JP2007069263A - Method for welding stub to electrode used for remelting furnace - Google Patents

Method for welding stub to electrode used for remelting furnace Download PDF

Info

Publication number
JP2007069263A
JP2007069263A JP2005262213A JP2005262213A JP2007069263A JP 2007069263 A JP2007069263 A JP 2007069263A JP 2005262213 A JP2005262213 A JP 2005262213A JP 2005262213 A JP2005262213 A JP 2005262213A JP 2007069263 A JP2007069263 A JP 2007069263A
Authority
JP
Japan
Prior art keywords
electrode
stub
mold
virtual
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005262213A
Other languages
Japanese (ja)
Other versions
JP4654850B2 (en
Inventor
Shigenobu Omori
重信 大森
Masafumi Matsuzaki
雅史 松崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2005262213A priority Critical patent/JP4654850B2/en
Publication of JP2007069263A publication Critical patent/JP2007069263A/en
Application granted granted Critical
Publication of JP4654850B2 publication Critical patent/JP4654850B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for welding a stub to an electrode with high precision at the outside of a mold. <P>SOLUTION: The distance between the outer circumference of an electrode 1 and a distance measuring sensor is measured by the distance measuring sensor. Based on the measurement information, the cross-section of the electrode and a virtual mold circle B are drawn, and points G<SB>P1</SB>', G<SB>P2</SB>' and G<SB>P3</SB>' in the electrode at which the variation of virtual side gaps Ln, L'n between the outer circumference of the cross-section in the electrode and the virtual mold circle is made the minimum are calculated. Based on the central point, calculation is performed in such a manner that the inclination θ of a virtual axis Z to the passing core of a mold/stub clamp reaches ≤1.5 mm/m. Further, calculation is performed in such a manner that the central point of the virtual axis Z vertically moves along the passing core to the upper end face 1a of the electrode, thus its intersection G<SB>P</SB>'' with the upper end face of the electrode is obtained, and a stub is arranged at the intersection, so as to be welded. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は再溶解炉に用いる消耗電極(以下、単に電極という)へのスタブの取付け方法に関し、更に詳しくは、再溶解炉の水冷鋳型(以下、モールドという)に電極を装入・配置するに先立って、当該電極の上端面にスタブを取り付ける方法であって、電極の全長に亘って、電極/モールド間の間隙のばらつきが小さく、この間隙が可能な限り均等となるように、スタブを電極に取付ける(溶接する)方法に関する。   The present invention relates to a method for attaching a stub to a consumable electrode (hereinafter simply referred to as an electrode) used in a remelting furnace, and more particularly, to load and arrange an electrode in a water-cooled mold (hereinafter referred to as a mold) of a remelting furnace. Prior to the method, a stub is attached to the upper end surface of the electrode, and the stub is attached to the electrode so that the gap between the electrode and the mold is small over the entire length of the electrode and the gap is as uniform as possible. It is related with the method of attaching to (welding).

真空アーク再溶解法(VAR)やエレクトロスラグ再溶解法(ESR)では、それぞれの再溶解炉内に配置された水冷モールドに、精製すべき電極が吊設された状態で操業が進められる。
具体的には、電極の上端面に溶接して取付けられたスタブをスタブクランプ部で把持した状態で、電極はモールド内に吊設される。
In the vacuum arc remelting method (VAR) and the electroslag remelting method (ESR), the operation is performed in a state where the electrode to be purified is suspended from the water-cooled mold disposed in each remelting furnace.
Specifically, the electrode is suspended in the mold in a state where a stub attached by welding to the upper end surface of the electrode is held by the stub clamp portion.

そして、各再解炉においては、スタブクランプ部の機械中心とモールドの機械中心は合致しているので、両者の間では、垂直な通り芯が形成されている。
したがって、用いる電極が断面真円で長手方向に湾曲していないとするならば、当該電極の上端面における中心(軸心)とスタブの軸心を合致させて両者を溶接すれば、モールド内に電極を吊設したときに、電極の全長に亘り、電極外周とモールドの内壁の間隙(以下、サイドギャップという)は同一となり、操業過程においてもサイドギャップのばらつきはほとんど起こらない。
In each re-melting furnace, the machine center of the stub clamp part and the machine center of the mold are coincident with each other, so that a vertical core is formed between the two.
Therefore, if the electrode to be used is a perfect circle and is not curved in the longitudinal direction, the center (axial center) of the upper end surface of the electrode is aligned with the axial center of the stub, and the two are welded together. When the electrode is suspended, the gap between the outer periphery of the electrode and the inner wall of the mold (hereinafter referred to as a side gap) is the same over the entire length of the electrode, and there is almost no variation in the side gap even during the operation process.

しかしながら、実際に用いている電極は、断面が真円ではなく、また、全長方向で湾曲している。そのため、このような電極をモールド内に吊設すると、電極/モールド間のサイドギャップには、操業開始時にあっても、操業中においても大きなばらつきがでる。そして、サイドギャップのばらつきが大きくなると、操業後に得られる鋼塊の品質低下がもたらされる。   However, the electrodes actually used have a cross section that is not a perfect circle and is curved in the full length direction. For this reason, when such an electrode is suspended in the mold, the side gap between the electrode and the mold varies greatly both at the start of operation and during operation. And when the dispersion | variation in a side gap becomes large, the quality fall of the steel ingot obtained after an operation will be brought about.

