JP2007069193A - Temperature responsive chromatography carrier, manufacturing method and temperature responsive chromatography method using the same - Google Patents

Temperature responsive chromatography carrier, manufacturing method and temperature responsive chromatography method using the same Download PDF

Info

Publication number
JP2007069193A
JP2007069193A JP2005291719A JP2005291719A JP2007069193A JP 2007069193 A JP2007069193 A JP 2007069193A JP 2005291719 A JP2005291719 A JP 2005291719A JP 2005291719 A JP2005291719 A JP 2005291719A JP 2007069193 A JP2007069193 A JP 2007069193A
Authority
JP
Japan
Prior art keywords
temperature
responsive
polymer
responsive chromatography
chromatography carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005291719A
Other languages
Japanese (ja)
Other versions
JP4950469B2 (en
Inventor
Mitsuo Okano
光夫 岡野
Akihiko Kikuchi
明彦 菊池
Jun Kobayashi
純 小林
Yoshikatsu Akiyama
義勝 秋山
Kenichi Nagase
健一 長瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2005291719A priority Critical patent/JP4950469B2/en
Publication of JP2007069193A publication Critical patent/JP2007069193A/en
Application granted granted Critical
Publication of JP4950469B2 publication Critical patent/JP4950469B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a temperature responsive chromatography carrier by the surface of which a polymer having hydration force changing within the temperature range of 0-80°C is fixed highly densely. <P>SOLUTION: A method for manufacturing the temperature responsive chromatography carrier comprises the steps of fixing an atom migrating radical polymerization initiator on the surface of a substrate and growing-and-reacting the polymer having hydration force changing within the temperature range of 0-80°C from the initiator by an atom migration radical method in the presence of a catalyst. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は温度という外的信号で、医薬品、生体関連物質(タンパク質、DNA、糖脂質等)及び細胞などの有用物を固体表面の相互作用を制御することで実施される液体クロマトグラフィ−用担体、製造方法及びそれを用いた温度応答性クロマトグラフィー法に関する。  The present invention is an external signal of temperature, and a carrier for liquid chromatography that is carried out by controlling the interaction of solid substances with useful substances such as pharmaceuticals, biological substances (proteins, DNA, glycolipids, etc.) and cells, The present invention relates to a production method and a temperature-responsive chromatography method using the same.

高速液体クロマトグラフィ−(HPLC)は移動相液体と固定相の組合せが多種多様であり、試料に応じて種々選択できるので、近年、種々の物質の分離、精製に利用されている。しかし、従来使用されているクロマトグラフィ−では固定相の表面構造は変化させずに、主に移動相中に含まれている溶質と固定相表面との相互作用を移動相の溶媒を変化させることによって行われている。例えば、多くの分野で使用されているHPLCにおいては、固定相としてシリカゲル等の担体を用いた順相系のカラムではヘキサン、アセトニトリル、クロロホルムなどの有機溶媒を移動相として使用しており、また水系で分離されるシリカゲル誘導体を担体として用いた逆相系のカラムではメタノ−ル、アセトニトリルなどの有機溶媒が使用されている。  High-performance liquid chromatography (HPLC) has a wide variety of combinations of mobile phase liquids and stationary phases, and can be selected variously according to the sample. Therefore, in recent years, it has been used for separation and purification of various substances. However, in the conventional chromatography, the surface structure of the stationary phase is not changed, and the interaction between the solute contained in the mobile phase and the stationary phase surface is mainly changed by changing the solvent of the mobile phase. Has been done. For example, in HPLC used in many fields, an organic solvent such as hexane, acetonitrile or chloroform is used as a mobile phase in a normal phase column using a carrier such as silica gel as a stationary phase, and an aqueous system. An organic solvent such as methanol or acetonitrile is used in the reverse phase column using the silica gel derivative separated in step 1 as a carrier.

また、陰イオン交換体あるいは陽イオン交換体を固定相とするイオン交換クロマトグラフィ−では外的イオン濃度あるいは種類を変化させて物質分離を行っている。近年遺伝子工学等の急速な進歩により、生理活性ペプチド、タンパク質、DNAなどが医薬品を含む様々な分野に広範囲にその利用が期待され、その分離・精製は極めて重要な課題となっている。特に、生理活性物質をその活性を損なうことなく分離・精製する技術の必要性が増大している。  In ion exchange chromatography using an anion exchanger or a cation exchanger as a stationary phase, substance separation is performed by changing the external ion concentration or type. In recent years, due to rapid progress in genetic engineering and the like, bioactive peptides, proteins, DNA, and the like are expected to be widely used in various fields including pharmaceuticals, and their separation and purification are extremely important issues. In particular, there is an increasing need for a technique for separating and purifying a physiologically active substance without impairing its activity.

しかし、従来の移動相に用いられている有機溶媒、酸、アルカリ、界面活性剤は生理活性物質の活性を損なうと同時に夾雑物となるために、そのシステムの改良が期待されている。また、このような物質の環境汚染の回避という面からもこれらの物質を用いない分離・精製システムが必要となっている。  However, since organic solvents, acids, alkalis, and surfactants used in conventional mobile phases impair the activity of physiologically active substances and at the same time become impurities, improvement of the system is expected. In addition, a separation / purification system that does not use these substances is required from the viewpoint of avoiding environmental pollution of such substances.

このような背景のもと、これまでに種々の検討がなされてきた。その中で特に特公平06−104061号公報で示される技術はそれらの基盤技術にあたる。ここでは、水に対する上限若しくは下限臨界溶解温度が0〜80℃であるポリマーで基材表面を被覆した細胞培養支持体上にて、細胞を上限臨界溶解温度以下又は下限臨界溶解温度以上で培養し、その後、上限臨界溶解温度以上又は下限臨界溶解温度以下にすることにより培養細胞を剥離する技術が記載されている。温度応答性ポリマーが生医学分野の細胞培養材料として初めて利用された例であるが、実は、細胞とは基材表面に付着する際、細胞は自ら接着性蛋白質を分泌しそれを介して付着する。従って、ここでの基材表面から細胞が剥離するという現象は、細胞が分泌した接着性蛋白質も基材表面から剥離することも含まれる。事実、この技術で得られた細胞を再播種したり、生体組織に移植したりするとき、この基材から剥離した細胞は基材や組織と良好に付着する。これは、剥離した細胞が培養時に分泌した接着性蛋白質をそのまま保持していることを意味している。すなわち、ここでの技術が本発明でいう温度変化で吸着した蛋白質を脱離させるという温度応答性クロマトグラフィー技術のコンセプトそのものである。  Under such background, various studies have been made so far. Among them, the technology disclosed in Japanese Patent Publication No. 06-104061 particularly corresponds to those basic technologies. Here, cells are cultured at a temperature not higher than the upper critical lysis temperature or higher than the lower critical lysis temperature on a cell culture support in which the substrate surface is coated with a polymer having an upper or lower critical lysis temperature of 0 to 80 ° C. with respect to water. Thereafter, a technique is described in which the cultured cells are detached by setting the temperature to the upper critical solution temperature or lower or the lower critical solution temperature or lower. This is the first example of a temperature-responsive polymer used as a cell culture material in the biomedical field. In fact, when cells adhere to the surface of a substrate, the cells secrete adhesive proteins and attach through them. . Therefore, the phenomenon that cells peel from the surface of the substrate here also includes the separation of the adhesive protein secreted by the cells from the surface of the substrate. In fact, when cells obtained by this technique are replated or transplanted into a living tissue, the cells detached from the substrate adhere well to the substrate or tissue. This means that the detached cells retain the adhesive protein secreted during culture. That is, the technique here is the concept of the temperature-responsive chromatography technique in which the protein adsorbed by the temperature change in the present invention is desorbed.

このような中、特開平05−133947号公報ではクロマトグラフィー担体として通常使われるシリカゲルやポリマーゲルへ固定化する検討がなされた。しかしながら、実施例を見る限り、実際にその担体を使ったときの溶質の分離した結果(分離チャート)は示されておらず、この担体を用いてどのような物質を分離できるのか、また具体的な課題についても何ら示されておらず、詳細は不明であった。  Under such circumstances, Japanese Patent Application Laid-Open No. 05-133947 has studied to immobilize on silica gel or polymer gel, which is usually used as a chromatography carrier. However, as far as the examples are concerned, the result of separation of the solute when actually using the carrier (separation chart) is not shown, and what kind of substance can be separated using this carrier, and more specifically There was no indication of any particular issues, and the details were unknown.

