JP2007068297A - Gas power generation equipment and fuel cell system combined with gas power generation equipment - Google Patents

Gas power generation equipment and fuel cell system combined with gas power generation equipment Download PDF

Info

Publication number
JP2007068297A
JP2007068297A JP2005249506A JP2005249506A JP2007068297A JP 2007068297 A JP2007068297 A JP 2007068297A JP 2005249506 A JP2005249506 A JP 2005249506A JP 2005249506 A JP2005249506 A JP 2005249506A JP 2007068297 A JP2007068297 A JP 2007068297A
Authority
JP
Japan
Prior art keywords
gas
power generation
cooling medium
passage
gas power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005249506A
Other languages
Japanese (ja)
Inventor
Naokazu Iwanade
直和 岩撫
Naruhito Kondo
成仁 近藤
Osamu Tsuneoka
治 常岡
Yasuharu Igarashi
安治 五十嵐
Tadahiko Ono
忠彦 小野
Kazuki Tateyama
和樹 舘山
Takahiro Sogo
敬寛 十河
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2005249506A priority Critical patent/JP2007068297A/en
Publication of JP2007068297A publication Critical patent/JP2007068297A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide gas power generation equipment and a fuel cell system combined with gas power generation equipment wherein when the thermal energy of gas is converted into electrical energy, the efficiency of thermoelectric conversion is further enhanced. <P>SOLUTION: The gas power generation equipment is provided with a passage partitioning portion 29 including: a gas passage 23 that lets high-temperature gas through the central part in its body barrel 21; and a thermoelectric conversion module housing section 31. The thermoelectric conversion module housing section is defined by a cooling medium passage wall 32 outside the gas passage 23, and houses a thermoelectric conversion module 1 constructed of a p-type semiconductor chip 2 and an n-type semiconductor chip 3. The gas power generation equipment is further provided with a cooling medium passage 28a that adjoins the passage partitioning portion 29 and lets a cooling medium through so that the cooling medium intersects the flow of the high-temperature gas and meanders. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、高温ガスの持つ熱エネルギを電気エネルギに変換させる際、より一層熱電変換効率を向上を図ったガス発電装置およびガス発電装置と組み合せた燃料電池システムに関する。   The present invention relates to a gas power generator that further improves thermoelectric conversion efficiency when converting thermal energy of a high-temperature gas into electric energy, and a fuel cell system combined with the gas power generator.

近時、人類のエネルギ消費量が歴史的に例を見ないほど加速されており、CO等の温室効果ガスによる地球温暖化が深刻な社会問題としてクローズアップされ、CO発生をできるだけ抑制する施策が世界中から求められている。 Recently, human energy consumption has been accelerated to an unprecedented level, and global warming due to greenhouse gases such as CO 2 has been highlighted as a serious social problem, and CO 2 generation is suppressed as much as possible. Measures are required from all over the world.

このような要望の中、省エネルギの観点から、廃熱の有効活用の研究開発が進められており、その中でも、中小規模の廃熱利用が注目されている。   Under such demands, research and development of effective use of waste heat is being promoted from the viewpoint of energy saving, and among them, the use of medium to small-scale waste heat is attracting attention.

中小規模の廃熱利用は、たとえその熱の質が良好でも、熱量自体が比較的低いので、例えば、蒸気タービン等の大規模な廃熱利用の発電プラントでは、熱量を大きくするために大掛りな設備になってしまい、発電効率が低くなり、既存設備の改造や保守、補修のコストに見合う電気量が得られない等の問題がある。   Medium and small-scale waste heat use has a relatively low heat quantity even if the heat quality is good. For example, in a large-scale waste heat use power plant such as a steam turbine, a large amount of heat is required to increase the heat quantity. There is a problem that the power generation efficiency is lowered and the amount of electricity corresponding to the cost of modification, maintenance and repair of the existing equipment cannot be obtained.

また、その熱量が低いことから、温水利用などにも見送られている場合が多く、世界的に中小規模の廃熱利用は、広い分野に亘って積極的に活用し難い傾向にあった。   In addition, due to its low calorific value, it is often sent off for hot water use and the like, and the use of small and medium-sized waste heat worldwide tends to be difficult to actively use over a wide range of fields.

このような情況の中で、中小規模の廃熱でも、その熱エネルギから電気エネルギを簡易にして小さな設備で変換できる熱電変換装置の実現が求められていた。   Under such circumstances, there has been a demand for the realization of a thermoelectric conversion device that can easily convert electric energy from the heat energy into small-scale waste heat with a small facility even with small-scale waste heat.

このような要請に基づいて、最近、特許文献1や非特許文献1に見られるように、半導体素子を用いて高温流体の熱エネルギを、直接、電気エネルギに変換する熱電変換装置の開発が進められている。   Based on such a request, recently, as seen in Patent Document 1 and Non-Patent Document 1, development of a thermoelectric conversion device that directly converts thermal energy of a high-temperature fluid into electrical energy using a semiconductor element has advanced. It has been.

高温流体がガスの場合、例えば、特許文献2に開示されているように、高温ガスが流れる高温ガス流路(高温側)と冷却媒体流路(低温側)との間に熱エネルギを電気エネルギに変換する半導体素子をモジュール化し、モジュール化した半導体素子を高温側と低温側との間に配置して発電を行うことが提案されている。   When the high-temperature fluid is a gas, for example, as disclosed in Patent Document 2, thermal energy is converted into electric energy between a high-temperature gas flow path (high-temperature side) through which a high-temperature gas flows and a cooling medium flow path (low-temperature side). It has been proposed that a semiconductor element to be converted into a module is modularized, and the modularized semiconductor element is arranged between a high temperature side and a low temperature side to generate power.

このような構成を有するガス発電システムにおいて、熱電変換効率を向上させるには、高温側の温度を高めるとともに、高温側と低温側との温度差を大きく採ることが必要である。   In the gas power generation system having such a configuration, in order to improve the thermoelectric conversion efficiency, it is necessary to increase the temperature on the high temperature side and to take a large temperature difference between the high temperature side and the low temperature side.