このようなことから、電極/モールド間のサイドギャップのばらつきを小さくするために、電極をモールドに配置する際に次のような調整作業が行なわれている。
1つは次のような調整作業である。
モールド内に電極を例えばクレーンなどを用いて装入し着底させる。そして、モールドと電極との間隙を目視観察し、仮にサイドギャップにばらつきが観察されれば、電極をクレーンで少し吊り上げ、そして例えばバールなどを用いて人力で電極を動かしてサイドギャップを均等化したのち再びモールド内に着底させる。
For this reason, in order to reduce the variation in the side gap between the electrode and the mold, the following adjustment work is performed when the electrode is placed in the mold.
One is the following adjustment work.
The electrode is inserted into the mold using, for example, a crane and then settled. Then, the gap between the mold and the electrode was visually observed, and if a variation in the side gap was observed, the electrode was slightly lifted with a crane, and the side gap was equalized by moving the electrode manually using, for example, a bar. After that, it settles in the mold again.

そしてその後、電極の上端部の中心にスタブ中心を配置し、両者を溶接する。
しかしながら、この調整作業の場合、電極は通常全長が2〜3mであるため、モールドの開口部付近におけるサイドギャップの目視観察はできるが、モールドの下部における目視観察は事実上不可能であり、観察結果の精度は極めて低い。
また、電極は一般に湾曲していたり、部分的な変形もあるが、このような電極に対しては、上記した調整作業は対応不能である。
Thereafter, the center of the stub is arranged at the center of the upper end portion of the electrode, and both are welded.
However, in this adjustment operation, since the electrode is usually 2 to 3 m in total length, the side gap in the vicinity of the opening of the mold can be visually observed, but the visual observation in the lower part of the mold is practically impossible. The accuracy of the results is very low.
In addition, the electrode is generally curved or partially deformed, but the above adjustment work cannot be applied to such an electrode.

更に、調整作業中やスタブの溶接時に、モールド内に異物や溶接スプラッシュなどが落下・混入することもあり、これらが目的鋼塊を汚染することも起こり得る。
他の方法としては次のような方法がある。
この方法では、モールド内に電極を装入・配置したのちにスタブを取付けるのではなく、モールドの外で事前に電極の上端部にスタブを目視作業で通り芯がでるように取付けて長尺な一体化物とし、その後、この一体化物を炉にセットする。このとき、スタブクランプ部の上端部は、炉体の上部から突出する。
Furthermore, during adjustment work or during welding of the stub, foreign matter, welding splash, or the like may fall and mix in the mold, which may contaminate the target steel ingot.
Other methods include the following methods.
In this method, the stub is not attached after the electrode is placed and placed in the mold, but the stub is attached to the upper end of the electrode in advance so that the core can be visually observed outside the mold. It is set as an integrated object, and this integrated object is set in a furnace after that. At this time, the upper end part of a stub clamp part protrudes from the upper part of a furnace body.

そして、スタブクランプ部の上端部にX−Y調芯機構を取付け、このX−Y調芯機構を作動してモールド内に位置する電極とモールド間のサイドギャップの調整が行なわれている。
この方法の場合、モールドの外でスタブの取付けが行われるので、モールド内の汚染は起こらないという利点がある。しかしながら、電極とスタブの通り芯は、前記した方法の場合と同じように、目視によって決められているので、やはり精度は不充分である。
Then, an XY alignment mechanism is attached to the upper end of the stub clamp portion, and the XY alignment mechanism is operated to adjust the side gap between the electrode located in the mold and the mold.
In this method, since the stub is attached outside the mold, there is an advantage that contamination inside the mold does not occur. However, since the electrodes and the stub cores are visually determined in the same manner as in the method described above, the accuracy is still insufficient.

また、X−Y調芯機構を作動すると、一体化物は炉体の上部を支点として動くことになり、当該一体化物は全長に亘ってX−Y平面内で平行移動しない。すなわち、一体化物の上部の移動距離と下部の移動距離は異なってくるので、電極の全長に亘って均等にサイドギャップを調整することはできない。   When the XY alignment mechanism is operated, the integrated object moves with the upper portion of the furnace body as a fulcrum, and the integrated object does not translate in the XY plane over the entire length. That is, since the moving distance of the upper part of the integrated product and the moving distance of the lower part are different, the side gap cannot be adjusted uniformly over the entire length of the electrode.

本発明は、上記した先行技術における問題点を解決し、電極のセット時にモールド内を汚染する心配もなく、高精度で電極/モールド間のサイドギャップを均等化することができる電極へのスタブの取付け方法の提供を目的とする。   The present invention solves the above-mentioned problems in the prior art, and there is no fear of contaminating the inside of the mold when setting the electrode, and the stub to the electrode that can equalize the side gap between the electrode and the mold with high accuracy is provided. The purpose is to provide a mounting method.

