JP2007070693A - Compact of fine powder material, and method for compacting the same - Google Patents

Compact of fine powder material, and method for compacting the same Download PDF

Info

Publication number
JP2007070693A
JP2007070693A JP2005259031A JP2005259031A JP2007070693A JP 2007070693 A JP2007070693 A JP 2007070693A JP 2005259031 A JP2005259031 A JP 2005259031A JP 2005259031 A JP2005259031 A JP 2005259031A JP 2007070693 A JP2007070693 A JP 2007070693A
Authority
JP
Japan
Prior art keywords
molding
fine powder
powder material
metal powder
stirring tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005259031A
Other languages
Japanese (ja)
Other versions
JP4387343B2 (en
Inventor
Noboru Nakayama
昇 中山
Hiroyuki Takeishi
洋征 武石
Hiroyuki Miki
寛之 三木
Yasusuke Suzuki
庸介 鈴木
Atsushi Sugiura
淳 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Precion Co Ltd
Original Assignee
Suzuki Precion Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Precion Co Ltd filed Critical Suzuki Precion Co Ltd
Priority to JP2005259031A priority Critical patent/JP4387343B2/en
Publication of JP2007070693A publication Critical patent/JP2007070693A/en
Application granted granted Critical
Publication of JP4387343B2 publication Critical patent/JP4387343B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compact of a fine powder material having a dense internal structure and excellent mechanical properties, and in which thickness in a pressing direction is sufficiently thick, to provide a compacting method capable of efficiently obtaining the same, and to provide a joining method and a coating method utilizing the same. <P>SOLUTION: A fine powder material is packed into a vessel for packing powder, and is stirred under compression with bar-shaped stirring tools, so as to be compacted. Using the compacting method, friction joining and coating of a member are performed. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、緻密な内部組織や優れた機械的性質を有する微粉物質の固化成形体、それを効率よく得る固化成形方法およびその方法を利用した接合方法及びコーティング方法に関する。   The present invention relates to a solidified compact of a fine powder substance having a dense internal structure and excellent mechanical properties, a solidified molding method for efficiently obtaining the same, and a joining method and a coating method using the method.

従来より微粉物質として金属粉末を用い、高機能材料が製造されている。例えば、形状が複雑な強度部品に対しては、金属粉末を用い、ニアネットシェイプが可能なホットプレス法やHIP法などが適用され、特に、緻密な組織と優れた機械的性質が要求される強度部品などは、HIP法で製造されている。一方、ホットプレス法やHIP法などの焼結法によらず、高機能材料を得る固化成形法の開発も行われている(非特許文献1)。   Conventionally, highly functional materials have been manufactured using metal powder as a fine powder substance. For example, a hot press method or a HIP method using metal powder and capable of near-net shape is applied to a strength part having a complicated shape, and particularly a dense structure and excellent mechanical properties are required. Strength parts and the like are manufactured by the HIP method. On the other hand, development of a solidification molding method for obtaining a high-functional material has been performed irrespective of a sintering method such as a hot press method or an HIP method (Non-patent Document 1).

非特許文献1には、図11に示すような一対の成形工具20,21を用い、図12に示すような形状の金属粉末の固化成形体26を得る方法が提案されている。この非特許文献1に記載の固化成形方法は、一対の成形工具20,21の間に所定量の金属粉末22を充填し、その後、一対の成形工具20,21により圧縮した状態で、図中下方に示す成形工具21を回転方向25に回転させて固化成形体26を形成している。図11中、23は、成形工具21の回転軸中心を示す。   Non-Patent Document 1 proposes a method of obtaining a solidified molded body 26 of metal powder having a shape as shown in FIG. 12 using a pair of forming tools 20 and 21 as shown in FIG. In the solidification forming method described in Non-Patent Document 1, a predetermined amount of metal powder 22 is filled between a pair of forming tools 20 and 21 and then compressed by the pair of forming tools 20 and 21 in the figure. The forming tool 21 shown below is rotated in the rotation direction 25 to form a solidified molded body 26. In FIG. 11, reference numeral 23 denotes the rotational axis center of the forming tool 21.

ここで、一対の成形工具20,21は、向かい合う作用面が平行となるように配置されているとともに、押圧方向24に対して直角な半径方向に開口が形成されている。このような一対の成形工具20,21を用い、得られる固化成形体26は、図12(a)、(b)に示すようにその厚さtが薄く、厚さ方向に性質が一様であるが、成形体中心27から半径方向に測った半径方向距離rによって性質が変化するという特徴を有する。   Here, the pair of forming tools 20 and 21 are arranged so that the working surfaces facing each other are parallel, and an opening is formed in a radial direction perpendicular to the pressing direction 24. Using such a pair of forming tools 20 and 21, the solidified molded body 26 obtained has a thin thickness t as shown in FIGS. 12 (a) and 12 (b), and its properties are uniform in the thickness direction. However, there is a feature that the property changes depending on the radial distance r measured in the radial direction from the molded body center 27.

一方、特許文献1には、接合面間の隙間Sにアルミ粉粒体を充填し、これとアルミ材料の接合部を摩擦熱により加熱して可塑化し、攪拌混合して形材パネルP、Pを接合する摩擦攪拌接合方法が開示されている。この特許文献1に記載の接合方法は、図13に模式的に示すように、接合ツール30を用い、形材パネルP、Pなどのアルミ製長尺部材を接合するのに好適な方法である。なお、図13中、Sはクランプする前の隙間を示し、Fは、クランプする矯正力を示す。θは、接合ツール30における肩部30Bの面の傾斜を表し、接合ツール30の回転中心31とテーブル33の法線とのなす角に等しい。この摩擦攪拌接合方法は、形材パネルP、Pをテーブル33上に載せ、接合ツール30を高速で回転させながら接合面に沿って移動方向32に向けて移動させ、接合部と接合ツール30のピン30Aとの摩擦熱、及び接合部と接合ツール30の肩部30Bとの摩擦熱によってアルミ材料の接合部と一緒に金属粉末を加熱し、可塑化しているため、突合わせ面の隙間Sが大きくても、この隙間Sを埋めることで接合面の平滑性の低下、接合部の接合強度低下を防止できる方法である。
特開2001−205457号公報 前田 英嗣、他2名 塑性と加工、37巻431号(1996)p1291-1297
On the other hand, in Patent Document 1, aluminum powder particles are filled in the gaps S between the joining surfaces, and the joining portion of the aluminum material is heated and plasticized by frictional heat, and is stirred and mixed to form panel P, P There is disclosed a friction stir welding method for joining the two. As schematically shown in FIG. 13, the joining method described in Patent Document 1 is a suitable method for joining long aluminum members such as profile panels P and P using a joining tool 30. . In FIG. 13, S indicates a gap before clamping, and F indicates a correction force for clamping. θ represents the inclination of the surface of the shoulder portion 30 </ b> B in the welding tool 30, and is equal to the angle formed by the rotation center 31 of the welding tool 30 and the normal line of the table 33. In this friction stir welding method, the shape panels P and P are placed on the table 33, and the joining tool 30 is moved at a high speed in the moving direction 32 along the joining surface. Since the metal powder is heated and plasticized together with the joining portion of the aluminum material by the frictional heat with the pin 30A and the frictional heat between the joining portion and the shoulder portion 30B of the joining tool 30, the gap S between the butted surfaces is formed. Even if it is large, the gap S is filled to prevent the smoothness of the joint surface from being lowered and the joint strength from being lowered at the joint.
JP 2001-205457 A Hideki Maeda and 2 others Plasticity and processing, Vol. 37, No. 431 (1996) p1291-1297

