactor well using the cleaning pipe of the emergency core cooling water system, Of the core cooling system injection piping, stagnant water that has been stagnating for a long time in the piping between the injection isolation valve and the reactor pressure vessel is supplied to the reactor pressure vessel and reactor well along with corrosion products, temporarily. Water transparency decreases. Therefore, it becomes difficult to carry out inspection work and fuel loading work in the nuclear reactor performed after water filling. In order to expedite the implementation of each work, water in the reactor pressure vessel and reactor well is purified by the reactor coolant purification system, but the work start time is delayed until the purification proceeds, and the water filling time is shortened. May be damaged.

さらに、炭素鋼配管で長期間停滞水となる領域では腐食生成物の蓄積量が増加するばかりではなく、蓄積した腐食生成物が凝集することが生じる。   Further, in the region where the carbon steel pipe is stagnant for a long time, not only the accumulated amount of corrosion products increases, but also the accumulated corrosion products are aggregated.

この凝集した腐食生成物が原子炉圧力容器底部に沈殿すると、原子炉冷却材浄化系による浄化が困難となり、原子炉圧力容器内に多くの腐食生成物が沈殿したまま運転を開始すると、運転中の燃料被覆管表面に付着する腐食生成物の量が増加し、さらには燃料から発せられる放射線により腐食生成物での放射性物質の量を増加させる結果となるので好ましくない。   If this agglomerated corrosion product settles at the bottom of the reactor pressure vessel, it becomes difficult to purify by the reactor coolant purification system, and if many corrosion products are precipitated in the reactor pressure vessel, The amount of corrosion products adhering to the surface of the fuel cladding tube increases, and further, radiation emitted from the fuel results in an increase in the amount of radioactive material in the corrosion products, which is not preferable.

上述のように、炭素鋼材料で長期停滞水となる非常用炉心冷却系を用いて原子炉圧力容器および原子炉ウェルへの水張り時間の短縮を図るためには、非常用炉心冷却系の長期間停滞水となる範囲に蓄積する腐食生成物を除去するとともに、蓄積した腐食生成物が凝集することを防止することが望ましい。   As described above, in order to reduce the water filling time to the reactor pressure vessel and the reactor well using the emergency core cooling system that is a long-term stagnant water with carbon steel material, It is desirable to remove the corrosion products that accumulate in the area that becomes stagnant water and to prevent the accumulated corrosion products from aggregating.

よって、本発明の目的は、沸騰水型原子力発電プラントの非常用炉心冷却系注入配管内の停滞水を浄化することで、そのプラントの定期検査を短縮し、そのプラントの稼動効率を向上することにある。   Therefore, an object of the present invention is to purify stagnant water in the emergency core cooling system injection pipe of a boiling water nuclear power plant, thereby shortening the periodic inspection of the plant and improving the operation efficiency of the plant. It is in.

本発明の目的を達成するための手段は、注入隔離弁が装備された注入配管を備えて原子炉圧力容器内へ注水する非常用炉心冷却系と、
前記原子炉圧力容器内の冷却水を浄化する浄化装置を備え、
前記浄化装置で浄化された前記冷却水を前記原子炉圧力容器へ供給する原子炉冷却材浄化系と、
前記注入配管の前記注入隔離弁よりも下流側部分と、前記原子炉冷却材浄化系の前記浄化装置よりも上流側部分とを連絡する管路とを備えた沸騰水型原子力発電プラントである。
Means for achieving the object of the present invention includes an emergency core cooling system for injecting water into a reactor pressure vessel with an injection pipe equipped with an injection isolation valve,
A purification device for purifying cooling water in the reactor pressure vessel;
A reactor coolant purification system for supplying the cooling water purified by the purification device to the reactor pressure vessel;
It is a boiling water nuclear power plant provided with a pipe line connecting the downstream portion of the injection pipe with respect to the injection isolation valve and the upstream portion of the reactor coolant purification system with respect to the purification device.

また、沸騰水型原子力発電プラントの非常用炉心冷却系の注入隔離弁よりも下流側の注入配管内の水を、前記沸騰水型原子力発電プラントの原子炉冷却材浄化系内に吸い込んで浄化し、前記浄化の後の前記水を前記沸騰水型原子力発電プラントの原子炉圧力容器内に戻し、前記原子炉圧力容器内の水を前記注入隔離弁よりも下流側の前記注入配管内に流入させる沸騰水型原子力発電プラントの配管浄化方法である。   Also, the water in the injection pipe downstream from the injection isolation valve of the emergency core cooling system of the boiling water nuclear power plant is sucked into the reactor coolant purification system of the boiling water nuclear power plant and purified. The water after the purification is returned to the reactor pressure vessel of the boiling water nuclear power plant, and the water in the reactor pressure vessel is caused to flow into the injection pipe on the downstream side of the injection isolation valve. This is a piping purification method for a boiling water nuclear power plant.

本発明によれば、沸騰水型原子力発電所プラントにおける非常用炉心冷却系の注入隔離弁と原子炉圧力容器との間の注入配管内での腐食生成物の形成を抑えることが出来るので、原子力発電プラントの定期検査中にその注入配管経由で原子炉圧力容器および原子炉ウェルに水張りしても、定期検査を長引かせることなく、そのプラントの稼動効率を向上できる効果がある。   According to the present invention, the formation of corrosion products in the injection pipe between the injection isolation valve of the emergency core cooling system and the reactor pressure vessel in the boiling water nuclear power plant can be suppressed. Even if the reactor pressure vessel and the reactor well are filled with water during the periodic inspection of the power plant via the injection pipe, there is an effect that the operation efficiency of the plant can be improved without prolonging the periodic inspection.

軽水型原子力発電プラントは、原子炉圧力容器1内で高温高圧蒸気を発生させ、その蒸気で蒸気タービンを駆動し、その蒸気タービンで発電機を駆動することで電力を発生させるプラントである。その原子炉圧力容器1は、核燃料を装荷した炉心を内蔵し、原子炉圧力容器1内の冷却水を原子炉冷却材再循環ポンプ5で原子炉冷却材再循環系配管6を経由して炉心へ循環させ、炉心でその冷却水を加熱して蒸気を発生している。このように、その原子炉圧力容器1には、核燃料を装荷した炉心を備えているので、放射線や放射性物質が意図しない状況で漏洩しない様に原子炉圧力容器1を原子炉格納容器2内に格納されている。   The light water nuclear power plant is a plant that generates high-temperature and high-pressure steam in the reactor pressure vessel 1, drives a steam turbine with the steam, and drives a generator with the steam turbine to generate electric power. The reactor pressure vessel 1 contains a core loaded with nuclear fuel, and the coolant in the reactor pressure vessel 1 is passed through the reactor coolant recirculation system piping 6 by the reactor coolant recirculation pump 5. The steam is generated by heating the cooling water in the reactor core. Thus, since the reactor pressure vessel 1 is provided with a core loaded with nuclear fuel, the reactor pressure vessel 1 is placed in the reactor containment vessel 2 so that radiation and radioactive materials do not leak in an unintended situation. Stored.

その原子炉圧力容器1から冷却水が喪失するような事故を想定した場合には、冷却水の喪失で炉心が冷却水の水面から上方へ露出して冷却できなくなる懸念がある。その懸念を払拭して安全に冷却水喪失事故を終息させるために、原子炉圧力容器1内に冷却水を供給する非常用炉心冷却系が備えられている。   When an accident is assumed in which the cooling water is lost from the reactor pressure vessel 1, there is a concern that the core may be exposed upward from the surface of the cooling water due to the loss of the cooling water and cannot be cooled. An emergency core cooling system that supplies cooling water into the reactor pressure vessel 1 is provided to eliminate the concern and safely end the accident of loss of cooling water.

軽水型原子力発電プラントにおける非常用炉心冷却系は、残留熱除去系による低圧注水系7を3系列と、低圧炉心スプレイ系8および高圧炉心スプレイ系9の合計5系列の構成となっている。これら非常用炉心冷却系の5系統の構成はいずれも基本的に同一構成であるため、その5系列を代表して高圧炉心スプレイ系9を非常用炉心冷却系と称して以下に例示する。   The emergency core cooling system in the light water nuclear power plant has a configuration of three series of low-pressure water injection systems 7 using a residual heat removal system, and a total of five series of low-pressure core spray systems 8 and high-pressure core spray systems 9. Since the five systems of the emergency core cooling system are basically the same, the high pressure core spray system 9 is referred to as an emergency core cooling system and is exemplified below as representative of the five systems.

非常用炉心冷却系は、原子炉格納容器2内に装備されているサプレションプール3内のサプレションプール水4を一水源としている。非常用炉心冷却系は、非常用炉心冷却系注入配管12の一端がサプレションプール3内に、他端が原子炉圧力容器1内に連通している。その非常用炉心冷却系注入配管12の途中には、非常用炉心冷却系ポンプ11が設けられている。その非常用炉心冷却系ポンプ11は、サプレションプール3水を非常用炉心冷却系注入配管12に吸い込んで原子炉圧力容器1内へ非常用炉心冷却系注入配管12を通じて供給する駆動力を発揮する。そのため、非常用炉心冷却系においては、サプレションプール3側が上流で、原子炉圧力容器1側が下流となる水の流れとなる。   The emergency core cooling system uses the suppression pool water 4 in the suppression pool 3 installed in the reactor containment vessel 2 as one water source. In the emergency core cooling system, one end of the emergency core cooling system injection pipe 12 communicates with the suppression pool 3 and the other end communicates with the reactor pressure vessel 1. An emergency core cooling system pump 11 is provided in the middle of the emergency core cooling system injection pipe 12. The emergency core cooling system pump 11 exerts a driving force that sucks the suppression pool 3 water into the emergency core cooling system injection pipe 12 and supplies the water into the reactor pressure vessel 1 through the emergency core cooling system injection pipe 12. . Therefore, in the emergency core cooling system, the water flow is such that the suppression pool 3 side is upstream and the reactor pressure vessel 1 side is downstream.

非常用炉心冷却系注入配管12の非常用炉心冷却系ポンプ11よりも下流側の非常用炉心冷却系注入配管12の途中には、原子炉格納容器2の外側において、注入隔離弁13が装備され、サプレションプール3水の原子炉圧力容器1内への供給と停止を司っている。   An injection isolation valve 13 is provided outside the reactor containment vessel 2 in the middle of the emergency core cooling system injection pipe 12 downstream of the emergency core cooling system pump 11 of the emergency core cooling system injection pipe 12. The suppression pool 3 is responsible for supplying and stopping water into the reactor pressure vessel 1.

非常用炉心冷却系注入配管12の原子炉格納容器2内の部分には、注入逆止弁14が、原子炉圧力容器1からサプレションプール3側への逆流を防止する向きにして、装備されている。さらに、その注入逆止弁14よりも原子炉圧力容器1寄りの非常用炉心冷却系注入配管12の部分には、メンテナンス用止め弁15が装備されている。そのメンテナンス用止め弁15は、注入逆止弁14を分解点検する際に、原子炉圧力容器1内の冷却水が注入逆止弁14に到達しないように非常用炉心冷却系注入配管12を締め切るのに用いられ、その点検以外の時期においては常時開かれているものである。   An injection check valve 14 is provided in a portion of the emergency reactor cooling system injection pipe 12 in the reactor containment vessel 2 so as to prevent a back flow from the reactor pressure vessel 1 to the suppression pool 3 side. ing. Further, a maintenance stop valve 15 is provided in the emergency core cooling system injection pipe 12 closer to the reactor pressure vessel 1 than the injection check valve 14. The maintenance stop valve 15 closes the emergency core cooling system injection pipe 12 so that the cooling water in the reactor pressure vessel 1 does not reach the injection check valve 14 when the injection check valve 14 is overhauled. It is used at all times and is always open at times other than the inspection.

非常用炉心冷却系注入配管12の非常用炉心冷却系ポンプ11と注入隔離弁13との間の部分には、テストライン17を成す配管の一端が接続され、その配管の他端はサプレションプール3内に接続されている。そのテストライン17の途中部分には、テスト弁16が装備され、非常用炉心冷却系のテストの際、非常用炉心冷却系ポンプ11を試運転時に開かれ、その他の場合には閉じられている。   One end of a pipe forming a test line 17 is connected to a portion of the emergency core cooling system injection pipe 12 between the emergency core cooling system pump 11 and the injection isolation valve 13, and the other end of the pipe is the suppression pool. 3 is connected. A test valve 16 is provided in the middle of the test line 17, and the emergency core cooling system pump 11 is opened during a test operation when the emergency core cooling system is tested, and is closed in other cases.