上記した目的を達成するために、本発明においては、再溶解炉のモールド内に電極を装入するに先立ち、前記電極の上端面にスタブを溶接するに際し、
電極長手方向の複数の計測点において、前記モールドとスタブクランプ部の通り芯を軸にして前記電極の外側を旋回する測距センサで、前記電極の外周面と前記測距センサとの間の距離を計測する工程1;
各計測点において、その計測情報に基づく画像処理を行い、前記通り芯の位置を原点座標とする電極断面図を描画し、描画された電極断面図内に存在するある点を中心点として前記モールドと同径の仮想モールド円を描画し、前記電極断面図と前記仮想モールド円の間に描画された仮想サイドギャップ間の差が前記電極断面図の全周において最小となるような前記中心点(G’)の座標を計算する工程2;
全ての前記電極断面図における前記中心点の座標を近似的に結んで電極の長手方向に仮想軸(Z)を描画し、電極の上端面における前記仮想軸(Z)の前記通り芯に対する傾きが1.5mm/m以下となるように電極の傾きを調整する工程3;
前記仮想軸(Z)の中心点(G'')の座標を、前記通り芯の原点座標に沿って電極の上端面まで垂直に移動させ、前記上端面における座標を溶接点の位置座標とする工程4;および、
前記通り芯を原点座標とする座標系を備えたスタブ搬送手段でスタブを前記溶接点に搬送したのち、その位置で、スタブを電極の上端面に溶接する工程5;
を備えていることを特徴とする、再溶解炉に用いる電極へのスタブの取付け方法が提供される。
In order to achieve the above object, in the present invention, prior to inserting the electrode into the mold of the remelting furnace, when welding the stub to the upper end surface of the electrode,
A distance measuring sensor that pivots outside the electrode around the core of the mold and the stub clamp at a plurality of measurement points in the longitudinal direction of the electrode, and the distance between the outer peripheral surface of the electrode and the distance measuring sensor Measuring step 1;
At each measurement point, image processing based on the measurement information is performed, and an electrode cross-sectional view with the position of the core as the origin coordinate is drawn, and the mold is centered on a certain point existing in the drawn electrode cross-sectional view. A virtual mold circle having the same diameter as the center point such that a difference between a virtual side gap drawn between the electrode cross-sectional view and the virtual mold circle is minimized on the entire circumference of the electrode cross-sectional view ( Step 2 of calculating the coordinates of GP ′);
The virtual axis (Z) is drawn in the longitudinal direction of the electrode by approximately connecting the coordinates of the center point in all the electrode cross-sectional views, and the inclination of the virtual axis (Z) with respect to the core of the upper end surface of the electrode is Step 3 of adjusting the inclination of the electrode so as to be 1.5 mm / m or less;
The coordinate of the center point ( GP ″) of the virtual axis (Z) is vertically moved to the upper end surface of the electrode along the origin coordinate of the core, and the coordinate on the upper end surface is set as the position coordinate of the welding point. Performing step 4; and
A step 5 of welding the stub to the upper end surface of the electrode at the position after the stub is conveyed to the welding point by the stub conveying means having a coordinate system having the core as the origin coordinate;
A method for attaching a stub to an electrode used in a remelting furnace is provided.

本発明によれば、電極へのスタブの取付けはモールドの外で行なわれるので、モールド内への異物混入は防止されて得られた鋼塊の品質低下は起こらない。したがって、電極へのスタブの取付けに際しては、炉運転を停止することが不要になり、炉回転の効率化と生産性の向上が可能となる。
また、電極上端面におけるスタブ溶接点の決定に際しては、各計測点における電極断面に関する計測情報が、コンピュータにより、画像処理され、電極断面の画像と仮想モールド円の間に描画された仮想サイドギャップ間の差が電極断面の全周において最小となるような電極断面内の中心点が計算され、この計算された中心点に基づいて、モールド/スタブクランプ部の通り芯に対する電極の傾きが調整され、また電極の上端面におけるスタブ溶接点が自動的に決定されるので、作業者による従来の目視作業に比べてスタブと電極との芯合せの精度は向上する。
According to the present invention, since the stub is attached to the electrode outside the mold, the quality of the steel ingot obtained by preventing foreign matter from entering the mold does not deteriorate. Therefore, when attaching the stub to the electrode, it is not necessary to stop the furnace operation, and it is possible to increase the efficiency of the furnace rotation and improve the productivity.
In determining the stub welding point on the upper end surface of the electrode, measurement information on the electrode cross section at each measurement point is image-processed by a computer, and the virtual side gap drawn between the image of the electrode cross section and the virtual mold circle is drawn. The center point in the electrode cross-section is calculated such that the difference between the electrode cross-section is the minimum in the entire circumference of the electrode cross-section, and the inclination of the electrode with respect to the core of the mold / stub clamp portion is adjusted based on the calculated center point, Further, since the stub welding point on the upper end surface of the electrode is automatically determined, the accuracy of the alignment between the stub and the electrode is improved as compared with the conventional visual operation by the operator.

本発明は、断面が真円とはいえず、また長手方向で湾曲もしている電極の上端面にスタブを溶接し、そのスタブをスタブクランプ部で把持して電極をモールド内に吊設したときに、電極の外周面とモールドの内壁との間に形成されるサイドギャップのばらつきが、電極の各断面においても小さく、また電極の長手方向の全ての位置においても小さくなるように、電極上端面におけるスタブの溶接点を決めることを最終目的にしている。   In the present invention, when a stub is welded to the upper end surface of an electrode whose cross section is not a perfect circle and is also curved in the longitudinal direction, the stub is gripped by the stub clamp portion, and the electrode is suspended in the mold. Further, the upper end surface of the electrode is such that the variation in the side gap formed between the outer peripheral surface of the electrode and the inner wall of the mold is small in each cross section of the electrode and also in all positions in the longitudinal direction of the electrode. The final goal is to determine the welding point of the stub at.

そして、この目標を達成するために、後述する工程をコンピュータ動作と連動させて実施する。
その場合、コンピュータによる計算動作における前提条件は以下のとおりである。
まず、溶解炉におけるモールド断面の機械中心とスタブクランプ部の機械中心は合致していて、その機械中心をX−Y座標で原点(0,0)とする座標系が採用されていることである。したがって、両者の機械中心である通り芯(以後、Gと呼ぶ)の位置座標はG(0,0)となっている。
And in order to achieve this target, the process mentioned later is implemented in conjunction with computer operation.
In that case, the preconditions for the calculation operation by the computer are as follows.
First, the machine center of the mold cross section in the melting furnace is coincident with the machine center of the stub clamp part, and a coordinate system in which the machine center is the origin (0, 0) in the XY coordinates is adopted. . Therefore, the position coordinates of the street which is both machine center core (hereinafter, referred to as G M) has a G M (0,0).

また、後述する測距センサやスタブ搬送手段など、実際にスタブを溶接するまでの過程で、電極やスタブを操作する各種の機械装置は、いずれも、上記した座標系に基づいた動作をすることである。
以下、各工程について詳細に説明する。
工程1: この工程では、用いる電極の断面形状が計測され、その計測情報がコンピュータに導入される。
In addition, all the various mechanical devices that operate the electrodes and stubs in the process until the stub is actually welded, such as distance measuring sensors and stub conveying means described later, all operate based on the coordinate system described above. It is.
Hereinafter, each step will be described in detail.
Step 1: In this step, the cross-sectional shape of the electrode to be used is measured, and the measurement information is introduced into a computer.