また、高温側および低温側の各流路部材の熱伝導性を良好にすることはもとより、モジュール化した半導体素子の高温側および低温側の接触熱抵抗が少なく、かつ適切な面圧力で互いを接触させることが必要とされていた。   In addition to improving the thermal conductivity of each flow path member on the high temperature side and the low temperature side, the contact heat resistance on the high temperature side and the low temperature side of the modularized semiconductor element is small, and each other with an appropriate surface pressure. Contact was required.

このような問題点に対し、試行錯誤的に考察が加えられているものの、未だ解決の目途が見えず、現在、模索中である。
特開2004−119833号公報 特開平11−36981号公報 「熱電変換工学−基礎と応用−」リアライズ社 P.349〜363(2001)
Although such problems have been studied through trial and error, they still have no prospect of a solution, and are currently searching for them.
JP 2004-1119833 A JP 11-36981 A “Thermoelectric Conversion Engineering-Fundamentals and Applications-” Realize, Inc. 349-363 (2001)

ガス発電装置は、高温側が、例えば、固体電解質型燃料電池の場合、800〜1000℃程度まで温度上昇するので、その温度に応じて長手方向(軸方向)、幅方向、厚さ方向の熱膨張が大きくなる。   In the case of a gas power generation device, for example, in the case of a solid oxide fuel cell, the temperature of the gas power generation device rises to about 800 to 1000 ° C. Therefore, thermal expansion in the longitudinal direction (axial direction), width direction, and thickness direction depends on the temperature. Becomes larger.

その一方、低温側では、最近でも外気温度程度であり、熱膨張が小さい。   On the other hand, on the low temperature side, the temperature is still around the outside temperature recently and thermal expansion is small.

このように、著しく温度差が大きくなると、モジュール化した半導体素子の高温側と低温側とでひずみやずれが生じ、半導体素子は、破損の虞があった。   Thus, when the temperature difference becomes remarkably large, distortion and deviation occur between the high temperature side and the low temperature side of the modularized semiconductor element, and the semiconductor element may be damaged.

また、温度差が大きいと、半導体素子は、熱膨張に伴って高温側や低温側との面接触力が低下し、接触熱抵抗が大きくなって熱伝導性が悪くなり、熱電変換効率が著しく低下することがあった。特に、ガス発電装置に使用されているモジュール化した半導体素子の材料は脆く、剛性が低いため、変形に伴う熱伝導性の低下や材料自体の破損等の問題を抱えていた。   In addition, if the temperature difference is large, the surface contact force between the high temperature side and the low temperature side is reduced due to thermal expansion, the semiconductor element has a large contact thermal resistance, and the thermal conductivity is deteriorated, and the thermoelectric conversion efficiency is remarkably increased. There was a decline. In particular, since the material of the modularized semiconductor element used in the gas power generation apparatus is brittle and has low rigidity, it has problems such as a decrease in thermal conductivity due to deformation and damage to the material itself.

本発明は、このような事情に基づいてなされたもので、ガスの持つ熱エネルギを電気エネルギに変換する際、熱電変換効率のより一層の向上を図ったガス発電装置およびガス発電装置と組み合せた燃料電池システムを提供することを目的とする。   The present invention has been made based on such circumstances, and is combined with a gas power generation apparatus and a gas power generation apparatus that further improve the thermoelectric conversion efficiency when converting the thermal energy of gas into electric energy. An object is to provide a fuel cell system.

本発明に係るガス発電装置は、上述の目的を達成するために、本体胴内の中央部に高温ガスを通流させるガス通路と、このガス通路の外側に、冷却媒体通路壁で画成され、p型半導体チップとn型半導体チップで構成する熱電変換モジュールを収容する熱電変換モジュール収容部とを備える通路区画部を設けるとともに、前記通路区画部に隣接し、前記高温ガスの通流に対し、冷却媒体を交差しながら蛇行させて通流する冷却媒体通路を設けたものである。   In order to achieve the above-mentioned object, the gas power generator according to the present invention is defined by a gas passage for allowing a high-temperature gas to flow through a central portion in the body trunk, and a cooling medium passage wall outside the gas passage. Providing a passage partition portion including a thermoelectric conversion module housing portion for housing a thermoelectric conversion module composed of a p-type semiconductor chip and an n-type semiconductor chip, and adjacent to the passage partition portion, for the flow of the high-temperature gas In addition, a cooling medium passage is provided which passes through the cooling medium while meandering.

本発明に係るガス発電装置と組み合せた燃料電池システムは、上述の目的を達成するために、少なくとも二つ以上のガス発電装置に燃料電池を組み合せるとともに、前記ガス発電装置に前記燃料電池からの排ガスを高温ガスとして供給する手段と、前記ガス発電装置に冷却媒体として燃料ガス、空気、水素と空気の混合ガス、燃料ガスと空気との混合ガス、一酸化炭素と空気との混合ガスのいずれかを選択して供給する手段とを備えたものである。   In order to achieve the above object, a fuel cell system combined with a gas power generation device according to the present invention combines a fuel cell with at least two gas power generation devices, and the gas power generation device from the fuel cell. Any of means for supplying exhaust gas as a high-temperature gas, and fuel gas, air, a mixed gas of hydrogen and air, a mixed gas of fuel gas and air, and a mixed gas of carbon monoxide and air as a cooling medium to the gas power generator And a means for selecting and supplying these.

本発明に係るガス発電装置は、高温ガスの流れに対し、冷却媒体を交差させながら蛇行させる通路区画部を設けるとともに、通路区画部の両側の外側にガス通路壁、冷却媒体通路壁を設け、各壁内に熱電変換モジュールを収容させ、その剛性および面接触性を高める構成にしたので、熱電変換モジュールの安定性を維持させて熱伝導性と熱電変換効率をより一層良好にし、かつ向上させることができる。   The gas power generation device according to the present invention is provided with a passage partition portion that meanders while intersecting the cooling medium with respect to the flow of the high-temperature gas, and a gas passage wall and a cooling medium passage wall are provided outside both sides of the passage partition portion, Since the thermoelectric conversion module is accommodated in each wall and its rigidity and surface contactability are increased, the stability of the thermoelectric conversion module is maintained, and the thermal conductivity and thermoelectric conversion efficiency are further improved and improved. be able to.