ここで、非特許文献1に記載の金属粉末の固化成形方法は、捻り・圧縮・せん断による結晶表面固化成形法とも称され、成形時、一対の成形工具20,21の向かい合う作用面により、金属粉末22に圧縮変形とせん断変形を生じさせ、捻りによりせん断変形を生じさせることで、金属粉末表面に形成されている酸化膜を破るとともに、それらの変形により発生する加工発熱、外部からの加熱、及び作用面と金属粉末22との接触により生じる摩擦熱を利用して、金属粉末同士の結合強化を図っている。   Here, the solidification molding method of the metal powder described in Non-Patent Document 1 is also referred to as a crystal surface solidification molding method by twisting, compression, and shearing. By causing compression deformation and shear deformation in the powder 22 and causing shear deformation by twisting, the oxide film formed on the surface of the metal powder is broken and processing heat generated by the deformation, heating from the outside, In addition, the frictional heat generated by the contact between the working surface and the metal powder 22 is used to strengthen the bond between the metal powders.

しかしながら、非特許文献1に記載の捻り・圧縮・せん断による結晶表面固化成形法では、一対の成形工具20,21間に、たとえ十分な量の金属粉末22を充填したとしても、成形時、互いに向かい合う作用面間の間隔が狭くなるに従い、押圧方向24に対して直角な方向に形成されている開口から金属粉末22が押し出されてしまうため、厚さtが薄い円盤状の成形体しか得ることができないという問題があった。   However, in the crystal surface solidification molding method by twisting, compression, and shearing described in Non-Patent Document 1, even if a sufficient amount of metal powder 22 is filled between the pair of molding tools 20 and 21, Since the metal powder 22 is pushed out from the opening formed in the direction perpendicular to the pressing direction 24 as the distance between the working surfaces facing each other is narrowed, only a disk-shaped formed body having a small thickness t can be obtained. There was a problem that could not.

また、特許文献1には、形材パネルなどのアルミ製長尺部材を接合する摩擦攪拌接合方法が記載されているが、緻密な内部組織や優れた機械的性質を有する固化成形体を得る方法に関して言及されていない。
そのうえ、特許文献1に記載の摩擦攪拌による接合方法は、接合ツール30を高速で回転させながら接合面に沿って移動方向32に向けて移動させるため、高速で回転させた工具の回転エネルギーが接合面に沿って分散され、効率よく金属粉末を固化成形することができないという、欠点もある。
Patent Document 1 describes a friction stir welding method for joining long aluminum members such as a shape panel, but a method for obtaining a solidified molded body having a dense internal structure and excellent mechanical properties. Is not mentioned.
In addition, the joining method by friction stirring described in Patent Document 1 moves the joining tool 30 in the moving direction 32 along the joining surface while rotating the joining tool 30 at high speed, so that the rotational energy of the tool rotated at high speed is joined. There is also a drawback in that the metal powder cannot be efficiently solidified and dispersed along the surface.

そこで本発明は、緻密な内部組織や優れた機械的性質を有し、かつ押圧方向の厚さが十分厚い微粉物質の固化成形体、それを効率よく得る固化成形方法、及びそれを利用した接合方法及びコーティング方法を提供することを目的とする。   Accordingly, the present invention provides a solidified molded body of a fine powder substance having a dense internal structure and excellent mechanical properties and sufficiently thick in the pressing direction, a solidified molding method for efficiently obtaining the solidified molded body, and a joint using the same It is an object to provide a method and a coating method.

本発明者らは、鋭意検討し、空間内に所定量の微粉物質が閉じこめられる粉末充填用容器と微粉物質を押圧しかつ撹拌する攪拌工具とを用い、微粉物質同士の結合強化を容易に達成できることを知見して本発明をなすに至った。
本発明は、以下のとおりである。
1.微粉物質を圧縮しつつ攪拌することにより、固化成形して得たことを特徴とする微粉物質の固化成形体。
The present inventors have intensively studied, and using a powder filling container in which a predetermined amount of pulverized material is confined in a space and a stirring tool for pressing and stirring the pulverized material, easily achieve enhanced bonding between the pulverized materials. The inventors have found that this is possible and have come to make the present invention.
The present invention is as follows.
1. A solidified compact of a fine powder material obtained by solidifying and molding by compressing and stirring the fine powder material.

2.粉末充填用容器内に所定量の微粉物質を充填した後、棒状の撹拌工具により圧縮しつつ攪拌し、固化成形することを特徴とする微粉物質の固化成形方法。
3.前記粉末充填用容器内に予め混合した二種類以上の微粉物質を充填し、固化成形することを特徴とする上記2に記載の微粉物質の固化成形方法。
4.得られる固化成形体を押出成形、プレス成形等により二次加工することを特徴とする上記2又は3に記載の微粉物質の固化成形方法。
2. A method for solidifying and molding a fine powder material, comprising: filling a powder filling container with a predetermined amount of a fine powder material, stirring the mixture while compressing with a rod-shaped stirring tool, and solidifying and molding.
3. 3. The method for solidifying and molding a fine powder material according to 2 above, wherein the powder filling container is filled with two or more kinds of fine powder materials mixed in advance and solidified and molded.
4). 4. The method for solidifying and molding a fine powder material according to 2 or 3 above, wherein the obtained solidified body is subjected to secondary processing by extrusion molding, press molding or the like.

5.前記微粉物質が金属粉末であることを特徴とする前記2.〜4.のいずれかに記載の微粉物質の固化成形方法。
6. 部材同士を摩擦熱を利用して接合する接合方法において、上記2又は3に記載の微粉物質の固化成形方法を用い、得られる固化成形体と前記撹拌工具とを前記撹拌工具の作用面を介して接合することを特徴とする接合方法。
5. 2. The fine powder material is a metal powder. ~ 4. The solidification molding method of the fine powder substance in any one of.
6). In the joining method of joining members using frictional heat, the solidified molding method of the fine powder substance described in 2 or 3 above is used, and the resulting solidified molded body and the stirring tool are passed through the working surface of the stirring tool. Joining method characterized by joining.

7. 被コーティング部材の表面にコーティング物質を被覆するコーティング方法において、上記2又は3に記載の微粉物質の固化成形方法を用い、前記撹拌工具の作用面に得られる固化成形体を被覆することを特徴とするコーティング方法。   7). A coating method for coating a coating material on the surface of a member to be coated, characterized in that the solidified molded body obtained by coating the working surface of the stirring tool is coated using the solidified molding method of fine powder material described in 2 or 3 above. Coating method to do.