まず、図1で示したように、所定の電極把持装置(図示しない)を用いて、電極1のいずれか一方の断面の略中心と通り芯Gの座標(0,0)を合致させた状態で電極を垂直に倒立させたのち、当該電極1の外側に例えばレーザ変位計のような測距センサ2を配置する。
測距センサ2は、図2で示したように、通り芯Gを軸にして電極1の外側を360°旋回できるように配置され、また旋回軸を変えることなく、電極の長手方向にも上下動できるように配置されている。
First, as shown in FIG. 1, using a predetermined electrode gripping device (not shown) to substantially center and as the core G M coordinates of one of the cross-section of the electrode 1 (0,0) is matched After the electrode is vertically inverted in this state, a distance measuring sensor 2 such as a laser displacement meter is disposed outside the electrode 1.
Distance measuring sensor 2, as shown in FIG. 2, it is arranged outside the electrodes 1 and the base line G M in the axial as can be pivoted 360 °, and without changing the pivot axis in the longitudinal direction of the electrode It is arranged so that it can move up and down.

この測距センサ2は、ある計測点において、通り芯Gに対して例えば1°〜2°の角度θで旋回動作を行なうことにより、電極1の全外周面につき、電極外周面と測距センサ2の間の距離aを計測する。その計測情報は、図3で示したような情報としてコンピュータに導入される。
測距センサによる上記距離aの計測は、電極の長手方向の複数個所で行なうことにより、電極の長手方向における各計測点での電極断面形状の情報を得て、それらがコンピュータに導入される。
The distance measuring sensor 2, in certain measuring point, by performing a turning operation at the base line G an angle of M with respect to example 1 ° to 2 ° theta, per total outer peripheral surface of the electrode 1, the electrode peripheral surface ranging The distance a between the sensors 2 is measured. The measurement information is introduced into the computer as information as shown in FIG.
The distance a is measured by the distance measuring sensor at a plurality of positions in the longitudinal direction of the electrode, so that information on the electrode cross-sectional shape at each measurement point in the longitudinal direction of the electrode is obtained and introduced into the computer.

計測点の選択は任意であるが、少なくとも、電極1の上端部、中央部、下端部の3個所は必要である。
工程2: 工程2では、工程1で得られた計測情報に基づいて各計測点における電極断面図と仮想モールド円を描画し、そして電極断面図と仮想モールド円の間に描画された間隔(これを仮想サイドギャップという)の差が電極断面図の全周のすべての箇所で最小となるような仮想モールト円の中心点の位置座標G’ (x,y)を計算する。
The selection of the measurement point is arbitrary, but at least three locations of the upper end portion, the central portion, and the lower end portion of the electrode 1 are necessary.
Step 2: In Step 2, an electrode cross-sectional view and a virtual mold circle at each measurement point are drawn based on the measurement information obtained in Step 1, and an interval drawn between the electrode cross-sectional view and the virtual mold circle (this) The position coordinates G P ′ (x, y) of the center point of the virtual malt circle are calculated so that the difference in the virtual side gap becomes the minimum at all points on the entire circumference of the electrode sectional view.

具体的には、図4で示したように、計測情報をコンピュータで画像処理を行なうことにより、通り芯G(0,0)を原点座標とする電極断面図Aを描画する。
ところで、表面を機械加工しない電極の表面には、大小様々な凹凸が存在しているので、測距センサの計測情報に従って忠実に描画した電極の表面には、大小様々な凹凸が存在している。そのため、測距センサの計測情報に基づいてコンピュータが忠実に描画する電極断面は図4における曲線Aのように、微細な多数の凹凸と例えば2個の大きな凹みをもった曲線図として描画されるはずである。
Specifically, as shown in FIG. 4, the measurement information is subjected to image processing by a computer, thereby drawing an electrode cross-sectional view A with the core G M (0, 0) as the origin coordinate.
By the way, since the surface of the electrode whose surface is not machined has large and small unevenness, the surface of the electrode faithfully drawn according to the measurement information of the distance measuring sensor has large and small unevenness. . Therefore, the electrode cross section computer faithfully rendered based on measurement information of the distance measuring sensor as curve A 1 in FIG. 4, is drawn as a curve diagram with a recess large a number of fine irregularities and for example two Should be.

このような場合、コンピュータはこれら2個の大きな凹みを例外として認識してこれを無視し、大きな凹み以外の外周に存在する小さい凸部を結んで全体として滑らかな曲線で電極断面の外周を描画する。すなわち、電極断面図Aは、その外周が図4の曲線Aとして描画される。
なお、電極表面が真円に機械加工されている場合は、電極の実際の軸心と描画される電極断面図のG(0,0)は自動的に一致する。
In such a case, the computer recognizes these two large dents as an exception, ignores them, and draws the outer circumference of the electrode cross section with a smooth curve as a whole by connecting small convex portions existing on the outer circumference other than the large dent. To do. That is, the electrode cross section A has its outer periphery is drawn as a curve A 2 in FIG.
When the electrode surface is machined into a perfect circle, the actual axial center of the electrode and G M (0, 0) in the drawn electrode sectional view automatically match.