また、本発明に係るガス発電装置と組み合せた燃料電池システムは、ガス発電装置の熱電変換モジュールに、燃料電池本体からの排ガスを高温ガスとして供給し、エネルギの再利用を図ったので、排エネルギの有効活用の下、ガス発電装置の熱電変換効率をより一層向上させることができる。   Further, the fuel cell system combined with the gas power generation device according to the present invention supplies the exhaust gas from the fuel cell main body as a high-temperature gas to the thermoelectric conversion module of the gas power generation device, so that the energy can be reused. The effective thermoelectric conversion efficiency of the gas power generator can be further improved.

以下、本発明に係るガス発電装置およびガス発電装置と組み合せた燃料電池システムの実施形態を図面および図面に付した符号を引用して説明する。   Hereinafter, embodiments of a gas power generation apparatus and a fuel cell system combined with the gas power generation apparatus according to the present invention will be described with reference to the drawings and reference numerals attached to the drawings.

図1は、本発明に係るガス発電装置に組み込まれる熱電変換モジュールの一つを取り出し、その原理を説明する概念図である。   FIG. 1 is a conceptual diagram illustrating the principle of one of the thermoelectric conversion modules incorporated in the gas power generation apparatus according to the present invention.

熱電変換モジュール1には、p型半導体チップ2およびn型半導体チップ3が高温側電極5を有する高温側絶縁板7と、低温側電極6を有する低温側絶縁板8とに挟まれ、ペアとして熱電変換素子4を構成し、電気的および熱的に多くの熱電変換素子4が設けられている。   In the thermoelectric conversion module 1, the p-type semiconductor chip 2 and the n-type semiconductor chip 3 are sandwiched between a high-temperature side insulating plate 7 having a high-temperature side electrode 5 and a low-temperature side insulating plate 8 having a low-temperature side electrode 6. The thermoelectric conversion element 4 is comprised and many thermoelectric conversion elements 4 are provided electrically and thermally.

また、p型半導体チップ2およびn型半導体チップ3は、高温側電極5と高温側半導体チップ接続部11で接続させ、さらにp型半導体チップ2およびn型半導体チップ3は、低温側電極6と低温側半導体チップ接続部12で接続される。   The p-type semiconductor chip 2 and the n-type semiconductor chip 3 are connected to the high-temperature side electrode 5 by the high-temperature side semiconductor chip connection portion 11, and the p-type semiconductor chip 2 and the n-type semiconductor chip 3 are connected to the low-temperature side electrode 6. The connection is made at the low temperature side semiconductor chip connecting portion 12.

このような構成を備える熱電変換モジュール1において、高温側電極5に熱流13が与えられると、その熱は高温側半導体チップ接続部11を介してp型半導体チップ2およびn型半導体チップ3のそれぞれに伝えられる。   In the thermoelectric conversion module 1 having such a configuration, when the heat flow 13 is applied to the high temperature side electrode 5, the heat is supplied to each of the p-type semiconductor chip 2 and the n-type semiconductor chip 3 via the high temperature side semiconductor chip connecting portion 11. To be told.

さらに、その熱は各半導体チップ2,3を通る際、熱流14に沿って流れるとともに、各内部における半導体キャリアである正孔16および電子17のそれぞれが低温側はとチップ接続部12を介して低温側電極6に向って移動する。   Furthermore, when the heat passes through the semiconductor chips 2 and 3, the heat flows along the heat flow 14, and the holes 16 and the electrons 17 that are semiconductor carriers in the respective interiors are connected to the low temperature side via the chip connection portion 12. It moves toward the low temperature side electrode 6.

また、各半導体チップ2,3を通る熱流14は、低温側電極6を通過し、ここから外部に放出される熱流15になる。   Further, the heat flow 14 passing through each of the semiconductor chips 2 and 3 passes through the low temperature side electrode 6 and becomes a heat flow 15 released from here to the outside.

一方、熱電変換モジュール1の外部には、熱電変換素子4に設けた電極電流取合部9および電流取出部10を介して電気負荷部19が設けられており、上述各半導体キャリアの移動が電流の流れ18として電気負荷部19で取り出され、電力として外部に供給される。   On the other hand, an electric load unit 19 is provided outside the thermoelectric conversion module 1 via an electrode current coupling unit 9 and a current extraction unit 10 provided in the thermoelectric conversion element 4, and the movement of each of the semiconductor carriers described above is a current. The flow 18 is taken out by the electric load unit 19 and supplied to the outside as electric power.

このように、熱電変換モジュール1は、高温側と低温側との温度差を、熱電変換素子4の持つ能力を巧みに利用し、直接、電気に変換して外部に電力を供給するようになっている。   As described above, the thermoelectric conversion module 1 utilizes the ability of the thermoelectric conversion element 4 to skillfully utilize the temperature difference between the high temperature side and the low temperature side to directly supply electricity to the outside. ing.

このように、熱エネルギを電気エネルギに変換させる熱電変換モジュール1を組み込んだガス発電装置20は、図2に示すように、ボックス状の本体胴21と、この本体胴21の中央部における軸方向(長手方向)に沿って高温ガス22を通流させるガス通路23と、冷却媒体24を本体胴21に供給する冷却媒体供給路25と、本体胴21内の高温ガス22と熱電変換させた後の冷却媒体24を外部に排出させる冷却媒体排出路26とを備えている。   In this way, the gas power generation apparatus 20 incorporating the thermoelectric conversion module 1 that converts thermal energy into electrical energy includes a box-shaped main body cylinder 21 and an axial direction at the center of the main body cylinder 21 as shown in FIG. After the gas passage 23 through which the high temperature gas 22 flows along the (longitudinal direction), the cooling medium supply passage 25 for supplying the cooling medium 24 to the main body cylinder 21, and the thermoelectric conversion with the high temperature gas 22 in the main body cylinder 21 And a cooling medium discharge path 26 for discharging the cooling medium 24 to the outside.