一方、特開平07−318551号公報では、シリカゲル表面に温度応答性ポリマーを固定化し、その担体を用いての実際に各種ステロイド類、さらにはリンパ球の分離例が示されている。実際にシリカゲル担体表面に固定化された温度応答性ポリマーの特性で各種ステロイド類、さらにはリンパ球を分離させられていることが明確に示されている。しかしながら、ここで例示されている温度応答性ポリマーの固定化法ではポリマーの嵩高さのため基材表面に0.7mg/m程度までしか固定化できず、クロマトグラフィー担体の機能が限られていた。基材表面に対する温度応答性ポリマーの固定化を詳細に設計し、従来技術を改善する革新的な技術が望まれていた。On the other hand, Japanese Patent Application Laid-Open No. 07-318551 discloses an example of actually separating various steroids and further lymphocytes by immobilizing a temperature-responsive polymer on a silica gel surface and using the carrier. It is clearly shown that various steroids and lymphocytes can be separated due to the characteristics of the temperature-responsive polymer actually immobilized on the silica gel carrier surface. However, the temperature-responsive polymer immobilization method exemplified here can immobilize only up to about 0.7 mg / m 2 on the substrate surface due to the bulk of the polymer, and the function of the chromatography carrier is limited. It was. Innovative techniques that improve the prior art by designing in detail the immobilization of temperature-responsive polymers to the substrate surface have been desired.

本発明は、上記のような従来技術の問題点を解決することを意図してなされたものである。すなわち、本発明は、従来技術と全く異なった発想からの新規な温度応答性クロマトグラフィー担体を提供することを目的とする。また、本発明は、そのような担体の製造方法を提供することを目的とする。さらにその担体を利用した温度応答性クロマトグラフィー法も提供することを目的とする。  The present invention has been made with the intention of solving the problems of the prior art as described above. That is, an object of the present invention is to provide a novel temperature-responsive chromatography carrier based on a completely different idea from the prior art. Another object of the present invention is to provide a method for producing such a carrier. It is another object of the present invention to provide a temperature-responsive chromatography method using the carrier.

本発明者らは上記課題を解決するために、種々の角度から検討を加えて、研究開発を行った。その結果、驚くべくことに、基材表面に0〜80℃の温度範囲内で水和力が変化するポリマーが0.08分子鎖/nm以上の割合で高密度に固定化した温度応答性クロマトグラフィー担体を利用すると従来技術より得たクロマトグラフィー担体に比べ、温度変化に対する変化量が著しく向上していることを見出した。本発明で示される技術は、従来技術からは全く予想し得なかったもので、従来技術には全くなかった新規なクロマトグイラフィーシステムへの発展が期待される。本発明はかかる知見に基づいて完成されたものである。In order to solve the above problems, the present inventors have studied and developed from various angles. As a result, surprisingly, the temperature responsiveness in which the polymer whose hydration power changes within the temperature range of 0 to 80 ° C. is immobilized on the substrate surface at a high density of 0.08 molecular chain / nm 2 or more. It has been found that when a chromatography carrier is used, the amount of change with respect to temperature change is significantly improved as compared with the chromatography carrier obtained from the prior art. The technology shown in the present invention was completely unpredictable from the prior art, and is expected to develop into a new chromatographic system that was not present in the prior art. The present invention has been completed based on such findings.

すなわち、本発明は、基材表面に0〜80℃の温度範囲内で水和力が変化するポリマーが0.08分子鎖/nm以上の割合で高密度に固定化されていることを特徴とする温度応答性クロマトグラフィー担体を提供する。
また、本発明は、基材表面に原子移動ラジカル重合開始剤を固定化し、その開始剤から触媒下で原子移動ラジカル法により0〜80℃の温度範囲内で水和力が変化するポリマーを成長反応させることを特徴とした上記温度応答性クロマトグラフィー担体の製造方法を提供する。
さらに、本発明はその温度応答性クロマトグラフィー担体を用いた温度応答性クロマトグラフィー法を提供する。
That is, the present invention is characterized in that a polymer whose hydration power changes within a temperature range of 0 to 80 ° C. is immobilized on the substrate surface at a high density at a rate of 0.08 molecular chain / nm 2 or more. A temperature-responsive chromatography carrier is provided.
In addition, the present invention immobilizes an atom transfer radical polymerization initiator on the substrate surface, and grows a polymer whose hydration power changes within a temperature range of 0 to 80 ° C. by the atom transfer radical method under the catalyst from the initiator. There is provided a method for producing the above-described temperature-responsive chromatography carrier, characterized by reacting.
Furthermore, the present invention provides a temperature-responsive chromatography method using the temperature-responsive chromatography carrier.

本発明に記載される温度応答性クロマトグラフィー担体により、新規な分離システムが提案される。このシステムを利用すれば、広範囲のペプチド、蛋白質、細胞を分離させられるようになる。  With the temperature-responsive chromatographic support described in the present invention, a novel separation system is proposed. Using this system, a wide range of peptides, proteins, and cells can be separated.

本発明者らは、上記の要望を満足すべく種々検討した結果、固定相の表面構造を、例えば温度などの外的条件を変化させることによって、移動相を変化させることなく移動層に溶解、もしくは分散した特定物と固定相表面との相互作用を変化させることにより分離・精製、濃縮する技術を開発し、本発明を完成したもので、本発明の目的は、外的条件を変化させることによって固定相の表面特性を可逆的に変化させ、これによって単一の水系移動相によって分離、精製、濃縮可能なクロマトグラフィ−方法及び該クロマトグラフィ−に使用する固定相としての充填剤を提供するものである。  As a result of various studies to satisfy the above-mentioned demands, the present inventors have dissolved the surface structure of the stationary phase in the mobile layer without changing the mobile phase, for example, by changing external conditions such as temperature. Alternatively, the present invention has been completed by developing a technique for separating, purifying and concentrating by changing the interaction between the dispersed specific substance and the stationary phase surface. The purpose of the present invention is to change external conditions. The present invention provides a chromatographic method capable of reversibly changing the surface characteristics of a stationary phase, thereby allowing separation, purification and concentration by a single aqueous mobile phase, and a packing material as a stationary phase used in the chromatography. is there.

本発明の要旨は、移動相を水系に固定したままで、固定相表面の特性を温度によって変化させることが可能である充填剤を用いて特定物の分離を行うことを特徴とするクロマトグラフィ−方法である。また、本発明はその温度応答性クロマトグラフィー担体の製造方法を提供する。さらに本発明ではそれを用いた温度応答性クロマトグラフィ−法を示す。即ち、本発明を用いることにより、外部温度を臨界温度以上にすることによってペプチドやタンパク質や細胞などの生体要素を分離することが可能となる。従って、この際、有機溶媒、酸、アルカリ、界面活性剤等の薬剤を全く用いないので、これらが夾雑物質となることを防ぎ、また、タンパク質や細胞などの機能を維持したままでの分析と同じに分離にも利用することができる。  The gist of the present invention is a chromatographic method characterized in that a specific substance is separated using a filler capable of changing the characteristics of the stationary phase surface with temperature while the mobile phase is fixed in an aqueous system. It is. The present invention also provides a method for producing the temperature-responsive chromatography carrier. Furthermore, the present invention shows a temperature-responsive chromatography method using the same. That is, by using the present invention, it is possible to separate biological elements such as peptides, proteins and cells by setting the external temperature to a critical temperature or higher. Therefore, at this time, since chemicals such as organic solvents, acids, alkalis and surfactants are not used at all, they can be prevented from becoming contaminants, and analysis while maintaining the functions of proteins and cells can be performed. The same can be used for separation.

従来のクロマトグラフィー法では1種類の移動相で種々の化合物が混じっている試料特に極性の大きく異なる複数の試料を分離・分析する場合、分離が困難であり、分離に要する時間が大変長くなってしまう。そのため、このような試料を扱う際には有機溶媒の量や種類を時間と共に連続的に変化させる溶媒グラディエント法或いは段階的に変化させるステップグラディエント法により分離を行っているが、本発明による温度グラディエント法或いはステップグラディエント法では有機溶媒を使用する代わりに単一の移動相でカラム温度を連続的或いは段階的に変化させることにより同様の分離を達成することが可能であり、この方法を採用することによって、上述の夾雑物の混入を防止し、タンパク質や細胞などの機能を維持したままで分離できると共に所望の成分を温度をコントロ−ルすることによって短時間で分離が可能なのである。  In the conventional chromatographic method, a sample containing various compounds in a single mobile phase, especially when separating and analyzing a plurality of samples having greatly different polarities, it is difficult to separate and the time required for the separation becomes very long. End up. Therefore, when handling such a sample, separation is performed by a solvent gradient method in which the amount and type of organic solvent are continuously changed over time or a step gradient method in which steps are changed step by step. However, the temperature gradient according to the present invention is used. In the method or step gradient method, it is possible to achieve the same separation by changing the column temperature continuously or stepwise with a single mobile phase instead of using an organic solvent. Thus, contamination of the above-mentioned contaminants can be prevented, separation can be performed while maintaining the functions of proteins and cells, and desired components can be separated in a short time by controlling the temperature.

以下に本発明を具体的に示す。本発明は基材表面に0〜80℃の温度範囲内で水和力が変化するポリマーが0.08分子鎖/nm以上の割合で高密度に固定化されている温度応答性クロマトグラフィー担体である。そして、この高密度固定化により担体表面に固定化されたポリマーの特性が顕著に発現する。その理由は、現時点では明確になっていないが、おそらく固定化されたポリマーが担体表面に高密度に存在するため、近傍のポリマー鎖と緊密に関係した結果と考えられるが、この理由は本発明の技術を何ら制約するものではない。The present invention is specifically shown below. The present invention relates to a temperature-responsive chromatographic support in which a polymer whose hydration power changes within a temperature range of 0 to 80 ° C. is immobilized at a high density at a rate of 0.08 molecular chain / nm 2 or more on the substrate surface. It is. And the characteristic of the polymer fix | immobilized on the support | carrier surface by this high-density fixation expresses notably. The reason for this is not clear at the present time, but it is considered that the immobilized polymer is present at a high density on the surface of the carrier, and is therefore closely related to the nearby polymer chain. There is no restriction on the technology.