ついでコンピュータは、電極断面図内のある任意の点G’ (x,y)を中心にして、モールドと同径の仮想モールド円Bを描画する。その場合、この仮想モールド円Bは既に描画されている曲線Aのある任意の点Pで接触する外接円として描画される。
このようにして、コンピュータは、仮想モールド円Bが電極断面図として描画した曲線Aの外接円として描画されたその時点で電極断面図の外周と仮想モールド円Bの間に形成される仮想サイドギャップのばらつきの大小を認識する。
Then the computer is to arbitrary point G P '(x, y) with the electrode cross-sectional view of the center, to render a virtual mold circle B of the mold and the same diameter. In that case, the virtual mold circle B is drawn as circumscribed circle which contacts at any point P already a drawn and are curved A 2.
In this way, the computer displays the virtual side formed between the outer periphery of the electrode cross-sectional view and the virtual mold circle B at that time when the virtual mold circle B is drawn as a circumscribed circle of the curve A 2 drawn as the electrode cross-sectional view. Recognize the size of gap variation.

ついで、コンピュータは、例えば図5で示したように、この点G’(x,y)で交差し、かつ電極断面を横断して仮想モールド円Bにまで至る複数(図では4本)の直線を描画する。
なお、図5では4本の直線を描画したが、例えば点Pと点G’(x,y)を通る直線と、点G’(x,y)を通り、上記した直線と直交する別の直線の計2本の直線を描画してもよい。
Next, as shown in FIG. 5, for example, the computer intersects at this point GP ′ (x, y) and crosses the electrode cross section to reach the virtual mold circle B (four in the figure). Draw a straight line.
In FIG. 5, four straight lines are drawn. For example, a straight line passing through the point P and the point G P ′ (x, y) and a point passing through the point G P ′ (x, y) are orthogonal to the above-described straight line. A total of two straight lines may be drawn.

それぞれの直線は、その両端において、電極断面の外周を示す曲線Aと仮想モールド円Bの間に2個の仮想サイドギャップ(L,L’)、(L,L’)・・・(L,L’)を形成する。そして、これら仮想サイドギャップの値がコンピュータで認識される。なお、図5において、点Pは仮想モールド円Bと曲線Aの接点なのでL=0である。 Each straight line has two virtual side gaps (L 1 , L ′ 1 ), (L 2 , L ′ 2 ), between the curve A 2 indicating the outer periphery of the electrode cross section and the virtual mold circle B at both ends. .. (L n , L ′ n ) are formed. These virtual side gap values are recognized by the computer. In FIG. 5, the point P is L 1 = 0 Since contacts of a virtual mold circle B and the curve A 2.

ついで図6で示したように、X−Y平面内で中心点G’(x,y)の位置を変えて、仮想モールド円BをX−Y平面内で平行移動して、全ての仮想サイドギャップL,L’、L,L’・・・L,L’が同じ値になる、すなわち全ての仮想サイドギャップ間の差が最小になる中心点G’ (x,y)の位置座標を計算する。そして、この位置座標の点G’ (x,y)を電極断面図の全周において仮想サイドギャップのばらつきが最小になる点として決定する。 Next, as shown in FIG. 6, the position of the center point G P ′ (x, y) is changed in the XY plane, and the virtual mold circle B is translated in the XY plane, so that all virtual The side gaps L 1 , L 1 ′, L 2 , L 2 ′... L n , L n ′ have the same value, that is, the center point GP ′ (x , Y). Then, the point G P ′ (x, y) of this position coordinate is determined as the point at which the variation in the virtual side gap is minimized over the entire circumference of the electrode sectional view.

この計算は、電極の長手方向における各計測点で得られた電極断面図の全てについて実行される。そして、計測したそれぞれの電極断面につき、その外周と仮想モールド円が形成する仮想サイドギャップのばらつきが最小になる中心点G’ (x,y)の位置座標が把握される。
なお、上記した説明は、仮想モールド円Bを曲線Aの外接円として描画した場合であるが、工程3はこれに限定されるものではなく、例えば最初から電極断面内の任意の点G’ (x,y)を中心にしてモールドと同径の仮想モールド円Bを描画したのち、そのときに電極外周との間に描画された仮想サイドギャップ間の差が最小になるG’ (x,y)の位置座標を計算してもよい。
This calculation is performed for all of the electrode cross-sectional views obtained at each measurement point in the longitudinal direction of the electrode. Then, for each measured electrode cross section, the position coordinates of the center point G P ′ (x, y) at which the variation in the virtual side gap formed by the outer periphery and the virtual mold circle is minimized are grasped.
The above description is a case where the virtual mold circle B is drawn as a circumscribed circle of the curve A 2 , but the step 3 is not limited to this, and for example, any point GP in the electrode cross section from the beginning. '(x, y) After drawing a virtual mold circle B of the mold and the same diameter around the, G P the difference between virtual side gap drawn between the electrode periphery at that time is minimized' ( The position coordinates of x, y) may be calculated.

工程3:工程3では、工程2で計算した中心点(G’)に基づいてスタブ溶接点を決定し、そしてモールド内に電極を吊設したときに、通り芯G(0,0)に対してその電極が示す傾きを調整することが行なわれる。
図7で示したように、工程2で計算した各電極断面の中心点G’(図では、GP1’,GP2’,GP3’の3点)の座標を単純に結んだとしても、1本の直線は形成されない。
Step 3: In Step 3, when the stub welding point is determined based on the center point ( GP ′) calculated in Step 2, and the electrode is suspended in the mold, the core G M (0,0) The inclination of the electrode is adjusted.
As shown in FIG. 7, even if the coordinates of the center points G P ′ (three points of G P1 ′, G P2 ′, G P3 ′ in the figure) of each electrode cross section calculated in step 2 are simply connected. One straight line is not formed.

そこで、工程3では、コンピュータは中心点GP1’,GP2’,GP3’の座標と近似させて1本の仮想軸Zを計算し、それを描画する。
このとき、電極1の上端面1aにおいて、仮想軸Zの通り芯G(0,0)に対する傾き(θ)が1.5mm/mより大きくなった場合には、例えばスタブクランプ部の水平移動や電極把持装置の傾きの調整のような機械的補正を行って仮想軸Zの傾き(θ)が1.5mm/m以下となるようにする。
Therefore, in step 3, the computer approximates the coordinates of the center points G P1 ′, G P2 ′, G P3 ′, calculates one virtual axis Z, and draws it.
At this time, the upper end face 1a of the electrode 1, when the inclination with respect to the base line G M of the virtual axis Z (0,0) (θ) is greater than 1.5 mm / m, for example horizontal movement of the stub clamp portion In addition, mechanical correction such as adjustment of the inclination of the electrode gripping device is performed so that the inclination (θ) of the virtual axis Z is 1.5 mm / m or less.

傾きθが1.5mm/mより大きい仮想軸ZとなるようなGP1’,GP2’,GP3’の関係である場合には、電極1の上端面1aにおける仮想軸Zの座標位置にスタブを溶接し、そのスタブをスタブクランプ部で把持した状態でモールド内に吊設すると、サイドギャップのばらつきが大きくなるからである。
このような計算によって、電極1の上端面1aにおける仮の溶接点の位置座標が計算される。
When the relationship of G P1 ′, G P2 ′, G P3 ′ is such that the inclination θ becomes a virtual axis Z greater than 1.5 mm / m, the coordinate position of the virtual axis Z on the upper end surface 1 a of the electrode 1 is set. This is because, when the stub is welded and suspended in the mold in a state where the stub is held by the stub clamp portion, the variation in the side gap increases.
By such calculation, the position coordinates of the temporary welding point on the upper end surface 1a of the electrode 1 are calculated.

工程4: この工程4では、電極の上端面におけるスタブの溶接点の位置座標が決定される。
具体的には、図8で示したように、工程2で決定された仮想軸(Z)の中心点G’(m,n)の座標を、通り芯G(0,0)の座標に沿って電極の上端部1aまで垂直に移動させ、上端面1aとの交点(G'')をもってスタブの溶接点、正確には、スタブの断面中心を配置する点とする。
Step 4: In this step 4, the position coordinates of the welding point of the stub on the upper end surface of the electrode are determined.
Specifically, as shown in FIG. 8, the coordinates of the center point G P ′ (m, n) of the virtual axis (Z) determined in step 2 are the coordinates of the core G M (0, 0). Along the vertical direction to the upper end 1a of the electrode, and the intersection ( GP '') with the upper end surface 1a is the point at which the welding point of the stub, more precisely, the cross-sectional center of the stub is arranged.

この点G''の位置座標を決定するまでの工程3で、電極の仮想軸Zの通り芯G(0,0)に対する傾きは、1.5mm/m以下となるように調整され、また工程2で点G’ (x,y)が電極の全長における仮想サイドギャップLnのばらつきを最小にする点として計算され、そしてこの点G’(x,y)を基準にして点G''が決定されているので、この点G''にスタブを溶接し、そのスタブをスタブクランプ部で把持して電極をモールド内に吊設した場合、当該電極は、モールド/スタブクランプ部の通り芯G(0,0)に対する傾きは1.5mm/m以下となり、またモールドとのサイドギャップのばらつきも最小になる。 In step 3 until determining the coordinates of the point G P '', the slope as against the core G M (0,0) of the virtual axis Z of the electrode is adjusted to be equal to or less than 1.5 mm / m, In step 2, the point G P ′ (x, y) is calculated as a point that minimizes the variation of the virtual side gap Ln over the entire length of the electrode, and the point G P with reference to this point G P ′ (x, y) Since P ″ has been determined, when a stub is welded to this point G P ″, the stub is gripped by the stub clamp part, and the electrode is suspended in the mold, the electrode will be mold / stub clamp. The inclination with respect to the core G M (0, 0) of the part is 1.5 mm / m or less, and the variation in the side gap with the mold is minimized.

工程5: この工程では、工程4で決定された溶接点G''にスタブを配置したのち、スタブを電極の上端面に溶接する。
具体的には、コンピュータからの指令により、通り芯G(0,0)を原点座標とする座標系に基づいて動作するスタブ搬送手段でスタブを電極の上端面に搬送し、スタブの断面中心の座標と工程4で決定した溶接点の位置座標を一致させてスタブをそこに配置したのち、両者を溶接する。
Step 5: In this step, after placing the stub determined in step 4 the welding point G P '', welding the stub on the upper end face of the electrode.
Specifically, in response to a command from the computer, the stub is transported to the upper end surface of the electrode by the stub transporting means that operates based on the coordinate system having the core G M (0, 0) as the origin coordinate, and the cross-sectional center of the stub The coordinates of the welding point and the position coordinates of the welding point determined in step 4 are made to coincide with each other, and the stub is arranged there, and then both are welded.

本発明によれば、電極へのスタブの取付けはモールドの外で行なわれるので、モールド内への異物混入は防止されて得られた鋼塊の品質悪化は起こらない。したがって、電極へのスタブの取付けに際しては、炉運転を停止することが不要になり、炉回転の効率化と生産性の向上が可能となる。
また、電極上端面におけるスタブ溶接点の決定に際しては、コンピュータにより、モールド/スタブクランプ部の通り芯に対する電極の傾きが調整され、また電極とモールドとのサイドギャップのばらつきを最小にする点が計算され、その計算値に基づいてスタブ溶接点が自動的に決定されるので、従来の作業者による目視作業に比べてスタブと電極との芯合せの精度は向上し、品質低下のない鋼塊の製造が可能となる。
According to the present invention, since the stub is attached to the electrode outside the mold, the quality of the steel ingot obtained by preventing foreign matter from entering the mold does not deteriorate. Therefore, when attaching the stub to the electrode, it is not necessary to stop the furnace operation, and it is possible to increase the efficiency of the furnace rotation and improve the productivity.
Also, when determining the stub welding point on the upper end surface of the electrode, the computer adjusts the inclination of the electrode with respect to the core of the mold / stub clamp part, and calculates the point that minimizes the variation in the side gap between the electrode and the mold. Since the stub welding point is automatically determined based on the calculated value, the accuracy of aligning the stub with the electrode is improved compared to the visual work by a conventional worker, and the steel ingot without quality deterioration is obtained. Manufacture is possible.