また、ガス発電装置20の本体胴21には、図3に示すように、その内部中央を、高温ガス22が軸方向に沿って流れるのに対し、冷却媒体供給路25から供給される冷却媒体24が横断しながら蛇行流れとなるように、底部側から頭部側に向って一側端を冷却媒体通路開口部27にし、他側端を冷却媒体袋通路部18に形成する冷却媒体通路28a,28a,…と、この冷却媒体通路28a,28a,…毎に区画部29,29,…が設けられ、各通路区画部29,29,…内に熱電変換モジュール1を収容させる構成になっている。   Further, as shown in FIG. 3, the main body 21 of the gas power generation apparatus 20 has a cooling medium supplied from the cooling medium supply path 25 while the hot gas 22 flows along the axial direction in the center of the inside. A cooling medium passage 28a is formed in which the one end is the cooling medium passage opening 27 and the other end is formed in the cooling medium bag passage 18 from the bottom side to the head side so as to meander while flowing. , 28a,... And the cooling medium passages 28a, 28a,... Are provided with partition portions 29, 29,..., And the thermoelectric conversion module 1 is accommodated in the passage partition portions 29, 29,. Yes.

図4は、ガス発電装置20の本体胴21内の熱電変換モジュール1、冷却媒体通路開口部27および冷却媒体袋通路部28等の位置関係を示す図であり、ガス発電装置20は、本体胴21の両側に冷却発電通路開口部27と冷却媒体通路部28を配置し、中間位置に熱電変換モジュール1とガス流路23を収容、形成する通路区画部29,29,…を備えている。   FIG. 4 is a diagram showing a positional relationship among the thermoelectric conversion module 1, the cooling medium passage opening 27, the cooling medium bag passage portion 28, and the like in the main body cylinder 21 of the gas power generation apparatus 20, and the gas power generation apparatus 20 includes the main body cylinder. The cooling power generation passage opening 27 and the cooling medium passage portion 28 are disposed on both sides of the passage 21, and passage partition portions 29, 29,... For housing and forming the thermoelectric conversion module 1 and the gas flow passage 23 are provided at intermediate positions.

そして、破線の領域Aを抜き出し、冷却媒体通路28a,28a,…と、通路区画部29,29,…との位置関係を、今少し、図5を用いて詳しく説明すると、本体胴21は、冷却媒体通路28a,28a,…毎に隣接して通路区画部29,29,…を設けるとともに、通路区画部29,29,…内のうち、中央部をガス通路壁30,30,…で区画するガス通路23を備え、その外側に冷却媒体通路壁32で画成し、熱電変換モジュール1を収容させる熱電変換モジュール収容部31を備える一方、熱電変換モジュール収容部31の端部に、熱電変換モジュール1に接続させるリード線等を挿通させる通路部33を備えている。   Then, a broken line area A is extracted, and the positional relationship between the cooling medium passages 28a, 28a,... And the passage partition portions 29, 29,. .. Are provided adjacent to each of the cooling medium passages 28a, 28a,..., And the central portion of the passage partition portions 29, 29,... Is divided by gas passage walls 30, 30,. And a thermoelectric conversion module housing part 31 for housing the thermoelectric conversion module 1 on the outside of the thermoelectric conversion module housing part 31, and a thermoelectric conversion at the end of the thermoelectric conversion module housing part 31. A passage portion 33 through which a lead wire connected to the module 1 is inserted is provided.

このような構成を備えるガス発電装置20において、ガス通路23に供給される高温ガスは、ガス通路壁30,30を介して熱電変換モジュール1に高温熱を与え、さらに、冷却媒体供給路25から冷却媒体通路28a,28a,…に供給され、高温ガスに交差しながら蛇行して流れる冷却媒体は、冷却媒体通路壁32,32を介して熱電変換モジュール1に冷媒熱を与える。そして、熱電変換モジュール1は、高温ガスの高温熱と冷却媒体の冷媒熱との温度差を利用して電力を生成する。   In the gas power generator 20 having such a configuration, the high temperature gas supplied to the gas passage 23 gives high temperature heat to the thermoelectric conversion module 1 through the gas passage walls 30 and 30, and further from the cooling medium supply passage 25. The cooling medium that is supplied to the cooling medium passages 28a, 28a,... And flows meandering while intersecting the high temperature gas gives the refrigerant heat to the thermoelectric conversion module 1 via the cooling medium passage walls 32, 32. And the thermoelectric conversion module 1 produces | generates electric power using the temperature difference of the high temperature heat of high temperature gas, and the refrigerant | coolant heat of a cooling medium.

このように、本実施形態は、高温ガスの流れに対し、冷却媒体を交差し、蛇行させて流す際、冷却媒体通路28a,28a,…毎に隣接して通路区画部29,29,…を設け、各通路区画部29,29,…をガス通路壁30,30と冷却媒体通路壁32,32とで区画し、区画した各壁29,29,…32,32,…間に形成する熱電変換モジュール収容部31に熱電変換モジュール1を収容させてその剛性および面接触性を高く維持させる構成にしたので、熱電変換モジュール1の安定性を維持させて熱伝導性を良好にさせ、熱電変換効率をより一層向上させてより多くの電力を生成させることができる。   As described above, in the present embodiment, when the cooling medium intersects and meanders with respect to the flow of the high-temperature gas, the passage partition portions 29, 29,... Are adjacent to each other in the cooling medium passages 28a, 28a,. .., Each of the passage partition portions 29, 29,... Is partitioned by the gas passage walls 30, 30 and the cooling medium passage walls 32, 32, and the thermoelectrics formed between the partitioned walls 29, 29,. Since the thermoelectric conversion module 1 is housed in the conversion module housing portion 31 and its rigidity and surface contactability are maintained high, the thermoelectric conversion module 1 is maintained in a stable manner to improve the thermal conductivity, and the thermoelectric conversion. Efficiency can be further improved and more power can be generated.

図6は、本発明に係るガス発電装置の第2実施形態を示す斜視図である。   FIG. 6 is a perspective view showing a second embodiment of the gas power generator according to the present invention.

本実施形態に係るガス発電装置20は、第1ガス発電装置20aと第2ガス発電装置20bとの少なくとも2台以上のガス発電装置を組み合せたものである。   The gas power generation apparatus 20 according to the present embodiment is a combination of at least two gas power generation apparatuses, that is, a first gas power generation apparatus 20a and a second gas power generation apparatus 20b.

第1ガス発電装置20aと第2ガス発電装置20bは、ともに、第1実施形態と同様に、ボックス状の本体胴21a,21bと、本体胴21a,21bの軸方向に沿って高温ガス22を通流させるガス通路23a,23bと、冷却媒体24を本体胴21a,21bに供給する冷却媒体供給路25a,25bと、冷却媒体24を本体胴21a,21bに供給する冷却媒体供給路25a,25bと、本体胴21a,21b内の高温ガス22と熱電変換させた後の冷却媒体24を外部に排出させる冷却媒体排出路26a,26bとを備えている。   Both the first gas power generation apparatus 20a and the second gas power generation apparatus 20b, as in the first embodiment, supply the hot gas 22 along the axial direction of the box-shaped main body cylinders 21a and 21b and the main body cylinders 21a and 21b. Gas passages 23a and 23b to be passed, cooling medium supply paths 25a and 25b for supplying the cooling medium 24 to the main body cylinders 21a and 21b, and cooling medium supply paths 25a and 25b for supplying the cooling medium 24 to the main body cylinders 21a and 21b. And cooling medium discharge paths 26a and 26b for discharging the hot medium 22 in the main body cylinders 21a and 21b and the cooling medium 24 after thermoelectric conversion to the outside.

また、第1ガス発電装置20aの本体胴21aに設けた冷却媒体供給路25aに冷媒として空気34が供給され、ガス通路23aに高温ガスとして固体電解質型燃料電池(図示せず)の排ガス35が供給される。   In addition, air 34 is supplied as a refrigerant to a cooling medium supply path 25a provided in the main body cylinder 21a of the first gas power generation apparatus 20a, and an exhaust gas 35 of a solid oxide fuel cell (not shown) is supplied as a high-temperature gas to the gas path 23a. Supplied.

また、第2ガス発電装置20bの本体胴21bに設けた冷却媒体供給路25bに冷媒として燃料ガス36が供給され、ガス通路23bに高温ガスとして固体電解質型燃料電池の排ガス35が供給される。   Further, the fuel gas 36 is supplied as a refrigerant to the cooling medium supply path 25b provided in the main body cylinder 21b of the second gas power generation device 20b, and the exhaust gas 35 of the solid oxide fuel cell is supplied as the high temperature gas to the gas passage 23b.

この場合、空気34と燃料ガス36は、混合であってもよく、燃料ガスは都市ガス、水素ガスあるいは一酸化炭素ガスでもよい。   In this case, the air 34 and the fuel gas 36 may be mixed, and the fuel gas may be city gas, hydrogen gas, or carbon monoxide gas.

なお、各本体胴21a,21b内は、第1実施形態の構成と同様なので、ここでは説明を省略する。   In addition, since each main body trunk | drum 21a, 21b is the same as that of the structure of 1st Embodiment, description is abbreviate | omitted here.

このように、本実施形態は、ガス発電装置20を、第1ガス発電装置20aと第2ガス発電装置20bの少なくとも2台以上を組み合わせて構成するとともに、冷却媒体供給路25a,25bおよびガス通路23a,23bのそれぞれ供給する流体を異ならしめたので、流体の種類を広く選択して熱電変換に対処させることができる。   As described above, in the present embodiment, the gas power generation device 20 is configured by combining at least two of the first gas power generation device 20a and the second gas power generation device 20b, and the cooling medium supply paths 25a and 25b and the gas path. Since the fluids supplied by 23a and 23b are made different, it is possible to cope with thermoelectric conversion by selecting a wide variety of fluid types.

図7は、本発明に係るガス発電装置を組み合せた燃料電池システムの実施形態を示す概略系統図である。   FIG. 7 is a schematic system diagram showing an embodiment of a fuel cell system combined with a gas power generation apparatus according to the present invention.

本実施形態に係るガス発電装置を組み合せた燃料電池システムは、図6で示した、例えば第1ガス発電装置21aと第2ガス発電装置21bとの少なくとも2台以上のガス発電装置20と、例えば固体電解質型の燃料電池本体37とを組み合わせて構成する発電プラント43になっている。   The fuel cell system combined with the gas power generation device according to the present embodiment includes, for example, at least two gas power generation devices 20 including, for example, a first gas power generation device 21a and a second gas power generation device 21b illustrated in FIG. The power plant 43 is configured by combining a solid electrolyte fuel cell main body 37.

発電プラント43のうち、ガス発電装置20の一つは、高温ガスとして燃料電池本体37からの排ガス35を使用し、冷却媒体として空気34を使用するとともに、例えば大気からの空気を吸引するブロア38と、吸い込んだ空気34を燃料電池本体37からの排ガス35の流量とバランスさせるために流量制御する空気流量制御部39とを備え、この空気流量制御部39からの指令に基づいてブロア38の回転数を増減調整している。   Among the power generation plants 43, one of the gas power generation devices 20 uses the exhaust gas 35 from the fuel cell main body 37 as a high-temperature gas, uses air 34 as a cooling medium, and, for example, a blower 38 that sucks air from the atmosphere. And an air flow rate control unit 39 that controls the flow rate so as to balance the sucked air 34 with the flow rate of the exhaust gas 35 from the fuel cell main body 37, and the rotation of the blower 38 based on a command from the air flow rate control unit 39. The number is adjusted up or down.

また、ガス発電装置20の他の一つは、高温ガスとして燃料電池本体37からの排ガス35を使用し、冷却媒体として、例えば都市ガス(燃料ガス)40を使用するとともに、都市ガス40に含まれる硫黄を除去する脱硫器41と、供給された都市ガス40を燃料電池本体37からの排ガス35の流量とバランスさせるために流量制御する都市ガス流量制御部42とを備え、この都市ガス流量制御部42によって都市ガス40の流量を制御している。なお、冷却媒体は、都市ガス40に代えて水素と空気の混合ガス、燃料ガスと空気との混合ガス、一酸化炭素と空気との混合ガスのうち、いずれかを選択して使用してもよい。   Another one of the gas power generation devices 20 uses the exhaust gas 35 from the fuel cell main body 37 as a high temperature gas, and uses, for example, city gas (fuel gas) 40 as a cooling medium, and is included in the city gas 40. And a city gas flow rate control unit 42 for controlling the flow rate of the supplied city gas 40 to balance the supplied city gas 40 with the flow rate of the exhaust gas 35 from the fuel cell body 37. The flow rate of the city gas 40 is controlled by the unit 42. The cooling medium may be selected from a mixed gas of hydrogen and air, a mixed gas of fuel gas and air, or a mixed gas of carbon monoxide and air instead of the city gas 40. Good.

都市ガス流量制御部42で流量制御され、都市ガス40は、少なくとも2台以上の第1ガス発電装置20a、第2ガス発電装置20bからなる発電装置20に供給され、ここで熱電変換が行われる。   The city gas flow rate control unit 42 controls the flow rate, and the city gas 40 is supplied to the power generation device 20 including at least two first gas power generation devices 20a and 20b, where thermoelectric conversion is performed. .

この熱電変換は、高温ガスとして燃料電池本体37からの排ガス35を使用し、冷却媒体としての都市ガス40との温度差を利用し、上述図3〜図5で示した熱電変換モジュール(図示せず)で熱エネルギを電気エネルギに変換し、電力を生成する。   In this thermoelectric conversion, the exhaust gas 35 from the fuel cell main body 37 is used as a high-temperature gas, and a temperature difference with the city gas 40 as a cooling medium is used, so that the thermoelectric conversion module (not shown) shown in FIGS. To convert electric energy into electric energy and generate electric power.

熱電変換後の都市ガス40は、改質器44で水素濃度リッチな燃料ガスに改質され、燃料電池本体37で酸素ガスと化学反応し、電力を生成する。   The city gas 40 after the thermoelectric conversion is reformed into a fuel gas rich in hydrogen concentration by the reformer 44, and chemically reacts with oxygen gas in the fuel cell main body 37 to generate electric power.

なお、ガス発電装置20(20a,20b)に組み込まれる熱電変換モジュール1のp型半導体チップ2およびn型半導体チップ3は、希土類元素、アクチノイド、コバルト、鉄、ロジウム、ルテニウム、パラジウム、白金、ニッケル、アンチモン、チタン、ジルコニウム、ハフニウム、ニッケル、すず、コバルト、シリコン、マンガン、亜鉛、ボロン、炭素、窒素、ガリウム、ゲルマニウム、インジウム、バナジウム、ニオブ、バリウム、マグネシウム、ビスマス、テルル、セレン、鉛のうち、少なくも3つ以上の元素が選択される。   The p-type semiconductor chip 2 and the n-type semiconductor chip 3 of the thermoelectric conversion module 1 incorporated in the gas power generation apparatus 20 (20a, 20b) are rare earth elements, actinoids, cobalt, iron, rhodium, ruthenium, palladium, platinum, nickel. , Antimony, titanium, zirconium, hafnium, nickel, tin, cobalt, silicon, manganese, zinc, boron, carbon, nitrogen, gallium, germanium, indium, vanadium, niobium, barium, magnesium, bismuth, tellurium, selenium, lead At least three elements are selected.

また、p型半導体チップ2−n型半導体チップ3は、ゲルマニウム−シリコン、ビスマス−テルル、ビスマス−アンチモン、ビスマス−テルル−アンチモン、亜鉛−アンチモン、コバルト−アンチモン、鉄−アンチモン、鉄−シリコン、鉛−テルル、ホウ素−炭素のいずれかを主成分にしてもよい。   The p-type semiconductor chip 2 -n-type semiconductor chip 3 includes germanium-silicon, bismuth-tellurium, bismuth-antimony, bismuth-tellurium-antimony, zinc-antimony, cobalt-antimony, iron-antimony, iron-silicon, lead. -Either tellurium or boron-carbon may be the main component.

また、p型半導体チップおよびn型半導体チップ3は、マンガン−シリコン、スクッテルダイト、充填スクッテルダイト結晶構造、ホイスラー結晶構造、ハーフホイスラー結晶構造、クラスレート結晶構造のいずれでもよい。   The p-type semiconductor chip and the n-type semiconductor chip 3 may be any of manganese-silicon, skutterudite, filled skutterudite crystal structure, Heusler crystal structure, half-Heusler crystal structure, and clathrate crystal structure.

このように、本実施形態は、ともに電力を生成するガス発電装置20(20a,20b)と燃料電池本体37を備えるとともに、ガス発電装置20(20a,20b)の熱電変換モジュール1に供給する高温ガスと燃料電池本体37からの排ガス35に求め、エネルギの有効活用を図ったので、ガス発電装置20(20a,20b)の熱電変換効率をより一層向上させることができる。   As described above, the present embodiment includes the gas power generation device 20 (20a, 20b) and the fuel cell main body 37 that both generate electric power and supplies the high temperature to the thermoelectric conversion module 1 of the gas power generation device 20 (20a, 20b). Since the gas and the exhaust gas 35 from the fuel cell main body 37 are obtained and energy is effectively used, the thermoelectric conversion efficiency of the gas power generation apparatus 20 (20a, 20b) can be further improved.

本発明に係るガス発電装置に組み込まれる熱電変換モジュールの一つを取り出し、その原理を説明する概念図。The conceptual diagram which takes out one of the thermoelectric conversion modules integrated in the gas power generation device which concerns on this invention, and demonstrates the principle. 本発明に係るガス発電装置の第1実施形態を示す外観図。1 is an external view showing a first embodiment of a gas power generator according to the present invention. 図2に示した本発明に係るガス発電装置の縦断面図。FIG. 3 is a longitudinal sectional view of the gas power generator according to the present invention shown in FIG. 2. 本発明に係るガス発電装置のうち、熱電変換モジュールを抜き出した図。The figure which extracted the thermoelectric conversion module among the gas power generators which concern on this invention. 図4に示した本発明に係るガス発電装置の横断面図。FIG. 5 is a cross-sectional view of the gas power generator according to the present invention shown in FIG. 4. 本発明に係るガス発電装置の第2実施形態を示す外観図。The external view which shows 2nd Embodiment of the gas power generator which concerns on this invention. 本発明に係るガス発電装置と組み合せた燃料電池システムの実施形態を示す系統図。1 is a system diagram showing an embodiment of a fuel cell system combined with a gas power generator according to the present invention.

符号の説明Explanation of symbols

1 熱電変換モジュール
2 p型半導体チップ
3 n型半導体チップ
4 熱電変換素子
5 高温側電極
6 低温側電極
7 高温側絶縁板
8 低温側絶縁板
9 電極電流取合部
10 電流取出部
11 高温側半導体チップ接続部
12 低温側半導体チップ接続部
13,14,15 熱流
16 正孔
17 電子
18 電流の流れ
19 電気負荷部
20 ガス発電装置
20a 第1ガス発電装置
20b 第2ガス発電装置
21,21a,21b 本体胴
22 高温ガス
23,23a,23b ガス通路
24 冷却媒体
25,25a,25b 冷却媒体供給路
26,26a,26b 冷却媒体排出路
27 冷却媒体通路開口部
28 冷却媒体袋通路部
28a 冷却媒体通路
29 通路区画部
30 ガス通路壁
31 熱電変換モジュール収容部
32 冷却媒体通路壁
33 通路部
34 空気
35 排ガス
36 燃料ガス
37 燃料電池本体
38 ブロア
39 空気流量制御部
40 都市ガス
41 脱硫器
42 都市ガス流量制御部
43 発電プラント
44 改質器
DESCRIPTION OF SYMBOLS 1 Thermoelectric conversion module 2 p-type semiconductor chip 3 n-type semiconductor chip 4 Thermoelectric conversion element 5 High temperature side electrode 6 Low temperature side electrode 7 High temperature side insulating plate 8 Low temperature side insulating plate 9 Electrode current coupling part 10 Current extraction part 11 High temperature side semiconductor Chip connection portion 12 Low-temperature side semiconductor chip connection portions 13, 14, 15 Heat flow 16 Hole 17 Electron 18 Current flow 19 Electric load portion 20 Gas power generation device 20a First gas power generation device 20b Second gas power generation devices 21, 21a, 21b Main body body 22 High-temperature gas 23, 23a, 23b Gas passage 24 Cooling medium 25, 25a, 25b Cooling medium supply passage 26, 26a, 26b Cooling medium discharge passage 27 Cooling medium passage opening 28 Cooling medium bag passage portion 28a Cooling medium passage 29 Passage section 30 Gas passage wall 31 Thermoelectric conversion module housing part 32 Cooling medium passage wall 33 Passage part 34 Air 35 Exhaust gas 3 Fuel gas 37 fuel cell body 38 blower 39 air flow control unit 40 city gas 41 desulfurizer 42 city gas flow rate control unit 43 power plant 44 reformer

Claims (7)