本発明に用いる0〜80℃の温度範囲内で水和力が変化するポリマーは下限臨界溶解温度(LCST)を有するポリマー、上限臨界溶解温度(UCST)を有するポリマーが挙げられるが、それらのホモポリマー、コポリマー、或いは混合物のいずれであってもよい。このような高分子としては、例えば、特公平06−104061号公報に記載されているポリマーが挙げられる。具体的には、例えば、以下のモノマーの単独重合または共重合によって得られる。使用し得るモノマーとしては、例えば、(メタ)アクリルアミド化合物、N−(若しくはN,N−ジ)アルキル置換(メタ)アクリルアミド誘導体、またはビニルエーテル誘導体、ポリビニルアルコール部分酢化物が挙げられ、コポリマーの場合は、これらの中で任意の2種以上を使用することができる。更には、上記モノマー以外のモノマー類との共重合、ポリマー同士のグラフトまたは共重合、あるいはポリマー、コポリマーの混合物を用いてもよい。また、ポリマー本来の性質を損なわない範囲で架橋することも可能である。その際、分離される物質が生体物質であることから、分離が5℃〜50℃の範囲で行われるため、ポリマーとしては、ポリ−N−n−プロピルアクリルアミド(単独重合体の下限臨界溶解温度21℃)、ポリ−N−n−プロピルメタクリルアミド(同27℃)、ポリ−N−イソプロピルアクリルアミド(同32℃)、ポリ−N−イソプロピルメタクリルアミド(同43℃)、ポリ−N−シクロプロピルアクリルアミド(同45℃)、ポリ−N−エトキシエチルアクリルアミド(同約35℃)、ポリ−N−エトキシエチルメタクリルアミド(同約45℃)、ポリ−N−テトラヒドロフルフリルアクリルアミド(同約28℃)、ポリ−N−テトラヒドロフルフリルメタクリルアミド(同約35℃)、ポリ−N,N−エチルメチルアクリルアミド(同56℃)、ポリ−N,N−ジエチルアクリルアミド(同32℃)などが挙げられる。  Examples of the polymer whose hydration power changes within the temperature range of 0 to 80 ° C. used in the present invention include a polymer having a lower critical solution temperature (LCST) and a polymer having an upper critical solution temperature (UCST). It can be a polymer, copolymer, or mixture. Examples of such a polymer include polymers described in Japanese Patent Publication No. 06-104061. Specifically, for example, it can be obtained by homopolymerization or copolymerization of the following monomers. Examples of the monomer that can be used include (meth) acrylamide compounds, N- (or N, N-di) alkyl-substituted (meth) acrylamide derivatives, vinyl ether derivatives, and polyvinyl alcohol partially acetylated products. Of these, any two or more of them can be used. Furthermore, copolymerization with monomers other than the above monomers, grafting or copolymerization of polymers, or a mixture of polymers and copolymers may be used. Moreover, it is also possible to crosslink within a range that does not impair the original properties of the polymer. At that time, since the substance to be separated is a biological substance, the separation is carried out in the range of 5 ° C. to 50 ° C., and therefore the polymer is poly-Nn-propylacrylamide (lower critical solution temperature of homopolymer). 21 ° C), poly-Nn-propylmethacrylamide (27 ° C), poly-N-isopropylacrylamide (32 ° C), poly-N-isopropylmethacrylamide (43 ° C), poly-N-cyclopropyl Acrylamide (at 45 ° C), poly-N-ethoxyethylacrylamide (at about 35 ° C), poly-N-ethoxyethylmethacrylamide (at about 45 ° C), poly-N-tetrahydrofurfurylacrylamide (at about 28 ° C) , Poly-N-tetrahydrofurfuryl methacrylamide (about 35 ° C.), poly-N, N-ethylmethylacrylamide ( 56 ° C.), poly -N, N-diethyl acrylamide (the 32 ° C.), and the like.

本発明に用いられる親水性ポリマーとしては、ホモポリマー、コポリマーのいずれであっても良い。例えば、ポリアクリルアミド、ポリ−N、N−ジエチルアクリルアミド、ポリ−N、N−ジメチルアクリルアミド、ポリエチレンオキシド、ポリアクリル酸及びその塩、ポリヒドロキシエチルメタクリレート、ポリヒドロキシエチルアクリレート、ポリビニルアルコール、ポリビニルピロリドン、セルロース、カルボキシメチルセルロースなどの含水ポリマーなどが挙げられるが、特に制約されるものではない。  The hydrophilic polymer used in the present invention may be either a homopolymer or a copolymer. For example, polyacrylamide, poly-N, N-diethylacrylamide, poly-N, N-dimethylacrylamide, polyethylene oxide, polyacrylic acid and its salts, polyhydroxyethyl methacrylate, polyhydroxyethyl acrylate, polyvinyl alcohol, polyvinyl pyrrolidone, cellulose Examples thereof include water-containing polymers such as carboxymethyl cellulose, but are not particularly limited.

本発明では、上記ポリマーが高密度に固定化されている。その固定化程度は、単位面積あたりの分子鎖数にして、0.08分子鎖/nm以上が良く、好ましくは0.1分子鎖/nm以上が良く、さらに好ましくは0.12分子鎖/nm以上が良い。基材表面へのポリマーの固定化程度が0.08分子鎖/nm以下であると、従来法による基材表面へのポリマー固定化と同様に個々のポリマー鎖の特性が発現するだけで本発明の担体として好ましくない。固定化程度を示す数値の算出方法は特に限定されるものではないが、例えば同様な反応条件で基材表面に固定化されていないポリマーを作製し、そのポリマー鎖を分析することで求めた分子量とポリマーが固定化された担体の元素分析などから求めたポリマー固定化量から算出できる。In the present invention, the polymer is immobilized at a high density. The degree of immobilization is preferably 0.08 molecular chain / nm 2 or more, preferably 0.1 molecular chain / nm 2 or more, more preferably 0.12 molecular chain in terms of the number of molecular chains per unit area. / Nm 2 or more is preferable. If the degree of polymer immobilization on the surface of the substrate is 0.08 molecular chain / nm 2 or less, the characteristics of individual polymer chains can be expressed just like the polymer immobilization on the substrate surface by the conventional method. It is not preferred as the carrier of the invention. The calculation method of the numerical value indicating the degree of immobilization is not particularly limited, but for example, a molecular weight obtained by preparing a polymer that is not immobilized on the substrate surface under similar reaction conditions and analyzing the polymer chain And the amount of immobilized polymer obtained from elemental analysis of the carrier on which the polymer is immobilized.

被覆されるポリマーの分子量は0〜80℃の温度範囲内で水和力の変化が発現するに十分に大きな分子量であれば特に制約されるものではないが、ポリマー分子量は1000以上が良く、好ましくは2000以上、さらに好ましくは5000以上のものが良い。分子量が1000以下であると、分子量が低すぎるため、水和力の変化を発現できず好ましくない。また、分子量が5000以上であると、今度はポリマーの分子量が高すぎるため、分子そのものが嵩高くなり温度応答性が減少してしまうこととなり好ましくない。  The molecular weight of the polymer to be coated is not particularly limited as long as the molecular weight is sufficiently large to cause a change in hydration power within a temperature range of 0 to 80 ° C., but the polymer molecular weight is preferably 1000 or more, preferably Is 2,000 or more, more preferably 5,000 or more. A molecular weight of 1000 or less is not preferable because the molecular weight is too low and a change in hydration power cannot be expressed. Further, if the molecular weight is 5000 or more, the molecular weight of the polymer is too high, so that the molecule itself becomes bulky and the temperature responsiveness decreases, which is not preferable.

また、本発明で示すところの基材上へのポリマーの固定化量は0.8〜10.0mg/mの範囲が良く、好ましくは0.9〜8.0mg/mの範囲、さらに好ましくは1.0〜6.0mg/mの範囲が良い。0.8mg/m以下であると温度応答性が認められなくなり、また10.0mg/mより高い値であってもポリマーの嵩高さのため温度応答性が減少してしまうこととなり好ましくない。固定化量の測定は常法に従えば良く、例えば元素分析、ESCAを量などが挙げられるがいずれの方法を用いても良い。本発明で固定化されるポリマーの状態は特に限定されるものではなく、直鎖状のものでも良く、架橋状態のものでも良いが、温度に対する応答性を高めること、基材表面に高密度に固定化することを達成するには全社の直鎖状のものが好ましい。Furthermore, immobilization of the polymer onto the substrate at which in this invention may have a range of 0.8~10.0mg / m 2, preferably from 0.9~8.0mg / m 2, further The range of 1.0 to 6.0 mg / m 2 is preferable. If it is 0.8 mg / m 2 or less, the temperature responsiveness is not recognized, and even if the value is higher than 10.0 mg / m 2, the temperature responsiveness decreases due to the bulk of the polymer, which is not preferable. . The measurement of the amount of immobilization may be in accordance with a conventional method, for example, elemental analysis, the amount of ESCA may be mentioned, and any method may be used. The state of the polymer to be immobilized in the present invention is not particularly limited, and may be linear or cross-linked. In order to achieve immobilization, a straight-chain product of the whole company is preferable.