倒立した電極の外側に測距センサを配置した状態を示す模式図である。It is a schematic diagram which shows the state which has arrange | positioned the ranging sensor on the outer side of the inverted electrode. ある計測点における電極断面図である。It is electrode sectional drawing in a certain measurement point. 測距センサと電極の外周面の距離と測距センサの旋回角度との関係を示すグラフである。It is a graph which shows the relationship between the distance of the outer peripheral surface of a ranging sensor and an electrode, and the turning angle of a ranging sensor. 画像処理した電極断面図とその外接円として描画された仮想モールド円を示す模式図である。It is a schematic diagram which shows the virtual mold circle drawn as an electrode processed sectional drawing and its circumscribed circle. 画像処理した電極断面と仮想モールド円が形成する仮想サイドギャップを計算するための説明図である。It is explanatory drawing for calculating the virtual side gap which an electrode cross section and the virtual mold circle which image-processed form. 電極の外周と仮想モールド円との間の仮想サイドギャップのばらつきを最小にする点G’(x,y)を決定するための説明図である。It is explanatory drawing for determining point GP '(x, y) which minimizes the dispersion | variation in the virtual side gap between the outer periphery of an electrode and a virtual mold circle. 通り芯に対する電極の傾きを示す模式図である。It is a schematic diagram which shows the inclination of the electrode with respect to a through-core. スタブの溶接点G''の決定を説明する説明図である。It is explanatory drawing explaining determination of the welding point GP '' of a stub.

符号の説明Explanation of symbols

1 電極
1a 電極1の上端面
2 測距センサ
A 電極断面図
計測された電極断面の外周
画像処理された電極断面の外周
B 仮想モールド円
Ln、Ln’ 仮想サイドギャップ
(0,0) モールド/スタブクランプ部の通り芯の原点座標
’(x,y) 仮想サイドギャップLn、Ln’のばらつきを最小にする点
'' スタブの溶接点
’(m,n) 仮想軸(Z)上の溶接点
DESCRIPTION OF SYMBOLS 1 Electrode 1a Upper end surface of the electrode 1 2 Ranging sensor A Electrode sectional drawing A 1 The outer periphery of the measured electrode cross section A 2 The outer periphery of the electrode cross section subjected to image processing B Virtual mold circle Ln, Ln ′ Virtual side gap G M (0 , 0) origin coordinates of the base line of the mold / stub clamp unit G P '(x, y) virtual side gap Ln, Ln' G P 'point to minimize the variation of' welding point of the stub G P '(m, n) Welding point on virtual axis (Z)

Claims (2)

再溶解炉のモールド内に電極を装入するに先立ち、前記電極の上端面にスタブを溶接するに際し、
電極長手方向の複数の計測点において、前記モールドとスタブクランプ部の通り芯を軸にして前記電極の外側を旋回する測距センサで、前記電極の外周面と前記測距センサとの間の距離を計測する工程1;
各計測点において、その計測情報に基づく画像処理を行い、前記通り芯の位置を原点座標とする電極断面図を描画し、描画された電極断面図内に存在するある点を中心点として前記モールドと同径の仮想モールド円を描画し、前記電極断面図と前記仮想モールド円の間に描画された仮想サイドギャップ間の差が前記電極断面図の全周において最小となるような前記中心点(G’)の座標を計算する工程2;
全ての前記電極断面図における前記中心点の座標を近似的に結んで電極の長手方向に仮想軸(Z)を描画し、電極の上端面における前記仮想軸(Z)の前記通り芯に対する傾きが1.5mm/m以下となるように電極の傾きを調整する工程3;
前記仮想軸(Z)の中心点(G'')の座標を、前記通り芯の原点座標に沿って電極の上端面まで垂直に移動させ、前記上端面における座標を溶接点の位置座標とする工程4;および、
前記通り芯を原点座標とする座標系を備えたスタブ搬送手段でスタブを前記溶接点に搬送したのち、その位置で、スタブを電極の上端面に溶接する工程5;
を備えていることを特徴とする、再溶解炉に用いる電極へのスタブの取付け方法。
Prior to inserting the electrode into the mold of the remelting furnace, when welding the stub to the upper end surface of the electrode,
A distance measuring sensor that pivots outside the electrode around the core of the mold and the stub clamp at a plurality of measurement points in the longitudinal direction of the electrode, and the distance between the outer peripheral surface of the electrode and the distance measuring sensor Measuring step 1;
At each measurement point, image processing based on the measurement information is performed, and an electrode cross-sectional view with the position of the core as the origin coordinate is drawn, and the mold is centered on a certain point existing in the drawn electrode cross-sectional view. A virtual mold circle having the same diameter as the center point such that a difference between a virtual side gap drawn between the electrode cross-sectional view and the virtual mold circle is minimized on the entire circumference of the electrode cross-sectional view ( Step 2 of calculating the coordinates of GP ′);
The virtual axis (Z) is drawn in the longitudinal direction of the electrode by approximately connecting the coordinates of the center point in all the electrode cross-sectional views, and the inclination of the virtual axis (Z) with respect to the core of the upper end surface of the electrode is Step 3 of adjusting the inclination of the electrode so as to be 1.5 mm / m or less;
The coordinate of the center point ( GP ″) of the virtual axis (Z) is vertically moved to the upper end surface of the electrode along the origin coordinate of the core, and the coordinate on the upper end surface is set as the position coordinate of the welding point. Performing step 4; and
A step 5 of welding the stub to the upper end surface of the electrode at the position after the stub is conveyed to the welding point by the stub conveying means having a coordinate system having the core as the origin coordinate;
A method for attaching a stub to an electrode used in a remelting furnace, comprising:
前記工程2において、前記仮想モールド円は前記電極断面図の外接円として描画される請求項1の、再溶解炉に用いる電極へのスタブの取付け方法。   The method of attaching a stub to an electrode used in a remelting furnace according to claim 1, wherein in the step 2, the virtual mold circle is drawn as a circumscribed circle of the electrode sectional view.
JP2005262213A 2005-09-09 2005-09-09 Attaching the stub to the electrode used in the remelting furnace Active JP4654850B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005262213A JP4654850B2 (en) 2005-09-09 2005-09-09 Attaching the stub to the electrode used in the remelting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005262213A JP4654850B2 (en) 2005-09-09 2005-09-09 Attaching the stub to the electrode used in the remelting furnace

Publications (2)

Publication Number Publication Date
JP2007069263A true JP2007069263A (en) 2007-03-22
JP4654850B2 JP4654850B2 (en) 2011-03-23

Family

ID=37931171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005262213A Active JP4654850B2 (en) 2005-09-09 2005-09-09 Attaching the stub to the electrode used in the remelting furnace

Country Status (1)

Country Link
JP (1) JP4654850B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013180299A (en) * 2012-02-29 2013-09-12 Mmc Superalloy Corp Device for erecting electrode bar for esr and method of manufacturing consumable electrode for esr
JP2016504198A (en) * 2013-11-13 2016-02-12 オウベル・アンド・デュヴァル Tool and associated apparatus and method for securing a coupling head over an electrode cast in a mold
CN108136493A (en) * 2015-07-27 2018-06-08 Ald真空技术有限责任公司 The melting apparatus of electroslag-again
CN113106265A (en) * 2021-04-08 2021-07-13 东北大学 High-nitrogen steel consumable electrode for pressurized electroslag remelting and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53137802A (en) * 1977-05-09 1978-12-01 Daido Steel Co Ltd Feed electricity method in electroslag redisolving
JPS5973150A (en) * 1982-10-18 1984-04-25 Kawasaki Steel Corp Production of composite steel ingot
JPS63235062A (en) * 1987-03-20 1988-09-30 Hitachi Ltd Production of orientated solidified cast ingot by electro slag remelting
JP2003041330A (en) * 2001-05-24 2003-02-13 Sumitomo Titanium Corp Method for melting titanium ingot

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53137802A (en) * 1977-05-09 1978-12-01 Daido Steel Co Ltd Feed electricity method in electroslag redisolving
JPS5973150A (en) * 1982-10-18 1984-04-25 Kawasaki Steel Corp Production of composite steel ingot
JPS63235062A (en) * 1987-03-20 1988-09-30 Hitachi Ltd Production of orientated solidified cast ingot by electro slag remelting
JP2003041330A (en) * 2001-05-24 2003-02-13 Sumitomo Titanium Corp Method for melting titanium ingot

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013180299A (en) * 2012-02-29 2013-09-12 Mmc Superalloy Corp Device for erecting electrode bar for esr and method of manufacturing consumable electrode for esr
JP2016504198A (en) * 2013-11-13 2016-02-12 オウベル・アンド・デュヴァル Tool and associated apparatus and method for securing a coupling head over an electrode cast in a mold
KR101758262B1 (en) 2013-11-13 2017-07-14 오베르 앤드 뒤발 Tool for fastening an attachment head to an electrode cast in a mould, associated installation and associated method
CN108136493A (en) * 2015-07-27 2018-06-08 Ald真空技术有限责任公司 The melting apparatus of electroslag-again
CN113106265A (en) * 2021-04-08 2021-07-13 东北大学 High-nitrogen steel consumable electrode for pressurized electroslag remelting and preparation method thereof
CN113106265B (en) * 2021-04-08 2021-12-14 东北大学 High-nitrogen steel consumable electrode for pressurized electroslag remelting and preparation method thereof

Also Published As

Publication number Publication date
JP4654850B2 (en) 2011-03-23

Similar Documents

Publication Publication Date Title
US9074881B2 (en) Measurement system, pipe handling system and method of joining pipe sections
JP6005299B2 (en) Robot system and control method of robot system
JP4654850B2 (en) Attaching the stub to the electrode used in the remelting furnace
JP5766895B1 (en) Turning control device and turning support program
JP2003326486A (en) Work positioning device
CN108655537A (en) A kind of robot compensates welding method automatically
JP2016024808A (en) Lathe-turning processing control device
JP2009045636A (en) Method of grinding slab, slab for hot rolling and method of manufacturing steel sheet using them
JP2007050447A (en) System and method for bending by robot
KR101701325B1 (en) Method and apparatus for casting
JP3234708B2 (en) Measuring method of offset amount of butt of welded pipe
JP5909649B2 (en) Component mounting method and component mounting system
JP2005342723A (en) Submerged arc welding method of steel plate, and submerged arc welding machine for manufacturing uoe steel tube
JP2002082710A (en) Method and system for bending
JP5045141B2 (en) Stub welding monitoring device
KR20150025553A (en) Calibration Method for Welding Torch Deformation of Welding Robot and Welding Robot System
JP5737744B2 (en) Footwear fusing system and fusing method
TWI808914B (en) Steel strip measurement method between mill inter-stands
US9919357B2 (en) Up-drawing continuous casting apparatus and up-drawing continuous casting method
JP3312809B2 (en) Casting core placing device
JP2006075894A (en) Workpiece mounting tool and welding method using the same
JPH06305764A (en) Method for fitting optical fiber preform
JP7459188B2 (en) Correction device and correction method
CN110508910B (en) Longitudinal bulkhead welding method
JP2966794B2 (en) Wafer positioning device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4654850

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150