本発明によれば、緻密な内部組織や優れた機械的性質を有し、かつ押圧方向の厚さが十分厚い微粉物質の固化成形体を容易に得ることができる。また、それを利用した接合方法及びコーティング方法によれば、得られる固化成形体と撹拌工具とを撹拌工具の作用面を介して容易に接合すること、及び撹拌工具の作用面に得られる固化成形体を容易に被覆することができる。   According to the present invention, it is possible to easily obtain a solidified molded body of a fine powder substance having a dense internal structure and excellent mechanical properties and sufficiently thick in the pressing direction. Further, according to the joining method and the coating method using the same, the obtained solidified molded body and the stirring tool can be easily joined via the working surface of the stirring tool, and the solidified molding obtained on the working surface of the stirring tool. The body can be covered easily.

微粉物質を金属粉末として以下説明する。
まず、本発明に係る微粉物質の固化成形方法に用いて好適な成形工具について図を用いて説明する。図1には、成形工具の概略断面図を示し、図2には、本発明に用いて好適な下部に押し付け部1Aを有する攪拌工具1の形状を示した。本発明に用いて好適な成形工具は、下部に押し付け部1Aを有する攪拌工具1と、下パンチ2を装着した状態で所定量の金属粉末5を収容できる粉末充填容器4を具備している。
The fine powder substance will be described below as a metal powder.
First, a suitable molding tool for use in the method for solidifying and molding a fine substance according to the present invention will be described with reference to the drawings. FIG. 1 shows a schematic cross-sectional view of a forming tool, and FIG. 2 shows the shape of a stirring tool 1 having a pressing portion 1A at a lower portion suitable for use in the present invention. A forming tool suitable for use in the present invention includes a stirring tool 1 having a pressing portion 1A at a lower portion and a powder filling container 4 capable of storing a predetermined amount of metal powder 5 with the lower punch 2 attached.

粉末充填容器4は、下パンチ2とダイス3とで構成され、また、撹拌工具1が上方から挿入された状態で、所定量の金属粉末が押し付け部1Aと、下パンチ2と、ダイス3とで形成される空間に閉じこめられるようになっている。一方、攪拌工具1は、その一端部(図1中の上部)が図示しない駆動装置に接続され、上下に移動可能とされ、他端部(図1中の下部)に押し付け部1Aを有し、金属粉末5を押圧しかつ攪拌することができる棒状に形成されている。すなわち、粉末充填容器4内に挿入される部分であって、押し付け部1A以外の攪拌工具1の外径はダイス3の内壁面と接触しない太さ寸法とされている。
また、押し付け部1Aの外周とダイス3の内壁面との隙間は、成形時、攪拌工具1が滑らかに回転することができ、かつ粉末充填容器4内に充填した所定量の金属粉末5が漏れ出さないように形成されている。このようにしておくのが、攪拌工具1の回転エネルギーを有効に金属粉末5の固化成形に使えるため好ましい。なお、下パンチ2の軸芯とダイス3に設けた貫通孔の中心とが、攪拌工具1の回転軸中心8と同軸となるように成形工具が配置されている。図1中、6、7は攪拌工具1の押圧方向、回転方向をそれぞれ示す。
The powder filling container 4 is composed of a lower punch 2 and a die 3, and a predetermined amount of metal powder is pressed against the pressing portion 1A, the lower punch 2, and the die 3 with the stirring tool 1 inserted from above. It can be confined in the space formed by. On the other hand, the stirring tool 1 has one end portion (upper portion in FIG. 1) connected to a driving device (not shown) and is movable up and down, and has a pressing portion 1A at the other end portion (lower portion in FIG. 1). It is formed in a rod shape that can press and stir the metal powder 5. That is, the outer diameter of the stirring tool 1 other than the pressing portion 1 </ b> A is a thickness that does not contact the inner wall surface of the die 3.
Further, the gap between the outer periphery of the pressing portion 1A and the inner wall surface of the die 3 allows the stirring tool 1 to rotate smoothly during molding, and a predetermined amount of the metal powder 5 filled in the powder filling container 4 leaks. It is formed so as not to come out. This is preferable because the rotational energy of the stirring tool 1 can be used effectively for solidification molding of the metal powder 5. The forming tool is arranged so that the axis of the lower punch 2 and the center of the through hole provided in the die 3 are coaxial with the rotational axis center 8 of the stirring tool 1. In FIG. 1, 6 and 7 indicate the pressing direction and the rotating direction of the stirring tool 1, respectively.

また、2Aは、成形時、金属粉末5に加える圧縮力を測定するために、下パンチ2に取り付けたストレインゲージを示し、3Aは、成形時、金属粉末5の温度を測定するために、ダイス3の外面から内部の空間に向かって穿孔した孔に差し込んだ温度計を示す。
前記温度計3Aを差し込む孔は、その先端が所定量の金属粉末5が閉じこめられる空間に連通しないよう、ダイス材を少し残して、所定の高さ箇所に穿孔されている。従って、成形時、温度計3Aで検出される温度は、ダイス材を介して金属粉末5の温度を測定しているため、真の金属粉末5の温度より低い値を示すことになる。
2A shows a strain gauge attached to the lower punch 2 in order to measure the compressive force applied to the metal powder 5 during molding, and 3A shows a die for measuring the temperature of the metal powder 5 during molding. 3 shows a thermometer inserted into a hole drilled from the outer surface of 3 toward the inner space.
The hole into which the thermometer 3A is inserted is perforated at a predetermined height, leaving a little die material so that its tip does not communicate with a space in which a predetermined amount of the metal powder 5 is confined. Therefore, the temperature detected by the thermometer 3 </ b> A at the time of molding shows a value lower than the temperature of the true metal powder 5 because the temperature of the metal powder 5 is measured through the die material.

ここで、図2(a)には、押し付け部1Aの平坦な下面に続けてねじ部9を設けた攪拌工具1を示し、図2(b)には、ねじ部9を設けず、押し付け部1Aの平坦な下面を全面を下パンチ2と向かい合う作用面とした攪拌工具1を示した。作用面とは、成形時、金属粉末5と接触する面をいう。すなわち、図2(a)に示すように、金属粉末5の攪拌促進を狙ってねじ部9を設けた攪拌工具1の場合には、ねじ部9を設けてない押し付け部1Aの下面と、ねじ部9の全面が作用面となる。ねじ部9は、攪拌工具1の回転軸中心8と同軸に形成されている。   Here, FIG. 2A shows the stirring tool 1 in which the screw portion 9 is provided on the flat lower surface of the pressing portion 1A, and FIG. 2B shows the pressing portion without the screw portion 9 being provided. A stirring tool 1 having a flat lower surface of 1A as a working surface facing the lower punch 2 is shown. The working surface refers to a surface that contacts the metal powder 5 during molding. That is, as shown in FIG. 2A, in the case of the stirring tool 1 provided with the screw portion 9 aiming at promoting stirring of the metal powder 5, the lower surface of the pressing portion 1A without the screw portion 9 and the screw The entire surface of the portion 9 is the working surface. The screw portion 9 is formed coaxially with the rotation axis center 8 of the stirring tool 1.