注入隔離弁13と、テストライン17の非常用炉心冷却系注入配管12への接続部と、の間の非常用炉心冷却系注入配管12の部分には、非常用炉心冷却系洗浄用配管41が洗浄弁42と逆止弁とを介して接続されている。この非常用炉心冷却系洗浄用配管41は復水補給水系を構成している配管であり、復水補給水系内のポンプで復水貯蔵タンク等に内蔵した水を高圧にて非常用炉心冷却系注入配管12内に注入して非常用炉心冷却系注入配管12内や非常用炉心冷却系ポンプ11を洗浄することが出来る。その洗浄に際しては、洗浄弁42が開かれる。   In the portion of the emergency core cooling system injection pipe 12 between the injection isolation valve 13 and the connection portion of the test line 17 to the emergency core cooling system injection pipe 12, an emergency core cooling system cleaning pipe 41 is provided. The cleaning valve 42 and the check valve are connected to each other. This emergency core cooling system cleaning pipe 41 is a pipe constituting the condensate makeup water system, and the water contained in the condensate storage tank or the like by the pump in the condensate makeup water system is used at a high pressure for the emergency core cooling system. It is possible to clean the emergency core cooling system injection pipe 12 and the emergency core cooling system pump 11 by injecting into the injection pipe 12. During the cleaning, the cleaning valve 42 is opened.

非常用炉心冷却系のA部を拡大して表したA部(詳細図)に示すように、非常用炉心冷却系注入配管12に装備されている注入逆止弁14には、注入逆止弁14の上流側と下流側との圧力差を均等圧力にする均圧弁19が装備されている。その均圧弁19と注入逆止弁14とは一対の均圧配管18で接続され、原子炉圧力容器1内と同等圧を受ける原子炉圧力容器1寄りの均圧配管と、非常用炉心冷却系注入配管12内と同等圧を受ける注入隔離弁13寄りの均圧配管とで一対をなしている。注入逆止弁14の点検などにおいては、均圧弁19を開いて注入逆止弁14の上流側と下流側との間の差圧を無くして点検できるようにする。原子力発電プラントの点検時以外においては、均圧弁19は閉じられて注入逆止弁14の機能が発揮できるようにされている。   As shown in part A (detailed view) showing an enlarged part A of the emergency core cooling system, the injection check valve 14 provided in the emergency core cooling system injection pipe 12 includes an injection check valve. 14 is equipped with a pressure equalizing valve 19 that equalizes the pressure difference between the upstream side and the downstream side. The pressure equalizing valve 19 and the injection check valve 14 are connected by a pair of pressure equalizing pipes 18, a pressure equalizing pipe near the reactor pressure vessel 1 that receives the same pressure as the inside of the reactor pressure vessel 1, and an emergency core cooling system. A pair of pressure equalizing pipes close to the injection isolation valve 13 receiving the same pressure as in the injection pipe 12 is paired. In the check of the injection check valve 14, etc., the pressure equalizing valve 19 is opened so that the pressure difference between the upstream side and the downstream side of the injection check valve 14 can be eliminated. Except during the inspection of the nuclear power plant, the pressure equalizing valve 19 is closed so that the function of the injection check valve 14 can be exhibited.

注入隔離弁13寄りの均圧配管18には、ドレン配管20が接続されている。ドレン配管20には直列に二個のドレン弁21を装備している。メンテナンス用止め弁15を閉じてドレン弁21と均圧弁19を開くと、メンテナンス用止め弁15と注入隔離弁13との間の非常用炉心冷却系注入配管12内の水がドレン配管20やドレン弁21を通じて排水処理設備へ送られ、注入逆止弁14の点検が可能となる。   A drain pipe 20 is connected to the pressure equalizing pipe 18 near the injection isolation valve 13. The drain pipe 20 is equipped with two drain valves 21 in series. When the maintenance stop valve 15 is closed and the drain valve 21 and the pressure equalizing valve 19 are opened, the water in the emergency core cooling system injection pipe 12 between the maintenance stop valve 15 and the injection isolation valve 13 becomes drain pipe 20 or drain. It is sent to the wastewater treatment facility through the valve 21, and the check of the injection check valve 14 becomes possible.

次に、原子炉冷却材浄化系について説明する。軽水型原子力発電プラントに装備されている原子炉冷却材浄化系は、原子炉冷却材再循環系配管6と原子炉給水系配管34とを接続する原子炉冷却材浄化系吸込み配管31とを有する。その原子炉給水系配管34は原子炉圧力容器1へ接続され、蒸気タービンで使用された蒸気を凝縮した復水を原子炉圧力容器1内に供給する流路となっている。   Next, the reactor coolant purification system will be described. The reactor coolant purification system equipped in the light water nuclear power plant has a reactor coolant purification system suction pipe 31 that connects the reactor coolant recirculation system pipe 6 and the reactor water supply system pipe 34. . The reactor water supply system pipe 34 is connected to the reactor pressure vessel 1 and serves as a flow path for supplying condensate condensed with steam used in the steam turbine into the reactor pressure vessel 1.

原子炉冷却材浄化系吸込み配管31は、原子炉冷却材浄化系ポンプ32及び原子炉冷却材浄化系浄化設備(例えば、脱塩器が用いられる。)33を直列に接続している。このような原子炉冷却材浄化系は原子炉冷却材浄化系ポンプ32を作動させて原子炉冷却材再循環系配管6や原子炉圧力容器1内から冷却水を原子炉冷却材浄化系吸込み配管31内に吸い込み、同配管を通じて原子炉冷却材浄化系浄化設備33へ供給できる。ここで冷却水は原子炉冷却材浄化系浄化設備33によって浄化される。原子炉冷却材浄化系浄化設備33で浄化された冷却水は、原子炉冷却材浄化系吸込み配管31から原子炉給水系配管34内に供給され、原子炉給水系配管34を通じて原子圧力容器1内へ供給できる。   The reactor coolant purification system suction pipe 31 is connected in series with a reactor coolant purification system pump 32 and a reactor coolant purification system purification facility (for example, a demineralizer is used) 33. In such a reactor coolant purification system, the reactor coolant purification system pump 32 is operated to supply coolant from the reactor coolant recirculation system pipe 6 or the reactor pressure vessel 1 to the reactor coolant purification system suction pipe. It can be sucked into 31 and supplied to the reactor coolant purification system purification equipment 33 through the same pipe. Here, the cooling water is purified by the reactor coolant purification system purification equipment 33. Cooling water purified by the reactor coolant purification system purification equipment 33 is supplied from the reactor coolant purification system suction pipe 31 into the reactor feed water system pipe 34 and passes through the reactor feed water system pipe 34 to the inside of the nuclear pressure vessel 1. Can supply.

このような原子炉冷却材浄化系と、非常用炉心冷却系とは、以下のようにして接続可能としてある。即ち、二個のドレン弁21の間に位置するドレン配管20の部分には、浄化用配管101の一端が接続され、その他端は、原子炉冷却材浄化系吸込み配管31の、原子炉冷却材浄化系ポンプ32と原子炉冷却材再循環系配管6との間に位置する部分に接続されている。   Such a reactor coolant purification system and an emergency core cooling system can be connected as follows. That is, one end of the purification pipe 101 is connected to the portion of the drain pipe 20 located between the two drain valves 21, and the other end is the reactor coolant of the reactor coolant purification system suction pipe 31. It is connected to a portion located between the purification system pump 32 and the reactor coolant recirculation system pipe 6.

この浄化用配管101のドレン配管20寄りの部位には、止め弁102が設けられ、浄化用配管101の原子炉冷却材浄化系吸込み配管31寄り部位には、止め弁103が設けられている。これら止め弁102,103は、原子力発電所プラントの定期検査に際して開かれ、その他の時期には閉じられている。   A stop valve 102 is provided near the drain pipe 20 of the purification pipe 101, and a stop valve 103 is provided near the reactor coolant purification system suction pipe 31 of the purification pipe 101. These stop valves 102 and 103 are opened during the periodic inspection of the nuclear power plant, and are closed at other times.

その定期検査時においては、メンテナンス用止め弁15と均圧弁19と均圧弁19寄りのドレン弁21を開いた状態で、浄化用配管101上の各止め弁102,103を開くと、原子炉冷却材浄化系ポンプ32で注入逆止弁14と原子炉圧力容器1との間の非常用炉心冷却系注入配管12内の水が腐食生成物を同伴して均圧配管18からドレン配管20を経由して浄化用配管101内に吸い込まれる。さらに、浄化用配管101内に吸い込まれた水は、原子炉冷却材浄化系吸込み配管31内に入って、原子炉冷却材浄化系浄化設備
33によって腐食生成物が取り除かれて浄化され、原子炉給水系配管34経由で原子炉圧力容器1内に供給される。
During the periodic inspection, if the stop valves 102 and 103 on the purification pipe 101 are opened while the maintenance stop valve 15, the pressure equalizing valve 19, and the drain valve 21 near the pressure equalizing valve 19 are opened, the reactor cooling Water in the emergency core cooling system injection pipe 12 between the injection check valve 14 and the reactor pressure vessel 1 is transported from the pressure equalizing pipe 18 through the drain pipe 20 with the corrosion product. Then, it is sucked into the purification pipe 101. Further, the water sucked into the purification pipe 101 enters the reactor coolant purification system suction pipe 31 and is purified by removing the corrosion products by the reactor coolant purification system purification equipment 33. It is supplied into the reactor pressure vessel 1 via the water supply system pipe 34.

非常用炉心冷却系注入配管12内の水が原子炉冷却材浄化系ポンプ32で浄化用配管
101側に吸い込まれるのに伴って、原子炉圧力容器1内の冷却水は、非常用炉心冷却系注入配管12内に入り、非常用炉心冷却系注入配管12内に残存している腐食生成物を同伴して再度同様な浄化作用を受ける。このような浄化作用を繰り返して行うことによって逆止弁と原子炉圧力容器1との間の非常用炉心冷却系注入配管12内が洗浄される。
As the water in the emergency core cooling system injection pipe 12 is sucked into the purification pipe 101 side by the reactor coolant purification system pump 32, the cooling water in the reactor pressure vessel 1 becomes the emergency core cooling system. The same purification action is again performed with the corrosion products entering the injection pipe 12 and remaining in the emergency core cooling system injection pipe 12. By repeatedly performing such purification action, the inside of the emergency core cooling system injection pipe 12 between the check valve and the reactor pressure vessel 1 is cleaned.

原子炉圧力容器1内や原子炉ウェル内に水を張る際には、洗浄弁42と注入隔離弁13とメンテナンス用止め弁15を開いておく。この状態で、復水補給水系から水が非常用炉心冷却系注入配管12内を通じて原子炉圧力容器1内や原子炉ウェル内へ供給できる。その水を原子炉圧力容器1内や原子炉ウェル内へ供給する際に、非常用炉心冷却系注入配管12内を定期検査ごとに浄化してあるので、腐食性生物などの水の透明度を悪化する要因を原子炉圧力容器1内や原子炉ウェル内に同伴することが無く、定期検査作業を早期に行えるようになる。   When water is filled in the reactor pressure vessel 1 or the reactor well, the cleaning valve 42, the injection isolation valve 13 and the maintenance stop valve 15 are opened. In this state, water can be supplied from the condensate makeup water system into the reactor pressure vessel 1 and the reactor well through the emergency core cooling system injection pipe 12. When the water is supplied into the reactor pressure vessel 1 or into the reactor well, the emergency core cooling system injection pipe 12 is purified for each periodic inspection, so the transparency of water such as corrosive organisms deteriorates. Therefore, the periodic inspection work can be performed at an early stage without accompanying the factor to the reactor pressure vessel 1 or the reactor well.

以上のような構成を備えている原子力発電プラントにあっては、原子炉通常運転中には非常用炉心冷却系は待機状態であり、非常用炉心冷却系ポンプ11は停止状態で、かつ、原子炉圧力容器1への注入隔離弁13も全閉状態である。   In the nuclear power plant having the above-described configuration, the emergency core cooling system is in a standby state during the normal operation of the reactor, the emergency core cooling system pump 11 is in a stopped state, and The injection / isolation valve 13 to the furnace pressure vessel 1 is also fully closed.

ただし、非常用炉心冷却系ポンプ11の機能が健全であることを確認するため月1回の頻度で非常用炉心冷却系ポンプ11を起動させる。この際にも原子炉圧力容器1への注入隔離弁13は全閉状態のままであるがテスト弁16は開かれている状態とする。このような状態では、サプレッションプール3からサプレションプール水4を非常用炉心冷却系ポンプ11で吸引し、テスト弁16およびテストライン17を通じて吸引したサプレションプール水4をサプレションプール3へ戻す循環運転でポンプテスト運転を行うことで非常用炉心冷却系ポンプ11の健全性の確認を実施している。   However, in order to confirm that the function of the emergency core cooling system pump 11 is healthy, the emergency core cooling system pump 11 is started once a month. At this time as well, the injection isolation valve 13 to the reactor pressure vessel 1 remains fully closed, but the test valve 16 is open. In such a state, the suppression pool water 4 is sucked from the suppression pool 3 by the emergency core cooling system pump 11, and the suppression pool water 4 sucked through the test valve 16 and the test line 17 is returned to the suppression pool 3. The soundness of the emergency core cooling system pump 11 is confirmed by performing a pump test operation.

また、原子炉圧力容器1への注入隔離弁13の機能が健全であることについても、前記のポンプテスト運転とは別に、月1回の頻度で注入隔離弁13の開動作試験を実施している。この際、原子炉圧力容器1内の高圧水が系統側へ逆流することが無いように、注入隔離弁13下流側に注入逆止弁14が機能している。   In addition, regarding the function of the injection isolation valve 13 to the reactor pressure vessel 1 being sound, an opening operation test of the injection isolation valve 13 is conducted once a month separately from the pump test operation described above. Yes. At this time, the injection check valve 14 functions on the downstream side of the injection isolation valve 13 so that the high-pressure water in the reactor pressure vessel 1 does not flow back to the system side.

このように非常用炉心冷却系の構成機器のテストで、非常用炉心冷却系の注入隔離弁
13から原子炉圧力容器の間に設置されている非常用炉心冷却系注入配管12(原子炉格納容器2内に設置されている。)内の流体は、原子炉通常運転中の約1年間は常時停滞状態となっている。
Thus, in the test of the components of the emergency core cooling system, the emergency core cooling system injection pipe 12 (reactor containment vessel) installed between the injection isolation valve 13 of the emergency core cooling system and the reactor pressure vessel The fluid inside is always stagnant for about one year during normal operation of the reactor.

原子力発電プラントの定期検査中において、原子炉格納容器2内の非常用炉心冷却系注入配管12上に設置している注入逆止弁14や均圧弁19の開放点検等を行う場合には、非常用炉心冷却系注入配管12内の水をドレン配管20を使用してドレン系および廃棄物処理系などの処理設備へ排水している。ここで、ドレン配管20を使用しての水抜き時には、開放端であるドレン受口から水が飛散したりしないように、ドレン弁21の開度に注意を払いながら排水しており、炭素鋼材料である非常用炉心冷却系注入配管12内で発生した錆び等の腐食生成物のうち、水の色を赤茶色に変えるような微粒子状のものは水抜きによって排水可能である。   During periodic inspections of nuclear power plants, when performing an open check of the injection check valve 14 or the pressure equalizing valve 19 installed on the emergency core cooling system injection pipe 12 in the reactor containment vessel 2, Water in the reactor core cooling system injection pipe 12 is drained to a treatment facility such as a drain system and a waste treatment system using a drain pipe 20. Here, when draining using the drain pipe 20, water is drained while paying attention to the opening of the drain valve 21 so that water does not scatter from the drain receiving port which is an open end. Among the corrosion products such as rust generated in the emergency core cooling system injection pipe 12 which is a material, fine particles that change the color of water to reddish brown can be drained by draining.

しかし、炭素鋼配管である非常用炉心冷却系注入配管12内に長期間停滞水を生じる領域、即ち非常用炉心冷却系の注入隔離弁13から原子炉圧力容器の間に設置されている非常用炉心冷却系注入配管12内、では腐食生成物の蓄積量が増加するばかりではなく、蓄積した腐食生成物が凝集することが生じる。特に、炭素鋼配管で長期間停滞水となる環境に、さらに常時酸素の供給があり、腐食生成物の結晶成長が起こる100℃程度以下の適度な温度に保たれる領域では、腐食生成物の凝集が加速する可能性を有すると考えられる。   However, an area where stagnant water is generated in the emergency core cooling system injection pipe 12 which is a carbon steel pipe, that is, an emergency installed between the injection isolation valve 13 of the emergency core cooling system and the reactor pressure vessel. In the core cooling system injection pipe 12, not only the accumulated amount of corrosion products increases, but also the accumulated corrosion products aggregate. In particular, in an environment where carbon steel pipes remain stagnant for a long time, there is a constant supply of oxygen, and in the region where the corrosion product crystal growth occurs and is maintained at a moderate temperature of about 100 ° C. or less, the corrosion product It is believed that aggregation has the potential to accelerate.

ここで、非常用炉心冷却系の注入配管は図1のA部詳細図に示すように、原子炉格納容器2内で立ち上がって原子炉圧力容器1へ接続している。このため、原子炉圧力容器1内の約280℃に至る高温水は接続部水平配管領域までは同一条件となるが、立ち上がり配管部の上部から下方側にかけて熱伝達効果はあるものの徐々に温度は低下し、注入逆止弁14が設置されている水平配管付近では、原子炉格納容器2内の雰囲気温度である80℃程度まで低下する。   Here, the injection pipe of the emergency core cooling system rises in the reactor containment vessel 2 and is connected to the reactor pressure vessel 1 as shown in the detailed view of part A of FIG. For this reason, the high-temperature water up to about 280 ° C. in the reactor pressure vessel 1 has the same conditions up to the connecting portion horizontal piping region, but although there is a heat transfer effect from the upper portion of the rising piping portion to the lower side, the temperature gradually increases. In the vicinity of the horizontal pipe where the injection check valve 14 is installed, the temperature drops to about 80 ° C., which is the ambient temperature in the reactor containment vessel 2.

また、原子炉が運転中における冷却水中には、原子炉圧力容器1内での放射線による冷却水の放射線による分解反応によって酸素が発生する。よって、原子炉圧力容器1から注入逆止弁14の間の非常用炉心冷却系注入配管12内には充分な酸素の供給があるものと言える。なお、立ち上がり形状を有する非常用炉心冷却系注入配管のルートは、下部が広くて上部が狭い原子炉格納容器2の構造上やむ得ないものである。   Further, oxygen is generated in the cooling water while the nuclear reactor is in operation by the decomposition reaction of the cooling water by the radiation in the reactor pressure vessel 1. Therefore, it can be said that there is sufficient oxygen supply in the emergency core cooling system injection pipe 12 between the reactor pressure vessel 1 and the injection check valve 14. Note that the route of the emergency core cooling system injection pipe having the rising shape is unavoidable due to the structure of the reactor containment vessel 2 having a wide lower portion and a narrow upper portion.

よって、凝集した腐食性生物を形成させないための有効な手段としては冷却水を長い期間停滞維持されることを防止する。あるいは、原子炉圧力容器1および原子炉ウェルの水張り前に、凝集した腐食生成物を除去することである。   Therefore, as an effective means for preventing the formation of agglomerated corrosive organisms, the cooling water is prevented from being kept stagnant for a long period. Alternatively, the agglomerated corrosion products are removed before the reactor pressure vessel 1 and the reactor well are filled.

前記の注入逆止弁14や均圧弁19の開放点検等による水抜き水張りによる水の入れ替えでも凝集した腐食生成物を形成させない効果はあるが、この注入逆止弁等の開放点検は毎定期検査時に必ず全数実施する必要はないため、定期検査時においても常時停滞状態のままとなる非常用炉心冷却系統もあり、一旦、凝集した腐食生成物が形成すると、ドレン配管20による水抜きでは除去できない。   Although there is an effect of preventing formation of agglomerated corrosion products even if water is replaced by draining water filling by opening inspection of the injection check valve 14 or the pressure equalizing valve 19, the inspection of opening of the injection check valve and the like is periodically inspected. There is also an emergency core cooling system that always remains stagnant even during periodic inspections, since it is not always necessary to carry out all of them, and once aggregated corrosion products are formed, they cannot be removed by draining with the drain pipe 20 .

そこで、非常用炉心冷却系の注入逆止弁14等の開放点検とは関係無しに、毎定期検査時に非常用炉心冷却系注入配管12内の停滞水を浄化することが凝集した腐食生成物を形成させないための最も有効な手段である。   Therefore, regardless of the opening check of the injection check valve 14 and the like of the emergency core cooling system, it is possible to purify the stagnant water in the emergency core cooling system injection pipe 12 at the time of each periodic inspection. This is the most effective means for preventing the formation.

本発明の実施例では、冷却水が長い期間停滞維持される可能性のある非常用炉心冷却系注入配管12内の水を、以下のようにして毎定期検査時に容易にして、かつ、効果的に浄化する。   In the embodiment of the present invention, the water in the emergency core cooling system injection pipe 12 in which the cooling water may be maintained stagnant for a long period of time can be easily and effectively made at the regular inspection as follows. Purify.

冷却水が常時停滞となる原子炉格納容器2内の非常用炉心冷却系注入配管12に設置されている注入逆止弁14には、原子炉通常運転中に開閉操作によって逆止弁の機能が維持されていることを確認できるように、注入逆止弁14前後の圧力を均圧するための均圧弁19が設置されている。また、この均圧弁19は原子炉格納容器2内での非常用炉心冷却系注入配管12の最低部に設置されることが多いため、この均圧弁19の均圧配管18に水抜き用のドレン配管20およびドレン弁21が設置されている。   The injection check valve 14 installed in the emergency core cooling system injection pipe 12 in the reactor containment vessel 2 in which the cooling water is always stagnated has a check valve function by opening / closing operation during the normal operation of the reactor. A pressure equalizing valve 19 for equalizing the pressure before and after the injection check valve 14 is installed so that it can be confirmed that the pressure is maintained. Further, since the pressure equalizing valve 19 is often installed at the lowest part of the emergency core cooling system injection pipe 12 in the reactor containment vessel 2, a drain for draining water is added to the pressure equalizing pipe 18 of the pressure equalizing valve 19. A pipe 20 and a drain valve 21 are installed.

このドレン配管20に接続した浄化用配管101や各止め弁102,103は、3系列の低圧注水系7と、低圧炉心スプレイ系8および高圧炉心スプレイ系9の合計5系列全てに設置することが望ましい。   The purification pipe 101 and the stop valves 102 and 103 connected to the drain pipe 20 can be installed in all of the five series including the three series of low-pressure water injection systems 7, the low-pressure core spray system 8, and the high-pressure core spray system 9. desirable.

原子炉格納容器2内に設置されている部分の非常用炉心冷却系注入配管12内の浄化を行う場合には、上下二個あるドレン弁21のうち非常用炉心冷却系注入配管12側(上側)の第1ドレン弁21と、浄化用配管101に設けた止め弁102,103を開とすることで、原子炉冷却材浄化系ポンプ32によって、各非常用炉心冷却系注入配管12内の水も原子炉圧力容器1内の水と並行して吸引され、原子炉冷却材浄化系浄化設備33で浄化された後、原子炉給水系配管34を経由して再び原子炉圧力容器1へ戻される循環を繰り返す。   When purifying the emergency core cooling system injection pipe 12 at the portion installed in the reactor containment vessel 2, the emergency core cooling system injection pipe 12 side (upper side) of the upper and lower drain valves 21 is provided. The first drain valve 21 and the stop valves 102 and 103 provided in the purification pipe 101 are opened, so that the water in each emergency core cooling system injection pipe 12 can be obtained by the reactor coolant purification system pump 32. Is also sucked in parallel with the water in the reactor pressure vessel 1, purified by the reactor coolant purification system purification equipment 33, and then returned again to the reactor pressure vessel 1 through the reactor water supply system piping 34. Repeat the cycle.

このように非常用炉心冷却系の冷却水が常時停滞となっている注入隔離弁13と原子炉圧力容器1との間の非常用炉心冷却系注入配管12内の停滞水を浄化する。その浄化後においては、非常用炉心冷却系の注入隔離弁13の上流側に接続されている復水補給水系からの洗浄用配管41を使用して、原子炉圧力容器1内や原子炉ウェル内への水張りを行って水張り時間の短縮と共に張った水の水質上の悪影響を防止することできる。   In this way, the stagnant water in the emergency core cooling system injection pipe 12 between the injection isolation valve 13 and the reactor pressure vessel 1 where the cooling water of the emergency core cooling system is always stagnating is purified. After the purification, the cleaning pipe 41 from the condensate makeup water system connected to the upstream side of the injection isolation valve 13 of the emergency core cooling system is used for the reactor pressure vessel 1 and the reactor well. It is possible to prevent the adverse effect on the water quality of the stretched water as well as shortening the filling time.

次に、図2を用いてもうひとつの他の実施例を説明すると、以下の通りである。即ち、注入逆止弁14の均圧配管18にドレン配管20を接続し、そのドレン配管20に上下2重のドレン弁21を設け、各ドレン弁21の間のドレン配管20部分から浄化用配管101を分岐させ、原子炉冷却材浄化系吸込み配管31に接続することは前記の実施例と同一であるが、その浄化用配管101の途中部分が仮設ホース106に置き換えられている点が相違している。   Next, another embodiment will be described with reference to FIG. That is, a drain pipe 20 is connected to the pressure equalizing pipe 18 of the injection check valve 14, and a double drain valve 21 is provided on the drain pipe 20, and a purification pipe is connected from the drain pipe 20 between the drain valves 21. Dividing 101 and connecting to the reactor coolant purification system suction pipe 31 is the same as in the previous embodiment, except that the intermediate portion of the purification pipe 101 is replaced with a temporary hose 106. ing.

ドレン配管20側の浄化用配管101には、止め弁102が、原子炉冷却材浄化系吸込み配管31側の浄化用配管101には、止め弁103が設置される。仮設ホース106の浄化用配管101への接続口には、ワンタッチカプラ104,105が設けられている。ワンタッチカプラ104,105には、仮設ホース106が着脱自在に接続自在である。   A stop valve 102 is installed in the purification pipe 101 on the drain pipe 20 side, and a stop valve 103 is installed in the purification pipe 101 on the reactor coolant purification system suction pipe 31 side. One-touch couplers 104 and 105 are provided at the connection port of the temporary hose 106 to the purification pipe 101. A temporary hose 106 can be detachably connected to the one-touch couplers 104 and 105.