本発明では上述したポリマーをシリカゲル担体に固定化したものである。その固定化方法としては、特に制約されるものではないが、例えば基材表面に原子移動ラジカル重合開始剤を固定化し、その開始剤から触媒下で原子移動ラジカル法により0〜80℃の温度範囲内で水和力が変化するポリマーを成長反応させる方法があげられる。その際に使用する開始剤は特に限定されるものではないが、本発明のように基材がシリカやガラスの場合、例えば、1−トリクロロシリル−2−(m,p−クロロメチルフェニル)エタン、2−(4−クロロスルホニルフェニル)エチルトリメトキシシラン、(3−(2−ブロモイソブチリル)プロピル)ジメチルエトキシシランなどがあげられる。本発明では、この開始剤よりポリマー鎖を成長させる。その際の触媒としては特に限定されるものでないが、水和力が変わるポリマーとしてN−アルキル置換(メタ)アクリルアミド誘導体を選んだ場合、ハロゲン化銅(CuX)としてCuCl、CuBr等があげられる。また、そのハロゲン化銅に対するリガンド錯体も特に限定されるものではないが、トリス(2−(ジメチルアミノ)エチル)アミン(MeTREN)、N,N,N’’,N’’−ペンタメチルジエチレントリアミン(PMDETA)、1,1,4,7,10,10−ヘキサメチルトリエチレンテトラアミン(HMTETA)、1,4,8,11−テトラメチル 1,4,8,11−アザシクロテトラデカン(MeCyclam)、ビピリジン等があげられる。重合時に使用する溶媒も特に限定されるものではなく、例えばジメチルホルムアルデヒド(DMF)等があげられる。その他の重合時の開始剤濃度、ハロゲン化銅濃度、リガンド錯体濃度、反応温度、反応時間等は特に限定されるものではなく、目的に応じて変更して良い。さらに反応液の状態は静置させても攪拌しても良いが、担体表面に均一に固定化することを考えると後者の方が好ましい。In the present invention, the above-described polymer is immobilized on a silica gel carrier. The immobilization method is not particularly limited, but, for example, an atom transfer radical polymerization initiator is immobilized on the surface of the substrate, and the temperature range of 0 to 80 ° C. by the atom transfer radical method under the catalyst from the initiator. Among them, there is a method of growing and reacting a polymer whose hydration power changes. The initiator used in that case is not particularly limited, but when the substrate is silica or glass as in the present invention, for example, 1-trichlorosilyl-2- (m, p-chloromethylphenyl) ethane 2- (4-chlorosulfonylphenyl) ethyltrimethoxysilane, (3- (2-bromoisobutyryl) propyl) dimethylethoxysilane, and the like. In the present invention, polymer chains are grown from this initiator. The catalyst at that time is not particularly limited, but when an N-alkyl-substituted (meth) acrylamide derivative is selected as a polymer whose hydration power changes, Cu I Cl, Cu I as copper halide (Cu I X). Br and the like. The ligand complex for the copper halide is not particularly limited, but tris (2- (dimethylamino) ethyl) amine (Me 6 TREN), N, N, N ″, N ″ -pentamethyl. Diethylenetriamine (PMDETA), 1,1,4,7,10,10-hexamethyltriethylenetetraamine (HMTETA), 1,4,8,11-tetramethyl 1,4,8,11-azacyclotetradecane (Me) 4 Cyclam), bipyridine and the like. The solvent used in the polymerization is not particularly limited, and examples thereof include dimethylformaldehyde (DMF). Other initiator concentrations, copper halide concentrations, ligand complex concentrations, reaction temperatures, reaction times, and the like during polymerization are not particularly limited, and may be changed according to the purpose. Furthermore, the state of the reaction solution may be allowed to stand or be stirred, but the latter is preferred in view of the uniform fixation on the surface of the carrier.

本発明で使用する基材の形状は特に限定されるものではなく、例えば粒子状、平板状、管状のものがある。特に本発明の担体をクロマトグラフィー用の担体として用いる場合、担体としてはシリカゲルが良い。その際、細孔径は特に制約されるものではないが、50〜5000Åが良く、好ましく100〜1000Å、さらに好ましくは120〜500Åである。50Å以下であると分離できる溶質の分子量のかなり低いものだけが対象となり、また5000Å以上であると担体表面積が少なくなり分離が著しく悪くなる。  The shape of the base material used in the present invention is not particularly limited, and examples thereof include a particle shape, a flat plate shape, and a tubular shape. In particular, when the carrier of the present invention is used as a carrier for chromatography, silica gel is preferable as the carrier. At that time, the pore diameter is not particularly limited, but is preferably 50 to 5000 mm, preferably 100 to 1000 mm, and more preferably 120 to 500 mm. If the molecular weight is less than 50 kg, only the solute having a considerably low molecular weight is targeted, and if it is more than 5000 mm, the surface area of the carrier is reduced and the separation is remarkably deteriorated.

本発明では、こうして得られた温度応答性クロマトグラフィー担体をカラムに充填し、通常の液体クロマトグラフィー装置に取り付けて、液体クロマトグラフィーシステムとして利用される。その際、本発明の分離はカラム内に充填された担体の温度に影響される。その際、担体への温度の負荷方法は特に制約されないが、例えば担体を充填したカラムの全部、もしくは一部を所定の温度にしたアルミブロック、水浴、空気層、ジャケットなどに装着すること等が挙げられる。  In the present invention, the temperature-responsive chromatographic support thus obtained is packed in a column and attached to a normal liquid chromatography apparatus, and used as a liquid chromatography system. In that case, the separation of the present invention is affected by the temperature of the support packed in the column. At that time, the method of applying the temperature to the carrier is not particularly limited. For example, it is possible to attach the whole or part of the column packed with the carrier to an aluminum block, water bath, air layer, jacket or the like having a predetermined temperature. Can be mentioned.

その分離方法は特に限定されるものではないが、一例として、担体が充填されたカラムを一定の温度下で溶質の分離を行う方法が挙げられる。本発明の担体は温度によってその表面の特性が変わる。分離したい物質によっては、適正な一定温度に設定するだけで分離する場合もある。  Although the separation method is not particularly limited, an example is a method of separating a solute in a column packed with a carrier at a constant temperature. The surface of the carrier of the present invention varies depending on the temperature. Depending on the substance to be separated, it may be separated only by setting an appropriate constant temperature.

別の分離方法の一例としては、あらかじめ担体表面の特性が変わる温度を確認しておき、その温度を挟むようにして温度変化させながら溶質の分離を行っても良い。この場合、温度変化だけで担体表面の特性が大きく変わるので、溶質によってはシグナルの出てくる時間(保持時間)に大きな差が生じることが期待される。本発明の場合、この担体表面の特性が大きく変わる温度を挟むようにして分離することが最も効果的な利用方法である。  As an example of another separation method, the temperature at which the characteristics of the support surface change may be confirmed in advance, and the solute may be separated while changing the temperature so as to sandwich the temperature. In this case, since the characteristics of the support surface are greatly changed only by the temperature change, it is expected that a large difference occurs in the time (holding time) in which the signal appears depending on the solute. In the case of the present invention, it is the most effective utilization method that the separation is performed so as to sandwich a temperature at which the characteristics of the carrier surface greatly change.

その温度変化をさせる際、温度変化は溶質を流し始めてから1回もしくはそれ以上の回数で断続的に変化させても良く、連続的に変化させても良い。またそれらの方法を組み合わせても良い。その際の温度変化は、手動で行っても良く、プログラムに従って自動的に温度制御できる装置を利用しても構わない。  When changing the temperature, the temperature change may be changed intermittently once or more times after starting to flow the solute, or may be changed continuously. Moreover, you may combine those methods. The temperature change at that time may be performed manually, or an apparatus capable of automatically controlling the temperature according to a program may be used.

或いは、別の分離方法の一例としては、得られた温度応答性液体クロマトグラフィー担体に溶質を一度吸着させ、その後、温度を変えて担体表面の特性を変化させることで吸着した溶質を遊離させるような、キャッチアンドリリース法に基づいて利用する方法が挙げられる。その際に吸着させる溶質量は担体に吸着しうる量を超えていても良く、超えていなくても良い。いずれにせよ一度吸着させ、その後、温度を変えて担体表面の特性を変化させること吸着した溶質を遊離させる利用法である。  Alternatively, as an example of another separation method, the adsorbed solute is released by once adsorbing the solute on the obtained temperature-responsive liquid chromatography carrier and then changing the temperature and changing the characteristics of the surface of the carrier. The method of using based on the catch and release method is mentioned. In this case, the mass to be adsorbed may or may not exceed the amount that can be adsorbed on the carrier. In any case, the adsorption is performed once, and then the temperature is changed to change the characteristics of the surface of the carrier to release the adsorbed solute.