次いで、本発明にかかる固化成形方法について説明する。
本発明にかかる金属粉末の固化成形方法は、図1、図2に示した成形工具を用い、粉末充填用容器4内に所定量の金属粉末5を充填した後、棒状の撹拌工具1により圧縮しつつ攪拌し、固化成形する方法である。このようにして得られる固化成形体10の断面図を模式的に図3(a)、(b)に示す。図3中、Lは攪拌工具1の押し付け部下面から厚さ方向に測った厚さ方向距離を表し、rは成形体中心11から半径方向に測った半径方向距離を表す。
Next, the solidification molding method according to the present invention will be described.
The metal powder solidification method according to the present invention uses a molding tool shown in FIGS. 1 and 2, and after a predetermined amount of metal powder 5 is filled in a powder filling container 4, it is compressed by a rod-shaped stirring tool 1. In this method, the mixture is stirred and solidified. 3A and 3B schematically show cross-sectional views of the solidified molded body 10 thus obtained. In FIG. 3, L represents a thickness direction distance measured in the thickness direction from the lower surface of the pressing portion of the stirring tool 1, and r represents a radial direction distance measured in the radial direction from the molded body center 11.

上記した金属粉末の固化成形方法によれば、粉末充填用容器4内に充填された金属粉末5が撹拌工具1により圧縮しつつ攪拌されることで、金属粉末表面に形成されている酸化膜が破られるとともに、金属粉末5に摩擦熱による温度上昇が生じて金属粉末5の軟化が起こる。それと同時に、金属粉末5には、撹拌工具1の作用面と金属粉末5との接触により塑性流動が生じる。このようにして、金属粉末5には、撹拌工具1から回転エネルギーが押し付け部1Aの作用面を介して伝達されるため、外部加熱せずに、金属粉末同士の結合強化を容易に達成することができる。その結果、緻密な内部組織や優れた機械的性質を有し、かつ押圧方向の厚さtが十分厚い金属粉末の固化成形体を容易に得ることができるのである。   According to the metal powder solidification molding method described above, the metal powder 5 filled in the powder filling container 4 is stirred while being compressed by the stirring tool 1, so that an oxide film formed on the surface of the metal powder is formed. At the same time, the metal powder 5 is heated due to frictional heat, and the metal powder 5 is softened. At the same time, plastic flow occurs in the metal powder 5 due to the contact between the working surface of the stirring tool 1 and the metal powder 5. In this way, rotational energy is transmitted to the metal powder 5 from the stirring tool 1 via the working surface of the pressing portion 1A, so that the strengthening of the metal powder can be easily achieved without external heating. Can do. As a result, it is possible to easily obtain a solidified body of a metal powder having a dense internal structure and excellent mechanical properties and having a sufficiently thick thickness t in the pressing direction.

成形時に金属粉末5に生じる摩擦熱には、(i)押し付け部1Aの外周面とダイス3の内壁面との接触による摩擦熱や、(ii)攪拌工具1の作用面と金属粉末5との接触による摩擦熱、(iii)金属粉末5同士の接触による摩擦熱があり、それにより温度上昇が起こる。例えば、後述する実施例においては、厚さt=6mm、直径=12mmのものが得られるだけの金属粉末5を粉末充填用容器4内に充填しかつ、最大圧縮荷重を5kN、撹拌工具1の回転速度を820、1375、1785rpmとした成形条件で、温度計3Aにより100〜200℃の最高到達温度が検出されたので、成形前の温度を25℃としたとき、成形中の金属粉末5に75〜175℃を超える温度上昇が生じていたことになる。   The frictional heat generated in the metal powder 5 at the time of molding includes (i) frictional heat due to contact between the outer peripheral surface of the pressing portion 1A and the inner wall surface of the die 3, and (ii) the working surface of the stirring tool 1 and the metal powder 5. There is frictional heat due to contact, and (iii) frictional heat due to contact between the metal powders 5, thereby causing a temperature rise. For example, in the examples described later, the powder powder container 4 is filled with a metal powder 5 having a thickness t = 6 mm and a diameter = 12 mm, and the maximum compressive load is 5 kN. Since the maximum temperature of 100 to 200 ° C. was detected by the thermometer 3A under the molding conditions where the rotation speed was 820, 1375, and 1785 rpm, when the temperature before molding was 25 ° C., the metal powder 5 being molded was The temperature rise exceeding 75-175 degreeC had arisen.

また、上記の摩擦熱、及び撹拌工具1の作用面と金属粉末5との接触による塑性流動とにより、図7(a)、図9(a)に示すような部分からなる固化成形体10が得られた。
すなわち、撹拌工具1との接触により強い金属粉末の塑性流動及び摩擦熱が生じた摩擦攪拌部10Aと、摩擦攪拌部10Aに続く、撹拌工具1との接触により生じた強い金属粉末の流動及び摩擦熱の影響を受けた流動熱影響部10Bを少なくとも有し、あるいはさらに、流動熱影響部10Bから熱影響のみを受けた熱影響部10Cが存在している。
Further, due to the frictional heat and the plastic flow caused by the contact between the working surface of the stirring tool 1 and the metal powder 5, the solidified molded body 10 composed of the portions as shown in FIGS. 7A and 9A is obtained. Obtained.
That is, the friction stirrer 10A in which strong metal powder plastic flow and frictional heat are generated by contact with the stirring tool 1 and the strong metal powder flow and friction generated by contact with the stirrer 1 following the friction stirrer 10A. There is at least a heat affected zone 10B affected by heat, or there is a heat affected zone 10C that receives only the heat affected by the heat affected zone 10B.

後述するが熱影響部10Cは、その相対密度が摩擦攪拌部10A、あるいは流動熱影響部10Bより低く、空孔が多数存在している部分であって、内部組織や機械的性質がやや劣る。一方、摩擦攪拌部10Aと、摩擦攪拌部10Aから流動及び摩擦熱の影響を受けた流動熱影響部10Bは、極一部を除く、大部分が緻密な内部組織や優れた機械的性質を有する。したがって、押圧方向の厚さtを一段と厚くする必要がある場合には、内部組織や機械的性質がやや劣る熱影響部10Cを含むものとすることができるが、内部組織や機械的性質を重視する場合には、空孔が多数存在している熱影響部10Cを含めない方が好ましい。   As will be described later, the heat-affected zone 10C has a relative density lower than that of the friction stir zone 10A or the fluidized heat-affected zone 10B and has a large number of pores, and its internal structure and mechanical properties are slightly inferior. On the other hand, the friction stirrer 10A and the flow heat affected part 10B affected by the flow and frictional heat from the friction stirrer 10A have a dense internal structure and excellent mechanical properties except for a very small part. . Accordingly, when it is necessary to further increase the thickness t in the pressing direction, the heat-affected zone 10C having a slightly inferior internal structure and mechanical properties can be included, but when the internal structure and mechanical properties are emphasized. It is preferable not to include the heat-affected zone 10C having many holes.