仮設ホース106は、原子炉運転時には、ワンタッチカプラ104,105から外されて、保管場所に保管されている。その他の構成等は先の実施例と同じである。   The temporary hose 106 is removed from the one-touch couplers 104 and 105 and stored in a storage place during the operation of the nuclear reactor. Other configurations are the same as those of the previous embodiment.

原子力発電プラントの定期検査時に仮設ホース106をワンタッチカプラ104,105間に接続し、ドレン弁21と止め弁102,103を開することで、原子炉冷却材浄化系ポンプ32によって、非常用炉心冷却系注入配管12内の水と原子炉圧力容器1内の水とを仮設ホース106を経由して吸引して、原子炉冷却材浄化系浄化設備33で浄化し、浄化した水を原子炉給水系配管34を経由して再び原子炉圧力容器1へ戻す。   The temporary hose 106 is connected between the one-touch couplers 104 and 105 during periodic inspection of the nuclear power plant, and the drain valve 21 and the stop valves 102 and 103 are opened. The water in the system injection pipe 12 and the water in the reactor pressure vessel 1 are sucked through the temporary hose 106 and purified by the reactor coolant purification system purification equipment 33, and the purified water is supplied to the reactor water supply system. It returns to the reactor pressure vessel 1 again via the pipe 34.

このように、ワンタッチカプラ104,105と仮設ホース106による接続とするメリットは、原子炉格納容器2内は狭隘であり、図2のように本設配管で接続すると、たとえ小口径配管であっても3系列の低圧注水系7と、低圧炉心スプレイ系8および高圧炉心スプレイ系9の合計5系列全てに設置すると、原子炉格納容器2内の通路性や機器メンテナンススペースに影響を与えることも懸念されるため、定期検査時に非常用炉心冷却系の注入逆止弁の開放点検を実施しない系統を選択した上で、原子炉格納容器2内の保守・点検作業上支障がない時期(たとえば、夜間のみ)に限定して、仮設ホース106を接続して浄化を行うなど、現状の原子炉格納容器2内の通路性や機器メンテナンススペースに影響を与えることなく、非常用炉心冷却系注入配管12内の停滞水を浄化できるものである。   Thus, the merit of connecting with the one-touch couplers 104 and 105 and the temporary hose 106 is that the inside of the reactor containment vessel 2 is narrow, and if it is connected with the main pipe as shown in FIG. There are also concerns that the installation of all three lines of the three series of low-pressure water injection systems 7 and the low-pressure core spray system 8 and the high-pressure core spray system 9 may affect the passage in the reactor containment vessel 2 and the equipment maintenance space. Therefore, after selecting a system that does not perform open inspection of the injection check valve of the emergency core cooling system during the periodic inspection, a period when there is no problem in maintenance and inspection work in the reactor containment vessel 2 (for example, at night Only), the temporary hose 106 is connected to perform purification, and the emergency passage without affecting the current passage in the reactor containment vessel 2 and the equipment maintenance space. In which it can purify the stagnant water of the cooling system injection pipe 12.

以上のように、本発明の実施例に拠れば、原子炉通常運転時および定期検査時を通じて数年間常時停滞となる可能性がある非常用炉心冷却系注入隔離弁と原子炉圧力容器との間の非常用炉心冷却計注入配管内の停滞水を浄化し、その注入配管を浄化することが出来る。そのため、原子炉圧力容器内や原子炉ウェル内に復水補給水系からその注入配管経由で水張りして、水張りの時間を短縮するようにした際の水質の劣化を抑制できる。   As described above, according to the embodiment of the present invention, between the emergency core cooling system injection isolation valve and the reactor pressure vessel, which may be constantly stagnated for several years during the normal operation of the reactor and the periodical inspection. It is possible to purify the stagnant water in the emergency core cooling meter injection pipe and purify the injection pipe. Therefore, it is possible to suppress deterioration of water quality when water is filled in the reactor pressure vessel or the reactor well from the condensate replenishment water system via the injection pipe to shorten the time for water filling.

また、他の実施例では、原子炉格納容器内のスペース確保を配慮して、必要時のみ仮設ホースを利用して非常用炉心冷却系注入配管の浄化を可能とした。   In another embodiment, in consideration of securing the space in the reactor containment vessel, the emergency core cooling system injection pipe can be purified by using a temporary hose only when necessary.

この発明は、原子力発電プラントに適用される。   The present invention is applied to a nuclear power plant.

本発明の実施例による原子力発電プラントにおける非常用炉心冷却系統及びその関連の系統図である。1 is an emergency core cooling system and a related system diagram in a nuclear power plant according to an embodiment of the present invention. 本発明の他の実施例による原子力発電プラントにおける非常用炉心冷却系統及びその関連の系統図である。It is an emergency core cooling system in the nuclear power plant by the other Example of this invention, and its related systematic diagram.

符号の説明Explanation of symbols

1…原子炉圧力容器、2…原子炉格納容器、3…サプレションプール、4…サプレッションプール水、5…原子炉冷却材再循環ポンプ、6…原子炉冷却材再循環系配管、7…低圧注水系、8…低圧炉心スプレイ系、9…高圧炉心スプレイ系、11…非常用炉心冷却系ポンプ、12…非常用炉心冷却系注入配管、13…注入隔離弁、14…注入逆止弁、15…メンテナンス用止め弁、16…テスト弁、17…テストライン、18…均圧配管、19…均圧弁、20…ドレン配管、21…ドレン弁、31…原子炉冷却材浄化系吸込み配管、32…原子炉冷却材浄化系ポンプ、33…原子炉冷却材浄化系浄化設備、34…原子炉給水系配管、41…非常用炉心冷却系洗浄用配管、42…洗浄弁、101…浄化用配管、
102,103…止め弁、104,105…ワンタッチカプラ、106…仮設ホース。
DESCRIPTION OF SYMBOLS 1 ... Reactor pressure vessel, 2 ... Reactor containment vessel, 3 ... Suppression pool, 4 ... Suppression pool water, 5 ... Reactor coolant recirculation pump, 6 ... Reactor coolant recirculation system piping, 7 ... Low pressure Water injection system, 8 ... Low pressure core spray system, 9 ... High pressure core spray system, 11 ... Emergency core cooling system pump, 12 ... Emergency core cooling system injection piping, 13 ... Injection isolation valve, 14 ... Injection check valve, 15 Stop valve for maintenance, 16 ... Test valve, 17 ... Test line, 18 ... Pressure equalizing pipe, 19 ... Pressure equalizing valve, 20 ... Drain pipe, 21 ... Drain valve, 31 ... Reactor coolant purification system suction pipe, 32 ... Reactor coolant purification system pump, 33 ... Reactor coolant purification system purification equipment, 34 ... Reactor water supply system piping, 41 ... Emergency core cooling system cleaning piping, 42 ... Cleaning valve, 101 ... Purification piping,
102, 103 ... Stop valve, 104, 105 ... One-touch coupler, 106 ... Temporary hose.

Claims (5)

注入隔離弁が装備された注入配管を備えて原子炉圧力容器内へ注水する非常用炉心冷却系と、
前記原子炉圧力容器内の冷却水を浄化する浄化装置を備え、
前記浄化装置で浄化された前記冷却水を前記原子炉圧力容器へ供給する原子炉冷却材浄化系と
前記注入配管の前記注入隔離弁よりも下流側部分と、前記原子炉冷却材浄化系の前記浄化装置よりも上流側部分とを連絡する管路とを備えた沸騰水型原子力発電プラント。
An emergency core cooling system for injecting water into the reactor pressure vessel with an injection pipe equipped with an injection isolation valve;
A purification device for purifying cooling water in the reactor pressure vessel;
A reactor coolant purification system for supplying the coolant purified by the purification device to the reactor pressure vessel; a portion downstream of the injection isolation valve of the injection pipe; and the reactor coolant purification system A boiling water nuclear power plant including a pipe that communicates with a portion upstream of the purification device.
請求項1において、前記管路は、前記管路内を流れる冷却水の流量を制御する弁を備えている沸騰水型原子力発電プラント。   The boiling water nuclear power plant according to claim 1, wherein the pipe includes a valve that controls a flow rate of cooling water flowing through the pipe. 請求項1において、前記管路には前記管路内を流れる流量を制御する弁を備え、且つ前記管路の少なくとも途中部分が前記注入配管側と前記浄化装置へ前記冷却水を供給する吸込み配管側とに着脱自在な仮設ホースで構成されている沸騰水型原子力発電プラント。   The suction pipe according to claim 1, wherein the pipe includes a valve that controls a flow rate in the pipe, and at least a middle portion of the pipe supplies the cooling water to the injection pipe and the purification device. A boiling water nuclear power plant that consists of a temporary hose that is detachable from the side. 請求項1から請求項3までのいずれか一項において、前記管路は前記非常用炉心冷却系の逆止弁に装備されている均圧弁の均圧配管に接続されている沸騰水型原子力発電プラント。   The boiling water nuclear power generation according to any one of claims 1 to 3, wherein the pipe line is connected to a pressure equalizing pipe of a pressure equalizing valve provided in a check valve of the emergency core cooling system. plant. 沸騰水型原子力発電プラントの非常用炉心冷却系の注入隔離弁よりも下流側の注入配管内の水を、前記沸騰水型原子力発電プラントの原子炉冷却材浄化系内に吸い込んで浄化し、前記浄化の後の前記水を前記沸騰水型原子力発電プラントの原子炉圧力容器内に戻し、前記原子炉圧力容器内の水を前記注入隔離弁よりも下流側の前記注入配管内に流入させる沸騰水型原子力発電プラントの配管浄化方法。

Water in the injection pipe downstream of the injection isolation valve of the emergency core cooling system of the boiling water nuclear power plant is purified by sucking into the reactor coolant purification system of the boiling water nuclear power plant, The water after purification is returned to the reactor pressure vessel of the boiling water nuclear power plant, and the water in the reactor pressure vessel flows into the injection pipe downstream of the injection isolation valve. Pipe purification method for a nuclear power plant.

JP2005261499A 2005-09-09 2005-09-09 Boiling water type nuclear power generation plant and its piping cleaning method Pending JP2007071800A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005261499A JP2007071800A (en) 2005-09-09 2005-09-09 Boiling water type nuclear power generation plant and its piping cleaning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005261499A JP2007071800A (en) 2005-09-09 2005-09-09 Boiling water type nuclear power generation plant and its piping cleaning method

Publications (1)

Publication Number Publication Date
JP2007071800A true JP2007071800A (en) 2007-03-22

Family

ID=37933355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005261499A Pending JP2007071800A (en) 2005-09-09 2005-09-09 Boiling water type nuclear power generation plant and its piping cleaning method

Country Status (1)

Country Link
JP (1) JP2007071800A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101198991B1 (en) 2011-06-29 2012-11-07 한국수력원자력 주식회사 Backup emergency core coolant injection apparatus with controllable openness of pressurization heavy water nuclear reactor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101198991B1 (en) 2011-06-29 2012-11-07 한국수력원자력 주식회사 Backup emergency core coolant injection apparatus with controllable openness of pressurization heavy water nuclear reactor

Similar Documents

Publication Publication Date Title
ES2753437T3 (en) Chemical cleaning procedure and system with steam injection
JP6270880B2 (en) Chemical decontamination method
EP2356376A1 (en) Chemical cleaning method and system with steam injection
JP2007260560A (en) Waste gas treating column
JPH04276596A (en) Method and apparatus for chemical decontamination of primary system of atomic reactor
JP2007071800A (en) Boiling water type nuclear power generation plant and its piping cleaning method
US20110122986A1 (en) Method of inhibiting adhesion of radioactive substance and apparatus inhibited from suffering adhesion thereof
JP2011038891A (en) Nuclear power plant with boiling water reactor and leak and hydrostatic test method for reactor pressure vessel
JP7132162B2 (en) Corrosion suppression method for carbon steel piping
JPS5840719B2 (en) Cleaning equipment for nuclear fuel bodies in use at nuclear reactor facilities
JP2008292214A (en) Reactor pressure vessel bottom drain line cleaning equipment and cleaning method of boiling water type nuclear power plant
JP7062568B2 (en) Water treatment method and water treatment preparation method for nuclear power plants
CN110026000B (en) Back-flushing device and back-flushing method for closed circulation system of nuclear power plant
Crockett et al. “Low Temperature” FAC
JPH08278387A (en) Reactor water-sample sampling equipment
CN117655010A (en) Decontamination device for primary circuit complex pipeline of nuclear power facility
Cattant The underestimated role of the oxygen on RCS components failures
JP2011214906A (en) Boiling water reactor and method for draining nuclear reactor
JP2933334B2 (en) Emergency core cooling system of boiling water nuclear power plant and its operation method.
JP5323118B2 (en) Power generation unit
JPH0252297A (en) Purifying facility for nuclear reactor cooling material
JPS6319596A (en) Pressure-suppression chamber pool-water system of nuclear power plant
KR20140056946A (en) A tank
JPS62195594A (en) Nuclear reactor cooling system facility
JPS5937480B2 (en) Reactor emergency core cooling system piping water filling equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070606

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20071122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100202