さらに、2種類以上の温度応答性液体クロマトグラフィー担体を同一カラム内に充填し担体表面の特性が変わる温度を挟むようにして温度変化させながら溶質の分離を行っても良い。この場合、例えば2種類の担体を利用した場合、3カ所の担体表面の異なる温度域が生じることとなり、この3カ所の温度を挟むようにして上述したような方法で温度変化させれば良いことになる。このことを2種類以上の温度応答性クロマトグラフィー担体を2本以上のカラム内に充填して行っても良い。  Furthermore, two or more types of temperature-responsive liquid chromatography carriers may be packed in the same column, and the solute may be separated while changing the temperature so as to sandwich the temperature at which the characteristics of the carrier surface change. In this case, for example, when two types of carriers are used, different temperature ranges are generated on the three surfaces of the carrier, and the temperature may be changed by the above-described method so as to sandwich these three temperatures. . This may be performed by packing two or more types of temperature-responsive chromatography carriers in two or more columns.

別の分離方法の一例としては、温度応答性液体クロマトグラフィー担体を用い、担体表面の特性が変わる温度を挟むようにしてカラム入口端温度とカラム出口端温度を設定し、カラム内の温度を入口端から出口端まで温度勾配をつけることで溶質の分離を行う方法が挙げられる。その段階的に温度を変える方法は特に限定されないが、例えばカラム入口端温度とカラム出口端温度を十分に監視しカラム全体を保温する方法、複数個の温度の異なるアルミブロックをつなげてカラムに接触させるような方法などが挙げられる。  As an example of another separation method, a temperature-responsive liquid chromatography carrier is used, the column inlet end temperature and the column outlet end temperature are set so as to sandwich the temperature at which the characteristics of the carrier surface change, and the temperature in the column is changed from the inlet end. A method of separating the solute by providing a temperature gradient to the outlet end can be mentioned. The method of changing the temperature step by step is not particularly limited. For example, the column inlet end temperature and the column outlet end temperature are monitored sufficiently to keep the entire column warm, and multiple aluminum blocks with different temperatures are connected to the column. The method of making it, etc. are mentioned.

本発明は以上に示してきたように移動層を固定したまま温度だけで溶質の分離を行えるものである。その際、移動相が100%水系が好ましいが、本発明の場合、担体表面に固定化されているポリマーの特性によるため移動相の組成には特に制約されるはなく、例えば移動相に溶媒含まれていても、pHを変えても、塩を含んでいても良い。その際、溶媒濃度を変え、溶媒グラジエント法を併用して本発明の担体を利用しても構わない。また、移動相が100%有機溶媒でも構わない。  In the present invention, as described above, the solute can be separated only by temperature while the moving bed is fixed. In that case, the mobile phase is preferably a 100% aqueous system, but in the case of the present invention, the composition of the mobile phase is not particularly limited because of the characteristics of the polymer immobilized on the surface of the carrier. For example, the mobile phase contains a solvent. Even if it changes, pH may be changed and the salt may be included. At that time, the carrier concentration of the present invention may be used in combination with a solvent gradient method by changing the solvent concentration. Further, the mobile phase may be 100% organic solvent.

以上に示してきた本発明の温度応答性クロマトグラフィー担体、及びそれを用いたクロマトグラフィー法を用いれば、医薬品、及びその代謝物、農薬、ペプチド、蛋白質、細胞を分離することができる。その際には、カラム内の温度を変化させるだけで簡便な操作だけで分離が達成できる。  By using the temperature-responsive chromatography carrier of the present invention described above and the chromatography method using the same, it is possible to separate pharmaceuticals and their metabolites, agricultural chemicals, peptides, proteins and cells. In that case, separation can be achieved by simple operation only by changing the temperature in the column.

以下に、本発明を実施例に基づいて更に詳しく説明するが、これらは本発明を何ら限定するものではない。  Hereinafter, the present invention will be described in more detail based on examples, but these do not limit the present invention in any way.

原子移動ラジカル重合(ATRP)開始剤の(m,p−クロロメチルフェニルエチル)エチルトリクロロシランを導入したシリカビーズ(平均粒径5μm、細孔径300Å)に、触媒としてCuCl、MeTREN存在下DMF中でATRPを行い、ポリ(N−イソプロピルアクリルアミド)(PIPAAm)ブラシをシリカ粒子表面に構築した。この際、ATRPを1〜20時間の間で実施し、反応時間によりPIPAAmグラフト量を制御した。これを充填したカラム(φ4.6×50mm)をHPLCシステムに接続し、恒温槽でカラム温度を制御しながらステロイドの溶出実験をおこなった。カラムから溶出するステロイドは254nmの吸収で検出した。DMF in the presence of CuCl and Me 6 TREN as catalysts was added to silica beads (average particle size 5 μm, pore size 300 mm) into which (m, p-chloromethylphenylethyl) ethyltrichlorosilane, an atom transfer radical polymerization (ATRP) initiator, was introduced. ATRP was performed in a poly (N-isopropylacrylamide) (PIPAAm) brush on the silica particle surface. At this time, ATRP was carried out for 1 to 20 hours, and the amount of PIPAAm grafting was controlled by the reaction time. A column (φ4.6 × 50 mm) packed with this was connected to an HPLC system, and steroid elution experiments were performed while controlling the column temperature in a thermostatic bath. Steroids eluting from the column were detected by absorption at 254 nm.

その結果、ATRP反応時間に伴いPIPAAmグラフト量は増加し、1.99〜4.40mg/mという従来法で得られた担体と比較して20〜80倍のPIPAAmグラフト量が得られた。得られた結果を図1に示す。次に、PIPAAmグラフト量の異なる三種類のシリカビーズを用いて30℃でステロイドの溶出実験を行った。グラフト量が大きくなるに従い、ステロイド保持時間は延長することが分かった。結果を図2に示す。これより、PIPAAmグラフト量をたかめることで、ステロイドとの疎水性相互作用を大きくすることができることが分かった。さらに、ATRP反応時間が3時間の担体をカラムに充填し、10℃から50℃までの温度変化を与え、ステロイドの溶出実験を実施した。その結果、図3に示す通りに10℃では重なっていた各ステロイドのピークが50℃では分離した。これは、シリカビーズ上に構築されたPIPAAmブラシが高温になるに従い脱水和を起こし、ステロイドと疎水性相互作用をするためであると推測される。また、このカラムを用いて、インスリンチェーンAとインスリンとの混合液に対し温度を変えながら分離を行った。得られた結果を図4に示す。低温では重なっていたピークが30℃で分離し始め、40℃でインスリンチェーンAとインスリンの分離が達成できた。以上より、本発明のPIPAAmブラシ構造のシリカビーズは、少ない表面積で温度により大きな疎水性相互作用を制御できるクロマトグラフィー担体であると考えられる。As a result, the amount of PIPAAm grafting increased with the ATRP reaction time, and a PIPAAm grafting amount of 1.80 to 4.40 mg / m 2 was obtained, which was 20 to 80 times that of the carrier obtained by the conventional method. The obtained results are shown in FIG. Next, steroid elution experiments were performed at 30 ° C. using three types of silica beads with different amounts of PIPAAm grafting. It was found that the steroid retention time increased as the graft amount increased. The results are shown in FIG. From this, it was found that the hydrophobic interaction with the steroid can be increased by increasing the PIPAAm graft amount. Further, a carrier having an ATRP reaction time of 3 hours was packed in a column, a temperature change from 10 ° C. to 50 ° C. was given, and a steroid elution experiment was performed. As a result, as shown in FIG. 3, the peaks of each steroid that overlapped at 10 ° C. were separated at 50 ° C. This is presumed to be because the PIPAAm brush constructed on silica beads dehydrates as the temperature rises, and hydrophobically interacts with the steroid. In addition, separation was performed using this column while changing the temperature of the mixed solution of insulin chain A and insulin. The obtained results are shown in FIG. Overlapping peaks began to separate at 30 ° C at low temperatures, and separation of insulin chain A and insulin could be achieved at 40 ° C. From the above, it is considered that the silica beads having the PIPAAm brush structure of the present invention are chromatography carriers capable of controlling a large hydrophobic interaction by temperature with a small surface area.