ここで、用いる金属粉末5としては、1種又は二種以上の粉末を用いることができる。二種以上の金属粉末を用いる場合には、予め混合した二種以上の金属粉末を粉末充填用容器4内に充填した後、固化成形することが固化成形体内に各粉末を均一に分散させることができるので好ましい。
金属粉末5としては、アルミニウム系や銅系、鉄系、シリコン系等の金属粉末が好適であり、特に酸素と結合して強固な酸化膜でその表面が覆われるアルミニウム系の金属粉末に本発明を適用することがより好適である。また、非金属粉末、例えば、プラスチック粉末に本発明を適用することもできる。
Here, as the metal powder 5 to be used, one type or two or more types of powders can be used. When two or more kinds of metal powders are used, two or more kinds of premixed metal powders are filled in the powder filling container 4 and then solidified and molded so that each powder is uniformly dispersed in the solidified molded body. Is preferable.
The metal powder 5 is preferably an aluminum-based, copper-based, iron-based, or silicon-based metal powder, and in particular, the present invention is an aluminum-based metal powder that is bonded to oxygen and covered with a strong oxide film. It is more preferable to apply The present invention can also be applied to non-metallic powders such as plastic powders.

また得られた固化成形体を押出成形、プレス成形等により二次加工することが好ましい。この理由は、用いる成形工具の形状を製造する固化成形体の形状に対応させることにより、棒状、パイプ状等種々の形状の固化成形体を得ることができるが、二次加工することにより、複雑な形状の部品に加工することができるからである。
また、本発明にかかる金属粉末の固化成形方法によれば、粉末充填用容器4内に所定量の金属粉末を充填した後、撹拌工具1により押圧しつつ攪拌し、圧縮荷重が所定値の最大圧縮荷重に到達した後、所定値の最大圧縮荷重を一定時間(30〜60秒)負荷し、固化成形が終了した後回転を停止し、冷却後に撹拌工具1を引き出すことにより、図3(a)、(b)に示した状態の固化成形体10を得ることができる。そこで、この固化成方法を利用した接合方法及びコーティング方法によれば、得られる固化成形体10と撹拌工具1とを撹拌工具の作用面を介して容易に接合すること、及び撹拌工具1の作用面に、得られる固化成形体10を容易に被覆することができる。
Moreover, it is preferable to secondary-process the obtained solidification body by extrusion molding, press molding, etc. The reason for this is that by making the shape of the molding tool to be used correspond to the shape of the solidified molded body to be produced, solid molded bodies of various shapes such as rods and pipes can be obtained. This is because it can be processed into a part having a proper shape.
Further, according to the solidification molding method of the metal powder according to the present invention, after a predetermined amount of metal powder is filled in the powder filling container 4, the powder is stirred while being pressed by the stirring tool 1, and the compression load is the maximum of the predetermined value. After reaching the compressive load, a predetermined maximum compressive load is applied for a certain time (30 to 60 seconds), the rotation is stopped after the solidification molding is completed, and the stirring tool 1 is pulled out after cooling, so that FIG. ), The solidified molded body 10 in the state shown in (b) can be obtained. Therefore, according to the joining method and the coating method using the solidification method, the obtained solidified molded body 10 and the stirring tool 1 can be easily joined via the working surface of the stirring tool, and the action of the stirring tool 1 can be obtained. The obtained solidified molded body 10 can be easily coated on the surface.

但し、固化成形体10が粉末充填用容器4に固着するのを防止するため、金属粉末を充填する前に、下パンチ2の上面とダイス3の内壁にカーボングラファイトなどの離型剤を塗布しておく。   However, in order to prevent the solidified molded body 10 from adhering to the powder filling container 4, a release agent such as carbon graphite is applied to the upper surface of the lower punch 2 and the inner wall of the die 3 before filling the metal powder. Keep it.

図1、2に示した成形工具を用い、粉末充填用容器4内に所定量の金属粉末5を充填した後、撹拌工具1を挿入した状態で、撹拌工具1により圧縮荷重が所定の最大圧縮荷重になるまで金属粉末5を圧縮しつつ攪拌し、その後、回転を停止し、圧縮荷重を除荷して空冷し、撹拌工具1を引き出した。なお、金属粉末5として、純度99.76%、平均粒径28.46μmのアルミニウム粉末(東洋アルミニウム株式会社製)を用いた。また撹拌工具1はフライス盤の回転部に取り付けた。   1 and 2, after a predetermined amount of metal powder 5 is filled in the powder filling container 4, the stirring tool 1 is inserted and a compression load is applied to the predetermined maximum compression by the stirring tool 1. The metal powder 5 was stirred while being compressed until the load was reached, and then the rotation was stopped, the compression load was removed, the air was cooled, and the stirring tool 1 was pulled out. As the metal powder 5, an aluminum powder (manufactured by Toyo Aluminum Co., Ltd.) having a purity of 99.76% and an average particle size of 28.46 μm was used. Moreover, the stirring tool 1 was attached to the rotating part of the milling machine.

成形条件、成形工具は以下のとおりである。また、得られた図3(a)、(b)に示した状態の固化成形体10は、L=0の位置で切断した後、各部分の密度測定、及び成形体中心11を通る縦断面におけるビッカース硬さ及び組織観察を行った。
〔成形条件〕
・最大圧縮荷重:5kN(各条件とも同じ)
・撹拌工具1の回転速度:0〜最高1785rpm(段階的に上昇させた結果、820、1375、1785rpmで厚さtが十分な固化成形体10が得られた。)
・金属粉末5の充填量:下記成形工具を用い、厚さt=6mm、直径=12mmの固化成形体が得られる量
・離型剤:固化成形体10が粉末充填用容器4に固着するのを防止するため、下パンチ2の上面とダイス3の内壁にカーボングラファイトを塗布(但し、撹拌工具1の作用面には、カーボングラファイトを塗布せず。)
〔成形工具〕
・攪拌工具1:炭素鋼S45C、押し付け部1Aの直径:12mm、押し付け部1Aの厚さb=1.0mm、ダイス3内に挿入する押し付け部1A以外の部分の直径:10mm
・攪拌工具1の作用面形状(5種類):ねじ部9を設けたもの(正ねじの場合:呼び径=M4、M6、M8、逆ねじの場合:呼び径=M6、押し付け部下面からねじ部先端までの長さa=5mm)、ねじ部9を設けてないもの
・下パンチ2:合金工具鋼鋼材SKD 11、直径が12mmの円柱状
・ダイス3:合金工具鋼鋼材SKD 11、外径が50mm、内径が12mmの円筒形状
〔固化成形体の調査方法〕
・相対密度について
得られた固化成形体10の各部分の密度を測定し、純アルミニウムの真密度で除して相対密度とした。その際、成形体表面に付着した離型剤のカーボングラファイトを取り除き、ねじ部9を設けた攪拌工具1を用いた場合、ねじ部9を除外してアルミニウム部分の密度を精製水を用いてアルキメデス法により測定した。アルキメデス法による密度測定には、電子比重計(ミラージュ貿易株式会社 SD−200L)を使用した。
Molding conditions and molding tools are as follows. 3A and 3B, the solidified molded body 10 in the state shown in FIGS. 3A and 3B is cut at a position of L = 0, then the density of each portion is measured, and the longitudinal section passing through the molded body center 11 Vickers hardness and texture observation were performed.
〔Molding condition〕
・ Maximum compressive load: 5kN (same for each condition)
Rotational speed of stirring tool 1: 0 to maximum 1785 rpm (As a result of stepwise increase, solidified molded body 10 with sufficient thickness t was obtained at 820, 1375, and 1785 rpm)
-Filling amount of metal powder 5: The amount by which a solidified molded body having a thickness t = 6 mm and a diameter = 12 mm is obtained using the following molding tool-Release agent: Solidified molded body 10 is fixed to the powder filling container 4 In order to prevent this, carbon graphite is applied to the upper surface of the lower punch 2 and the inner wall of the die 3 (however, carbon graphite is not applied to the working surface of the stirring tool 1).
[Molding tool]
Stirring tool 1: Carbon steel S45C, diameter of the pressing part 1A: 12 mm, thickness b of the pressing part 1A = 1.0 mm, diameter of the part other than the pressing part 1A inserted into the die 3: 10 mm
・ Working surface shape of stirring tool 1 (five types): Screw portion 9 provided (For normal screw: Nominal diameter = M4, M6, M8, For reverse screw: Nominal diameter = M6, screw from bottom of pressing part) Length up to the tip of the part a = 5 mm), without the threaded part 9 ・ Lower punch 2: Alloy tool steel SKD 11, cylindrical shape with a diameter of 12 mm ・ Die 3: Alloy tool steel SKD 11, outer diameter Is a cylindrical shape with a diameter of 50 mm and an inner diameter of 12 mm.
-About relative density The density of each part of the obtained solidification molded object 10 was measured, and it remove | divided by the true density of the pure aluminum, and was set as the relative density. At that time, when the stirring tool 1 provided with the screw part 9 is used to remove the carbon graphite of the mold release agent adhering to the surface of the molded body, the density of the aluminum part is removed by using purified water to exclude the screw part 9. Measured by the method. An electronic hydrometer (Mirage Trading Co., Ltd. SD-200L) was used for density measurement by the Archimedes method.

なお、厚さtが6.0mmである固化成形体に対して、厚さt方向に順に適宜な間隔で切断して得た相対密度の値は、それぞれ厚さ方向距離L=0、1.5、3.0、4.5、6.0mmでの値としてプロットした。その結果を図4、図5、図8(a)に示した。
・固化成形体10のビッカース硬さ、及び組織観察について
前記相対密度を測定したものとは別に作製しておいた固化成形体10を用い、ビッカース硬さ試験機で成形体中心11を通る縦断面におけるビッカース硬さHVを測定した。なお、ビッカース硬さ試験は、JIS Z 2244に準拠して試験力を1000g、保持時間15秒で行った。但し、半径方向距離r=6.0mmであるビッカース硬さ試験は、表面より内側近くの位置で行った。
Note that the relative density values obtained by cutting the solidified molded body having a thickness t of 6.0 mm in order in the thickness t direction at appropriate intervals in order are the thickness direction distance L = 0, 1. Plotted as values at 5, 3.0, 4.5, 6.0 mm. The results are shown in FIGS. 4, 5, and 8 (a).
-Vickers hardness of solidified molded body 10 and structure observation A vertical cross section passing through the molded body center 11 with a Vickers hardness tester using a solidified molded body 10 prepared separately from the measured relative density. Vickers hardness HV was measured. The Vickers hardness test was performed in accordance with JIS Z 2244 with a test force of 1000 g and a holding time of 15 seconds. However, the Vickers hardness test with a radial distance r = 6.0 mm was performed at a position closer to the inside than the surface.

その結果を、図6、図7(b)、図8(b)、図8(c)、図9(b)、図10に示した。また、純アルミニウムの圧延材(規格:A1050P)と、従来法(ホットプレス法)により得た焼結物(焼結条件:焼結温度500℃、荷重10kN、焼結物の直径12mm)のビッカース硬さも比較のために測定し、図中に併記した。
固化成形体10の組織観察は、前記相対密度を測定したものとは別に作製しておいた固化成形体10を用い、成形体中心11を通る縦断面を0.8%NaOH水溶液により腐食して行った。その結果、成形条件によって異なる流動模様がそれぞれ観察された。その組織観察結果に基づいて作製した模式図を図7、図9に示した。
The results are shown in FIG. 6, FIG. 7 (b), FIG. 8 (b), FIG. 8 (c), FIG. 9 (b), and FIG. In addition, pure aluminum rolled material (standard: A1050P) and a Vickers sintered product (sintering conditions: sintering temperature 500 ° C., load 10 kN, sintered product diameter 12 mm) obtained by a conventional method (hot press method). Hardness was also measured for comparison and shown in the figure.
The observation of the structure of the solidified molded body 10 was performed by using the solidified molded body 10 prepared separately from the one measured for the relative density, and corroding the longitudinal section passing through the molded body center 11 with a 0.8% NaOH aqueous solution. went. As a result, different flow patterns were observed depending on the molding conditions. The schematic diagram produced based on the structure | tissue observation result was shown in FIG. 7, FIG.

得られた固化成形体10の組織観察結果によれば、摩擦攪拌部10A、流動熱影響部10B、及び熱影響部10Cが一体化しており、摩擦攪拌部10Aと流動熱影響部10Bとの境は明瞭に観察されたが、流動熱影響部10Bと熱影響部10Cとの境ははっきりとしなかった。
図4、図5、図8(a)に示した相対密度の結果から、得られた固化成形体10は、目標とする0.80以上の相対密度を有し、緻密なものであることがわかる。また、図4、図5、図8(a)に示した固化成形体10の相対密度と厚さ方向距離Lとの関係を示す特性図の結果から、厚さ方向距離Lが6mmに近い箇所(熱影響部10Cに相当する。)の相対密度は、それ以外の摩擦攪拌部10Aと流動熱影響部10Bよりも小さく、熱影響部10Cには、微小な空孔が多数存在していることがわかる。これは組織観察の結果とも一致している。
According to the structure observation result of the obtained solidified molded body 10, the friction stirrer 10 </ b> A, the fluid heat affected part 10 </ b> B, and the heat affected part 10 </ b> C are integrated, and the boundary between the friction stirrer 10 </ b> A and the fluid heat affected part 10 </ b> B. Was clearly observed, but the boundary between the flow heat affected zone 10B and the heat affected zone 10C was not clear.
From the results of the relative density shown in FIGS. 4, 5, and 8 (a), it is confirmed that the obtained solidified molded body 10 has a target relative density of 0.80 or more and is dense. Recognize. Further, from the result of the characteristic diagram showing the relationship between the relative density of the solidified molded body 10 and the thickness direction distance L shown in FIGS. 4, 5, and 8A, a location where the thickness direction distance L is close to 6 mm. The relative density of (corresponding to the heat affected zone 10C) is smaller than the friction stir zone 10A and the fluid heat affected zone 10B, and the heat affected zone 10C has a large number of minute holes. I understand. This is consistent with the results of tissue observation.

また、押し付け部1Aにねじ部9を設けた攪拌工具1、あるいは押し付け部1Aにねじ部9を設けてない攪拌工具1のどちらを用いた場合でも、半径方向距離r=6mmでの測定結果を除き、大部分のビッカース硬さが従来法(ホットプレス法)により得た焼結物のそれよりも高く、優れた機械的性質を有することがわかる(図6、図7(b)、図8(b)、図8(b)、図9(c)、図10参照)。   In addition, the measurement result at the radial distance r = 6 mm is obtained when using either the stirring tool 1 provided with the screw portion 9 in the pressing portion 1A or the stirring tool 1 not provided with the screw portion 9 in the pressing portion 1A. Except for this, most of the Vickers hardness is higher than that of the sintered product obtained by the conventional method (hot press method), and it can be seen that it has excellent mechanical properties (FIGS. 6, 7B, 8). (B), FIG. 8 (b), FIG. 9 (c), FIG. 10).

また、正ねじを形成した場合、図7(b)に示すL=3.0mmでかつr=4.0、5.0mmの箇所のビッカース硬さが最も高くなっている。この理由としては、この部分が摩擦攪拌部10Aから熱影響と流動の影響を受けた流動熱影響部10Bに相当し、再結晶が起こらず、せん断変形により加工硬化しているためであると考えられる。なお、L=1.5mmでかつr=3.0、4.0、5.0mmの箇所は摩擦攪拌部10Aの範囲にある。   Further, when a positive screw is formed, the Vickers hardness is highest at a location where L = 3.0 mm and r = 4.0, 5.0 mm shown in FIG. 7B. The reason for this is considered to be that this portion corresponds to the flow heat affected zone 10B that is affected by the heat and flow effects from the friction stir zone 10A, and recrystallization does not occur and is work hardened by shear deformation. It is done. Note that L = 1.5 mm and r = 3.0, 4.0, 5.0 mm are within the range of the friction stirrer 10A.

これに対して、逆ねじを形成した場合、あるいはねじ部9を設けてない場合には、正ねじを形成した場合と異なる結果が得られた。この理由としては、攪拌工具1の作用面の形状が異なることにより摩擦熱、及び塑性流動の状態が変化したためと考えられる。   On the other hand, when a reverse screw was formed, or when the screw portion 9 was not provided, a result different from the case where a normal screw was formed was obtained. This is probably because the frictional heat and the state of plastic flow have changed due to the difference in the shape of the working surface of the stirring tool 1.

本発明に用いて好適な成形工具を示す概略断面図である。It is a schematic sectional drawing which shows a suitable shaping | molding tool used for this invention. 本発明に用いて好適な攪拌工具の形状を示す正面図である。It is a front view which shows the shape of the suitable stirring tool used for this invention. 本発明により得られる固化成形体の状態を示す断面図である。It is sectional drawing which shows the state of the solidification molded object obtained by this invention. 本発明により得た固化成形体の相対密度と厚さ方向距離Lとの関係を示す特性図である。It is a characteristic view which shows the relationship between the relative density and the thickness direction distance L of the solidification molded object obtained by this invention. 本発明により得た固化成形体の相対密度と厚さ方向距離Lとの関係を示す特性図である。It is a characteristic view which shows the relationship between the relative density and the thickness direction distance L of the solidification molded object obtained by this invention. 本発明により得た固化成形体のビッカース硬さと厚さ方向距離Lとの関係を示す特性図である。It is a characteristic view which shows the relationship between the Vickers hardness and the thickness direction distance L of the solidification molding obtained by this invention. (a)は、本発明により得た固化成形体の部分を模式的に示す断面図であり、(b)は、その部分によるビッカース硬さ変化を示す特性図である。(A) is sectional drawing which shows typically the part of the solidification molded object obtained by this invention, (b) is a characteristic view which shows the Vickers hardness change by the part. (a)は、本発明により得た固化成形体の相対密度と厚さ方向距離Lとの関係を示す他の特性図であり、(b)、(c)はその固化成形体のビッカース硬さと半径方向距離r及び厚さ方向距離Lとの関係を示す特性図である。(A) is another characteristic figure which shows the relationship between the relative density of the solidification molded object obtained by this invention, and the thickness direction distance L, (b), (c) is Vickers hardness of the solidification molded object, and It is a characteristic view which shows the relationship between the radial direction distance r and the thickness direction distance L. (a)は、本発明により得た固化成形体の部分を模式的に示す他の断面図であり、(b)は、その部分によるビッカース硬さ変化を示す他の特性図である。(A) is the other sectional view showing typically the portion of the solidification fabrication object obtained by the present invention, and (b) is another characteristic figure showing the change in Vickers hardness by the portion. 本発明により得た固化成形体のビッカース硬さ変化を示すその他の特性図である。It is the other characteristic view which shows the Vickers hardness change of the solidification molded object obtained by this invention. 非特許文献1に記載の金属粉末の固化成形方法の問題点を説明する斜視図である。It is a perspective view explaining the problem of the solidification shaping | molding method of the metal powder of the nonpatent literature 1. FIG. (a)は、非特許文献1に記載の金属粉末の固化成形方法で得られる固化成形体の形状を示す平面図、(b)は、X−X断面図である。(A) is a top view which shows the shape of the solidification molded object obtained by the solidification shaping | molding method of the metal powder of the nonpatent literature 1, (b) is XX sectional drawing. 特許文献1に記載の摩擦攪拌による接合方法を説明するための斜視図である。It is a perspective view for demonstrating the joining method by the friction stirring of patent document 1. FIG.

符号の説明Explanation of symbols

1 攪拌工具
1A 押し付け部
2 下パンチ
2A ストレインゲージ
3 ダイス
3A 温度計
4 粉末充填用容器
5 金属粉末
6 押圧方向
7 回転方向
8 回転軸中心
9 ねじ部
10 固化成形体
10A 摩擦攪拌部
10B 流動熱影響部
10C 熱影響部
11 成形体中心
t 固化成形体の厚さ
L 攪拌工具の押し付け部下面から厚さ方向に測った厚さ方向距離
r 成形体中心から半径方向に測った半径方向距離
20、21 成形工具
22 金属粉末
23 回転軸中心
24 押圧方向
25 回転方向
26 固化成形体
27 成形体中心
30 接合ツール
30A ピン
30B 肩部
31 回転中心
32 移動方向
33 テーブル
P 形材パネル
F 矯正力
θ 肩部30Bの面の傾斜
S クランプする前の隙間
DESCRIPTION OF SYMBOLS 1 Stirring tool 1A Pressing part 2 Lower punch 2A Strain gauge 3 Dies 3A Thermometer 4 Powder filling container 5 Metal powder 6 Pressing direction 7 Rotating direction 8 Rotating shaft center 9 Screw part 10 Solidified compact 10A Friction stirring part 10B Fluid heat influence Part 10C Heat-affected zone 11 Molded body center t Thickness of solidified molded body L Thickness direction distance measured in thickness direction from lower surface of pressing part of stirring tool r Radial distance measured in radial direction from molded body center 20, 21 Forming tool 22 Metal powder 23 Rotating axis center 24 Pressing direction 25 Rotating direction 26 Solidified molded body 27 Molded body center 30 Joining tool 30A Pin 30B Shoulder 31 Rotating center 32 Moving direction 33 Table P Profile panel F Correction force θ Shoulder 30B Inclination of the surface S Clearance before clamping