本体胴内の中央部に高温ガスを通流させるガス通路と、このガス通路の外側に、冷却媒体通路壁で画成され、p型半導体チップとn型半導体チップで構成する熱電変換モジュールを収容する熱電変換モジュール収容部とを備える通路区画部を設けるとともに、前記通路区画部に隣接し、前記高温ガスの通流に対し、冷却媒体を交差しながら蛇行させて通流する冷却媒体通路を設けたことを特徴とするガス発電装置。 A gas passage that allows high-temperature gas to flow through the central part of the body body, and a thermoelectric conversion module that is defined by a cooling medium passage wall outside the gas passage and that includes a p-type semiconductor chip and an n-type semiconductor chip. And a cooling medium passage that is adjacent to the passage partitioning portion and that passes through the meandering air while crossing the cooling medium with respect to the flow of the high-temperature gas. A gas power generator characterized by that. 冷却媒体通路は、一端に冷却媒体供給路に連通する冷却媒体通路開口部を備え、他端に冷却媒体袋通路部を備えたことを特徴とする請求項1記載のガス発電装置。 2. The gas power generator according to claim 1, wherein the cooling medium passage includes a cooling medium passage opening communicating with the cooling medium supply passage at one end and a cooling medium bag passage portion at the other end. 少なくとも二つ以上のガス発電装置に燃料電池を組み合せるとともに、前記ガス発電装置に前記燃料電池からの排ガスを高温ガスとして供給する手段と、前記ガス発電装置に冷却媒体として燃料ガス、空気、水素と空気の混合ガス、燃料ガスと空気との混合ガス、一酸化炭素と空気との混合ガスのいずれかを選択して供給する手段とを備えたことを特徴とするガス発電装置と組み合せた燃料電池システム。 Means for combining a fuel cell with at least two gas power generation devices and supplying exhaust gas from the fuel cell as a high temperature gas to the gas power generation device; and fuel gas, air, hydrogen as a cooling medium for the gas power generation device And a gas power generation device characterized by comprising: means for selectively supplying one of a mixed gas of air and air, a mixed gas of fuel gas and air, and a mixed gas of carbon monoxide and air Battery system. ガス発電装置は、ブロアと、このブロアが吸引する空気量を制御する空気流量制御部を備えたことを特徴とする請求項3記載のガス発電装置と組み合せた燃料電池システム。 4. The fuel cell system combined with the gas power generator according to claim 3, wherein the gas power generator comprises a blower and an air flow rate control unit for controlling the amount of air sucked by the blower. 燃料電池は、脱硫器と、この脱硫器を通流した燃料ガスの流量を制御する燃料ガス流量制御部と、燃料ガスを水素ガスに改質させる改質器を備えたことを特徴とする請求項3記載のガス発電装置と組み合せた燃料電池システム。 The fuel cell includes a desulfurizer, a fuel gas flow rate control unit that controls a flow rate of the fuel gas that has passed through the desulfurizer, and a reformer that reforms the fuel gas into hydrogen gas. A fuel cell system combined with the gas power generation device according to Item 3. 熱電変換モジュールを構成するp型半導体チップおよびn型半導体チップは、希土類元素、アクチノイド、コバルト、鉄、ロジウム、ルテニウム、パラジウム、白金、ニッケル、アンチモン、チタン、ジルコニウム、ハフニウム、ニッケル、すず、コバルト、シリコン、マンガン、亜鉛、ボロン、炭素、窒素、ガリウム、ゲルマニウム、インジウム、バナジウム、ニオブ、バリウム、マグネシウム、ビスマス、テルル、セレン、鉛のうち、少なくも3つ以上の元素を選択したことを特徴とする請求項1記載のガス発電装置。 The p-type semiconductor chip and n-type semiconductor chip constituting the thermoelectric conversion module are rare earth elements, actinides, cobalt, iron, rhodium, ruthenium, palladium, platinum, nickel, antimony, titanium, zirconium, hafnium, nickel, tin, cobalt, It is characterized by selecting at least three elements among silicon, manganese, zinc, boron, carbon, nitrogen, gallium, germanium, indium, vanadium, niobium, barium, magnesium, bismuth, tellurium, selenium and lead. The gas power generator according to claim 1. 熱電変換モジュールを構成するp型半導体チップおよびn型半導体チップは、スクッテルダイト結晶構造、ホイスラー結晶構造、ハーフホイスラー結晶構造、クラスレート結晶構造のうち、いずれかを選択したことを特徴とする請求項1記載のガス発電装置。 The p-type semiconductor chip and the n-type semiconductor chip constituting the thermoelectric conversion module are selected from a skutterudite crystal structure, a Heusler crystal structure, a half-Heusler crystal structure, and a clathrate crystal structure. Item 2. A gas power generation device according to item 1.
JP2005249506A 2005-08-30 2005-08-30 Gas power generation equipment and fuel cell system combined with gas power generation equipment Pending JP2007068297A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005249506A JP2007068297A (en) 2005-08-30 2005-08-30 Gas power generation equipment and fuel cell system combined with gas power generation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005249506A JP2007068297A (en) 2005-08-30 2005-08-30 Gas power generation equipment and fuel cell system combined with gas power generation equipment

Publications (1)

Publication Number Publication Date
JP2007068297A true JP2007068297A (en) 2007-03-15

Family

ID=37929841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005249506A Pending JP2007068297A (en) 2005-08-30 2005-08-30 Gas power generation equipment and fuel cell system combined with gas power generation equipment

Country Status (1)

Country Link
JP (1) JP2007068297A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021506209A (en) * 2017-12-04 2021-02-18 エルジー イノテック カンパニー リミテッド Heat converter

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000180576A (en) * 1998-12-21 2000-06-30 Toshiba Corp Reflector controlling type reactor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000180576A (en) * 1998-12-21 2000-06-30 Toshiba Corp Reflector controlling type reactor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021506209A (en) * 2017-12-04 2021-02-18 エルジー イノテック カンパニー リミテッド Heat converter
JP7171725B2 (en) 2017-12-04 2022-11-15 エルジー イノテック カンパニー リミテッド heat converter

Similar Documents

Publication Publication Date Title
Zhang et al. Application of cascading thermoelectric generator and cooler for waste heat recovery from solid oxide fuel cells
Wu et al. Performance assessment of a hybrid system integrating a molten carbonate fuel cell and a thermoelectric generator
JP5109252B2 (en) Fuel cell
JP5109253B2 (en) Fuel cell
JP5429748B2 (en) Fuel cell module
JP2008108900A (en) Thermoelectric conversion module and thermoelectric conversion device
US6737180B2 (en) Electrochemical conversion system
JP5626111B2 (en) Fuel cell system
JP2011129489A (en) Fuel cell module
US6899967B2 (en) Electrochemical conversion system
KR101332996B1 (en) Power generating apparatus
JP3539562B2 (en) Solid oxide fuel cell stack
CN106025317A (en) Efficient power generation device coupled by automobile exhaust temperature difference cells and automobile exhaust fuel cells
JP2003086223A (en) Combined system of solid electrolyte type fuel cell and thermoelectric power generator
JPH04280484A (en) Solid electrolytic type fuel cell
JP2007200710A (en) Solid oxide fuel cell stack
Zhang et al. Thermodynamic analysis and optimization of a hybrid power system using thermoradiative device to efficiently recover waste heat from alkaline fuel cell
WO2012070487A1 (en) Secondary battery type fuel cell system
JP2009193808A (en) Solid oxide fuel cell
US20070128473A1 (en) Differential temperature energy harvesting in a fuel cell powered underwater vehicle
JP2007068297A (en) Gas power generation equipment and fuel cell system combined with gas power generation equipment
US6686076B2 (en) Electrochemical conversion system
KR101494241B1 (en) Waste heat recovery power generation system
JPH04280073A (en) Solid electrolyte fuel cell
JP2008251237A (en) Fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110405