比較例1Comparative Example 1

(a)片末端にカルボキシル基を有するポリ(N−イソプロピルアクリルアミド)の合成法
N−イソプロピルアクリルアミド20.0g、3−メルカプトプロピオン酸0.09g、2,2’−アゾビス(イソブチロニトリル)0.21gをそれぞれ重合管にいれ、乾燥N,N−ジメチルホルムアミド50mlを加えて溶解した。次に液体窒素下で凍結した後真空オイルポンプで重合管中の酸素を脱気し、減圧状態のまま重合管をメタノールに浸しN,N−ジメチルホルムアミド中の溶存酸素を取り除いた。この凍結脱気の操作を3回繰り返し行った。脱気が完全にできたら70±1℃のインキュベーターで20時間反応させた。次に、室温まで下がったら減圧濃縮を行う乾燥ジエチルエーテル中に滴下させ片末端にカルボキシル基を持ったポリ(N−イソプロピルアクリルアミド)を沈殿させた。この沈殿物をPTFE(ポリテトラフルオロエチレン)フィルター(ポアサイズ3.0μm)で濾取し、シリカゲルを入れたデシケーター中で減圧乾燥をし、粗生成物19.0gが得られた。これを乾燥N,N’−ジメチルホルムアミド30mlに溶かした後、乾燥ジエチルエーテル中に滴下し、その沈殿物をテフロンフィルターで濾取した。これをデシケーター中で減圧乾燥をおこない精製ポリ(N−イソプルピルアクリルアミド)を得た。得られたポリマーはテトラヒドロフランを溶媒としたゲル濾過クロマトグラフィー及び酸−塩基測定によりポリ(N−イソプロピルアクリルアミド)が分子量15,000であり、分子末端に約1個のカルボキシル基を有することを確認した。
(A) Synthesis method of poly (N-isopropylacrylamide) having a carboxyl group at one end N-isopropylacrylamide 20.0 g, 3-mercaptopropionic acid 0.09 g, 2,2′-azobis (isobutyronitrile) 0 .21 g was added to each polymerization tube, and 50 ml of dry N, N-dimethylformamide was added and dissolved. Next, after freezing under liquid nitrogen, oxygen in the polymerization tube was degassed with a vacuum oil pump, and the polymerization tube was immersed in methanol in a reduced pressure state to remove dissolved oxygen in N, N-dimethylformamide. This freeze deaeration operation was repeated three times. When degassing was completed, the reaction was carried out in an incubator at 70 ± 1 ° C. for 20 hours. Next, when the temperature was lowered to room temperature, it was dropped into dry diethyl ether which was concentrated under reduced pressure to precipitate poly (N-isopropylacrylamide) having a carboxyl group at one end. This precipitate was collected by filtration with a PTFE (polytetrafluoroethylene) filter (pore size: 3.0 μm) and dried under reduced pressure in a desiccator containing silica gel to obtain 19.0 g of a crude product. This was dissolved in 30 ml of dry N, N′-dimethylformamide, dropped into dry diethyl ether, and the precipitate was collected by filtration with a Teflon filter. This was dried under reduced pressure in a desiccator to obtain purified poly (N-isopropylacrylamide). The obtained polymer was confirmed to have poly (N-isopropylacrylamide) having a molecular weight of 15,000 and having about 1 carboxyl group at the molecular end by gel filtration chromatography using tetrahydrofuran as a solvent and acid-base measurement. .

(b)片末端にカルボキシル基を有するポリ(N−イソプロピルアクリルアミド)の活性エステル化
精製ポリ(N−イソプロピルアクリルアミド)を11.35gを乾燥酢酸エチル100ml中に溶かし、ジシクロヘキシルカルボジイミド1.23g及びN−ヒドロキシこはく酸イミド0.69gを加えてよく攪拌しながら0℃で2時間、室温(20〜25℃)で12時間反応させた。次に副生成物であるN,N’−ジシクロヘキシル尿素をPTFEフィルターで濾取し、その濾液を減圧濃縮した後乾燥ジエチルエーテル中に滴下し沈殿したものをテフロンフィルターで濾取して、常温減圧で溶媒を留去したものについて、活性エステル化ポリ(N−イソプロピルアクリルアミド)を得た。
(B) Active esterification of poly (N-isopropylacrylamide) having a carboxyl group at one end. 11.35 g of purified poly (N-isopropylacrylamide) was dissolved in 100 ml of dry ethyl acetate, and 1.23 g of dicyclohexylcarbodiimide and N- Hydroxysuccinimide 0.69g was added and it was made to react at 0 degreeC for 2 hours, and room temperature (20-25 degreeC) for 12 hours, stirring well. Next, N, N'-dicyclohexylurea, which is a by-product, was filtered off with a PTFE filter, and the filtrate was concentrated under reduced pressure, then dropped into dry diethyl ether and precipitated, and filtered through a Teflon filter, and then cooled at room temperature. From which the solvent was distilled off, active esterified poly (N-isopropylacrylamide) was obtained.

(c)活性エステル化ポリ(N−イソプロピルアクリルアミド)とアミノ基担体との結合
活性エステル化ポリ(N−イソプロピルアクリルアミド)2.0gを純水50mlに溶かし、アミノプロピルシリカゲル6.0gを加え、12時間室温で激しく振とうして反応させた後冷水500mlで洗浄し、再び活性エステル化ポリ(N−イソプロピルアクリルアミド)2.0gを純水50mlに溶かした溶液中に加え、12時間室温で激しく振とうした。この操作を3回繰り返し、冷水500mlで洗浄した後、メタノール100mlで洗浄し、乾燥した。活性エステル化ポリ(N−イソプロピルアクリルアミド)3.0gを6mlのN,N−ジメチルホルムアミドに溶解し、これを表面に一級アミノ基を導入したポリスチレン微粒子浮遊液1ml(直径1.0±0.03μm、原液濃度:5×1011個/ml)を24mlの純水で希釈した液に1mlづつ30分間隔で加え、ゆっくりと転倒混和した。全量を加えた後、4℃以下で16時間転倒混和した。反応終了後、遠心分離による回収と冷純化による洗浄を2回繰り返した後、ハンクス平衡塩溶液(pH7.4)を用いて希釈した(6×10、6×1010/ml)。得られた担体のポリマー固定化量は0.78mg/mであった。本発明の方法がポリマーの高密度固定化に有用であることが分かった。
(C) Binding of active esterified poly (N-isopropylacrylamide) and amino group carrier 2.0 g of active esterified poly (N-isopropylacrylamide) was dissolved in 50 ml of pure water, and 6.0 g of aminopropyl silica gel was added. After vigorous shaking at room temperature, the reaction was washed with 500 ml of cold water, and 2.0 g of active esterified poly (N-isopropylacrylamide) was again added to a solution of 50 ml of pure water and shaken vigorously at room temperature for 12 hours. That ’s it. This operation was repeated three times, washed with 500 ml of cold water, then washed with 100 ml of methanol and dried. Dissolve 3.0 g of active esterified poly (N-isopropylacrylamide) in 6 ml of N, N-dimethylformamide and add 1 ml of polystyrene fine particle suspension with a primary amino group on the surface (diameter: 1.0 ± 0.03 μm) , Stock solution concentration: 5 × 10 11 / ml) was added to a solution diluted with 24 ml of pure water at intervals of 30 minutes every 1 ml, and slowly mixed by inversion. After the entire amount was added, it was mixed by inverting at 4 ° C. or lower for 16 hours. After completion of the reaction, collection by centrifugation and washing by cold purification were repeated twice, followed by dilution with Hanks balanced salt solution (pH 7.4) (6 × 10 9 , 6 × 10 10 / ml). The polymer immobilization amount of the obtained carrier was 0.78 mg / m 2 . It has been found that the method of the present invention is useful for high density immobilization of polymers.

本発明によれば、基材表面に0〜80℃の温度範囲内で水和力が変化するポリマーが高密度に固定化された温度応答性クロマトグラフィー担体が得られる。この担体を利用すると温度変化に対する基材表面の変化量が著しく向上する。そのため分離操作が簡便となり、分離作業の効率性が良くなる。この分離対象としては、例えば広範囲のペプチド、蛋白質、細胞への利用が強く期待される。したがって、本発明は医学、生物学等の分野における極めて有用な発明である。  According to the present invention, it is possible to obtain a temperature-responsive chromatographic support in which a polymer whose hydration power changes within a temperature range of 0 to 80 ° C. is immobilized at a high density on the substrate surface. When this carrier is used, the amount of change of the substrate surface with respect to temperature change is significantly improved. As a result, the separation operation is simplified and the efficiency of the separation work is improved. As this separation object, utilization to a wide range of peptides, proteins and cells is strongly expected. Therefore, the present invention is extremely useful in the fields of medicine and biology.

実施例1に示す反応時間を変えたときのPIPAAmグラフト量を示した図である。  It is the figure which showed the amount of PIPAAm grafting when the reaction time shown in Example 1 was changed. 実施例1に示す担体の種類を変えながらステロイドの分離をした図である。  It is the figure which isolate | separated steroid, changing the kind of support | carrier shown in Example 1. FIG. 実施例1に示す分離温度を変えながらステロイドの分離をした図である。  It is the figure which isolate | separated the steroid, changing the separation temperature shown in Example 1. FIG. 実施例1に示す分離温度を変えながらインスリンチェーンAとインスリンの分離をした図である。  It is the figure which isolate | separated the insulin chain A and insulin, changing the isolation | separation temperature shown in Example 1. FIG.