Claims (7)

微粉物質を圧縮しつつ攪拌することにより、固化成形して得たことを特徴とする微粉物質の固化成形体。   A solidified compact of a fine powder material obtained by solidifying and molding by compressing and stirring the fine powder material. 粉末充填用容器内に所定量の微粉物質を充填した後、棒状の撹拌工具により圧縮しつつ攪拌し、固化成形することを特徴とする微粉物質の固化成形方法。   A method for solidifying and molding a fine powder material, comprising: filling a powder filling container with a predetermined amount of a fine powder material, stirring the mixture while compressing with a rod-shaped stirring tool, and solidifying and molding. 前記粉末充填用容器内に予め混合した二種以上の微粉物質を充填し、固化成形することを特徴とする請求項2に記載の微粉物質の固化成形方法。  The method for solidifying and molding a fine powder material according to claim 2, wherein the powder filling container is filled with two or more kinds of fine powder materials mixed in advance and solidified and molded. 得られる固化成形体を押出成形、プレス成形等により二次加工することを特徴とする請求項2又は3に記載の微粉物質の固化成形方法。  The method for solidifying and molding a fine powder material according to claim 2 or 3, wherein the obtained solidified body is subjected to secondary processing by extrusion molding, press molding or the like. 前記微粉物質が金属粉末であることを特徴とする請求項2〜4のいずれかに記載の微粉物質の固化成形方法。   The method for solidifying and forming a fine powder material according to any one of claims 2 to 4, wherein the fine powder material is a metal powder. 部材同士を摩擦熱を利用して接合する接合方法において、請求項2又は3に記載の微粉物質の固化成形方法を用い、得られる固化成形体と前記撹拌工具とを前記撹拌工具の作用面を介して接合することを特徴とする接合方法。  In the joining method which joins members using frictional heat, the solidification molding method of the fine powder substance of Claim 2 or 3 is used, and the solidification molded object obtained and the said stirring tool are made into the working surface of the said stirring tool. A bonding method, characterized in that bonding is performed via 被コーティング部材の表面にコーティング物質を被覆するコーティング方法において、請求項2又は3に記載の微粉物質の固化成形方法を用い、前記撹拌工具の作用面に得られる固化成形体を被覆することを特徴とするコーティング方法。  In the coating method which coat | covers a coating substance on the surface of a to-be-coated member, the solidification molded object obtained on the working surface of the said stirring tool is coat | covered using the solidification molding method of the fine powder substance of Claim 2 or 3. Coating method.
JP2005259031A 2005-09-07 2005-09-07 Solidified molding method and joining method of fine powder substance Active JP4387343B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005259031A JP4387343B2 (en) 2005-09-07 2005-09-07 Solidified molding method and joining method of fine powder substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005259031A JP4387343B2 (en) 2005-09-07 2005-09-07 Solidified molding method and joining method of fine powder substance

Publications (2)

Publication Number Publication Date
JP2007070693A true JP2007070693A (en) 2007-03-22
JP4387343B2 JP4387343B2 (en) 2009-12-16

Family

ID=37932407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005259031A Active JP4387343B2 (en) 2005-09-07 2005-09-07 Solidified molding method and joining method of fine powder substance

Country Status (1)

Country Link
JP (1) JP4387343B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013082965A (en) * 2011-10-07 2013-05-09 Gunma Univ Method of producing porous metal, and porous metal
CN109318549A (en) * 2018-08-02 2019-02-12 兰州理工大学 The composite metal and its preparation facilities and method of a kind of titanium-steel resistance brazing
CN115365503A (en) * 2022-07-25 2022-11-22 西安交通大学 Preparation method of aluminum nitride reinforced aluminum alloy cylinder sleeve

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013082965A (en) * 2011-10-07 2013-05-09 Gunma Univ Method of producing porous metal, and porous metal
CN109318549A (en) * 2018-08-02 2019-02-12 兰州理工大学 The composite metal and its preparation facilities and method of a kind of titanium-steel resistance brazing
CN115365503A (en) * 2022-07-25 2022-11-22 西安交通大学 Preparation method of aluminum nitride reinforced aluminum alloy cylinder sleeve

Also Published As

Publication number Publication date
JP4387343B2 (en) 2009-12-16

Similar Documents

Publication Publication Date Title
Ghany et al. Comparison between the products of four RPM systems for metals
JP2008114258A (en) Friction stir welding tool and friction stir welding apparatus
JP2017509791A (en) Method for producing metal matrix composite material
JP5326096B2 (en) Friction stir processing tool
JP2011041983A (en) Device and method for hot isostatic pressing container
GB2589737A (en) Friction stir welding using a PCBN-based tool
JP4387343B2 (en) Solidified molding method and joining method of fine powder substance
US20240116131A1 (en) Friction stir welding using a pcbn-based tool
JP2023075154A (en) Sintered component
JP2000312981A (en) Coating method of cylinder inner face
ES2357163T3 (en) MIX FOR THE MANUFACTURE OF SINTERED CONFORMED PARTS THAT INCLUDES WAX OF CAMAUBA.
Sharma et al. Synthesis of open-cell copper foam using friction sintering
Widerøe et al. A new testing machine to determine the behaviour of aluminium granulate under combined pressure and shear
Hangai et al. Effect of die material on compressive properties of open-cell porous aluminum fabricated by friction powder compaction process
Basheer et al. Microstructural development in friction welded aluminum alloy with different alumina specimen geometries
Bajpai et al. Development of Al-nano composites through powder metallurgy process using a newly designed cold isostatic compaction chamber
Luo et al. Study on anti-wear property of 3D printed-tools in friction stir welding by numerical and physical experiments
JP4176353B2 (en) Crystal surface solidification molding method by compression shear and crystal surface coating method by compression shear
Srivas et al. Dough extrusion forming of titanium alloys—green body characteristics, microstructure and mechanical properties
Sharma et al. Friction sintering of copper powder using a new rapid, cost effective and energy efficient process
Sharma et al. Design, fabrication and analysis of compaction die for powder processing
JP2019070183A (en) Sintered body, joined body including the sintered body, and production method of sintered body
Thompson et al. Utilisation of silicon rubber to characterise tool surface quality during die compaction
Liu Experimental Investigation on Ultrasonic-Assisted Extrusion of Aluminum Fabricated by Ultrasonic Powder Consolidation
Halil et al. Investigation Regarding Al-Al2O3 Composite Material Production and Its Weldability to Aluminum by Diffusion Welding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090930

R150 Certificate of patent or registration of utility model

Ref document number: 4387343

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131009

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250