Claims (21)

基材表面に0〜80℃の温度範囲内で水和力が変化するポリマーが0.08分子鎖/nm以上の割合で高密度に固定化されていることを特徴とする温度応答性クロマトグラフィー担体。A temperature-responsive chromatography characterized in that a polymer whose hydration power changes within a temperature range of 0 to 80 ° C. is immobilized at a high density at a rate of 0.08 molecular chain / nm 2 or more on the substrate surface. Graphy carrier. 基材表面のポリマー固定化量が0.8〜10.0mg/mである、請求項1記載の温度応答性クロマトグラフィー担体。Polymer immobilization of the substrate surface is 0.8~10.0mg / m 2, claim 1 temperature responsive chromatography carrier according. ポリマー分子鎖が非架橋である、請求項1、2いずれか1項記載の温度応答性クロマトグラフィー担体。The temperature-responsive chromatography carrier according to any one of claims 1 and 2, wherein the polymer molecular chain is non-crosslinked. ポリマーが、ポリ−N−置換アクリルアミド誘導体、ポリ−N−置換メタアクリルアミド誘導体、これらの共重合体、ポリビニルメチルエーテル、ポリビニルアルコール部分酢化物のいずれか一つ、もしくは二つ以上からなる、請求項1〜3いずれか1項記載の温度応答性クロマトグラフィー担体。The polymer is composed of any one or two or more of poly-N-substituted acrylamide derivatives, poly-N-substituted methacrylamide derivatives, copolymers thereof, polyvinyl methyl ether, and polyvinyl alcohol partially acetylated products. The temperature-responsive chromatography carrier according to any one of 1 to 3. ポリマーが、ポリ−N−イソプロピルアクリルアミドである、請求項1〜4いずれか1項記載の温度応答性クロマトグラフィー担体。The temperature-responsive chromatography carrier according to any one of claims 1 to 4, wherein the polymer is poly-N-isopropylacrylamide. ポリマーが、ポリマー分子鎖内に0〜80℃の温度範囲内で水和力が変化する性質が失われない範囲で親水性分子、疎水性分子、イオン性分子が含まれた共重合物である、請求項4、5記載いずれか1項記載の温度応答性クロマトグラフィー担体。The polymer is a copolymer in which hydrophilic molecules, hydrophobic molecules, and ionic molecules are included in the polymer molecular chain as long as the property of changing hydration power within the temperature range of 0 to 80 ° C. is not lost. The temperature-responsive chromatography carrier according to any one of claims 4 and 5. 基材形状が粒子状、平板状、管状である、請求項1〜6いずれか1項記載の温度応答性クロマトグラフィー担体。The temperature-responsive chromatography carrier according to any one of claims 1 to 6, wherein the substrate has a particle shape, a flat plate shape, or a tubular shape. 基材表面に原子移動ラジカル重合開始剤を固定化し、その開始剤から触媒下で原子移動ラジカル法により0〜80℃の温度範囲内で水和力が変化するポリマーを成長反応させることを特徴とする温度応答性クロマトグラフィー担体製造方法。It is characterized in that an atom transfer radical polymerization initiator is immobilized on the surface of a substrate, and a polymer whose hydration power changes within a temperature range of 0 to 80 ° C. by the atom transfer radical method from the initiator under a catalyst. A method for producing a temperature-responsive chromatography carrier. 原子移動ラジカル重合開始剤が、2−(m,p−クロロメチルフェニルエチル)エチルトリクロロシランである、請求項8記載の温度応答性クロマトグラフィー担体製造方法。The method for producing a temperature-responsive chromatography carrier according to claim 8, wherein the atom transfer radical polymerization initiator is 2- (m, p-chloromethylphenylethyl) ethyltrichlorosilane. 原子移動ラジカル重合開始剤が0.08分子鎖/nm以上の割合で高密度に固定化されていることを特徴とする請求項8、9いずれか1項記載の温度応答性クロマトグラフィー担体製造方法。10. The temperature-responsive chromatography carrier production according to claim 8, wherein the atom transfer radical polymerization initiator is immobilized at a high density at a rate of 0.08 molecular chain / nm 2 or more. Method. 重合触媒が、ハロゲン化銅として塩化銅、リガンド錯体としてトリス(2−(ジメチルアミノ)エチル)アミンである、請求項8〜10いずれか1項記載の温度応答性クロマトグラフィー担体製造方法。The temperature-responsive chromatography carrier production method according to any one of claims 8 to 10, wherein the polymerization catalyst is copper chloride as copper halide and tris (2- (dimethylamino) ethyl) amine as a ligand complex. 基材表面のポリマー固定化量が0.8〜10.0mg/mとなる、請求項8〜11いずれか1項記載の温度応答性クロマトグラフィー担体製造方法。Polymer immobilization of the substrate surface is 0.8~10.0mg / m 2, claim 8 to 11 temperature responsive chromatography carrier manufacturing method according to any one. ポリマー分子鎖が非架橋である、請求項8〜12いずれか1項記載の温度応答性クロマトグラフィー担体製造方法。The method for producing a temperature-responsive chromatography carrier according to any one of claims 8 to 12, wherein the polymer molecular chain is non-crosslinked. ポリマーが、ポリ−N−置換アクリルアミド誘導体、ポリ−N−置換メタアクリルアミド誘導体、これらの共重合体、ポリビニルメチルエーテル、ポリビニルアルコール部分酢化物のいずれか一つ、もしくは二つ以上からなる、請求項8〜13いずれか1項記載の温度応答性クロマトグラフィー担体製造方法。The polymer is composed of any one or two or more of poly-N-substituted acrylamide derivatives, poly-N-substituted methacrylamide derivatives, copolymers thereof, polyvinyl methyl ether, and polyvinyl alcohol partially acetylated products. The method for producing a temperature-responsive chromatography carrier according to any one of 8 to 13. 基材がシリカゲル粒子、ガラス板、ガラス粒子である、請求項8〜14いずれか1項記載の温度応答性クロマトグラフィー担体製造方法。The temperature-responsive chromatography carrier production method according to any one of claims 8 to 14, wherein the substrate is silica gel particles, glass plates, or glass particles. 請求項1〜7記載の温度応答性クロマトグラフィー担体表面の特性が変わる温度を挟むようにして温度変化させながら特定物を分離、又は濃縮することを特徴とする温度応答性クロマトグラフィー法。A temperature-responsive chromatography method comprising separating or concentrating a specific substance while changing the temperature so as to sandwich the temperature at which the surface characteristics of the temperature-responsive chromatography carrier according to claim 1 change. 請求項1〜7記載の温度応答性クロマトグラフィー担体に特定物を吸着させ、その後、温度を変えて担体表面の特性を変化させることで吸着した特定物を遊離させることを特徴とする請求項16記載の温度応答性クロマトグラフィー法。18. The specific substance is adsorbed on the temperature-responsive chromatography carrier according to claim 1 and then the adsorbed specific substance is liberated by changing the temperature and changing the characteristics of the surface of the carrier. The temperature-responsive chromatography method described. 請求項1〜7記載の温度応答性クロマトグラフィー担体2種以上を同一カラム内に充填し担体表面の特性が変わる温度を挟むようにして温度変化させながら特定物の分離を行うことを特徴とする請求項16、17いずれか1項記載の温度応答性クロマトグラフィー法。A specific substance is separated while changing the temperature so that two or more types of temperature-responsive chromatographic supports according to claims 1 to 7 are packed in the same column and the temperature at which the characteristics of the support surface change is sandwiched. The temperature-responsive chromatography method according to any one of claims 16 and 17. 請求項1〜7記載の温度応答性クロマトグラフィー担体を用い、担体表面の特性が変わる温度を挟むようにしてカラム入口端温度とカラム出口端温度を設定し、カラム内は入口端から出口端まで温度勾配をつけることで特定物の分離を行うことを特徴とする請求項16〜18いずれか1項記載の温度応答性クロマトグラフィー法。Using the temperature-responsive chromatography carrier according to claim 1, the column inlet end temperature and the column outlet end temperature are set so as to sandwich the temperature at which the characteristics of the carrier surface change, and the temperature gradient in the column from the inlet end to the outlet end The temperature-responsive chromatographic method according to any one of claims 16 to 18, wherein the specific substance is separated by attaching. 移動相が水系である、請求項16〜19いずれか1項記載の温度応答性クロマトグラフィー法。The temperature-responsive chromatography method according to any one of claims 16 to 19, wherein the mobile phase is an aqueous system. 特定物が医薬品、もしくはその代謝物、農薬、ペプチド、蛋白質、細胞である、請求項16〜20記載の温度応答性クロマトグラフィー法。The temperature-responsive chromatography method according to claim 16 to 20, wherein the specific substance is a pharmaceutical product, a metabolite thereof, an agrochemical, a peptide, a protein, or a cell.
JP2005291719A 2005-09-02 2005-09-02 Temperature-responsive chromatography carrier, production method and temperature-responsive chromatography method using the same Expired - Fee Related JP4950469B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005291719A JP4950469B2 (en) 2005-09-02 2005-09-02 Temperature-responsive chromatography carrier, production method and temperature-responsive chromatography method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005291719A JP4950469B2 (en) 2005-09-02 2005-09-02 Temperature-responsive chromatography carrier, production method and temperature-responsive chromatography method using the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011103291A Division JP2011174944A (en) 2011-05-02 2011-05-02 Method for manufacturing temperature-responsive chromatography carrier and temperature-responsive chromatography carrier manufactured by the same

Publications (2)

Publication Number Publication Date
JP2007069193A true JP2007069193A (en) 2007-03-22
JP4950469B2 JP4950469B2 (en) 2012-06-13

Family

ID=37931109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005291719A Expired - Fee Related JP4950469B2 (en) 2005-09-02 2005-09-02 Temperature-responsive chromatography carrier, production method and temperature-responsive chromatography method using the same

Country Status (1)

Country Link
JP (1) JP4950469B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008241679A (en) * 2007-03-27 2008-10-09 Cellseed Inc Separation method of physiologically active polymeric substance
JP2009085933A (en) * 2007-09-27 2009-04-23 Mitsuo Okano Temperature-responsive chromatography carrier manufacturing method, chromatography carrier obtained from the method, and utilizing method of the carrier
JP2009160495A (en) * 2007-12-28 2009-07-23 Tokyo Institute Of Technology Separating agent and its manufacturing method
WO2011024963A1 (en) * 2009-08-27 2011-03-03 学校法人 東京女子医科大学 Temperature-responsive cell culture substrate on which a straight-chain temperature-responsive polymer is immobilized, and manufacturing method therefor
WO2012023615A1 (en) 2010-08-20 2012-02-23 ダイセル化学工業株式会社 Fine particles for chromatography and chromatography using same
JP2012131928A (en) * 2010-12-22 2012-07-12 Asahi Kasei Chemicals Corp Film-formable organic-inorganic complex, and method for production thereof
JP2012165730A (en) * 2011-02-12 2012-09-06 Tokyo Women's Medical College Temperature-responsive cell culture substrate to which straight chain temperature responsive polymer is immobilized, and method for producing the same
WO2012121408A1 (en) 2011-03-10 2012-09-13 株式会社セルシード Temperature-responsive monolithic porous body, method for producing same, and temperature-responsive chromatography method using same
WO2014171437A1 (en) 2013-04-16 2014-10-23 旭化成メディカル株式会社 Method for purifying antibody protein
JP2016033522A (en) * 2015-12-09 2016-03-10 株式会社セルシード Temperature-responsive monolithic porous body, manufacturing method thereof, and temperature-responsive chromatography method using the same
US9643174B2 (en) 2010-12-17 2017-05-09 Asahi Kasei Medical Co., Ltd. Temperature responsive adsorbent having a strong cation exchange group and method for producing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06104061B2 (en) * 1989-02-10 1994-12-21 花王株式会社 Cell culture support material
WO1999061904A1 (en) * 1998-05-22 1999-12-02 Amersham Pharmacia Biotech K. K. Packing material for chromatography having novel characteristic and method for isolation of substance using the same
JP2004331776A (en) * 2003-05-06 2004-11-25 Japan Organo Co Ltd Graft-modified organic porous body and its manufacturing process

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06104061B2 (en) * 1989-02-10 1994-12-21 花王株式会社 Cell culture support material
WO1999061904A1 (en) * 1998-05-22 1999-12-02 Amersham Pharmacia Biotech K. K. Packing material for chromatography having novel characteristic and method for isolation of substance using the same
JP2004331776A (en) * 2003-05-06 2004-11-25 Japan Organo Co Ltd Graft-modified organic porous body and its manufacturing process

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008241679A (en) * 2007-03-27 2008-10-09 Cellseed Inc Separation method of physiologically active polymeric substance
JP2009085933A (en) * 2007-09-27 2009-04-23 Mitsuo Okano Temperature-responsive chromatography carrier manufacturing method, chromatography carrier obtained from the method, and utilizing method of the carrier
JP2009160495A (en) * 2007-12-28 2009-07-23 Tokyo Institute Of Technology Separating agent and its manufacturing method
EP2471899A4 (en) * 2009-08-27 2013-02-06 Univ Tokyo Womens Medical Temperature-responsive cell culture substrate on which a straight-chain temperature-responsive polymer is immobilized, and manufacturing method therefor
JP2016073281A (en) * 2009-08-27 2016-05-12 学校法人東京女子医科大学 Temperature responsive cell culture substrate to which straight chain temperature responsive polymer is immobilized, and production method thereof
EP2471899A1 (en) * 2009-08-27 2012-07-04 Tokyo Women's Medical University Temperature-responsive cell culture substrate on which a straight-chain temperature-responsive polymer is immobilized, and manufacturing method therefor
JPWO2011024963A1 (en) * 2009-08-27 2013-01-31 学校法人東京女子医科大学 Temperature-responsive cell culture substrate on which linear temperature-responsive polymer is immobilized, and method for producing the same
WO2011024963A1 (en) * 2009-08-27 2011-03-03 学校法人 東京女子医科大学 Temperature-responsive cell culture substrate on which a straight-chain temperature-responsive polymer is immobilized, and manufacturing method therefor
WO2012023615A1 (en) 2010-08-20 2012-02-23 ダイセル化学工業株式会社 Fine particles for chromatography and chromatography using same
CN103038268A (en) * 2010-08-20 2013-04-10 株式会社大赛璐 Fine particles for chromatography and chromatography using same
US9643173B2 (en) 2010-12-17 2017-05-09 Asahi Kasei Medical Co., Ltd. Temperature responsive adsorbent having a strong cation exchange group and method for producing the same
US9643174B2 (en) 2010-12-17 2017-05-09 Asahi Kasei Medical Co., Ltd. Temperature responsive adsorbent having a strong cation exchange group and method for producing the same
JP2012131928A (en) * 2010-12-22 2012-07-12 Asahi Kasei Chemicals Corp Film-formable organic-inorganic complex, and method for production thereof
JP2012165730A (en) * 2011-02-12 2012-09-06 Tokyo Women's Medical College Temperature-responsive cell culture substrate to which straight chain temperature responsive polymer is immobilized, and method for producing the same
WO2012121408A1 (en) 2011-03-10 2012-09-13 株式会社セルシード Temperature-responsive monolithic porous body, method for producing same, and temperature-responsive chromatography method using same
EP2685256A4 (en) * 2011-03-10 2014-09-10 Cellseed Inc Temperature-responsive monolithic porous body, method for producing same, and temperature-responsive chromatography method using same
EP2685256A1 (en) * 2011-03-10 2014-01-15 CellSeed Inc. Temperature-responsive monolithic porous body, method for producing same, and temperature-responsive chromatography method using same
WO2014171437A1 (en) 2013-04-16 2014-10-23 旭化成メディカル株式会社 Method for purifying antibody protein
US10400007B2 (en) 2013-04-16 2019-09-03 Asahi Kasei Medical Co., Ltd. Method for purifying antibody protein
JP2016033522A (en) * 2015-12-09 2016-03-10 株式会社セルシード Temperature-responsive monolithic porous body, manufacturing method thereof, and temperature-responsive chromatography method using the same

Also Published As

Publication number Publication date
JP4950469B2 (en) 2012-06-13

Similar Documents

Publication Publication Date Title
JP4950469B2 (en) Temperature-responsive chromatography carrier, production method and temperature-responsive chromatography method using the same
JP7049487B2 (en) Temperature-responsive substrate for cell culture
Jain et al. Protein purification with polymeric affinity membranes containing functionalized poly (acid) brushes
US20170067861A1 (en) Temperature-responsive monolithic porous body, method for producing same, and temperature-responsive chromatography method using same
JP4532736B2 (en) Chromatographic packing material having novel characteristics and method for separating substances using the same
JP5234727B2 (en) Method for producing temperature-responsive chromatographic carrier, chromatographic carrier obtained therefrom, and use thereof
Altıntaş et al. Use of magnetic poly (glycidyl methacrylate) monosize beads for the purification of lysozyme in batch system
JP2015232573A (en) Pretreatment cartridge for substance separation and pretreatment method utilizing the same
JP5631271B2 (en) Method for making and using improved chromatographic media
JPH07318551A (en) Chromatography and filler therefor
EP1194228A1 (en) Affinity-controlling material with the use of stimulus-responsive polymer and separation/purification method with the use of the material
JP2011174944A (en) Method for manufacturing temperature-responsive chromatography carrier and temperature-responsive chromatography carrier manufactured by the same
JP4422540B2 (en) Temperature responsive surface and its use
JP2016033522A (en) Temperature-responsive monolithic porous body, manufacturing method thereof, and temperature-responsive chromatography method using the same
JP4422541B2 (en) Temperature-responsive liquid chromatography carrier and liquid chromatography method using the same
JP4422542B2 (en) Method for producing temperature-responsive liquid chromatography carrier
JP6313822B2 (en) Temperature-responsive cell culture beads and method for producing the same
CN106674443B (en) A kind of glucan-poly hydroxy ethyl acrylate base continuous bed crystalloid colloid separating medium and preparation method thereof
JP2020511306A (en) Ligand-bound MBP membrane, use and manufacturing method

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080826

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080827

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080826

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090408

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110111

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110502

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110615

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20110805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120119

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120309

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4950469

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees