JP2007067500A - Ultrasonic transceiver - Google Patents

Ultrasonic transceiver Download PDF

Info

Publication number
JP2007067500A
JP2007067500A JP2005247412A JP2005247412A JP2007067500A JP 2007067500 A JP2007067500 A JP 2007067500A JP 2005247412 A JP2005247412 A JP 2005247412A JP 2005247412 A JP2005247412 A JP 2005247412A JP 2007067500 A JP2007067500 A JP 2007067500A
Authority
JP
Japan
Prior art keywords
ultrasonic
propagation medium
ultrasonic transducer
environmental fluid
ultrasonic wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005247412A
Other languages
Japanese (ja)
Inventor
Hidetomo Nagahara
英知 永原
Masahiko Hashimoto
雅彦 橋本
Takehiko Suginouchi
剛彦 杉ノ内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005247412A priority Critical patent/JP2007067500A/en
Publication of JP2007067500A publication Critical patent/JP2007067500A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Transducers For Ultrasonic Waves (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ultrasonic transceiver ensuring high sensitivity, wideband transmission/reception of ultrasonic wave stably regardless of variation in ambient temperature, or the like. <P>SOLUTION: The ultrasonic transceiver 1 for transmitting/receiving ultrasonic wave to/from the surrounding space filled with environmental fluid comprises an ultrasonic vibrator 2, and a propagation medium portion 3 filling the gap between the ultrasonic vibrator and the environmental fluid 4 to form a propagation path of ultrasonic wave wherein the density ρ<SB>1</SB>and sound velocity C<SB>1</SB>of the propagation medium portion and the density ρ<SB>2</SB>and sound velocity C<SB>2</SB>of the environmental fluid satisfy a relation (ρ<SB>2</SB>/ρ<SB>1</SB>)<(C<SB>1</SB>/C<SB>2</SB>)<1, and the ultrasonic vibrator controls directivity of transmitting or receiving ultrasonic wave. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、超音波の送波を行う超音波送波器、又は、超音波の受波を行う超音波受波器、又は、そのいずれか若しくは両方を行う超音波送受波器に関し、安定に高感度で超音波を送波又は/かつ受波しうる超音波センサに関する。   The present invention relates to an ultrasonic wave transmitter that transmits ultrasonic waves, an ultrasonic wave receiver that receives ultrasonic waves, or an ultrasonic wave transmitter that performs either or both of them. The present invention relates to an ultrasonic sensor capable of transmitting and / or receiving ultrasonic waves with high sensitivity.

本願発明者は、特許文献1において、超音波の屈折を利用して高感度、広帯域に超音波を送受信しうる発明を開示している。特許文献1の発明は、空気などの音響インピーダンスの極めて小さい媒質に対して、超音波を屈折させながら高感度に送受波することが可能な超音波送受波器であって、特殊な材料を利用した伝搬媒質部を持ち屈折現象を利用した超音波送受波器である。   Inventor of the present application discloses an invention capable of transmitting and receiving ultrasonic waves with high sensitivity and broadband using the refraction of ultrasonic waves in Patent Document 1. The invention of Patent Document 1 is an ultrasonic transducer capable of transmitting and receiving ultrasonic waves with high sensitivity while refracting ultrasonic waves to a medium with extremely low acoustic impedance such as air, and uses a special material. This is an ultrasonic transducer that has a propagating medium portion and uses a refraction phenomenon.

特許文献1に開示の発明を図11に示す。図11に示すように、特許文献1の発明の超音波送受波器101は、少なくとも超音波振動子102と、超音波振動子102の前面に設けられ、環境流体104と超音波振動子102の間を埋める伝搬媒質部103を有している。ここでは、以下の説明を行いやすくするため、超音波振動子102と伝搬媒質部103の界面を第1表面領域131と定義し、伝搬媒質部103と環境流体104の界面を第2表面領域132として定義する。   The invention disclosed in Patent Document 1 is shown in FIG. As shown in FIG. 11, the ultrasonic transducer 101 of the invention of Patent Document 1 is provided at least on the ultrasonic transducer 102 and the front surface of the ultrasonic transducer 102, and includes the environmental fluid 104 and the ultrasonic transducer 102. It has a propagation medium portion 103 that fills the gap. Here, in order to facilitate the following description, the interface between the ultrasonic transducer 102 and the propagation medium portion 103 is defined as a first surface region 131, and the interface between the propagation medium portion 103 and the environmental fluid 104 is defined as a second surface region 132. Define as

このような超音波送受波器101において、伝搬媒質部103の材質(密度、音速)と、図11に示した伝搬媒質部103内の第2表面領域132における法線方向と超音波伝搬方向のなす角度θ、及び環境流体内側の角度θを適切に選択する事によって、伝搬媒質部103と環境流体104との界面における超音波の反射をほぼ0にして、透過効率を、ほぼ1とすることができるものである。 In such an ultrasonic transducer 101, the material (density, sound speed) of the propagation medium portion 103, the normal direction and the ultrasonic propagation direction in the second surface region 132 in the propagation medium portion 103 shown in FIG. By appropriately selecting the angle θ 1 to be formed and the angle θ 2 inside the environmental fluid, the reflection of the ultrasonic wave at the interface between the propagation medium portion 103 and the environmental fluid 104 is substantially zero, and the transmission efficiency is substantially 1. Is something that can be done.

WO2004/098234WO2004 / 098234

このような有利な効果を持つ特許文献1の超音波送受波器であるが、温度などの環境変化によって送受波感度が大きく変化すると言う問題があった。以下では、この課題について詳しく説明する。   The ultrasonic transmitter / receiver of Patent Document 1 having such advantageous effects has a problem that the transmission / reception sensitivity greatly changes due to environmental changes such as temperature. Hereinafter, this problem will be described in detail.

特許文献1の超音波送受波器における送受波感度は、伝搬媒質部と環境流体の界面における超音波の透過効率によって大きく変化する。   The transmission / reception sensitivity in the ultrasonic transducer of Patent Document 1 varies greatly depending on the transmission efficiency of ultrasonic waves at the interface between the propagation medium portion and the environmental fluid.

これは、従来からある音響整合層を利用した超音波送受波器にも、音響整合層と環境流体の界面における超音波の透過効率で同じ事が言える。   The same can be said for the conventional ultrasonic transducer using the acoustic matching layer in terms of ultrasonic transmission efficiency at the interface between the acoustic matching layer and the environmental fluid.

音響整合層と環境流体の界面における超音波の透過効率については、環境流体と音響整合層、超音波振動子の音響インピーダンスによってその効率が決まるものであるが、特許文献1の超音波送受波器においては、伝搬媒質部と環境流体、超音波振動子の音響インピーダンスの関係において透過効率が決まるものではなく、主に伝搬媒質部の音速と、環境流体の音速、更に図11に示した角度θをパラメータとして透過効率が決まるものである。 The ultrasonic transmission efficiency at the interface between the acoustic matching layer and the environmental fluid is determined by the acoustic impedance of the environmental fluid, the acoustic matching layer, and the ultrasonic transducer. However, the transmission efficiency is not determined by the relationship between the propagation medium portion, the environmental fluid, and the acoustic impedance of the ultrasonic transducer, but mainly the sound velocity of the propagation medium portion, the sound velocity of the environmental fluid, and the angle θ shown in FIG. The transmission efficiency is determined with 1 as a parameter.

ここで、超音波送受波器の感度を大きく変化させる要因となる、伝搬媒質部と環境流体の界面における超音波の透過効率を、送波時と受波時に分けて考える。ここでは、透過効率として界面における反射率を用いて説明する。反射率が低いほど透過効率は高くなることを意味している。   Here, the transmission efficiency of ultrasonic waves at the interface between the propagation medium part and the environmental fluid, which is a factor that greatly changes the sensitivity of the ultrasonic transducer, will be considered separately for transmission and reception. Here, description will be made using the reflectance at the interface as the transmission efficiency. This means that the lower the reflectance, the higher the transmission efficiency.

ここで、送波時と受波時に分けて考えるのは、特許文献1の超音波送受波器の感度変化は、送波時と受波時において、そのメカニズムに違いがあり、それぞれ別に考える必要があるためである。   Here, what is considered separately at the time of transmission and reception is that the sensitivity change of the ultrasonic transmitter / receiver of Patent Document 1 is different in the mechanism at the time of transmission and reception, and needs to be considered separately. Because there is.

送波時と受波時のそれぞれにおける感度変化の主要因は、次のようなものである。すなわち、送波時には、伝搬媒質部103と環境流体104の界面における超音波の透過効率が変化して送波感度が変化する事が主要因である。一方、受波時には、伝搬媒質部103を伝搬する超音波の方向、すなわち角度θが変化する事が感度変化の主要因である。 The main factors of the sensitivity change during transmission and reception are as follows. That is, at the time of wave transmission, the main factor is that the transmission efficiency of the ultrasonic wave changes at the interface between the propagation medium part 103 and the environmental fluid 104 and the wave transmission sensitivity changes. On the other hand, during reception, the direction of the ultrasonic wave propagating through the propagation medium portion 103, i.e. it is the main cause of the sensitivity change the angle theta 1 is changed.

送波時、受波時の送受波感度の変化について、以下で詳しく説明する。   Changes in transmission / reception sensitivity at the time of transmission and reception will be described in detail below.

送波時とは、超音波振動子102から送波された超音波が、伝搬媒質部103を通り、更に環境流体104へ放射される場合である。図11に示した超音波送受波器101の構成においては、伝搬媒質部103内における超音波の進行方向は実線の矢印106で示した方向であり、角度θは常に一定となる。 The time of wave transmission is a case where the ultrasonic wave transmitted from the ultrasonic transducer 102 is further radiated to the environmental fluid 104 through the propagation medium unit 103. In ultrasonic construction of the transducer 101 shown in FIG. 11, the traveling direction of the ultrasonic wave in the propagation medium portion 103 is a direction indicated by solid arrows 106, the angle theta 1 is always constant.

これは、超音波振動子102に、超音波の方向を変える機構がなく、また第2表面領域132の傾斜角度を変化させる機構がないためである。つまり、図11において角度θを変える機能を超音波送受波器101が有していない。 This is because the ultrasonic transducer 102 does not have a mechanism for changing the direction of the ultrasonic wave and does not have a mechanism for changing the inclination angle of the second surface region 132. That is, a function of changing the angle theta 1 ultrasonic transducer 101 does not have 11.

図11において伝搬媒質部103の内部に点線107で示したのは、超音波振動子102から送波された超音波105の同一位相波面を示すものである。このように、超音波振動子2から送波された超音波は、矢印で示したような超音波105の進行方向に対して、垂直な同一位相の波面を有している。   In FIG. 11, a dotted line 107 inside the propagation medium portion 103 indicates the same phase wavefront of the ultrasonic wave 105 transmitted from the ultrasonic transducer 102. As described above, the ultrasonic wave transmitted from the ultrasonic transducer 2 has a wavefront having the same phase perpendicular to the traveling direction of the ultrasonic wave 105 as indicated by an arrow.

図11のように超音波振動子102が単一である場合には超音波振動子102と伝搬媒質部103の作る界面、すなわち第1表面領域131と超音波の波面107はほぼ平行である。   When the ultrasonic transducer 102 is single as shown in FIG. 11, the interface formed by the ultrasonic transducer 102 and the propagation medium portion 103, that is, the first surface region 131 and the ultrasonic wavefront 107 are substantially parallel.

超音波振動子102で発生した超音波は、伝搬媒質部103を通って、第2表面領域132に到達する。通常このような界面では超音波の一部は反射して伝搬媒質部103へ戻るか、あるいは一部は屈折して環境流体104へ伝搬していく事となる。反射、あるいは屈折する超音波の割合は角度θによって大きく変化する。 The ultrasonic wave generated by the ultrasonic vibrator 102 reaches the second surface region 132 through the propagation medium part 103. Usually, at such an interface, a part of the ultrasonic wave is reflected and returned to the propagation medium part 103, or a part is refracted and propagates to the environmental fluid 104. The ratio of reflected or refracted ultrasonic waves varies greatly depending on the angle θ 1 .

第2表面領域における超音波の速度ポテンシャルの反射率Rは(数1)で示される。   The reflectance R of the ultrasonic velocity potential in the second surface region is expressed by (Equation 1).

Figure 2007067500

ここで、ρは伝搬媒質部103の密度、ρは環境流体104の密度、θは伝搬媒質部103内における第2表面領域132の垂線と超音波伝搬方向のなす角度、θは環境流体104内における第2表面領域132の垂線と超音波伝搬方向のなす角度である。
Figure 2007067500

Here, ρ 1 is the density of the propagation medium portion 103, ρ 2 is the density of the environmental fluid 104, θ 1 is the angle between the perpendicular of the second surface region 132 in the propagation medium portion 103 and the ultrasonic wave propagation direction, and θ 2 is This is an angle formed by the perpendicular of the second surface region 132 in the environmental fluid 104 and the ultrasonic wave propagation direction.

Figure 2007067500

(数1)に示した反射率Rは(数2)を満たすとき、反射率Rが0となる角度θ、θが必ず存在する。
Figure 2007067500

When the reflectance R shown in (Equation 1) satisfies (Equation 2), there are always angles θ 1 and θ 2 at which the reflectance R becomes 0.

このような反射率Rが0のとなった時、超音波は全て伝搬媒質部と環境流体の界面を透過するため、もっとも感度が高くなる。   When such a reflectance R becomes 0, all ultrasonic waves are transmitted through the interface between the propagation medium part and the environmental fluid, so that the sensitivity is highest.

ところで、角度θとθの間には屈折の法則が適用できる関係があり、伝搬媒質部の音速をC、環境流体の音速をCとした時、(数3)に示す関係が成立する。 Meanwhile, between the angle theta 1 and theta 2 is related applicable is the law of refraction, the sound velocity of the propagation medium portion C 1, when the acoustic velocity of the environmental fluid was C 2, is shown by the equation (3) To establish.

Figure 2007067500

すなわち、角度θとθをそれぞれ独立に設定する事は出来ず、送波の場合には角度θが決まれば、角度θは(数3)に示す関係より一意に決まる。
Figure 2007067500

That is, the angles θ 1 and θ 2 cannot be set independently. In the case of transmission, if the angle θ 1 is determined, the angle θ 2 is uniquely determined from the relationship shown in (Equation 3).

(数1)に示した反射率Rは、反射率を変動させるパラメータとして伝搬媒質部の密度ρ、音速C,環境流体の密度ρ、音速C、第2表面領域と超音波の伝搬方向との角度θ、θが関連している。 The reflectivity R shown in (Equation 1) is a parameter for changing the reflectivity, ie, the density ρ 1 of the propagation medium part, the sound speed C 1 , the density ρ 2 of the environmental fluid, the sound speed C 2 , the second surface region, and the ultrasonic wave. The angles θ 1 and θ 2 with respect to the propagation direction are related.

このパラメータの環境流体の密度ρと、音速Cは環境温度によって大きく変化する。すなわちこのパラメータ値が変化すると反射率Rも変化する。これが環境の変化によって、特許文献1の超音波送受波器の感度が変化する原因である。 The density ρ 2 of the environmental fluid and the sound velocity C 2 of this parameter vary greatly depending on the environmental temperature. That is, when this parameter value changes, the reflectance R also changes. This is the reason why the sensitivity of the ultrasonic transducer disclosed in Patent Document 1 changes due to environmental changes.

更に、環境流体の密度ρ、音速Cの影響を以下で見積もり、本課題についてより具体的に説明する。 Further, the influence of the density ρ 1 and the sound velocity C 1 of the environmental fluid will be estimated below, and this problem will be described more specifically.

この超音波送受波器を、ロボットの障害物検知や自動車のバックソナーなどの空気中での使用を考えた場合、すなわち環境流体として空気を考えた場合の反射率Rと、伝搬媒質及び環境流体の密度、音速、超音波の伝搬角度θ、θの関係について説明する。 When the ultrasonic transducer is used in the air, such as obstacle detection of a robot or back sonar of an automobile, that is, the reflectance R when air is considered as an environmental fluid, the propagation medium, and the environmental fluid. The relationship among the density, sound velocity, and ultrasonic propagation angles θ 1 and θ 2 will be described.

通常、空気の音速をCとすると、音速Cは温度tの関数であり、温度tを用いて(数4)のように表せる事が知られている。すなわち、環境流体の温度が1℃変化すると、空気の音速は0.6m/sだけ変化する事となる。 Normally, when the sound speed of air is C 2 , the sound speed C 2 is a function of the temperature t, and it is known that the temperature t can be expressed as (Equation 4). That is, when the temperature of the environmental fluid changes by 1 ° C., the sound speed of air changes by 0.6 m / s.

Figure 2007067500

また、温度に対する空気の密度の変化について述べる。0℃での空気の密度は約1.293kg/mであり、空気を理想気体として考えると、温度tにおける密度ρは(数5)のように表す事が出来る。
Figure 2007067500

In addition, the change in air density with respect to temperature will be described. The density of air at 0 ° C. is about 1.293 kg / m 3 , and considering air as an ideal gas, the density ρ 2 at the temperature t can be expressed as (Equation 5).

Figure 2007067500

仮に超音波送受波器の使用環境として0〜60℃を設定すると、0℃及び60℃における空気の密度ρ及び音速Cは、(数4)及び(数5)より、次のようになる。また、気圧によって空気の音速Cは殆ど変化しない事が知られている。
Figure 2007067500

If 0 to 60 ° C. is set as the usage environment of the ultrasonic transducer, the air density ρ 2 and sound velocity C 2 at 0 ° C. and 60 ° C. are as follows from (Equation 4) and (Equation 5): Become. Further, it is known acoustic velocity C 2 of the air is hardly changed by the pressure.

0℃・・密度ρ:1.293kg/m、音速C:331.5m/s
60℃・・密度ρ:1.060kg/m、音速C:367.5m/s
ここで、伝搬媒質部103として、特許文献1に開示している乾燥ゲルを用いた場合を考える。乾燥ゲルは密度が空気より高く、音速が空気より遅く、(数2)に示した反射率Rを0にする条件を満たす材料である。
0 ° C., density ρ 2 : 1.293 kg / m 3 , speed of sound C 2 : 331.5 m / s
60 ° C., density ρ 2 : 1.060 kg / m 3 , speed of sound C 2 : 367.5 m / s
Here, the case where the dry gel currently disclosed by patent document 1 is used as the propagation medium part 103 is considered. The dried gel is a material having a density higher than that of air and a sound velocity lower than that of air, and satisfying the condition for setting the reflectance R shown in (Equation 2) to zero.

特許文献1の乾燥ゲルは、密度ρが200kg/m、音速Cが180m/sである。ここで、乾燥ゲルの温度に対する特性の変化について見積もる。 The dry gel of Patent Document 1 has a density ρ 1 of 200 kg / m 3 and a sound velocity C 1 of 180 m / s. Here, the change of the characteristic with respect to the temperature of dry gel is estimated.

乾燥ゲルは骨格を構成する材質などにより様々な特性を持つものであるが、例としてシリカ骨格を持つ乾燥ゲルについて考える。シリカ乾燥ゲルの温度に対する寸法の変化として定義される線膨張率は約10−6(1/℃)程度である。 The dry gel has various characteristics depending on the material constituting the skeleton, and a dry gel having a silica skeleton is considered as an example. The coefficient of linear expansion, defined as the dimensional change with temperature of the silica dry gel, is about 10 −6 (1 / ° C.).

よって、体積の変化は長さの変化の3乗として定義する事が可能である。よって、体積変化は10−18(1/℃)程度と、極めて小さい。 Thus, the volume change can be defined as the cube of the length change. Therefore, the volume change is as small as about 10 −18 (1 / ° C.).

このように、超音波送受波器の利用環境として設定した0〜60℃の温度変化があった場合でも、乾燥ゲルの体積変化は約6−16レベルの変化であり、空気などの環境流体の変化に比べ、殆ど変化しないと考えられ、温度変化に対して一定値とみなすことができる。 Thus, even when there is a temperature change of 0 to 60 ° C. set as the usage environment of the ultrasonic transducer, the volume change of the dry gel is about 6-16 level change, and the environmental fluid such as air Compared to the change, it is considered that there is almost no change, and it can be regarded as a constant value with respect to the temperature change.

また、乾燥ゲルの固さも殆ど変化しないため、音速も殆ど変化せず一定値と見なすことができる。さらに、乾燥ゲルは熱伝導率が非常に低いため、外界の温度変化に対して、温度変化自身を殆どしないことからも、密度、音速とも一定値と考えることができる。   Further, since the hardness of the dried gel hardly changes, the sound speed hardly changes and can be regarded as a constant value. Furthermore, since the dry gel has a very low thermal conductivity, the density and sound speed can be considered to be constant values because the temperature change itself hardly occurs with respect to the external temperature change.

このような条件において、伝搬媒質部から環境流体への超音波の伝搬効率について考察する。図11には、(数1)に基づいて計算した角度θと、超音波の反射率Rの関係を示すグラフである。 Under such conditions, the propagation efficiency of ultrasonic waves from the propagation medium portion to the environmental fluid will be considered. FIG. 11 is a graph showing the relationship between the angle θ 1 calculated based on (Equation 1) and the reflectance R of the ultrasonic wave.

図12のグラフは、伝搬媒質部内の第2表面領域に向かう超音波の振幅を1としており、伝搬媒質部と環境流体の界面で反射する超音波との振幅の比率で表している。すなわち、全ての超音波が反射する場合には反射率は−1となり、反射率0の時に全ての超音波が環境流体に透過し、更に反射率Rが1となった場合は、第2表面領域に対して入射した超音波と同じ位相の超音波が全反射した場合を示している。   In the graph of FIG. 12, the amplitude of the ultrasonic wave toward the second surface region in the propagation medium part is 1, and is represented by the ratio of the amplitude of the ultrasonic wave reflected at the interface between the propagation medium part and the environmental fluid. That is, when all the ultrasonic waves are reflected, the reflectance is −1. When the reflectance is 0, all the ultrasonic waves are transmitted to the environmental fluid, and when the reflectance R is 1, the second surface. The case where the ultrasonic wave of the same phase as the ultrasonic wave incident on the region is totally reflected is shown.

図12より分かるように、超音波の反射率Rは、角度θの変化に極めて敏感である。よって、角度θがわずかに変化すると、反射率が大きく変化して、送波感度が大きく変化する事となる。また、感度が最大となる角度は環境流体の温度によって大きく変化する。反射率Rがほぼ0の状態から、角度θが1度程度ずれると反射率は0.9以上と急激に大きくなる。 As can be seen from FIG. 12, the reflectance R of the ultrasonic wave is extremely sensitive to changes in the angle θ 1 . Therefore, the changes in the angle theta 1 slightly, and the reflectance greatly changes, and that the transmitting sensitivity is greatly changed. In addition, the angle at which the sensitivity is maximum varies greatly depending on the temperature of the environmental fluid. When the angle θ 1 is deviated by about 1 degree from the state where the reflectance R is almost 0, the reflectance rapidly increases to 0.9 or more.

このように、送波時においては、伝搬媒質から環境流体への伝搬効率は、第2表面領域における超音波の角度θによって大きく変わり、伝搬効率の大きくなる角度θは温度によって変化するため、環境流体の温度が変わると、送波感度が大きく変わってしまうこととなる。すなわち、温度の変化によって精度の高い計測が困難となると言う課題が特許文献1の超音波送受波器にあった。 Thus, at the time of transmitting, the propagation efficiency from the propagation medium to the environment fluids, highly dependent ultrasonic angle theta 1 in the second surface region, larger angles theta 1 of the propagation efficiency is a function of the temperature If the temperature of the environmental fluid changes, the wave transmission sensitivity will change greatly. That is, the ultrasonic transmitter / receiver disclosed in Patent Document 1 has a problem that high-precision measurement is difficult due to temperature changes.

また、図12からは、超音波送受波器の使用環境を、以上で示したような条件で使用した場合には、角度θを4°程度の幅で補正できれば、常に高感度に超音波を送受波できることが分かる。 Further, from FIG. 12, when the use environment of the ultrasonic transducer was used in the condition as shown in above, if the correction angle theta 1 at 4 ° about the width, always sensitive ultrasonic It is understood that can be transmitted and received.

超音波送受波器を使用する温度範囲、環境流体の種類、伝搬媒質部の材質が変わった場合には、当然、角度θの変化する範囲も変わる。使用環境に応じて高感度に超音波を送波するために、制御すべき角度θは変わる。 Temperature range of using ultrasonic transducer, the type of environmental fluid, when the material of the propagation medium portion is changed, of course, also change the range of variation of the angle theta 1. With high sensitivity in accordance with the use environment to transmit the ultrasonic waves, the angle theta 1 to be controlled may vary.

次に、受波時に起こる超音波送受波器の感度変化について説明する。図13には、角度θと、超音波の反射率Rについて図12と同様のグラフを示している。 Next, the sensitivity change of the ultrasonic transducer that occurs during reception will be described. FIG. 13 shows a graph similar to FIG. 12 regarding the angle θ 2 and the reflectance R of the ultrasonic wave.

図13より分かるように、環境流体温度が0℃と60℃の時の角度と透過効率の関係にほとんど違いがない。すなわち、環境流体から伝搬媒質部に伝搬する超音波は、環境流体の温度よらず、角度θが89度付近の時に反射率Rが0となって透過効率が最大となる。 As can be seen from FIG. 13, there is almost no difference in the relationship between the angle and the transmission efficiency when the ambient fluid temperature is 0 ° C. and 60 ° C. That is, the ultrasonic wave propagating from the environmental fluid to the propagation medium portion has the reflectance R of 0 and the maximum transmission efficiency when the angle θ 2 is around 89 degrees regardless of the temperature of the environmental fluid.

逆に言うと、受波時は環境流体の温度によらず、常に第2表面領域に対して89°前後の方向からの超音波のみが伝搬媒質内に透過してくるため、方向選択性の高い超音波受波器となりうる可能性がある。   In other words, at the time of wave reception, regardless of the temperature of the environmental fluid, only the ultrasonic waves from the direction around 89 ° with respect to the second surface region are always transmitted into the propagation medium. There is a possibility of becoming a high ultrasonic receiver.

前述したように、環境流体から超音波が効率よく伝搬媒質部に透過してくる角度θは89度前後で温度によらず一定であるが、環境流体から伝搬媒質部に透過し、更に伝搬媒質部内を伝搬していく超音波の方向は環境流体の温度によって変化する。この伝搬媒質部内の超音波の伝搬方向が、環境流体の温度によって変化することが、受波時における超音波送受波器の感度変化の原因である。 As described above, the angle θ 2 at which the ultrasonic wave is efficiently transmitted from the environmental fluid to the propagation medium part is constant around 89 degrees regardless of the temperature, but is transmitted from the environmental fluid to the propagation medium part and further propagated. The direction of the ultrasonic wave propagating in the medium part changes depending on the temperature of the environmental fluid. The fact that the propagation direction of the ultrasonic wave in the propagation medium part changes depending on the temperature of the environmental fluid is a cause of the sensitivity change of the ultrasonic transducer during reception.

一般に、圧電体などを用いた超音波振動子では、超音波振動子への超音波の入射角度によって感度が異なる。入射角度が変わると超音波振動子へ入射する超音波の位相が、超音波振動子の超音波の入射位置によって変わり、その位相の違いによって、圧電体に発生した電荷が相殺されてしまうためである。   In general, in an ultrasonic vibrator using a piezoelectric body or the like, the sensitivity varies depending on the incident angle of the ultrasonic wave to the ultrasonic vibrator. When the incident angle changes, the phase of the ultrasonic wave incident on the ultrasonic transducer changes depending on the ultrasonic incident position of the ultrasonic transducer, and the difference in the phase cancels out the charge generated in the piezoelectric body. is there.

すなわち、伝搬媒質部内に同じ強さの超音波が伝搬してきても、超音波振動子への入射角度によって、受波感度として評価する発生電圧が低下し、低下するレベルは超音波の入射角度によって異なるため、受波感度を高くすることができないか、あるいは超音波の強度に応じた受波感度が得られないという課題があった。   That is, even when ultrasonic waves of the same intensity propagate in the propagation medium part, the generated voltage to be evaluated as the receiving sensitivity decreases depending on the incident angle to the ultrasonic transducer, and the level to be decreased depends on the incident angle of the ultrasonic wave. Due to the difference, there is a problem that the received wave sensitivity cannot be increased or the received wave sensitivity according to the intensity of the ultrasonic wave cannot be obtained.

また、温度変化が大きくなり屈折角度が大きく変化して伝搬媒質部へ入射した場合には、伝搬媒質部に入射した超音波が直接に超音波振動子に直接に到達せず、伝搬媒質部の側壁で多重反射するなどする場合があり、このような場合には、正しく伝搬してきた超音波を受波する事が出来ず、正しい超音波計測が出来なくなると言う課題があった。   In addition, when the temperature change increases and the refraction angle changes greatly and enters the propagation medium part, the ultrasonic wave incident on the propagation medium part does not directly reach the ultrasonic transducer, and the propagation medium part In some cases, multiple reflections may occur on the side wall. In such a case, there is a problem that ultrasonic waves that have propagated correctly cannot be received and correct ultrasonic measurement cannot be performed.

本発明は、上記問題に鑑みてなされたものであり、その目的とするところは、温度などの環境流体の変化に対して、安定的に高感度を得られる超音波送受波器を提供する事である。   The present invention has been made in view of the above problems, and an object of the present invention is to provide an ultrasonic transducer capable of stably obtaining high sensitivity to changes in environmental fluid such as temperature. It is.

上記目的を達成するために、本発明は以下のように構成する。   In order to achieve the above object, the present invention is configured as follows.

本発明の第1態様にかかる超音波送受波器は、環境流体で満たされた周囲の空間に対して超音波の送波又は受波を行う超音波送受波器であって、
少なくとも超音波振動子と、
前記超音波振動子と前記環境流体との間に充填されて、前記超音波の伝搬経路を形成する伝搬媒質部とを備えるとともに、
前記伝搬媒質部の密度ρ、前記伝搬媒質部における音速C、前記周囲空間を満たす前記環境流体の密度ρ、前記環境流体における音速Cが、(ρ/ρ)<(C/C)<1の関係を満足する材料より前記伝搬媒質部を構成し、
前記超音波振動子は超音波の送波又は受波の指向性を制御する指向性制御部をさらに備えるように構成している。
The ultrasonic transducer according to the first aspect of the present invention is an ultrasonic transducer that transmits or receives ultrasonic waves to a surrounding space filled with an environmental fluid,
At least an ultrasonic transducer,
A propagation medium that is filled between the ultrasonic transducer and the environmental fluid and forms a propagation path of the ultrasonic wave; and
The density ρ 1 of the propagation medium part, the sound speed C 1 in the propagation medium part, the density ρ 2 of the environmental fluid filling the surrounding space, and the sound speed C 2 in the environmental fluid are (ρ 2 / ρ 1 ) <(C 1 / C 2 ) <1 to form the propagation medium portion from a material satisfying the relationship:
The ultrasonic transducer is configured to further include a directivity control unit that controls directivity of ultrasonic wave transmission or reception.

本発明の第5態様にかかる超音波送受波器は、環境流体で満たされた周囲の空間に対して超音波の送波又は受波を行う超音波送受波器であって、
少なくとも超音波振動子と、
前記超音波振動子と前記環境流体との間に充填されて、前記超音波の伝搬経路を形成する伝搬媒質部とを備えるとともに、
前記伝搬媒質部の密度ρ、前記伝搬媒質部における音速C、前記周囲空間を満たす流体の密度ρ、前記環境流体における音速Cが、(ρ/ρ)<(C/C)<1の関係を満足する材料より前記伝搬媒質部を構成し、
前記伝搬媒質部の音速を変化させる音速制御部をさらに備えるように構成している。
An ultrasonic transducer according to a fifth aspect of the present invention is an ultrasonic transducer that transmits or receives ultrasonic waves to a surrounding space filled with an environmental fluid,
At least an ultrasonic transducer,
A propagation medium that is filled between the ultrasonic transducer and the environmental fluid and forms a propagation path of the ultrasonic wave; and
The density ρ 1 of the propagation medium part, the sound speed C 1 in the propagation medium part, the density ρ 2 of the fluid filling the surrounding space, and the sound speed C 2 in the environmental fluid are (ρ 2 / ρ 1 ) <(C 1 / C 2 ) The propagation medium portion is made of a material that satisfies the relationship of <1.
A sound speed control unit for changing the sound speed of the propagation medium unit is further provided.

本発明の第11態様にかかる超音波送受波器は、環境流体で満たされた周囲の空間に対して超音波の送波又は受波を行う超音波送受波器であって、
少なくとも超音波振動子と、
前記超音波振動子と前記環境流体との間に充填されて、前記超音波の伝搬経路を形成する伝搬媒質部とを備えるとともに、
前記伝搬媒質部の密度ρ、前記伝搬媒質部における音速C、前記周囲空間を満たす流体の密度ρ、前記環境流体における音速Cが、(ρ/ρ)<(C/C)<1の関係を満足する材料より前記伝搬媒質部を構成し、かつ、前記超音波振動子の超音波送受波面は凸面型又は凹面型の曲面である。
An ultrasonic transducer according to an eleventh aspect of the present invention is an ultrasonic transducer that transmits or receives ultrasonic waves to a surrounding space filled with an environmental fluid,
At least an ultrasonic transducer,
A propagation medium that is filled between the ultrasonic transducer and the environmental fluid and forms a propagation path of the ultrasonic wave; and
The density ρ 1 of the propagation medium part, the sound speed C 1 in the propagation medium part, the density ρ 2 of the fluid filling the surrounding space, and the sound speed C 2 in the environmental fluid are (ρ 2 / ρ 1 ) <(C 1 / C 2 ) The propagation medium portion is made of a material satisfying the relationship of <1, and the ultrasonic transmission / reception surface of the ultrasonic transducer is a convex surface or a concave surface.

本発明の第12態様にかかる超音波送受波器は、環境流体で満たされた周囲の空間に対して超音波の送波又は受波を行う超音波送受波器であって、
少なくとも超音波振動子と、
前記超音波振動子と前記環境流体との間に充填されて、前記超音波の伝搬経路を形成する伝搬媒質部とを備えるとともに、
前記伝搬媒質部の密度ρ、前記伝搬媒質部における音速C、前記周囲空間を満たす流体の密度ρ、前記環境流体における音速Cが、(ρ/ρ)<(C/C)<1の関係を満足する材料より前記伝搬媒質部を構成し、かつ、前記伝搬媒質部と前記環境流体の界面は凸面型又は凹面型の曲面である。
An ultrasonic transducer according to a twelfth aspect of the present invention is an ultrasonic transducer that transmits or receives ultrasonic waves to a surrounding space filled with an environmental fluid,
At least an ultrasonic transducer,
A propagation medium that is filled between the ultrasonic transducer and the environmental fluid and forms a propagation path of the ultrasonic wave; and
The density ρ 1 of the propagation medium part, the sound speed C 1 in the propagation medium part, the density ρ 2 of the fluid filling the surrounding space, and the sound speed C 2 in the environmental fluid are (ρ 2 / ρ 1 ) <(C 1 / C 2 ) The propagation medium portion is made of a material satisfying the relationship of <1, and the interface between the propagation medium portion and the environmental fluid is a convex surface or a concave surface.

本発明の超音波送受波器によれば、前記伝搬媒質部の密度ρ、前記伝搬媒質部における音速C、前記周囲空間を満たす前記環境流体の密度ρ、前記環境流体における音速Cが、(ρ/ρ)<(C/C)<1の関係を満足する材料より前記伝搬媒質部を構成した状態で、前記超音波振動子は超音波の送波又は受波の指向性を制御するか、又は、前記伝搬媒質部の音速を変化させるか、又は、前記超音波振動子の超音波送受波面は凸面型又は凹面型の曲面に形成するか、又は、前記伝搬媒質部と前記環境流体の界面は凸面型又は凹面型の曲面に形成することにより、環境流体の温度などの変化に対しても安定に、高感度に超音波を送受波しうる超音波送受波器を実現するものである。 According to the ultrasonic transducer of the present invention, the density ρ 1 of the propagation medium part, the sound speed C 1 in the propagation medium part, the density ρ 2 of the environmental fluid filling the surrounding space, and the sound speed C 2 in the environmental fluid. However, in the state where the propagation medium portion is made of a material satisfying the relationship of (ρ 2 / ρ 1 ) <(C 1 / C 2 ) <1, the ultrasonic transducer transmits or receives ultrasonic waves. The directivity of the ultrasonic wave is controlled, the sound velocity of the propagation medium portion is changed, or the ultrasonic wave transmitting / receiving surface of the ultrasonic transducer is formed in a convex or concave curved surface, or the propagation By forming the interface between the medium part and the environmental fluid as a convex or concave curved surface, ultrasonic transmission / reception that can transmit and receive ultrasonic waves with high sensitivity in a stable manner even when the temperature of the environmental fluid changes. Implements the vessel.

以下、本発明の実施形態を説明する前に、本発明の種々の態様について説明する。   Hereinafter, before describing embodiments of the present invention, various aspects of the present invention will be described.

本発明の第1態様によれば、環境流体で満たされた周囲の空間に対して超音波の送波又は受波を行う超音波送受波器であって、
少なくとも超音波振動子と、
前記超音波振動子と前記環境流体との間に充填されて、前記超音波の伝搬経路を形成する伝搬媒質部とを備えるとともに、
前記伝搬媒質部の密度ρ、前記伝搬媒質部における音速C、前記周囲空間を満たす前記環境流体の密度ρ、前記環境流体における音速Cが、(ρ/ρ)<(C/C)<1の関係を満足する材料より前記伝搬媒質部を構成し、
前記超音波振動子は超音波の送波又は受波の指向性を制御する指向性制御部をさらに備える超音波送受波器を提供する。
According to the first aspect of the present invention, there is provided an ultrasonic transducer that transmits or receives ultrasonic waves to a surrounding space filled with an environmental fluid,
At least an ultrasonic transducer,
A propagation medium that is filled between the ultrasonic transducer and the environmental fluid and forms a propagation path of the ultrasonic wave; and
The density ρ 1 of the propagation medium part, the sound speed C 1 in the propagation medium part, the density ρ 2 of the environmental fluid filling the surrounding space, and the sound speed C 2 in the environmental fluid are (ρ 2 / ρ 1 ) <(C 1 / C 2 ) <1 to form the propagation medium portion from a material satisfying the relationship:
The ultrasonic transducer provides an ultrasonic transducer further including a directivity control unit that controls directivity of ultrasonic transmission or reception.

本発明の第2態様によれば、前記超音波振動子を複数備えるとともに、
前記指向性制御部は、送波の場合には、前記複数の超音波振動子のうちの隣り合う超音波振動子の駆動タイミングをずらし、受波の場合には、前記複数の超音波振動子のうちの隣り合う超音波振動子の受波信号の加算タイミングをずらすことにより、送波の場合及び受波の場合の超音波の波面の位相を制御することにより、前記超音波の送波又は受波の指向性を制御する第1の態様に記載の超音波送受波器を提供する。
According to the second aspect of the present invention, a plurality of the ultrasonic transducers are provided,
The directivity control unit shifts the drive timing of adjacent ultrasonic transducers among the plurality of ultrasonic transducers in the case of transmission, and the plurality of ultrasonic transducers in the case of reception. By shifting the addition timing of the reception signals of the adjacent ultrasonic transducers of the two, by controlling the phase of the ultrasonic wave front in the case of transmission and reception, the transmission of the ultrasonic wave or The ultrasonic transducer according to the first aspect for controlling the directivity of reception is provided.

本発明の第3態様によれば、前記環境流体の温度を測定する温度計をさらに備え、
前記指向性制御部は、前記温度計で測定された前記環境流体の温度の情報を基に、前記超音波の波面の位相を制御する第2の態様に記載の超音波送受波器を提供する。
According to the third aspect of the present invention, further comprising a thermometer for measuring the temperature of the environmental fluid,
The directivity control unit provides the ultrasonic transducer according to the second aspect, which controls the phase of the wavefront of the ultrasonic wave based on the temperature information of the environmental fluid measured by the thermometer. .

本発明の第4態様によれば、前記伝搬媒質部と前記環境流体の界面で反射した超音波を受波する反射超音波受波装置をさらに備え、
前記指向性制御部は、前記伝搬媒質部と前記環境流体の界面で反射して前記反射超音波受波装置で受波された反射超音波の情報に基づいて前記超音波の波面の位相を制御する第2の態様に記載の超音波送受波器を提供する。
According to the fourth aspect of the present invention, the apparatus further comprises a reflected ultrasonic wave receiving device that receives the ultrasonic wave reflected at the interface between the propagation medium part and the environmental fluid,
The directivity control unit controls the phase of the wavefront of the ultrasonic wave based on information of the reflected ultrasonic wave reflected at the interface between the propagation medium unit and the environmental fluid and received by the reflected ultrasonic wave receiving device. An ultrasonic transducer according to the second aspect is provided.

本発明の第5態様によれば、環境流体で満たされた周囲の空間に対して超音波の送波又は受波を行う超音波送受波器であって、
少なくとも超音波振動子と、
前記超音波振動子と前記環境流体との間に充填されて、前記超音波の伝搬経路を形成する伝搬媒質部とを備えるとともに、
前記伝搬媒質部の密度ρ、前記伝搬媒質部における音速C、前記周囲空間を満たす前記環境流体の密度ρ、前記環境流体における音速Cが、(ρ/ρ)<(C/C)<1の関係を満足する材料より前記伝搬媒質部を構成し、
前記伝搬媒質部の音速を変化させる音速制御部をさらに備える超音波送受波器を提供する。
According to the fifth aspect of the present invention, there is provided an ultrasonic transducer that transmits or receives ultrasonic waves to a surrounding space filled with an environmental fluid,
At least an ultrasonic transducer,
A propagation medium that is filled between the ultrasonic transducer and the environmental fluid and forms a propagation path of the ultrasonic wave; and
The density ρ 1 of the propagation medium part, the sound speed C 1 in the propagation medium part, the density ρ 2 of the environmental fluid filling the surrounding space, and the sound speed C 2 in the environmental fluid are (ρ 2 / ρ 1 ) <(C 1 / C 2 ) <1 to form the propagation medium portion from a material satisfying the relationship:
An ultrasonic transducer further comprising a sound speed control unit that changes the sound speed of the propagation medium unit is provided.

本発明の第6態様によれば、前記音速制御部は、前記伝搬媒質部の温度を調整する温度調節部により構成され、前記温度調節部により、前記伝搬媒質部の温度を変化させて前記伝搬媒質部の音速を変化させる第5の態様に記載の超音波送受波器を提供する。   According to a sixth aspect of the present invention, the sound speed control unit is configured by a temperature adjustment unit that adjusts the temperature of the propagation medium unit, and the temperature adjustment unit changes the temperature of the propagation medium unit to change the propagation. The ultrasonic transducer according to the fifth aspect for changing the sound speed of the medium portion is provided.

本発明の第7態様によれば、前記音速制御部は、前記伝搬媒質部を圧縮、又は伸張させるアクチュエータにより構成され、前記アクチュエータにより、前記伝搬媒質への加圧力又は伸張力の付与により前記伝搬媒質部の音速を変化させる第5の態様に記載の超音波送受波器を提供する。   According to a seventh aspect of the present invention, the sound velocity control unit is configured by an actuator that compresses or expands the propagation medium unit, and the propagation is performed by applying an applied pressure or an extension force to the propagation medium by the actuator. The ultrasonic transducer according to the fifth aspect for changing the sound speed of the medium portion is provided.

本発明の第8態様によれば、前記アクチュエータは、前記伝搬媒質部の側面と接するように配置される第7の態様に記載の超音波送受波器を提供する。   According to an eighth aspect of the present invention, there is provided the ultrasonic transducer according to the seventh aspect, wherein the actuator is disposed so as to be in contact with a side surface of the propagation medium portion.

本発明の第9態様によれば、前記環境流体の温度を測定する温度計をさらに備え、
前記音速制御部は、前記温度計により測定された前記環境流体の温度の情報に基づいて前記伝搬媒質部の音速を変化させる第5〜8のいずれか1つの態様に記載の超音波送受波器を提供する。
According to the ninth aspect of the present invention, further comprising a thermometer for measuring the temperature of the environmental fluid,
The ultrasonic transducer according to any one of the fifth to eighth aspects, wherein the sound velocity control unit changes the sound velocity of the propagation medium unit based on information on the temperature of the environmental fluid measured by the thermometer. I will provide a.

本発明の第10態様によれば、前記伝搬媒質部と前記環境流体の界面で反射した超音波を受波する反射超音波受波装置をさらに備え、
前記音速制御部は、前記伝搬媒質部と前記環境流体との界面で反射して前記反射超音波受波装置で受波された反射超音波の情報に基づいて前記伝搬媒質部の音速を変化させる第5〜8のいずれか1つの態様に記載の超音波送受波器を提供する。
According to the tenth aspect of the present invention, the apparatus further comprises a reflected ultrasonic receiving device that receives the ultrasonic wave reflected at the interface between the propagation medium portion and the environmental fluid,
The sound velocity control unit changes the sound velocity of the propagation medium portion based on information of the reflected ultrasonic wave reflected at the interface between the propagation medium portion and the environmental fluid and received by the reflected ultrasonic wave receiving device. The ultrasonic transducer according to any one of the fifth to eighth aspects is provided.

本発明の第11態様によれば、環境流体で満たされた周囲の空間に対して超音波の送波又は受波を行う超音波送受波器であって、
少なくとも超音波振動子と、
前記超音波振動子と前記環境流体との間に充填されて、前記超音波の伝搬経路を形成する伝搬媒質部とを備えるとともに、
前記伝搬媒質部の密度ρ、前記伝搬媒質部における音速C、前記周囲空間を満たす前記環境流体の密度ρ、前記環境流体における音速Cが、(ρ/ρ)<(C/C)<1の関係を満足する材料より前記伝搬媒質部を構成し、かつ、前記超音波振動子の超音波送受波面は凸面型又は凹面型の曲面である超音波送受波器を提供する。
According to an eleventh aspect of the present invention, there is provided an ultrasonic transducer that transmits or receives ultrasonic waves to a surrounding space filled with an environmental fluid,
At least an ultrasonic transducer,
A propagation medium that is filled between the ultrasonic transducer and the environmental fluid and forms a propagation path of the ultrasonic wave; and
The density ρ 1 of the propagation medium part, the sound speed C 1 in the propagation medium part, the density ρ 2 of the environmental fluid filling the surrounding space, and the sound speed C 2 in the environmental fluid are (ρ 2 / ρ 1 ) <(C 1 / C 2 ) <1 is used to construct the propagation medium section, and the ultrasonic transducer of the ultrasonic transducer is a convex or concave curved surface. provide.

本発明の第12態様によれば、環境流体で満たされた周囲の空間に対して超音波の送波又は受波を行う超音波送受波器であって、
少なくとも超音波振動子と、
前記超音波振動子と前記環境流体との間に充填されて、前記超音波の伝搬経路を形成する伝搬媒質部とを備えるとともに、
前記伝搬媒質部の密度ρ、前記伝搬媒質部における音速C、前記周囲空間を満たす前記環境流体の密度ρ、前記環境流体における音速Cが、(ρ/ρ)<(C/C)<1の関係を満足する材料より前記伝搬媒質部を構成し、かつ、前記伝搬媒質部と前記環境流体の界面は凸面型又は凹面型の曲面である超音波送受波器を提供する。
According to a twelfth aspect of the present invention, there is provided an ultrasonic transducer that transmits or receives ultrasonic waves to a surrounding space filled with an environmental fluid,
At least an ultrasonic transducer,
A propagation medium that is filled between the ultrasonic transducer and the environmental fluid and forms a propagation path of the ultrasonic wave; and
Density [rho 1 of the propagation medium portion, sound velocity C 1 in the propagation medium portion, the density [rho 2 of the environmental fluid filling the surrounding space, the sound velocity C 2 in the environmental fluid, (ρ 2 / ρ 1) <(C 1 / C 2 ) <1 An ultrasonic transducer in which the propagation medium portion is made of a material satisfying a relationship of 1 and the interface between the propagation medium portion and the environmental fluid is a convex or concave curved surface. provide.

以下、図面を参照しながら本発明の実施形態による超音波送受波器を説明する。   Hereinafter, an ultrasonic transducer according to an embodiment of the present invention will be described with reference to the drawings.

[第1実施形態]
図1は本発明の第1実施形態における超音波送受波器の構成を示す斜視図である。本第1実施形態における超音波送受波器1は、複数の超音波振動子2と、伝搬媒質部3から構成されている。超音波送受波器1の周りは環境流体4で満たされている。伝搬媒質部3は、超音波振動子2の振動面に平行な面(第1表面領域31)と周囲空間を満たす環境流体4と接する面(第2表面領域32)とを有し、それぞれの超音波振動子2の振動面と第1表面領域31で接合している。第1表面領域31と第2表面領域32は図1に示すように、平行でない所定の角度を持って形成されている。一例として、各超音波振動子2は細い長方形板状体であり、伝搬媒質部3は台形側面を有する角柱体である。伝搬媒質部3の底面である第1表面領域31には、等間隔に一方の端から他方の端まで超音波振動子2が配置されている。後に詳しく述べるが、5は送受波される超音波5の伝播方向を示しており、本第1実施形態においては図1に示すような方向の超音波5が送受波される。
[First Embodiment]
FIG. 1 is a perspective view showing a configuration of an ultrasonic transducer according to the first embodiment of the present invention. The ultrasonic transducer 1 in the first embodiment includes a plurality of ultrasonic transducers 2 and a propagation medium unit 3. The area around the ultrasonic transducer 1 is filled with an environmental fluid 4. The propagation medium part 3 has a surface (first surface region 31) parallel to the vibration surface of the ultrasonic transducer 2 and a surface (second surface region 32) in contact with the environmental fluid 4 filling the surrounding space. The ultrasonic transducer 2 is bonded to the vibration surface at the first surface region 31. As shown in FIG. 1, the first surface region 31 and the second surface region 32 are formed with a predetermined angle that is not parallel. As an example, each ultrasonic transducer 2 is a thin rectangular plate, and the propagation medium 3 is a prism having a trapezoidal side surface. In the first surface region 31 which is the bottom surface of the propagation medium unit 3, the ultrasonic transducers 2 are arranged from one end to the other end at equal intervals. As will be described in detail later, 5 indicates the propagation direction of the ultrasonic wave 5 to be transmitted / received. In the first embodiment, the ultrasonic wave 5 in the direction as shown in FIG. 1 is transmitted / received.

また、図1に示すように、互いに直交するXYZ方向を設定する。すなわち、X方向は超音波振動子2の配列方向(幅方向)であり、Y方向は超音波振動子2の長手方向すなわち長さ方向、Z方向は超音波振動子2の厚さ方向である。   Further, as shown in FIG. 1, XYZ directions orthogonal to each other are set. That is, the X direction is the arrangement direction (width direction) of the ultrasonic transducers 2, the Y direction is the longitudinal direction of the ultrasonic transducers 2, that is, the length direction, and the Z direction is the thickness direction of the ultrasonic transducers 2. .

図2には、図1に示した超音波送受波器1の構成及び動作をより理解しやすく説明するため、XZ平面で切断した断面図を示す。また、図2には図1には図示していない構成である送受波回路7と、温度計8と、指向性制御部の一例として機能する制御回路9と、各構成をつなぐ信号線6を示している。全ての超音波振動子2は送受波回路7と接続され、送受波回路7と温度計8は制御回路9に接続されている。この指向性制御部は、詳しくは後述するように、環境流体4の温度に合わせて、送波時においては超音波の送波方向を制御し、受波時においては受波方向の指向性を制御するものである。   FIG. 2 is a cross-sectional view taken along the XZ plane for easy understanding of the configuration and operation of the ultrasonic transducer 1 shown in FIG. 2 includes a transmission / reception circuit 7 that is not shown in FIG. 1, a thermometer 8, a control circuit 9 that functions as an example of a directivity control unit, and a signal line 6 that connects the components. Show. All the ultrasonic transducers 2 are connected to the transmission / reception circuit 7, and the transmission / reception circuit 7 and the thermometer 8 are connected to the control circuit 9. As will be described in detail later, this directivity control unit controls the transmission direction of the ultrasonic wave at the time of wave transmission according to the temperature of the environmental fluid 4, and controls the directivity of the wave reception direction at the time of wave reception. It is something to control.

なお、本出願の明細書及び請求の範囲で、「周囲空間を満たす環境流体」とは、少なくとも伝搬媒質部3と環境流体4で作る界面である、第2表面領域32に接する流体を意味し、必ずしも超音波送受波器1の周囲全てを満たす流体を意味するものではなく、その周囲の一部を満たす流体を意味するものである。   In the specification and claims of this application, “environmental fluid that fills the surrounding space” means a fluid that is in contact with the second surface region 32, which is an interface formed by at least the propagation medium portion 3 and the environmental fluid 4. However, it does not necessarily mean a fluid that fills the entire periphery of the ultrasonic transducer 1, but a fluid that fills a part of the surroundings.

図2を参照して本第1実施形態の超音波送受波器1をより詳細に説明する。   The ultrasonic transducer 1 according to the first embodiment will be described in more detail with reference to FIG.

各超音波振動子2は、電気信号を超音波振動に変換、あるいは超音波振動を電気信号に変換する役割をするもので、圧電性を有する材料から形成されている。各超音波振動子2のZ方向の上下面には図示していない電極が設けられており、この方向に分極処理がされている。各超音波振動子2は電極間に印加される信号に基づいて超音波を放射し、超音波を受けた場合には、電極間に電圧信号を発生させる事で超音波の検出を行うものである。   Each ultrasonic transducer 2 plays a role of converting an electrical signal into ultrasonic vibration or converting ultrasonic vibration into an electric signal, and is formed of a material having piezoelectricity. Electrodes (not shown) are provided on the upper and lower surfaces of each ultrasonic transducer 2 in the Z direction, and polarization processing is performed in this direction. Each ultrasonic transducer 2 radiates an ultrasonic wave based on a signal applied between the electrodes, and when receiving the ultrasonic wave, detects the ultrasonic wave by generating a voltage signal between the electrodes. is there.

本第1実施形態では、超音波振動子2に一例として用いる圧電体の材料は任意であり、公知のものを用いる事が出来る。圧電体は圧電性を有する材料から構成され、圧電性能が高いものが超音波の送受波効率を高くする事ができるため望ましい。圧電体材料としては、圧電セラミック、圧電単結晶、又は圧電高分子などが有効に利用される。本第1実施形態の1つの実施例では、圧電性の高い圧電セラミックであるチタン酸ジルコン酸鉛セラミックスを用いている。電極としては電気インピーダンスの低い一般的な金属が用いられるが、本第1実施形態の1つの実施例では銀を用いている。   In the first embodiment, a piezoelectric material used as an example for the ultrasonic transducer 2 is arbitrary, and a known material can be used. The piezoelectric body is made of a material having piezoelectricity, and a material having high piezoelectric performance is desirable because it can increase the transmission / reception efficiency of ultrasonic waves. As the piezoelectric material, a piezoelectric ceramic, a piezoelectric single crystal, a piezoelectric polymer, or the like is effectively used. In one example of the first embodiment, lead zirconate titanate ceramics which are piezoelectric ceramics with high piezoelectricity are used. A common metal having a low electrical impedance is used as the electrode, but silver is used in one example of the first embodiment.

また、超音波振動子2として電歪体を用いる事もでき、電歪体の材料も公知のものを用いる事が出来る。電歪体を用いる場合にも、圧電体の場合と同様に電歪効果の大きな材料が、送受波効率を高くする事が出来るため好ましい。   In addition, an electrostrictive body can be used as the ultrasonic vibrator 2, and a known material can be used for the electrostrictive body. Also in the case of using an electrostrictive body, a material having a large electrostrictive effect is preferable, as in the case of a piezoelectric body, because the transmission and reception efficiency can be increased.

各超音波振動子2の前面には、各超音波振動子2で発生した超音波を環境流体4へ伝播させる、あるいは環境流体4を伝搬してきた超音波をそれぞれの超音波振動子2へ伝搬させるための伝搬媒質部3が設けられている。伝搬媒質部3は、従来の技術にも述べたように(数2)に示した条件、すなわち、伝搬媒質部3の密度ρ、前記伝搬媒質部3における音速C、前記周囲空間を満たす前記環境流体4の密度ρ、前記環境流体4における音速Cが、(ρ/ρ)<(C/C)<1を満足する材料で構成される必要がある。 On the front surface of each ultrasonic transducer 2, the ultrasonic wave generated by each ultrasonic transducer 2 is propagated to the environmental fluid 4, or the ultrasonic wave propagated through the environmental fluid 4 is propagated to each ultrasonic transducer 2. Propagation medium part 3 is provided. As described in the prior art, the propagation medium unit 3 satisfies the conditions shown in (Expression 2), that is, the density ρ 1 of the propagation medium unit 3, the sound speed C 1 in the propagation medium unit 3, and the surrounding space. The density ρ 2 of the environmental fluid 4 and the sound velocity C 2 in the environmental fluid 4 need to be made of a material that satisfies (ρ 2 / ρ 1 ) <(C 1 / C 2 ) <1.

本第1実施形態では、特許文献1と同様に、伝搬媒質部3としてシリカ乾燥ゲルを使用する場合について説明する。伝搬媒質部3に用いたシリカ乾燥ゲルは、密度ρ=0.20×10kg/m、音速C=180m/sである。 In the first embodiment, a case where a silica dry gel is used as the propagation medium portion 3 will be described as in Patent Document 1. The silica dry gel used for the propagation medium part 3 has a density ρ 1 = 0.20 × 10 3 kg / m 3 and a sound velocity C 1 = 180 m / s.

また、環境流体4の密度ρ及び音速Cは、先の「発明の開示」の「発明が解決しようとする課題」の欄の中で述べたように、環境流体4の温度によって変化し、たとえば0〜60℃の範囲においては、ρ=1.060〜1.293kg/m、C=331.5〜367.5m/sの間で変化し、0〜60℃の温度範囲においては(数2)の関係を満足している。すなわち、第2表面領域32において完全に超音波が透過する条件を満たす角度を有する条件となっている。 The density [rho 2 and the sound velocity C 2 of environmental fluid 4, as mentioned in the column of "Problems that the Invention is to Solve" in "Disclosure of invention" previous, vary with the temperature of the environmental fluid 4 For example, in the range of 0 to 60 ° C., it varies between ρ 2 = 1.060 to 1.293 kg / m 3 , C 2 = 331.5 to 367.5 m / s, and the temperature range of 0 to 60 ° C. Satisfies the relationship of (Equation 2). That is, the second surface region 32 has a condition that satisfies an angle that satisfies the condition for completely transmitting ultrasonic waves.

他の材質を環境流体4や、伝搬媒質部3に用いる場合にも、使用する全ての温度範囲において(数2)の関係を満足するように設定する必要がある。   Even when other materials are used for the environmental fluid 4 and the propagation medium part 3, it is necessary to set so as to satisfy the relationship of (Equation 2) in all temperature ranges to be used.

伝搬媒質部3の形状は、図1〜図2に示すように、超音波振動子2の振動面と平行な面(第1表面領域31)と、それに対向する平行でない面(第2表面領域32)を有している。この超音波振動子2の振動面と平行な面(第1表面領域31)に対する、前記対向する平行でない面(第2表面領域32)の角度が、前述のように角度θを決定する。超音波送受波器1の性能が、この角度によって大きく変動する可能性があるため、第2表面領域32は精密に形成される必要がある。 As shown in FIGS. 1 to 2, the propagation medium portion 3 has a shape parallel to the vibration surface of the ultrasonic transducer 2 (first surface region 31) and a non-parallel surface (second surface region) facing the surface. 32). For vibration plane parallel to the plane of the ultrasonic transducer 2 (first surface region 31), the angle of the surface not parallel to the opposing (second surface region 32) determines the angle theta 1, as described above. Since the performance of the ultrasonic transducer 1 may vary greatly depending on this angle, the second surface region 32 needs to be precisely formed.

本第1実施形態においては、送受波する超音波の周波数は約50kHzとしている。超音波振動子2に用いている圧電体は、その厚さ方向(Z方向)に分極された2枚の圧電体が分極方向を逆にして貼り合わせた形態の圧電体(バイモルフ型)を用いている。バイモルフ型圧電体は、電界を受けた際に発生する二つの圧電体の長さの差をたわみに変える振動に変えて超音波は送受波するものである。   In the first embodiment, the frequency of ultrasonic waves to be transmitted and received is about 50 kHz. The piezoelectric body used for the ultrasonic vibrator 2 is a piezoelectric body (bimorph type) in which two piezoelectric bodies polarized in the thickness direction (Z direction) are bonded with the polarization directions reversed. ing. A bimorph type piezoelectric body transmits and receives ultrasonic waves by changing the difference in length between two piezoelectric bodies generated when an electric field is received into vibration that changes the deflection.

バイモルフ型振動子は主にZ方向とY方向の長さによって、その共振周波数が決まるものである。本第1実施形態の前記実施例で用いているチタン酸ジルコン酸鉛では、Z方向の長さが1mm、Y方向の長さが5mmの時に、約50kHzの共振周波数を持ち、電気と機械すなわち超音波の変換効率が高くなるため、このような形状とした。   The resonance frequency of the bimorph resonator is determined mainly by the lengths in the Z direction and the Y direction. The lead zirconate titanate used in the example of the first embodiment has a resonance frequency of about 50 kHz when the length in the Z direction is 1 mm and the length in the Y direction is 5 mm. Since the conversion efficiency of ultrasonic waves is increased, such a shape is adopted.

図1及び図2に示した複数の超音波振動子2は、送波及び受波する超音波の方向を制御する、あるいは受波した超音波を方向によらず高感度に受波しうる目的のために設けているが、この超音波振動子2の配列ピッチ、すなわちX方向の長さと、超音波振動子2の間隔を足した長さは、超音波の送波又は受波可能な方向と関係がある。   The plurality of ultrasonic transducers 2 shown in FIG. 1 and FIG. 2 can control the direction of ultrasonic waves to be transmitted and received, or can receive received ultrasonic waves with high sensitivity regardless of the direction. However, the arrangement pitch of the ultrasonic transducers 2, that is, the length in the X direction and the length obtained by adding the interval between the ultrasonic transducers 2 is a direction in which ultrasonic waves can be transmitted or received. Is related.

ここで、図3Aに、複数の超音波振動子2を用いて、超音波振動子2の振動面(第1表面領域31)に対して角度θだけ向きの異なる超音波を送受波する場合を模式的に示す。 Here, in FIG. 3A, when a plurality of ultrasonic transducers 2 are used, ultrasonic waves having different directions by an angle θ 3 with respect to the vibration surface (first surface region 31) of the ultrasonic transducer 2 are transmitted and received. Is shown schematically.

図3Aに示した点線37は、複数の超音波振動子2を同一位相の電気信号で駆動した場合の、超音波の波面、あるいは超音波振動子2の振動面に平行な超音波が入射してきた場合を示している。また、点線で示した矢印5Aは、この超音波の進行方向を示している。   A dotted line 37 shown in FIG. 3A indicates that ultrasonic waves parallel to the ultrasonic wave front or the vibration surface of the ultrasonic vibrator 2 when a plurality of ultrasonic vibrators 2 are driven by electric signals having the same phase are incident. Shows the case. An arrow 5A indicated by a dotted line indicates the traveling direction of this ultrasonic wave.

また同様に、超音波振動子2の振動面(第1表面領域31)に対して角度θだけ傾いた波面を持つ超音波の同一波面を、一点鎖線38で示している。同様に、一点鎖線の矢印5Bは、この方向の超音波の進行方向を示している。このように超音波振動子2の振動面(第1表面領域31)に対して傾いた方向の超音波を送受波する場合について説明する。 Similarly, the same wavefront of the ultrasonic wave having the wavefront inclined by the angle θ 3 with respect to the vibration surface (first surface region 31) of the ultrasonic transducer 2 is indicated by a one-dot chain line 38. Similarly, a dashed-dotted arrow 5B indicates the traveling direction of the ultrasonic wave in this direction. A case where ultrasonic waves in a direction inclined with respect to the vibration surface (first surface region 31) of the ultrasonic transducer 2 are transmitted and received will be described.

送波の場合には、隣り合う超音波振動子2の駆動タイミング、受波の場合には、隣り合う超音波振動子2の受波信号の加算タイミングをそれぞれずらす事が、測定の基本にある。始めに、送波の場合について説明する。   In the case of transmission, the basis of measurement is to shift the drive timing of adjacent ultrasonic transducers 2 and in the case of reception, shift the addition timing of reception signals of adjacent ultrasonic transducers 2. . First, the case of transmission will be described.

送波の場合には、超音波振動子2の駆動タイミングを、隣接する超音波振動子2の間でずらす方法を用いる。すなわち、隣接する超音波振動子2から送波される超音波の波面が、超音波振動子2の振動面から角度θだけ傾いた方向で一致するようにする。図3Aに示すように、隣り合う超音波振動子2から送波された超音波が、超音波振動子2の振動面に対して角度θの方向で位相が揃うようにするためには、(数6)の関係を満たす必要がある。 In the case of transmission, a method of shifting the driving timing of the ultrasonic transducer 2 between the adjacent ultrasonic transducers 2 is used. That is, the wavefronts of the ultrasonic waves transmitted from the adjacent ultrasonic transducers 2 are made to coincide with each other in a direction inclined by an angle θ 3 from the vibration surface of the ultrasonic transducers 2. As shown in FIG. 3A, in order for the ultrasonic waves transmitted from the adjacent ultrasonic transducers 2 to be in phase in the direction of the angle θ 3 with respect to the vibration surface of the ultrasonic transducer 2, It is necessary to satisfy the relationship of (Equation 6).

Figure 2007067500

ここで、dは隣り合う超音波振動子2のx方向における中心間の距離であり、すなわち超音波振動子2の配列ピッチである。ここで、伝搬媒質部3内における音速をCとすると、(数6)に示した距離Lを超音波が伝搬するのにかかる時間Tは(数7)で表す事が出来る。よって、この時間Tの分だけ、駆動タイミングをずらして駆動する事で、振動面に対して角度θだけ傾いた波面を持つ超音波を送波出来るものである。
Figure 2007067500

Here, d is the distance between the centers of adjacent ultrasonic transducers 2 in the x direction, that is, the arrangement pitch of the ultrasonic transducers 2. Here, the speed of sound in the propagation medium portion 3 When C 1, the time T 1 to the distance L shown in (6) is an ultrasonic propagation can be represented by (Equation 7). Therefore, the amount corresponding to the time T 1, by driving and shifting the driving timing, in which it transmits an ultrasonic wave having a wavefront which is inclined by an angle theta 3 to the vibration surface.

Figure 2007067500

一方、受波の場合について説明する。送波の場合とは逆に、伝搬媒質部3を伝搬してきた超音波が超音波振動子2の一例である圧電体の表面まで到達し、超音波振動子2で受波された超音波振動が圧電体の圧電効果によって電気信号に変換され、送受波回路7で電気信号が加算されて計測が行われる。この電気信号を加算する際に、隣接する超音波振動子2からの電気信号を時間Tだけ、時間的にずらして加算する事で、角度θだけ傾いた方向の超音波を選択的に受波した事と同一となる。
Figure 2007067500

On the other hand, the case of wave reception will be described. Contrary to the case of the transmission, the ultrasonic wave propagating through the propagation medium unit 3 reaches the surface of the piezoelectric body as an example of the ultrasonic vibrator 2 and is received by the ultrasonic vibrator 2. Is converted into an electrical signal by the piezoelectric effect of the piezoelectric body, and the electrical signal is added by the transmission / reception circuit 7 to perform measurement. When adding this electric signal, by the time T 1 the electrical signal from the ultrasonic transducer 2 adjacent, by adding chronologically staggered, the direction of the ultrasound inclined by an angle theta 3 selectively It is the same as that received.

本第1実施形態における超音波振動子2の使用環境を、前述のように、例えば環境流体4の温度が約0℃から60℃の間の使用を想定した場合、その温度域においては、超音波の反射率Rが最も小さくなる角度θ、すなわち最も透過率が高くなる角度θは、図12に示したように、約29〜33°の間で、約4°の幅をもって変化することとなる。 As described above, for example, when the temperature of the environmental fluid 4 is assumed to be between about 0 ° C. and 60 ° C., the use environment of the ultrasonic transducer 2 in the first embodiment is super angle theta 1, i.e. the angle theta 1 which the most transmittance increases reflectance R is the smallest of the waves, as shown in FIG. 12, between about 29 to 33 °, varies with a width of about 4 ° It will be.

すなわち、反射率Rが最も低くなる角度は、環境流体4の温度に応じて変わり、仮に設定した本第1実施形態の条件(空気、0〜60℃)では、角度θが約31°を中心として、プラス、マイナス側とも約2°の幅において変化することとなる。 That is, the angle at which the reflectance R is lowest is changed according to the temperature of the environmental fluid 4, if the set the conditions of the first embodiment (air, 0 to 60 ° C.) in the angle theta 1 is about 31 ° As a center, both the plus and minus sides change within a width of about 2 °.

反射率が低くなる適当な角度θから、環境流体4の温度変化により、わずかに最適な角度θが変わると急激に反射率が大きくなるため、安定な超音波の送受波を行うためには、温度に応じて送受波方向を変化させる事が必要である。 In order to perform stable ultrasonic wave transmission / reception, the reflectivity increases abruptly when the optimum angle θ 1 slightly changes due to the temperature change of the environmental fluid 4 from the appropriate angle θ 1 at which the reflectivity decreases. It is necessary to change the transmission / reception direction according to the temperature.

ここで、超音波振動子2のX方向の長さの設定方法について説明する。本第1実施形態における超音波振動子2は複数あり、それぞれから送波される超音波の位相差を利用して、超音波の変更を行うものであるが、その場合には隣り合う超音波振動子の配列間隔に一定の規制が必要となる。これは意図した方向以外に各超音波振動子2から超音波の位相が揃い、強め合う方向が存在しないようにするためである。   Here, a method for setting the length of the ultrasonic transducer 2 in the X direction will be described. There are a plurality of ultrasonic transducers 2 in the first embodiment, and the ultrasonic wave is changed by utilizing the phase difference of the ultrasonic waves transmitted from each of them. In this case, adjacent ultrasonic waves are used. A certain restriction is required on the arrangement interval of the vibrators. This is to prevent the directions of the ultrasonic waves from the ultrasonic transducers 2 from being aligned in directions other than the intended direction so that there is no intensifying direction.

超音波を超音波振動子の振動面(第1表面領域31)の法線方向に対して−90〜+90°に超音波の方向を変向する必要がある場合には、超音波振動子2の配列間隔は波長の1/2以下とする必要があるが、本第1実施形態の場合には変更すべき角度が小さいため、超音波振動子2の配列する間隔は1波長以下程度で良い。   When it is necessary to change the direction of the ultrasonic wave to −90 to + 90 ° with respect to the normal direction of the vibration surface (first surface region 31) of the ultrasonic vibrator, the ultrasonic vibrator 2 However, since the angle to be changed is small in the case of the first embodiment, the arrangement interval of the ultrasonic transducers 2 may be about one wavelength or less. .

変向すべき角度が大きい場合には、超音波振動子の配列ピッチを1/2波長以下とすることが望ましい。   When the angle to be redirected is large, it is desirable that the arrangement pitch of the ultrasonic transducers is ½ wavelength or less.

よって、本第1実施形態では超音波振動子2のx方向の長さを3mmとし、その間隔を0.3mmとしている。すなわち、超音波振動子2の配列ピッチを3.3mmとしている。これは、送受波する超音波の周波数が50kHzであり、伝搬媒質部3での音速が180m/sであるため、伝搬媒質部3内での波長は約3.6mmとなり、この1波長以下の配列ピッチを満足する。   Therefore, in the first embodiment, the length of the ultrasonic transducer 2 in the x direction is 3 mm, and the interval is 0.3 mm. That is, the arrangement pitch of the ultrasonic transducers 2 is 3.3 mm. This is because the frequency of ultrasonic waves to be transmitted and received is 50 kHz, and the speed of sound in the propagation medium section 3 is 180 m / s, so the wavelength in the propagation medium section 3 is about 3.6 mm, which is less than this one wavelength. Satisfy the array pitch.

超音波振動子2は本第1実施形態においては16個配列しており、よって、超音波送受波器1のX方向の長さはおよそ24mmである。超音波振動子2の配列数は各超音波振動子2から送信された超音波が干渉し合い、平面波として伝搬していく必要性からその数が決められており、その数が少ない場合には球面波に近くなるためある程度の数(10個程度)が最低必要である。   In the first embodiment, 16 ultrasonic transducers 2 are arranged. Therefore, the length of the ultrasonic transducer 1 in the X direction is approximately 24 mm. The number of the ultrasonic transducers 2 is determined based on the necessity that the ultrasonic waves transmitted from the ultrasonic transducers 2 interfere with each other and propagate as plane waves. Since it is close to a spherical wave, a certain number (about 10) is required at a minimum.

本第1実施形態では、最大で中央から片側2°の超音波の方向に角度変化をつけるが、2°以下の角度変化を設定するためには、同様に(数6)によって制御回路9で算出される、距離Lに相当する駆動タイミングを設定することで必要な角度方向への超音波の送波を実現することができる。   In the first embodiment, an angle change is applied in the direction of the ultrasonic wave of 2 ° on the one side from the center at the maximum. In order to set an angle change of 2 ° or less, the control circuit 9 similarly uses (Equation 6). By setting the calculated drive timing corresponding to the distance L, it is possible to realize transmission of ultrasonic waves in a necessary angular direction.

以上で示した超音波の周波数や、角度θ、超音波振動子2の形状や、配列間隔などは環境流体4の種類や、伝搬媒質部3の材質などが変化すると変わるものであり、使用環境に応じて最適な設計値を選択設定する必要があり、本第1実施形態の値に限定されるものではない。 The ultrasonic frequency, the angle θ 1 , the shape of the ultrasonic transducer 2, the arrangement interval, and the like described above change as the type of the environmental fluid 4 and the material of the propagation medium unit 3 change. It is necessary to select and set an optimum design value according to the environment, and the present invention is not limited to the value of the first embodiment.

以上のように、本第1実施形態における超音波振動子2は複数であり、それぞれが独立に送受波回路7と信号線6を介して接続されており、送受波回路7は複数の超音波振動子2の駆動電圧及び駆動タイミング、受波信号の加算タイミングを独立に制御できるように構成されていることで、送受波する超音波の方向を調整することが可能となっているものである。   As described above, there are a plurality of ultrasonic transducers 2 in the first embodiment, each of which is independently connected to the transmission / reception circuit 7 via the signal line 6, and the transmission / reception circuit 7 includes a plurality of ultrasonic waves. By being configured so that the drive voltage and drive timing of the vibrator 2 and the addition timing of the received signal can be controlled independently, it is possible to adjust the direction of ultrasonic waves to be transmitted and received. .

更に、送受波回路7は制御回路9に接続されており、制御回路9は各超音波振動子2に対する駆動電圧及び駆動タイミング、あるいは受波された超音波振動に基づく電気信号の処理方法を制御する命令を下す事が出来る。   Further, the transmission / reception circuit 7 is connected to a control circuit 9, and the control circuit 9 controls a driving voltage and driving timing for each ultrasonic transducer 2 or a method of processing an electric signal based on the received ultrasonic vibration. Can be ordered.

制御回路9には、環境流体4の温度を測定する温度計8が接続されている。温度計からの温度に基づいて、送波あるいは受波のタイミングを制御することで、安定して高感度な送受波を行うことができる。   A thermometer 8 that measures the temperature of the environmental fluid 4 is connected to the control circuit 9. By controlling the timing of transmission or reception based on the temperature from the thermometer, stable and highly sensitive transmission / reception can be performed.

本第1実施形態における超音波送受器1の特徴は、環境流体4の温度に合わせて、送波時においては超音波の送波方向を制御し、受波時においては受波方向の指向性を制御することが可能なように構成されている点にある。   The feature of the ultrasonic handset 1 in the first embodiment is that the ultrasonic wave transmission direction is controlled at the time of wave transmission in accordance with the temperature of the environmental fluid 4, and the directivity of the wave receiving direction at the time of wave reception. It is in the point which is comprised so that control is possible.

まず、本第1実施形態の超音波送受波器1は、使用温度環境の中央値である温度30℃において複数の超音波振動子2を位相差無く駆動、あるいは受波信号の加算を行った場合に、送受波感度が高くなるように設定されている。   First, the ultrasonic transducer 1 of the first embodiment drives a plurality of ultrasonic transducers 2 without phase difference or adds received signals at a temperature of 30 ° C., which is the median value of the operating temperature environment. In this case, the transmission / reception sensitivity is set to be high.

より具体的には、温度30℃における環境流体4の一例である空気の密度ρ及び音速Cは、(数4)及び(数5)より、それぞれρ=1.165kg/m、C=349.5m/sであるため、(数8)より制御回路9で算出される送受波感度の高くなる角度θが約31°となるように作製されている。 More specifically, the density ρ 1 and the sound speed C 1 of air, which is an example of the environmental fluid 4 at a temperature of 30 ° C., are represented by ρ 1 = 1.165 kg / m 3 from (Equation 4) and (Equation 5), respectively. Since C 1 = 349.5 m / s, the angle θ 1 for increasing the transmission / reception sensitivity calculated by the control circuit 9 from (Equation 8) is made to be about 31 °.

Figure 2007067500

以下、本第1実施形態における超音波送受波器1の動作方法を、図3Bを用いてより具体的に説明する。
Figure 2007067500

Hereinafter, the operation method of the ultrasonic transducer 1 in the first embodiment will be described more specifically with reference to FIG. 3B.

送波の場合には、始めに、温度計8により環境流体4の一例である空気の温度tが測定され(ステップS1)、その温度tの情報が制御回路9に送られる。制御回路9では、環境流体4の温度が計測可能範囲であるかを判定後(ステップS2)、環境流体4の温度が計測可能範囲外ならば、測定エラーとして(ステップS3)、再度、ステップS1に戻り、温度計8により環境流体4の一例である空気の温度tが測定される。なお、環境流体4の温度が計測可能範囲外のときは、エラー表示を繰り返す。   In the case of wave transmission, first, the temperature t of air, which is an example of the environmental fluid 4, is measured by the thermometer 8 (step S 1), and information on the temperature t is sent to the control circuit 9. In the control circuit 9, after determining whether the temperature of the environmental fluid 4 is within the measurable range (step S2), if the temperature of the environmental fluid 4 is outside the measurable range, a measurement error (step S3) is performed again, and step S1 is repeated. The temperature t of air, which is an example of the environmental fluid 4, is measured by the thermometer 8. When the temperature of the environmental fluid 4 is outside the measurable range, the error display is repeated.

一方、環境流体4の温度が計測可能範囲内ならば、環境温度tに基づいて環境流体4の音速C、密度ρを制御回路9で算出し(ステップS4)、この音速C、密度ρを用いて、更に(数8)に基づいて第2表面領域32とのなすべき最適な入射角度θを制御回路9で算出する(ステップS5)。 On the other hand, if the measurement range temperature environment fluid 4, based on the environmental temperature t is calculated sound velocity C 2 of environmental fluid 4, the density [rho 2 in the control circuit 9 (step S4), and the sound velocity C 2, density with [rho 2, further optimal incident angle theta 1 to be Do the second surface region 32 is calculated by the control circuit 9 on the basis of the equation (8) (step S5).

こうして、ステップS4において制御回路9で算出した角度θを用いて、超音波振動子2に遅延の必要のない入射角度31°との差を取った角度θを制御回路9で求め(ステップS6)、角度θと超音波振動子2の配列ピッチd、伝搬媒質部3の音速Cを用いて、(数6)及び(数7)により、超音波振動子2を駆動するタイミングのズレ時間ΔTを制御回路9で算出する(ステップS7)。 In this way, using the angle θ 1 calculated by the control circuit 9 in step S4, the control circuit 9 obtains the angle θ 3 obtained by taking the difference from the incident angle 31 ° that does not require any delay in the ultrasonic transducer 2 (step S4). S6), using the angle θ 3 , the arrangement pitch d of the ultrasonic transducers 2, and the sound velocity C 1 of the propagation medium unit 3, the timing of driving the ultrasonic transducer 2 according to (Equation 6) and (Equation 7). The deviation time ΔT is calculated by the control circuit 9 (step S7).

このズレ時間ΔTの情報が、更に制御回路9から送受信回路7に送られて複数の超音波振動子2が制御回路9の制御の下に駆動される。このズレ時間ΔTを制御することで、第2表面領域32における超音波の角度θを制御回路9で制御して、安定的に高感度な超音波の送波を行うことができる(ステップS8)。その後、再び、ステップS1からの動作を開始することにより、連続して、超音波送受波器1の送波動作を行うことができる。 Information on the deviation time ΔT is further sent from the control circuit 9 to the transmission / reception circuit 7, and the plurality of ultrasonic transducers 2 are driven under the control of the control circuit 9. By controlling the deviation time ΔT, the ultrasonic angle θ 1 in the second surface region 32 is controlled by the control circuit 9 so that ultrasonic waves can be stably transmitted with high sensitivity (step S8). ). Thereafter, the operation from step S1 is started again, so that the transmission operation of the ultrasonic transducer 1 can be performed continuously.

より具体的に、環境流体4の温度が30℃の時の動作について説明する。   More specifically, the operation when the temperature of the environmental fluid 4 is 30 ° C. will be described.

本第1実施形態の超音波送受波器1は超音波振動子2の振動面(第1表面領域31)と、第2表面領域32は31°の角度を持つように作成されているため、超音波は第1表面領域31に対して垂直な方向へ伝搬していく場合に、感度が最大となる。   Since the ultrasonic transducer 1 of the first embodiment is created so that the vibration surface (first surface region 31) of the ultrasonic transducer 2 and the second surface region 32 have an angle of 31 °, When the ultrasonic wave propagates in a direction perpendicular to the first surface region 31, the sensitivity is maximized.

このような方向へ超音波を伝搬させるには、複数の超音波振動子2が位相差無く駆動すればよい。   In order to propagate ultrasonic waves in such a direction, the plurality of ultrasonic transducers 2 may be driven without a phase difference.

このように、本第1実施形態における超音波送受波器1の伝搬媒質部3は、環境流体4の温度が30℃の時に、複数の超音波振動子2に位相差無く駆動すると、効率良く超音波を環境流体4に対して送波出来るように伝搬媒質部3の材質及び形状が形成されている。   Thus, when the propagation medium portion 3 of the ultrasonic transducer 1 in the first embodiment is driven to a plurality of ultrasonic transducers 2 without a phase difference when the temperature of the environmental fluid 4 is 30 ° C., it is efficient. The material and shape of the propagation medium portion 3 are formed so that ultrasonic waves can be transmitted to the environmental fluid 4.

逆に受波に際しては、環境流体4を伝搬してきた超音波のうち、第2表面領域32とのなす角度θが、ほぼ89°となるような超音波のみが選択的に伝搬媒質部3に透過してくる。第2表面領域32で屈折した超音波は角度θが31.0°となる角度を持って伝搬媒質部3を伝搬して複数の超音波振動子2へ到達する。 On the contrary, when receiving the wave, only the ultrasonic wave having an angle θ 2 formed with the second surface region 32 of approximately 89 ° among the ultrasonic waves propagating through the environmental fluid 4 is selectively transmitted through the propagation medium 3. It becomes transparent. The ultrasonic waves refracted in the second surface region 32 propagate through the propagation medium portion 3 with an angle θ 1 of 31.0 ° and reach a plurality of ultrasonic transducers 2.

この時には、複数の超音波振動子2に対して、位相差無く超音波が到達するため、受波回路においては、複数の超音波振動子2から得られた電気信号を、位相差無く加算する事で感度の高い超音波の受波が行われる。   At this time, since the ultrasonic waves reach the plural ultrasonic transducers 2 without a phase difference, the receiving circuit adds the electric signals obtained from the plural ultrasonic transducers 2 without any phase difference. In this way, highly sensitive ultrasonic waves are received.

温度30℃における感度最大となる角度θが31°とした第2表面領域32を持つ伝搬媒質部3は、この角度に限定される物でなく、角度θが環境流体4の音速、密度と、伝搬媒質部3の音速、密度から(数8)によって決まる最適な角度θを満足するように、第2表面領域32の角度と超音波の伝搬方向を制御すればよいものである。本第1実施形態における超音波送受波器1は一例としての形態である。 The propagation medium portion 3 having the second surface region 32 in which the angle θ 1 at which the temperature is maximum at 30 ° C. is 31 ° is not limited to this angle, and the angle θ 1 is the sound speed and density of the environmental fluid 4. Then, the angle of the second surface region 32 and the propagation direction of the ultrasonic wave may be controlled so as to satisfy the optimum angle θ 1 determined by (Equation 8) from the sound speed and density of the propagation medium portion 3. The ultrasonic transducer 1 in the first embodiment is an example.

次に、環境流体4の温度が0℃と60℃の時の超音波送受波器1の動作について説明する。温度が0℃及び60℃の場合の動作を説明によって、超音波の変向角度が最も大きい場合を理解することで、その間の温度における動作はそれらの動作方法より容易に理解できる。   Next, the operation of the ultrasonic transducer 1 when the temperature of the environmental fluid 4 is 0 ° C. and 60 ° C. will be described. By explaining the operation when the temperature is 0 ° C. and 60 ° C., the operation at the temperature during that time can be more easily understood than those operation methods by understanding the case where the turning angle of the ultrasonic wave is the largest.

温度30℃の時と同様に、温度計8により環境流体4の温度tが0℃であることが制御回路9に送られると、制御回路9はズレ時間差ΔTを制御回路9で算出して送受波回路7に送り出す。送受波回路7では制御回路9からのズレ時間差ΔTに基づいて複数の超音波振動子2を駆動して、送波された超音波が第2表面領域32に対して約29.0°の角度で到達するように制御することとなる。   When the temperature t of the environmental fluid 4 is 0 ° C. is sent to the control circuit 9 by the thermometer 8 as in the case of the temperature 30 ° C., the control circuit 9 calculates the deviation time difference ΔT by the control circuit 9 and sends / receives it. The wave circuit 7 is sent out. In the transmission / reception circuit 7, the plurality of ultrasonic transducers 2 are driven based on the deviation time difference ΔT from the control circuit 9, and the transmitted ultrasonic waves have an angle of about 29.0 ° with respect to the second surface region 32. It will be controlled to reach at.

すなわち、第1表面領域31に対して図3Aの点線で示したように、左に傾き約2°の角度を持った波面の超音波が第2表面領域32に向かって伝搬していくようにする。   That is, as indicated by the dotted line in FIG. 3A with respect to the first surface region 31, the wavefront ultrasonic wave having an angle of about 2 ° to the left propagates toward the second surface region 32. To do.

より具体的に、本第1実施形態における超音波振動子2の駆動タイミングをずらす、ズレ時間差ΔTの値について説明する。   More specifically, the value of the deviation time difference ΔT that shifts the drive timing of the ultrasonic transducer 2 in the first embodiment will be described.

超音波の振動面の垂直方向に対して2°の角度をつけるためには、隣り合う超音波振動子2から送波される超音波が複数の超音波振動子2の配列間隔と、変向すべき角度である2度より、約0.12mm(3.3mm×sin2°)の距離の差がつけられる事が制御回路9で算出される。   In order to make an angle of 2 ° with respect to the vertical direction of the ultrasonic vibration surface, the ultrasonic waves transmitted from the adjacent ultrasonic transducers 2 are arranged and changed in the arrangement interval between the ultrasonic transducers 2. It is calculated by the control circuit 9 that a distance difference of about 0.12 mm (3.3 mm × sin 2 °) can be obtained from the angle of 2 degrees.

そして、伝搬媒質部3の音速が180m/sであるので、実際に超音波振動子2に与える駆動信号の時間差は、距離L=0.12mmを、音速180m/sで割った計算により、約0.67μsとなる。   Since the sound speed of the propagation medium unit 3 is 180 m / s, the time difference of the drive signal actually applied to the ultrasonic transducer 2 is approximately calculated by dividing the distance L = 0.12 mm by the sound speed 180 m / s. 0.67 μs.

このような時間差ΔT=0.67μsを、隣り合う超音波振動子2に与える駆動信号に設ける事で、環境流体4の温度が0℃の場合にも、適切な角度θを確保して、高効率な超音波の送波を行う事が出来る。 By providing such a time difference ΔT = 0.67 μs in the drive signal applied to the adjacent ultrasonic transducer 2, even when the temperature of the environmental fluid 4 is 0 ° C., an appropriate angle θ 1 is ensured, High-efficiency ultrasonic transmission can be performed.

この時間差ΔT=0.67μsは環境流体4に空気を用いて、第2表面領域32を第1表面領域31に対して31°の角度で形成した場合に、環境流体4が0℃の場合の解であって、他の環境流体や使用する温度環境、第2表面領域32の角度などによって随時変更されるものである。   This time difference ΔT = 0.67 μs is obtained when air is used as the environmental fluid 4 and when the second surface region 32 is formed at an angle of 31 ° with respect to the first surface region 31, the environmental fluid 4 is 0 ° C. It is a solution, and is changed as needed depending on other environmental fluids, the temperature environment to be used, the angle of the second surface region 32, and the like.

一方、受波の場合には、伝搬媒質部3の第2表面領域32から入射してきた超音波は、送波の場合とちょうど逆の経路を通って、超音波振動子2の振動面に対して図3Aの左側へ傾いた約2°の角度を持って入射してくる。各振動子2で受波された超音波を上記と同じ時間差(約0.67μs)をつけて加算することで、超音波の強度に応じた感度の高い超音波の受波が可能となる。   On the other hand, in the case of wave reception, the ultrasonic wave incident from the second surface region 32 of the propagation medium portion 3 passes through the path opposite to that in the case of wave transmission and is directed to the vibration surface of the ultrasonic transducer 2. Then, the light is incident at an angle of about 2 ° inclined to the left side of FIG. 3A. By adding the ultrasonic waves received by each transducer 2 with the same time difference (about 0.67 μs) as described above, it is possible to receive ultrasonic waves with high sensitivity according to the intensity of the ultrasonic waves.

次に、環境流体4の温度が60℃の時について説明する。60℃の時には、0℃の場合と同様に、温度計8により環境流体4の温度が60℃であることが制御回路9に送られると、送受波回路7は超音波振動子2からの超音波が第2表面領域32に対して33°の角度で入射するように制御される。すなわち、図2においては第1表面領域31に対して右側に傾いて約2°の角度を持った波面の超音波が第2表面領域32に向かって伝搬していくように制御する。   Next, the case where the temperature of the environmental fluid 4 is 60 ° C. will be described. When the temperature is 60 ° C., similarly to the case of 0 ° C., when the thermometer 8 sends to the control circuit 9 that the temperature of the environmental fluid 4 is 60 ° C., the transmission / reception circuit 7 The sound wave is controlled to be incident on the second surface region 32 at an angle of 33 °. That is, in FIG. 2, control is performed so that the ultrasonic wave having a wavefront inclined to the right with respect to the first surface region 31 and having an angle of about 2 ° propagates toward the second surface region 32.

環境流体4の温度が0度の場合とは反対側に、2°の角度を持って超音波を送波するためには、同様に各超音波振動子2から送波される超音波に、伝搬媒質部3内での距離の差が約0.12mmとなるように、駆動信号の時間差を約0.67μsとする。ただし、0℃の場合と逆の位相差を付ける事が必要である。   In order to transmit an ultrasonic wave with an angle of 2 ° on the opposite side to the case where the temperature of the environmental fluid 4 is 0 degree, similarly, the ultrasonic wave transmitted from each ultrasonic transducer 2 is The time difference of the drive signals is set to about 0.67 μs so that the difference in distance in the propagation medium unit 3 is about 0.12 mm. However, it is necessary to add a phase difference opposite to that at 0 ° C.

このようにする事で、第1表面領域31から約2°の角度を持った超音波の波面が形成され、第2表面領域32に対して約33°の角度を持って入射する事となり、環境流体4に対して高感度な超音波の送波が可能となる。   By doing so, an ultrasonic wavefront having an angle of about 2 ° from the first surface region 31 is formed and incident on the second surface region 32 with an angle of about 33 °. Highly sensitive ultrasonic waves can be transmitted to the environmental fluid 4.

受波の場合にも、温度0℃の場合と同様に、各超音波振動子2で受波した超音波を、送波の場合と同様の時間差0.67μsを設けて加算する事で、高感度な超音波の受波を行う事が可能となる。   Also in the case of reception, similarly to the case of the temperature of 0 ° C., the ultrasonic wave received by each ultrasonic transducer 2 is added with the same time difference of 0.67 μs as in the case of transmission, thereby increasing the frequency. Sensitive ultrasonic waves can be received.

以上のように、本発明の第1実施形態にかかる超音波送受波器1は、気体などの媒質に対して高感度に超音波を送受波しうる伝搬媒質部3を用いた超音波送受波器1において、環境流体4の温度変化に対しても、安定に高感度な超音波の送受波を行う事が可能となる超音波送受波器1を提供しうる。   As described above, the ultrasonic transducer 1 according to the first embodiment of the present invention uses the propagation medium unit 3 that can transmit and receive ultrasonic waves with high sensitivity to a medium such as gas. It is possible to provide an ultrasonic transducer 1 that can stably and highly sensitively transmit and receive ultrasonic waves in response to temperature changes in the environmental fluid 4.

また、環境流体4の温度が0〜30℃、あるいは30〜60℃の間においては、温度に応じて、送波の場合には上述した間の駆動時間差を、受波の場合には受波した信号の加算時に所定の時間差を設けて測定する事により、安定して高感度な測定を実現することができる。   Further, when the temperature of the environmental fluid 4 is 0 to 30 ° C. or 30 to 60 ° C., the driving time difference between the above-described cases in the case of wave transmission and the wave reception in the case of wave reception depending on the temperature. By measuring with a predetermined time difference when the added signals are added, stable and highly sensitive measurement can be realized.

この環境流体4の温度が0〜60℃の使用環境は、本第1実施形態をより具体的に理解するために設定したものであり、本第1実施形態の超音波送受波器1の使用環境が特にこの範囲に限定される物ではなく、使用環境に応じた超音波の変向を行うことで、温度変化に対して安定して高感度に超音波を送受波しうる超音波送受波器1を実現することができる。   The use environment in which the temperature of the environmental fluid 4 is 0 to 60 ° C. is set in order to understand the first embodiment more specifically, and the use of the ultrasonic transducer 1 of the first embodiment. The environment is not particularly limited to this range, and ultrasonic transmission / reception that can transmit and receive ultrasonic waves stably and with high sensitivity to temperature changes by changing the direction of ultrasonic waves according to the environment of use. The device 1 can be realized.

また、図1、図2に示した本第1実施形態における超音波送受波器1は、超音波振動子2と、伝搬媒質部3のみから構成されていたが、例えば図4Aに示すような更に別の部材を有する形態としても良い。   Moreover, although the ultrasonic transducer 1 in the first embodiment shown in FIGS. 1 and 2 is composed of only the ultrasonic transducer 2 and the propagation medium portion 3, for example, as shown in FIG. 4A. Furthermore, it is good also as a form which has another member.

すなわち、超音波送受波器1の強度を高めるため、隣接して配列されている超音波振動子2の間に充填材10を設けた構成としても良い。充填材10として充填する材料はゴムや樹脂などが、超音波振動子2の電気機械変換効率を低下させることなく、超音波送受波器1の強度を高める事が出来るため好ましい。充填材10に固い材料を用いると、超音波振動子2の変換効率が低下するため好ましくない。   That is, in order to increase the strength of the ultrasonic transducer 1, the filler 10 may be provided between the ultrasonic transducers 2 arranged adjacent to each other. The material to be filled as the filler 10 is preferably rubber or resin because the strength of the ultrasonic transducer 1 can be increased without lowering the electromechanical conversion efficiency of the ultrasonic transducer 2. Use of a hard material for the filler 10 is not preferable because the conversion efficiency of the ultrasonic transducer 2 is lowered.

また、隣接する超音波振動子2の機械的、電気的なクロストークを防止するため、充填材10には超音波減衰の大きな材料を用いる事が望ましく、フィラーを混入したゴムなどを好適に用いることができる。   In order to prevent mechanical and electrical crosstalk between adjacent ultrasonic transducers 2, it is desirable to use a material with large ultrasonic attenuation as the filler 10, and rubber or the like mixed with filler is preferably used. be able to.

また、超音波送受波器1の周波数特性を向上させる、あるいは超音波送受波器1の強度を向上させる、あるいは取扱いを容易にするために、超音波振動子2の背面に背面負荷材11を設けても良い。   In order to improve the frequency characteristics of the ultrasonic transducer 1, improve the strength of the ultrasonic transducer 1, or facilitate handling, a back load material 11 is provided on the back surface of the ultrasonic transducer 2. It may be provided.

超音波振動子2の周波数特性を向上させるとは、すなわち超音波振動子2のQ値を低下させて広帯域な特性を持たせる事が目的である。本第1実施形態の超音波振動子2として圧電体を用いる場合には、共振現象を利用することで超音波振動の電気信号への変換効率を高めているため、Q値が高い。   The purpose of improving the frequency characteristics of the ultrasonic transducer 2 is to reduce the Q value of the ultrasonic transducer 2 and to provide wideband characteristics. In the case where a piezoelectric body is used as the ultrasonic transducer 2 of the first embodiment, since the conversion efficiency of ultrasonic vibration into an electric signal is enhanced by utilizing a resonance phenomenon, the Q value is high.

超音波振動子2の背面側に伝搬する超音波を減衰させてQ値を下げることが周波数特性の向上には有効である。背面負荷材11の材料は、超音波振動子2と背面負荷材11の界面での反射を防止するために、音響インピーダンスが超音波振動子2に近い材料が好ましく、また、超音波を十分に減衰させるため、超音波減衰の大きな材料が好ましい。このような材料としてフェライトゴム(鉄粉を分散させたゴム)などが好適に用いられる。   Attenuating the ultrasonic wave propagating to the back side of the ultrasonic transducer 2 and reducing the Q value are effective in improving the frequency characteristics. The material of the back load material 11 is preferably a material having an acoustic impedance close to that of the ultrasonic transducer 2 in order to prevent reflection at the interface between the ultrasonic transducer 2 and the back load material 11, and sufficiently applies ultrasonic waves. In order to attenuate, a material with large ultrasonic attenuation is preferable. As such a material, ferrite rubber (rubber in which iron powder is dispersed) or the like is preferably used.

また、超音波送受波感度の向上と、周波数特性の向上を目的として、超音波振動子2と伝搬媒質部3の間に音響整合層12を設けても良い。超音波振動子2の一例として用いられる圧電セラミックスの音響インピーダンスは約30×10kg/m/s程度であり、伝搬媒質部3として用いている乾燥ゲルは0.036×10kg/m/sである。1層の音響整合層12を設ける場合には、超音波振動子2の一例である圧電セラミックスと、伝搬媒質部3の一例である乾燥ゲルの中間の音響インピーダンスを持つ材料が望ましい。 In addition, an acoustic matching layer 12 may be provided between the ultrasonic transducer 2 and the propagation medium unit 3 for the purpose of improving ultrasonic transmission / reception sensitivity and frequency characteristics. The acoustic impedance of the piezoelectric ceramic used as an example of the ultrasonic vibrator 2 is about 30 × 10 6 kg / m 2 / s, and the dry gel used as the propagation medium portion 3 is 0.036 × 10 6 kg / m 2 / s. When the one acoustic matching layer 12 is provided, a material having an acoustic impedance intermediate between a piezoelectric ceramic that is an example of the ultrasonic transducer 2 and a dry gel that is an example of the propagation medium unit 3 is desirable.

特に音響整合層12は、超音波振動子2の一例である圧電体と伝搬媒質部3の音響インピーダンスの積の幾何平均となる1.0×10kg/m/s程度の音響インピーダンスを持つ材料が好ましく、この音響インピーダンスを実現する材料としては、密度が約0.60×10kg/mであり、音速が約1600m/s程度であるシリカからなる多孔質セラミックスなどを用いる事が出来る。音響整合層12は単層ではなく、複数層であっても良く、多層にした場合には、更に高感度化、広帯域化をすることができる。 In particular, the acoustic matching layer 12 has an acoustic impedance of about 1.0 × 10 6 kg / m 2 / s, which is the geometric average of the products of the acoustic impedance of the piezoelectric body that is an example of the ultrasonic transducer 2 and the propagation medium unit 3. material is preferred to have, as a material for realizing the acoustic impedance, density of about 0.60 × 10 3 kg / m 3 , the use of a porous ceramic made of silica acoustic velocity is about 1600 m / s I can do it. The acoustic matching layer 12 may not be a single layer but may be a plurality of layers. When the acoustic matching layer 12 is formed in multiple layers, the sensitivity and the bandwidth can be further increased.

また、本第1実施形態で伝搬媒質部3の一例として用いている乾燥ゲルは、密度が低く、音速が遅いため、強度が低い。伝搬媒質部3の破損を防止し、超音波送受波器1の取扱い性を向上するために、超音波送受波器1の外周部分に保護部13を設けるなどをしても良い。保護部13は、伝搬媒質部3のみを覆うのではなく、超音波振動子2の部分などをも覆ってもよい。超音波の伝搬する経路を妨害しなければ良く、形状に超音波送受波器1の性能上の制約はない。   In addition, the dry gel used as an example of the propagation medium unit 3 in the first embodiment has a low density and a low sound speed, and therefore has a low strength. In order to prevent the propagation medium unit 3 from being damaged and improve the handleability of the ultrasonic transducer 1, a protective unit 13 may be provided on the outer periphery of the ultrasonic transducer 1. The protection unit 13 may cover not only the propagation medium unit 3 but also the part of the ultrasonic transducer 2 and the like. There is no limitation on the performance of the ultrasonic transmitter / receiver 1 in terms of shape as long as the path through which the ultrasonic wave propagates is not disturbed.

図4Bに、保護部13の形態をより理解し易くするため、超音波送受波器1の斜視図を示す。図4Bにおいては、保護部13は図4Bに示すように、伝搬媒質部3の音波の放射面以外の周囲すべてを覆ってもよい。また、伝搬媒質部3にある程度の強度がある場合には、図4Cのように一方向のみを覆う形状(例えば、超音波送受波器1の上面及び両側面を除く前面及び後面及び下面を覆うように横断面が大略L字形状)としても良く、適宜、製造のしやすさ、コストなどを勘案して設計することができる。伝搬媒質部3の強度が低い場合には、図4Bの形状が取り扱いや、信頼性の面で高いので好ましい。   FIG. 4B shows a perspective view of the ultrasonic transducer 1 for easier understanding of the form of the protection unit 13. In FIG. 4B, as shown in FIG. 4B, the protection unit 13 may cover the entire periphery of the propagation medium unit 3 other than the sound wave emission surface. When the propagation medium unit 3 has a certain level of strength, a shape that covers only one direction as shown in FIG. 4C (for example, covers the front surface, the rear surface, and the lower surface excluding the upper surface and both side surfaces of the ultrasonic transducer 1). Thus, the cross section may be generally L-shaped), and can be designed in consideration of ease of manufacture, cost, and the like. When the intensity of the propagation medium part 3 is low, the shape of FIG. 4B is preferable because of high handling and reliability.

保護部13に、音響整合層12として用いた多孔質セラミックスを用いると、アンカー効果により、乾燥ゲルとの結合が強く好適であり、更に音響整合層12と一体化することにより、製造プロセスの簡素化が図れるため、超音波送受波器1の製造コストの低減も実現できる。   When the porous ceramic used as the acoustic matching layer 12 is used for the protective portion 13, it is preferable to bond with the dry gel due to the anchor effect, and further integrated with the acoustic matching layer 12 to simplify the manufacturing process. Therefore, the manufacturing cost of the ultrasonic transducer 1 can be reduced.

また、保護部13に、環境流体4の温度を測定する温度計8を装備すれば、音響的な妨げとならず、温度計8と一体化した使用しやすい超音波送受波器1を構成できる。保護部13は、超音波の伝搬経路を妨げないように構成する事が、高感度な送受波をする上で重要である。温度計8は、図4Bのように音波を送受波しない側の保護部13の一部に設けても良いし、あるいは図4Dのように、音波を放射しない側の全面に渡って設けてもよく、あるいは図示していないが、直交する側の保護部13の上面に設けても良い。すなわち、用いる温度計8の性能や、必要な温度精度、あるいは温度の空間分布の必要性などに応じて設置をすることができる。   Moreover, if the protection unit 13 is equipped with a thermometer 8 for measuring the temperature of the environmental fluid 4, the ultrasonic transducer 1 that is integrated with the thermometer 8 and that is easy to use can be configured without any acoustic interference. . It is important to configure the protection unit 13 so as not to interfere with the propagation path of the ultrasonic waves in order to transmit and receive highly sensitive waves. The thermometer 8 may be provided in a part of the protection unit 13 on the side where the sound wave is not transmitted and received as shown in FIG. 4B, or may be provided over the entire surface on the side where the sound wave is not emitted as shown in FIG. 4D. Alternatively, although not shown, it may be provided on the upper surface of the protection portion 13 on the orthogonal side. That is, it can be installed according to the performance of the thermometer 8 to be used, the required temperature accuracy, or the necessity of the spatial distribution of temperature.

[第2実施形態]
図5Aを参照しながら、本発明の第2実施形態における超音波送受波器の構成及び動作について説明する。本第2実施形態における超音波送受器1Aは、第1実施形態で示した温度計を有せず、複数の超音波振動子2の駆動、あるいは受波信号の加算時のタイミングを制御する情報(ズレ時間ΔT)を、超音波振動子2自身の受波信号、あるいは検知用超音波振動子14により得ることが特徴であり、これ以外は第1実施形態と同様の構成、及び動作である。本第2実施形態における超音波送受器1Aでは、この複数の超音波振動子2の駆動、あるいは受波信号の加算時のタイミングを制御する情報(ズレ時間ΔT)を取得するため反射超音波受波装置を備えており、反射超音波受波装置の例としては、超音波振動子2自身により構成するか、又は、超音波振動子2とは別個に備えられた検知用超音波振動子14により構成することができる。そして、前記指向性制御部の一例として機能する制御回路9は、前記伝搬媒質部3と前記環境流体4の界面で反射して前記反射超音波受波装置で受波された反射超音波の情報に基づいて前記超音波の波面の位相を制御するように構成している。
[Second Embodiment]
With reference to FIG. 5A, the configuration and operation of an ultrasonic transducer according to the second embodiment of the present invention will be described. The ultrasonic transmitter / receiver 1A in the second embodiment does not have the thermometer shown in the first embodiment, and controls the timing of driving a plurality of ultrasonic transducers 2 or adding received signals. The feature is that the (displacement time ΔT) is obtained from the received signal of the ultrasonic transducer 2 itself or the ultrasonic transducer for detection 14, and the other configurations and operations are the same as in the first embodiment. . In the ultrasonic transmitter / receiver 1A according to the second embodiment, reflected ultrasonic reception is performed in order to acquire information (deviation time ΔT) for controlling the timing of driving of the plurality of ultrasonic transducers 2 or addition of reception signals. As an example of the reflected ultrasonic wave receiving device, the ultrasonic wave detecting device 14 is configured by the ultrasonic vibrator 2 itself or provided separately from the ultrasonic vibrator 2. Can be configured. Then, the control circuit 9 functioning as an example of the directivity control unit reflects the reflected ultrasonic wave reflected by the interface between the propagation medium unit 3 and the environmental fluid 4 and received by the reflected ultrasonic wave receiving device. Is configured to control the phase of the wavefront of the ultrasonic wave.

ある温度において超音波振動子2より送波された超音波5が、伝搬媒質部3を伝搬して、第2表面領域32に到達すると、角度θが最適な角度に設定されている場合には、殆ど全ての超音波5が第2表面領域32を透過して、環境流体中に伝搬していくため、送波した超音波5の反射波が超音波振動子2で観測されることは無い。 Ultrasonic 5 which is transmitting from the ultrasonic transducer 2 at a certain temperature, propagates through the propagation medium portion 3, and reaches the second surface region 32, if the angle theta 1 is set to the optimum angle Since almost all the ultrasonic waves 5 pass through the second surface region 32 and propagate into the environmental fluid, the reflected wave of the transmitted ultrasonic waves 5 is observed by the ultrasonic transducer 2. No.

ところが、環境流体4の温度が変化して、第2表面領域32での最適な角度θが変化すると、超音波5が第2表面領域32において環境流体4へ透過できなくなって反射するため、図5Aに実線の矢印5Gで示すように、第2表面領域32で反射した超音波5Gが、再び伝搬媒質部3の内部を伝搬することになる。 However, when the temperature of the environmental fluid 4 changes and the optimum angle θ 1 in the second surface region 32 changes, the ultrasonic wave 5 cannot be transmitted to the environmental fluid 4 in the second surface region 32 and reflected. As indicated by a solid line arrow 5G in FIG. 5A, the ultrasonic wave 5G reflected by the second surface region 32 propagates again inside the propagation medium portion 3.

反射して伝搬媒質部3を伝搬する超音波5Gは反射面の幾何学的な形状によって、超音波振動子2に戻って超音波信号として観測されることとなる。この反射超音波5Gの受波情報に基づいて、超音波振動子2の駆動タイミングを調整することで、常に第2表面領域32での反射が低くなるように超音波5の入射角度θを設定することができ、安定した高感度な超音波の送波を行うことができる。 The ultrasonic wave 5G reflected and propagated through the propagation medium unit 3 returns to the ultrasonic transducer 2 and is observed as an ultrasonic signal due to the geometric shape of the reflection surface. By adjusting the drive timing of the ultrasonic transducer 2 based on the received information of the reflected ultrasonic wave 5G, the incident angle θ 1 of the ultrasonic wave 5 is set so that the reflection at the second surface region 32 is always low. It can be set, and stable and highly sensitive ultrasonic wave transmission can be performed.

図5B及び図5Cを用いて超音波の送信方向を決めるための反射信号についてより具体的に説明する。図5B及び図5Cは超音波振動子2の送波時の波形について模式的に示したものであり、横軸は時間、縦軸は信号の大きさを示している。図5Bは、第2表面領域32で殆ど超音波5が反射されず、高感度な超音波の送波を行えている場合である。図5Bの始めの波形が送波した超音波5の信号で、伝搬媒質部3の内部での反射が起こらないため、その後に続いて超音波5Gが観測されることはない。   The reflected signal for determining the ultrasonic wave transmission direction will be described more specifically with reference to FIGS. 5B and 5C. 5B and 5C schematically show waveforms at the time of transmission of the ultrasonic transducer 2, where the horizontal axis indicates time and the vertical axis indicates the signal magnitude. FIG. 5B shows a case where the ultrasonic wave 5 is hardly reflected at the second surface region 32 and ultrasonic waves can be transmitted with high sensitivity. The first waveform in FIG. 5B is the signal of the ultrasonic wave 5 that is transmitted, and no reflection occurs inside the propagation medium unit 3, so that the ultrasonic wave 5G is not observed subsequently.

一方で、環境流体4の温度が変化して、第2表面領域32で超音波5Gが反射した場合は図5Cのように送波した超音波5の信号の後に、さらに反射してきた超音波5Gの信号が観測される。この反射信号のレベルが低減するように、超音波の角度を調整する必要がある。   On the other hand, when the temperature of the environmental fluid 4 changes and the ultrasonic wave 5G is reflected by the second surface region 32, the ultrasonic wave 5G reflected further after the signal of the ultrasonic wave 5 transmitted as shown in FIG. 5C. Signal is observed. It is necessary to adjust the angle of the ultrasonic wave so that the level of the reflected signal is reduced.

この反射信号のレベルが低減するように超音波の角度を調整する具体的な手順を図5Dに示す。   FIG. 5D shows a specific procedure for adjusting the angle of the ultrasonic wave so that the level of the reflected signal is reduced.

図5Dは超音波の方向を変える手順を示すフローチャートで、図5Dに示す手順で反射信号が観測されなくなるまで駆動タイミングを変化させる方法で、高感度な超音波の送受波が可能となる。   FIG. 5D is a flowchart showing a procedure for changing the direction of the ultrasonic waves, and a highly sensitive ultrasonic wave can be transmitted and received by changing the drive timing until no reflected signal is observed in the procedure shown in FIG. 5D.

超音波の伝搬方向の変化は先に述べたように、複数の超音波振動子2を駆動するタイミングを制御することで行う。このように超音波振動子2の反射信号レベルを低減するように超音波の方向を制御することで、安定して高感度な超音波の送波を行うことができる。   As described above, the ultrasonic wave propagation direction is changed by controlling the timing of driving the plurality of ultrasonic transducers 2. By controlling the direction of the ultrasonic wave so as to reduce the reflected signal level of the ultrasonic transducer 2 in this way, it is possible to stably transmit ultrasonic waves with high sensitivity.

具体的な手順について図5Dを用いてより詳細に説明する。図5Dでは、制御回路9に接続された検知用超音波振動子14を持つ場合について説明する。   A specific procedure will be described in more detail with reference to FIG. 5D. FIG. 5D illustrates a case where the ultrasonic transducer for detection 14 connected to the control circuit 9 is provided.

始めに、超音波送受波器1Aより超音波5を送波する(ステップS21)。この際には、複数ある超音波振動子2の駆動信号には時間差は設けておらず、超音波振動子2の面に対して平行な波面が送波される。こうして送波された超音波5が図5Aの5Gのように第2表面領域32で反射すると、検知用超音波振動子14で受波される(ステップS22でYES)。超音波が反射しない場合には検知用超音波振動子14で超音波が受波されない(ステップS22でNO)ため、この場合には、制御回路9の制御の下に、駆動信号の時間差を設けることなく、ステップS21に戻り、再び超音波5を送波する。   First, the ultrasonic wave 5 is transmitted from the ultrasonic transducer 1A (step S21). At this time, a time difference is not provided in the drive signals of the plurality of ultrasonic transducers 2, and a wavefront parallel to the surface of the ultrasonic transducers 2 is transmitted. When the ultrasonic wave 5 thus transmitted is reflected by the second surface region 32 as indicated by 5G in FIG. 5A, it is received by the ultrasonic transducer for detection 14 (YES in step S22). When the ultrasonic wave is not reflected, the ultrasonic wave is not received by the detection ultrasonic transducer 14 (NO in step S22). In this case, a time difference of the drive signal is provided under the control of the control circuit 9. Without returning to step S21, the ultrasonic wave 5 is transmitted again.

反射信号が観測された場合には(ステップS22)、制御回路9で超音波振動子2を駆動する信号に時間差を付けて、超音波5の伝搬方向を変える(ステップS23)。制御回路9で、図5Aに示した複数の超音波振動子2の右側を先に駆動し、順次、左側の超音波振動子2を駆動する(ステップS23)。この場合を、駆動信号のタイミングをプラス側にずらすと定義する。この場合には、超音波5は、制御回路9で、図5Aにおいて超音波振動子2の振動面に対して垂直な方向から右へ傾いた方向の超音波5が送波されることとなる。   When a reflected signal is observed (step S22), the control circuit 9 adds a time difference to the signal for driving the ultrasonic transducer 2 and changes the propagation direction of the ultrasonic wave 5 (step S23). The control circuit 9 drives the right side of the plurality of ultrasonic transducers 2 shown in FIG. 5A first, and sequentially drives the left ultrasonic transducer 2 (step S23). This case is defined as shifting the timing of the drive signal to the plus side. In this case, the ultrasonic wave 5 is transmitted by the control circuit 9 in the direction inclined to the right from the direction perpendicular to the vibration surface of the ultrasonic transducer 2 in FIG. 5A. .

一方、逆に、制御回路9で、複数の超音波振動子2の左側を先に駆動し、順次、右側の超音波振動子2を駆動する(ステップS23)。この場合を、駆動信号のタイミングをマイナス側にずらすと定義する。この場合には、制御回路9で、図5Aにおいて超音波振動子2の振動面に対して垂直な方向から左へ傾いた方向の超音波5が送波されることとなる。   On the other hand, the control circuit 9 drives the left side of the plurality of ultrasonic transducers 2 first, and sequentially drives the right ultrasonic transducer 2 (step S23). This case is defined as shifting the timing of the drive signal to the minus side. In this case, the control circuit 9 transmits the ultrasonic wave 5 in the direction inclined to the left from the direction perpendicular to the vibration surface of the ultrasonic transducer 2 in FIG. 5A.

それぞれの超音波振動子2を駆動する信号の時間差は、送信回路7の有する離散化された時間計測精度によって決まる物であり、最小の時間差を制御回路9で整数倍することによって設定されるものである。ここで、最小の駆動時間差をTaとして定義することとする。   The time difference between the signals for driving the respective ultrasonic transducers 2 is determined by the discretized time measurement accuracy of the transmission circuit 7 and is set by multiplying the minimum time difference by an integer number by the control circuit 9. It is. Here, the minimum driving time difference is defined as Ta.

この最小の駆動時間差Taをプラス側、マイナス側に設定して超音波を制御回路9で送波して(ステップS23)、それぞれの場合の反射波の計測を行う。この時の反射波のレベルの比較を制御回路9で行い(ステップS24)、どちらかの反射信号が観測されなければ、反射信号の観測されない伝搬時間差で再び超音波の送波を制御回路9で行って計測を継続する(ステップS25)。   The minimum driving time difference Ta is set to the plus side and the minus side, and an ultrasonic wave is transmitted by the control circuit 9 (step S23), and the reflected wave in each case is measured. At this time, the level of the reflected wave is compared by the control circuit 9 (step S24), and if one of the reflected signals is not observed, the control circuit 9 again transmits the ultrasonic wave with a propagation time difference where the reflected signal is not observed. The measurement is continued to continue (step S25).

ステップS24で、どちらも反射信号が観測される場合には、その反射信号のレベルを制御回路9で比較して、反射信号のレベルが低い側に、更に駆動時間差をプラス側あるいはマイナス側に制御回路9で増やして、すなわち、より角度をつけた超音波を制御回路9で送波する(ステップS26)。伝搬時間差の増やし方は、最小の駆動時間差Taの整数倍、すなわち、2*Ta,3*Taと順に制御回路9で増やしていく。   If a reflected signal is observed in both cases in step S24, the level of the reflected signal is compared by the control circuit 9, and the reflected signal level is controlled to the lower side, and the drive time difference is controlled to the plus side or the minus side. The ultrasonic wave increased by the circuit 9, that is, a more angled ultrasonic wave is transmitted by the control circuit 9 (step S26). The propagation time difference is increased by the control circuit 9 in order of an integral multiple of the minimum driving time difference Ta, that is, 2 * Ta, 3 * Ta.

更に、この場合の受信信号を観測し(ステップS27)、反射信号が観測されなくなった場合には、制御回路9で、この駆動時間差で再び超音波の送波を行って計測を継続する(ステップS28)。   Furthermore, the received signal in this case is observed (step S27), and when the reflected signal is no longer observed, the control circuit 9 transmits ultrasonic waves again at this drive time difference and continues measurement (step S27). S28).

ステップS27で反射信号レベルが減少している場合には、制御回路9で、更に駆動時間差を増やして、超音波の送波を制御回路9で行い(ステップS29)、同様に前の駆動時間差の場合の反射信号レベルと制御回路9で比較して(ステップS27)、反射信号が観測されなくなるまで、同様の手順によって超音波の送波を制御回路9で行う。   If the reflected signal level has decreased in step S27, the control circuit 9 further increases the drive time difference and transmits the ultrasonic wave in the control circuit 9 (step S29). The control circuit 9 compares the reflected signal level in this case with the control circuit 9 (step S27), and transmits the ultrasonic wave with the same procedure until the reflected signal is not observed.

一方、この手順の間に反射信号レベルが増加する場合には、最小の駆動時間差Taで設定しうる角度以下の制御によってしか、反射信号を0にすることができないため、反射信号の最小となる駆動時間差によって超音波の送波を制御回路9で行い(ステップS30)、最大のSNが得られる状態での計測を行う。   On the other hand, when the reflected signal level increases during this procedure, the reflected signal can be set to 0 only by control below an angle that can be set with the minimum driving time difference Ta, and therefore the reflected signal is minimized. The ultrasonic wave is transmitted by the control circuit 9 according to the driving time difference (step S30), and measurement is performed in a state where the maximum SN is obtained.

また、受波の場合について述べる。超音波振動子2で受波される超音波は、基本的に送波される超音波と同じ経路(同じ角度θ)で伝搬媒質部3に入射される。このため、送波と受波を交互に繰り返して測定を行う(パルスエコー法)タイプの本第2実施形態の超音波送受波器1Aにおいては、この送波の駆動タイミングを制御回路9で制御する情報に基づいて、受波した超音波信号の加算時のタイミングを制御回路9で制御することで高感度な超音波の送受波を行うことができる。 The case of receiving waves will be described. The ultrasonic wave received by the ultrasonic transducer 2 is incident on the propagation medium unit 3 through the same path (same angle θ 1 ) as that of the ultrasonic wave that is basically transmitted. For this reason, in the ultrasonic transducer 1 </ b> A of the second embodiment of the type that performs measurement by alternately repeating transmission and reception (pulse echo method), the drive timing of this transmission is controlled by the control circuit 9. Based on the information to be transmitted, the control circuit 9 controls the timing at which the received ultrasonic signals are added, whereby highly sensitive ultrasonic waves can be transmitted and received.

また、図5Aに示すように、超音波振動子2以外に反射超音波を検知するための検知用超音波振動子14を用いても良い。   Further, as shown in FIG. 5A, in addition to the ultrasonic transducer 2, a detection ultrasonic transducer 14 for detecting reflected ultrasonic waves may be used.

送信信号の尾引が長く、送信信号に反射信号が埋もれてしまうような場合には検知用超音波振動子14の採用が反射信号の検知に効果的である。また、送受波する超音波振動子2よりも時間的に早く反射超音波を検知することができるため、超音波測定の繰り返しを早くすることができ、よりリアルタイムな計測が可能となる。   In the case where the tail of the transmission signal is long and the reflection signal is buried in the transmission signal, the use of the ultrasonic transducer for detection 14 is effective in detecting the reflection signal. In addition, since the reflected ultrasonic wave can be detected earlier in time than the ultrasonic transducer 2 that transmits and receives waves, the ultrasonic measurement can be repeated more quickly and more real-time measurement is possible.

検知用超音波振動子14は、超音波振動子2と同様に圧電効果を利用して超音波振動を電気信号に変えるものであり、これは受信専用であるので、受信感度の高さを示す指標であるd定数が大きい材料を用いることが好ましく、たとえば高分子圧電材料などを好適に用いることができ、より具体的には例えばポリビニリデンフロオライド(PVDF)などを用いることが材料選択上好ましい。   The ultrasonic transducer for detection 14 uses the piezoelectric effect to change the ultrasonic vibration into an electric signal in the same manner as the ultrasonic transducer 2, and this is dedicated to reception, and thus shows high reception sensitivity. It is preferable to use a material having a large d constant as an index. For example, a polymer piezoelectric material can be suitably used. More specifically, for example, polyvinylidene fluoride (PVDF) or the like is used in selecting the material. preferable.

検知用超音波振動子14は、伝搬媒質部3の側面(第1表面領域31と、第2表面領域32の側面)に取り付けられる。このように配置すれば、第2表面領域32で反射した超音波を観測するまでの時間を短縮することができるため、繰り返しの早い超音波の送波を行うことができ、より短時間での測定を行うことができる。   The ultrasonic transducer for detection 14 is attached to the side surfaces of the propagation medium portion 3 (the first surface region 31 and the side surfaces of the second surface region 32). By arranging in this way, it is possible to shorten the time until the ultrasonic wave reflected by the second surface region 32 is observed, so that it is possible to transmit ultrasonic waves that are repeated quickly, and in a shorter time. Measurements can be made.

[第3実施形態]
図6Aを参照して、本発明の第3実施形態の超音波送受波器1Bを説明する。本第3実施形態の超音波送受波器1Bは、制御回路9に接続されかつ伝搬媒質部3の温度を調整する温度調節部15を有していることに特徴がある。
[Third Embodiment]
With reference to FIG. 6A, the ultrasonic transducer 1B of 3rd Embodiment of this invention is demonstrated. The ultrasonic transducer 1B of the third embodiment is characterized in that it has a temperature adjusting unit 15 that is connected to the control circuit 9 and adjusts the temperature of the propagation medium unit 3.

また、本第3実施形態における超音波振動子2は一組の電極を持つだけであり、送受波する超音波を電子的に変向する機能を有していない。よって、環境流体の温度変化に応じて超音波送受波方向を変えて、安定した超音波の送受波を行うことはできない。   Further, the ultrasonic transducer 2 in the third embodiment has only one set of electrodes and does not have a function of electronically redirecting ultrasonic waves to be transmitted and received. Therefore, it is impossible to change the ultrasonic wave transmission / reception direction according to the temperature change of the environmental fluid and perform stable ultrasonic wave transmission / reception.

本第3実施形態の超音波送受波器1Bでは、環境流体4の温度変化に応じて伝搬媒質部3の温度、すなわち音速を変化させて第2表面領域32における角度θを一定に保つよう構成されていることに特徴がある。すなわち、本第3実施形態の超音波送受波器1Bでは、第2表面領域32における角度θを一定に保つようにするため、前記伝搬媒質部3の音速を変化させる音速制御部を備えるものであり、温度調節部15と制御回路9は音速制御部の一例として機能する。 In the ultrasonic transducer 1 </ b> B of the third embodiment, the temperature θ of the propagation medium unit 3, that is, the speed of sound is changed according to the temperature change of the environmental fluid 4 to keep the angle θ 1 in the second surface region 32 constant. It is characterized by being composed. That is, in the ultrasonic transducer 1B of the third embodiment, in order to keep the angle theta 1 in the second surface region 32 at a constant, which comprises a sonic speed control unit for changing the sound velocity of the propagation medium portion 3 The temperature adjusting unit 15 and the control circuit 9 function as an example of a sound speed control unit.

このような本第3実施形態の超音波送受波器1Bについて説明する。本第3実施形態における超音波振動子2や、伝搬媒質部3の材質は第1実施形態及び第2実施形態と同様である。温度調節部15は、超音波伝搬の妨げにならないように、伝搬媒質部3の側面に接するように設けられ、加熱又は冷却することにより、伝搬媒質部3の温度を変化させることができるようになっている。   The ultrasonic transducer 1B according to the third embodiment will be described. The materials of the ultrasonic transducer 2 and the propagation medium unit 3 in the third embodiment are the same as those in the first embodiment and the second embodiment. The temperature adjusting unit 15 is provided so as to be in contact with the side surface of the propagation medium unit 3 so as not to hinder the propagation of ultrasonic waves, and can change the temperature of the propagation medium unit 3 by heating or cooling. It has become.

温度調節部15はヒータなどの抵抗加熱素子やペルチエ素子など、伝搬媒質部3に対して行う温度変化の範囲やレベルに応じた機能を有するデバイスを適時選択する事が出来る。温度調節部15は、制御回路9の制御の下に、なるべく短時間に、伝搬媒質部3全体を均一に設定温度にできる事が好ましく、図6Bに示すように、例えば伝搬媒質部3の周囲を囲むように形成されても良い。図6Bは断面表示であるが、伝搬媒質部3の紙面における手前と奥側の両側面も温度調節部15で囲まれている形態を示している。   The temperature adjusting unit 15 can appropriately select a device having a function corresponding to the range and level of temperature change performed on the propagation medium unit 3 such as a resistance heating element such as a heater or a Peltier element. It is preferable that the temperature adjusting unit 15 can uniformly set the entire propagation medium unit 3 to a set temperature under the control of the control circuit 9 as short as possible. For example, as shown in FIG. It may be formed so as to surround. FIG. 6B is a cross-sectional view, but shows a form in which the front and back side surfaces of the propagation medium unit 3 are also surrounded by the temperature control unit 15.

また、多孔質体である伝搬媒質部3に対しては、冷却、あるいは加熱された流体を送り込むことも温度制御に有効であり、加熱あるいは冷却された流体を送り込む、あるいは吸引するポンプなども温度調節部15として使用する事が出来る。この際には、温度変化のみでなく、異なる流体が充填されることによる音速変化が生じる可能性があるので注意を要する。   In addition, for the propagation medium part 3 which is a porous body, it is also effective for temperature control to send a cooled or heated fluid, and a pump for sending or sucking the heated or cooled fluid also has a temperature. It can be used as the adjustment unit 15. In this case, attention should be paid because not only the temperature change but also the sound speed change due to filling with different fluids may occur.

本第3実施形態の超音波送受波器1Bは、多数の超音波振動子2を持ち、これを電子的に制御して、超音波の変更を行うタイプの超音波送受波器1Aに比べ、低コストで提供できるという点で有利である。   The ultrasonic transducer 1B according to the third embodiment has a large number of ultrasonic transducers 2 and electronically controls them to change the ultrasonic wave 1A. This is advantageous in that it can be provided at a low cost.

角度θを一定に保ち、安定な超音波送受波を行う方法について述べる。前述のように伝搬媒質部3と環境流体4の界面(第2表面領域32)における超音波の反射率Rは(数1)で表される。 A method of performing stable ultrasonic transmission / reception while keeping the angle θ 1 constant will be described. As described above, the reflectance R of the ultrasonic wave at the interface (second surface region 32) between the propagation medium portion 3 and the environmental fluid 4 is expressed by (Equation 1).

また、(数2)により、反射率Rを0とする条件が決まり、その反射率を0とする角度θは、伝搬媒質部3及び環境流体4の密度と音速、ρ、ρ、C、Cを用いて(数8)で示される。 Further, the condition for setting the reflectance R to 0 is determined by (Equation 2), and the angle θ 1 for setting the reflectance to 0 is the density and sound velocity of the propagation medium portion 3 and the environmental fluid 4, ρ 1 , ρ 2 , It is shown by (Formula 8) using C 1 and C 2 .

環境流体4の密度ρ、音速Cは温度の関数として(数4)及び(数5)のように表す事ができ、密度ρ、音速Cが変化した場合の角度θの変化を最小限に抑えるためには、伝搬媒質部3の密度ρ、音速Cを環境流体4の密度ρ、音速Cの変化に合わせて変える必要がある。 The density ρ 2 and the sound velocity C 2 of the environmental fluid 4 can be expressed as a function of temperature as in (Equation 4) and (Equation 5), and the change in the angle θ 1 when the density ρ 2 and the sound velocity C 2 change. In order to minimize the above, it is necessary to change the density ρ 1 and the sound speed C 1 of the propagation medium unit 3 in accordance with the changes in the density ρ 2 and the sound speed C 2 of the environmental fluid 4.

ここで、伝搬媒質部3の材質の一例であるシリカ乾燥ゲルについては、温度tと密度ρ、音速Cの間に(数9)及び(数10)のような関係がある。固体についても気体と同様に一般に温度に応じて密度が減少し、音速が上昇する。 Here, with respect to the silica dry gel which is an example of the material of the propagation medium portion 3, there is a relationship such as (Equation 9) and (Equation 10) between the temperature t, the density ρ 1 , and the sound velocity C 1 . Also for solids, as with gases, the density generally decreases with temperature, and the speed of sound increases.

Figure 2007067500
Figure 2007067500

Figure 2007067500

ここで、実験的に密度ρは殆ど変化しない事が分かっているため、常数α=0として密度ρは一定値として取り扱う。一方で、音速Cは温度によってわずかに変化する。
Figure 2007067500

Here, since it is known experimentally that the density ρ 1 hardly changes, the density ρ 1 is treated as a constant value with the constant α = 0. On the other hand, the sound velocity C 1 slightly varies with temperature.

図7に環境流体4及び伝搬媒質部3の温度と、第2表面領域32における角度θの関係を示す。図7では(数8)において、伝搬媒質部3の音速Cを(数10)に基づいて変化させたときの、角度θの変化を計算したものである。 FIG. 7 shows the relationship between the temperature of the environmental fluid 4 and the propagation medium part 3 and the angle θ 1 in the second surface region 32. In FIG. 7, in (Equation 8), the change of the angle θ 1 when the sound speed C 1 of the propagation medium section 3 is changed based on (Equation 10) is calculated.

伝搬媒質部3の温度が環境流体4と同じ温度で変化した場合には、図7に示したグラフにより、常数β=0.3近傍で角度θの変化が極めて小さくなる事が分かる。 When the temperature of the propagation medium portion 3 is changed at the same temperature as the environmental fluid 4, the graph shown in FIG. 7, it is found that the change in the angle theta 1 at constant beta = 0.3 vicinity becomes extremely small.

よって、伝搬媒質部3に、一例として、このような特性を持つ乾燥ゲル材料を選択する。通常の乾燥ゲルに対し、このような材料とするためには温度によって音速が変化しやすいように、規則正しいシリカ骨格の構造を乱すような分子を入れることが有効である。   Therefore, a dry gel material having such characteristics is selected for the propagation medium portion 3 as an example. In order to obtain such a material for a normal dry gel, it is effective to insert a molecule that disturbs the structure of the regular silica skeleton so that the speed of sound easily changes depending on the temperature.

あるいは材料を変更することが困難な場合には、常数βの値に応じた温度変化を与えるようにする事で角度θを一定に保ち、安定した高感度な超音波の送受波を行う事が出来る。常数βの値に応じた温度変化の与え方とは、仮に常数β=0.03程度の材料で伝搬媒質部3が構成されている場合には、環境流体4の温度変化の10倍の温度変化を伝搬媒質部3に与えることで、伝搬媒質部3の音速は角度θを一定とする音速になりうる。 Alternatively, when it is difficult to change the material, the angle θ 1 is kept constant by giving a temperature change according to the value of the constant β, and stable and highly sensitive ultrasonic wave transmission / reception is performed. I can do it. The method of giving the temperature change according to the value of the constant β is that the temperature of the environmental fluid 4 is 10 times as high as the temperature of the environmental fluid 4 if the propagation medium portion 3 is made of a material having a constant β = 0.03. by providing a change in propagation medium portion 3, the acoustic velocity of the propagation medium portion 3 may be the speed of sound for the angle theta 1 is constant.

ここで、より具体的に、図6Cを用いて伝搬媒質部3の温度をどのように変化させるかの手順を説明する。この場合、伝搬媒質部3は温度に対して(数10)に従って変化する音速を有する材料である。ここでは、仮にβ=0.1として設定された材料を用いて説明する。環境流体4は空気であり、(数4)によって音速が変化する。   Here, more specifically, a procedure of how to change the temperature of the propagation medium unit 3 will be described with reference to FIG. 6C. In this case, the propagation medium part 3 is a material having a sound velocity that changes according to (Equation 10) with respect to the temperature. Here, a description will be given using a material set as β = 0.1. The environmental fluid 4 is air, and the speed of sound changes according to (Equation 4).

ここで、本第3実施形態の超音波送受波器1Bでは、温度30度において超音波の送受波が効率良く行われるように、第1表面領域31と第2表面領域32は約31度の角度を持って形成されている(ステップS41)。   Here, in the ultrasonic transducer 1B of the third embodiment, the first surface region 31 and the second surface region 32 are approximately 31 degrees so that ultrasonic waves can be efficiently transmitted and received at a temperature of 30 degrees. It is formed with an angle (step S41).

始めに、温度計8によって環境温度が計測されると、測定された温度tに対する環境流体4の音速Cが制御回路9で算出される(ステップS42)。例えば温度が30度から31度へ1度変化した時には、音速が349.5m/sから350.1m/sへ変化することとなる。 First, when the environmental temperature is measured by the thermometer 8, the sound velocity C 2 of environmental fluid 4 to the measured temperature t is calculated by the control circuit 9 (step S42). For example, when the temperature changes once from 30 degrees to 31 degrees, the sound speed changes from 349.5 m / s to 350.1 m / s.

この時、超音波の最適な送受波が可能となる角度θは伝搬媒質部3の音速が環境流体4と同じ温度変化をする場合には、183m/sから183.1m/sへ変化することとなる(ステップS43)。 At this time, the angle θ 1 at which the optimum transmission / reception of ultrasonic waves is possible changes from 183 m / s to 183.1 m / s when the sound speed of the propagation medium unit 3 changes in the same temperature as the environmental fluid 4. (Step S43).

温度30度においては角度31.57度が最適な角度θであったのに対し、31度では最適な角度θは31.53度へと変化する。最適な角度θ=31.57度を保つためには、温度31度の環境流体4の一例である空気(音速350.1m/s)に対して伝搬媒質部3の音速を183.3m/sとする必要があり、このためには、伝搬媒質部3の温度を33度とする必要がある(ステップS44)。よって、制御回路9の制御の下に、温度調節部15により伝搬媒質部3の温度を33度として、最適な角度θを31.57度に保つものである(ステップS45)。環境流体4の温度がより大きく変化しても、同様にこのような制御を行って超音波が効率良く送受波できるように制御する。以後、連続して超音波の送受波を行う場合には、ステップS42〜S45を繰り返せばよい。 At the temperature of 30 degrees, the angle 31.57 degrees is the optimum angle θ 1 , while at 31 degrees, the optimum angle θ 1 changes to 31.53 degrees. In order to maintain the optimum angle θ 1 = 31.57 degrees, the sound speed of the propagation medium portion 3 is set to 183.3 m / second with respect to air (sound speed 350.1 m / s) as an example of the environmental fluid 4 having a temperature of 31 degrees. For this purpose, the temperature of the propagation medium section 3 needs to be 33 degrees (step S44). Therefore, under the control of the control circuit 9, as 33 degrees the temperature of the propagation medium portion 3 by the temperature adjusting unit 15, to keep it at optimum angle theta 1 to 31.57 degrees (step S45). Even if the temperature of the environmental fluid 4 changes more greatly, such control is similarly performed so that ultrasonic waves can be transmitted and received efficiently. Thereafter, when continuously transmitting and receiving ultrasonic waves, steps S42 to S45 may be repeated.

本第3実施形態では伝搬媒質部3の一例として乾燥ゲルを用いた例を説明したが、環境流体4との関係において(数2)を満たす材料から伝搬媒質部3が構成されていればよく、乾燥ゲルに材料が限定されるものではない。   In the third embodiment, an example in which dry gel is used as an example of the propagation medium unit 3 has been described. However, it is only necessary that the propagation medium unit 3 is made of a material that satisfies (Equation 2) in relation to the environmental fluid 4. The material is not limited to dry gel.

[第4実施形態]
図8Aを参照して、本発明の第4実施形態の超音波送受波器1Cを説明する。本第4実施形態の超音波送受波器1Cは、伝搬媒質部3の側面に伝搬媒質部3を圧縮、又は伸張させるアクチュエータ16を制御回路9と接続して設けた事に特徴があり、それ以外は第3実施形態の超音波送受波器1Bと同様の構成及び動作をするものである。このアクチュエータ16と制御回路9は、前記音速制御部の別の例として機能するものである。
[Fourth Embodiment]
With reference to FIG. 8A, the ultrasonic transducer 1C of 4th Embodiment of this invention is demonstrated. The ultrasonic transducer 1C of the fourth embodiment is characterized in that an actuator 16 that compresses or expands the propagation medium section 3 is provided on the side surface of the propagation medium section 3 in connection with the control circuit 9. Other than the above, the configuration and operation are the same as those of the ultrasonic transducer 1B of the third embodiment. The actuator 16 and the control circuit 9 function as another example of the sound speed control unit.

第3実施形態においては伝搬媒質部3の温度を調節して音速を変化させることで、第2表面領域32における角度θを一定に保ったのに対し、本第4実施形態では、伝搬媒質部3を圧縮、あるいは伸張することで音速を変化させて角度θを一定値に保ち、安定した送受波動作を可能とするものである。 In the third embodiment, the angle θ 1 in the second surface region 32 is kept constant by adjusting the temperature of the propagation medium portion 3 to change the sound speed, whereas in the fourth embodiment, the propagation medium is changed. compressing section 3, or by varying the speed of sound by stretching maintained by the angle theta 1 at a constant value, and makes it possible to stably transducing operation.

図8Aに示したような伝搬媒質部3の側面に設けられたアクチュエータ16によって、制御回路9の制御の下に、伝搬媒質部3に対して圧縮あるいは伸張方向の応力を加えるものである。アクチュエータ16は、たわみ変形をして伝搬媒質部3に力を与えるように構成されており、たとえば圧電体と金属板のような材料を貼り合わせたユニモルフ型のアクチュエータ、あるいは反対の分極方向を持つ圧電体を2枚貼り合わせたバイモルフ型アクチュエータなどを用いることができる。   A stress in the compression or extension direction is applied to the propagation medium section 3 under the control of the control circuit 9 by the actuator 16 provided on the side surface of the propagation medium section 3 as shown in FIG. 8A. The actuator 16 is configured to bend and deform to apply a force to the propagation medium unit 3. For example, the actuator 16 is a unimorph type actuator in which a material such as a piezoelectric body and a metal plate is bonded, or has an opposite polarization direction. A bimorph actuator in which two piezoelectric bodies are bonded together can be used.

あるいは、図4Aに示した保護部13の側面に、さらに、圧電体などから形成されるアクチュエータ16を接合することで、変形するアクチュエータと変形しない保護部13とのサイズの差を利用したたわみ変形を伝搬媒質部3に与えることができ、音速を変化させることができる。このような形態の一例を図8Bに示す。このような形態の超音波送受波器1Cは、図8Cのようにアクチュエータ16が屈曲することで伝搬媒質部3に力を加えて、伝搬媒質部3の固さ、すなわち伝搬媒質部3内での音速を変化させることができる。   Alternatively, by bending an actuator 16 formed of a piezoelectric body or the like to the side surface of the protective portion 13 shown in FIG. 4A, the deflection deformation utilizing the difference in size between the deforming actuator and the non-deforming protective portion 13 is used. Can be given to the propagation medium section 3, and the speed of sound can be changed. An example of such a form is shown in FIG. 8B. The ultrasonic transducer 1C having such a configuration applies force to the propagation medium unit 3 by bending the actuator 16 as shown in FIG. 8C, so that the hardness of the propagation medium unit 3, that is, within the propagation medium unit 3. The speed of sound can be changed.

実際の音速制御方法について、図8Dを用いて説明する。なお、温度30度において超音波の送受波が効率良く行われるように、第1表面領域31と第2表面領域32が最適な角度を持って形成されている(ステップS51)。   The actual sound speed control method will be described with reference to FIG. 8D. Note that the first surface region 31 and the second surface region 32 are formed with an optimum angle so that ultrasonic waves can be efficiently transmitted and received at a temperature of 30 degrees (step S51).

始めに、温度計8により環境流体4の温度tが計測され、環境温度tの音速Cが制御回路9で算出される(ステップS52)。この情報に基づいて、超音波を高効率に送受波するために必要な伝搬媒質部3の音速Cが制御回路9で算出される(ステップS53)。 First, the temperature t of the environmental fluid 4 is measured by the thermometer 8, the sound velocity C 2 of the environmental temperature t is calculated by the control circuit 9 (step S52). Based on this information, the sound velocity C 1 of the propagation medium portion 3 necessary for transmitting and receiving an ultrasonic wave with high efficiency is calculated by the control circuit 9 (step S53).

この伝搬媒質部3の音速値に基づいて、伝搬媒質部3の音速が所定の値となる固さ、すなわち弾性率Kが制御回路9で算出される(ステップS54)。以下、弾性率Kとなるアクチュエータ16の圧縮力F、圧縮力Fとなる印加電圧Vが制御回路9で算出され(ステップS55及びS56)、制御回路9での制御の下に、実際に電圧がアクチュエータ16に印加されて、アクチュエータ16を変形させて、伝搬媒質部3へ力を加えて音速を変化させるものである。以後、連続して音速制御を行う場合には、ステップS52〜S56を繰り返せばよい。   Based on the sound velocity value of the propagation medium section 3, the hardness at which the sound speed of the propagation medium section 3 becomes a predetermined value, that is, the elastic modulus K is calculated by the control circuit 9 (step S54). Hereinafter, the compression force F of the actuator 16 having the elastic modulus K, and the applied voltage V that becomes the compression force F are calculated by the control circuit 9 (steps S55 and S56). It is applied to the actuator 16 to deform the actuator 16 and apply a force to the propagation medium section 3 to change the sound speed. Thereafter, when the sound speed control is continuously performed, steps S52 to S56 may be repeated.

伝搬媒質部3にシリカ乾燥ゲルなどを一例として用いた場合には、常に圧縮方向に圧力を印加して音速を変化するように設計することが望ましい。シリカ乾燥ゲルは圧縮方向の力には変形をし、その力が解除された時には再度元の形状に戻り、何度でも繰り返し力を受けて音速を変化させることができるのに対し、引っ張り方向の変形に対しては、比較的弱い力で破壊してしまい、伝搬媒質部3の音速を変化させることができなくなるためである。   When a silica dry gel or the like is used as an example for the propagation medium portion 3, it is desirable to design so that the sound velocity is always changed by applying pressure in the compression direction. Silica dry gel deforms in the force in the compression direction, and when the force is released, it returns to its original shape, and the force of sound can be changed over and over again, while in the tensile direction. This is because the deformation is destroyed by a relatively weak force, and the sound speed of the propagation medium unit 3 cannot be changed.

よって、伝搬媒質部3であるシリカ乾燥ゲル材料は、想定している使用温度領域の最も音速の遅い温度0℃に合わせた設計をして、この温度域において力を加えずに高感度な超音波の送受波が可能なように設計し、環境流体4の温度が上昇した場合には圧縮方向の力を伝搬媒質部3に加えて、角度θが変化しないように音速を調整する方法が望ましい。 Therefore, the silica dry gel material that is the propagation medium portion 3 is designed to be at a temperature of 0 ° C., which is the slowest speed of sound in the assumed operating temperature range, and is highly sensitive without applying force in this temperature range. There is a method of adjusting the speed of sound so that the angle θ 1 does not change by applying a force in the compression direction to the propagation medium unit 3 when the temperature of the environmental fluid 4 is increased. desirable.

本第4実施形態では、伝搬媒質部3の一例として乾燥ゲルを用いた例を説明したが、環境流体4との関係において(数2)を満たす材料から伝搬媒質部3が構成されていればよく、乾燥ゲルに材料が限定されるものではない。   In the fourth embodiment, an example in which dry gel is used as an example of the propagation medium unit 3 has been described. However, if the propagation medium unit 3 is made of a material that satisfies (Equation 2) in relation to the environmental fluid 4. Well, the material is not limited to dry gel.

また、図8Aでは伝搬媒質部の一組の対向する面にのみアクチュエータ16を設けたが、それと直交する面に対してアクチュエータ16を設けても良い。この場合には一つのアクチュエータ16の場合に比較して、更に大きな圧力を伝搬媒質部3に印加することが可能であるため、低電圧で所望の制御を行うことができ、低コスト化が図れるか、あるいは同じアクチュエータ16を用いても、より広い温度範囲における適応可能な超音波送受波器1Cを構成することができる。   Further, in FIG. 8A, the actuator 16 is provided only on a pair of opposing surfaces of the propagation medium portion, but the actuator 16 may be provided on a surface orthogonal thereto. In this case, a larger pressure can be applied to the propagation medium unit 3 than in the case of the single actuator 16, so that desired control can be performed at a low voltage, and cost can be reduced. Alternatively, even if the same actuator 16 is used, the ultrasonic transducer 1C that can be adapted in a wider temperature range can be configured.

[第5実施形態]
図9A〜図9Dを参照して、本発明の第5実施形態の超音波送受波器1Dを説明する。本第5実施形態の超音波送受波器1Dは、図9Aに示すように超音波振動子2の送受波面が1つの凸面型の曲面、あるいは図9Bのように1つの凹面型の曲面をしていることに特徴がある。これ以外は第1〜4実施形態と同様の構成、及び動作であり、制御回路9などの構成は図示を省略している。
[Fifth Embodiment]
With reference to FIG. 9A-FIG. 9D, ultrasonic transducer 1D of 5th Embodiment of this invention is demonstrated. In the ultrasonic transducer 1D of the fifth embodiment, the transmission / reception surface of the ultrasonic transducer 2 has one convex curved surface as shown in FIG. 9A, or one concave curved surface as shown in FIG. 9B. There is a feature. Other than this, the configuration and operation are the same as those of the first to fourth embodiments, and the configuration of the control circuit 9 and the like is not shown.

本第5実施形態における超音波振動子2は、その形状効果により単一の超音波振動子2で複数の方向へ超音波5を送受波することができる。このため、環境流体4の温度が変化して、送受波感度の大きくなる角度θが変化しても、超音波振動子2から送波された超音波5の、少なくとも一部分の超音波5は最適な角度θを満たして常に透過されるため、環境流体4の温度変化に対して、安定した超音波5の送受波を行うことのできる超音波送受波器1Dとなる。 The ultrasonic transducer 2 in the fifth embodiment can transmit and receive the ultrasonic wave 5 in a plurality of directions by the single ultrasonic transducer 2 due to its shape effect. For this reason, even if the temperature θ of the environmental fluid 4 changes and the angle θ 1 at which the transmission / reception sensitivity increases, the ultrasonic waves 5 transmitted from the ultrasonic transducer 2 are at least partially ultrasonic waves 5. The ultrasonic wave transmitter / receiver 1 </ b> D capable of stably transmitting / receiving the ultrasonic wave 5 with respect to the temperature change of the environmental fluid 4 is obtained because the optimum angle θ 1 is always transmitted.

本第5実施形態においても、超音波振動子2の1つの凸面型あるいは1つの凹面型の曲面形状は、今までの第1〜4実施形態で述べた条件における使用に対応しうるよう形成された場合について説明する。上述のように環境流体4の温度変化に応じた角度θの変化、すなわち約4°の範囲に対応できるように、圧電体の形状が規定されている。 Also in the fifth embodiment, one convex surface type or one concave surface shape of the ultrasonic transducer 2 is formed so as to be compatible with use under the conditions described in the first to fourth embodiments so far. The case will be described. Angle theta 1 changes according to the temperature changes in the environmental fluid 4 as described above, i.e., to accommodate the range of about 4 °, the shape of the piezoelectric body is defined.

より具体的には、超音波5の放射面、すなわち図9A,図9Bにおいて第1表面領域31となる超音波振動子2と伝搬媒質部3との界面の形状が、円の一部となるように形成されている。   More specifically, the radiation surface of the ultrasonic wave 5, that is, the shape of the interface between the ultrasonic transducer 2 and the propagation medium part 3 that becomes the first surface region 31 in FIGS. 9A and 9B becomes a part of a circle. It is formed as follows.

例えば図9A,図9BにおけるX方向の伝搬媒質部3及び超音波振動子2の長さが20mmである場合には、超音波振動子2を形づける円の直径が幾何学的に計算でき、4°の角度に対応するための超音波振動子2の形状は、約286mmの半径の円の一部となるように形成されることが計算できる。   For example, when the lengths of the propagation medium part 3 and the ultrasonic transducer 2 in the X direction in FIGS. 9A and 9B are 20 mm, the diameter of the circle forming the ultrasonic transducer 2 can be calculated geometrically, It can be calculated that the shape of the ultrasonic transducer 2 corresponding to an angle of 4 ° is formed to be a part of a circle having a radius of about 286 mm.

このとき、円の中心は図9Aの場合には、超音波振動子2のX方向の中央からY方向に関して超音波振動子2の下側に286mm下方に位置し、図9Bの場合には、同様に超音波振動子2のX方向の中央から286mm上方に位置することとなる。   At this time, in the case of FIG. 9A, the center of the circle is located 286 mm below the ultrasonic transducer 2 below the ultrasonic transducer 2 from the center in the X direction of the ultrasonic transducer 2, and in the case of FIG. 9B, Similarly, the ultrasonic transducer 2 is positioned 286 mm above the center in the X direction.

本第5実施形態の超音波送受波器1は、以上で説明したサイズに限定されて形成される物でなく、適時、必要なサイズに設計、形成されるものである。   The ultrasonic transducer 1 according to the fifth embodiment is not limited to the size described above, but is designed and formed in a necessary size at the appropriate time.

図9A,図9Bに示した超音波送受波器1の伝搬媒質部3は、図9C,図9Dに示すように、更に、先の実施形態と同様に保護部13で覆われていても良い。この場合には、先の実施形態と同様に低い強度の伝搬媒質部3を用いることができ、超音波送受波器1の設計範囲を広げることが可能になるほか、取り扱い性や長期信頼性、外部からの衝撃などに対する信頼性を向上させることができる。   The propagation medium part 3 of the ultrasonic transducer 1 shown in FIGS. 9A and 9B may be further covered with a protective part 13 as in the previous embodiment, as shown in FIGS. 9C and 9D. . In this case, similarly to the previous embodiment, a low-intensity propagation medium section 3 can be used, and the design range of the ultrasonic transducer 1 can be widened. Reliability for external impacts can be improved.

[第6実施形態]
図10A,図10Bを参照して、本発明の第6実施形態の超音波送受波器1Eを説明する。本第6実施形態の超音波送受波器1Eは、伝搬媒質部3と環境流体4の界面である第2表面領域32が図10Aに示すように1つの凸面型の曲面、あるいは図10Bのように1つの凹面型の曲面をした伝搬媒質部3を有することに特徴がある。これ以外は第1〜4実施形態と同様の構成、及び動作であり、制御回路9などの構成は図示を省略している。
[Sixth Embodiment]
With reference to FIG. 10A and FIG. 10B, the ultrasonic transducer 1E of 6th Embodiment of this invention is demonstrated. In the ultrasonic transducer 1E of the sixth embodiment, the second surface region 32 that is the interface between the propagation medium section 3 and the environmental fluid 4 has one convex curved surface as shown in FIG. 10A, or as shown in FIG. 10B. 1 is characterized by having a propagation medium part 3 having a concave curved surface. Other than this, the configuration and operation are the same as those of the first to fourth embodiments, and the configuration of the control circuit 9 and the like is not shown.

第5実施形態と同様に、環境流体4の温度が変化して、送受波感度の大きくなる角度θが変化しても、少なくとも一部分の超音波5は常に透過率の大きな角度θを満たすため、環境変化に対して安定した超音波5の送受波を行うことのできる超音波送受波器1Eとなる。 Like the fifth embodiment, the temperature of the environmental fluid 4 is changed, even larger angle theta 1 of transducing sensitivity is changed, satisfying a large angle theta 1 of the ultrasonic 5 always transmittance of at least a portion Therefore, the ultrasonic transducer 1E can transmit and receive the ultrasonic wave 5 that is stable against environmental changes.

超音波振動子2の1つの凸面型あるいは凹面型の曲面形状は、第5実施形態と同様に環境流体4の温度変化に応じた角度θの変化、すなわち約4°の範囲に対応できるように形状づけられている。 One convex or concave curved surface shape of the ultrasonic transducer 2 can correspond to a change of the angle θ 1 corresponding to a temperature change of the environmental fluid 4, that is, a range of about 4 °, as in the fifth embodiment. Is shaped.

第2表面領域32の具体的な曲面の形状は、第5実施形態の場合と同様の形状、すなわち図10A,図10BにおけるX方向の超音波振動子2の長さが20mmの場合には次のようになる。   The specific curved surface shape of the second surface region 32 is the same as that in the fifth embodiment, that is, when the length of the ultrasonic transducer 2 in the X direction in FIGS. 10A and 10B is 20 mm. become that way.

すなわち、本第6実施形態では伝搬媒質部3の環境流体4との界面、すなわち第2表面領域32が曲面となっており、図10A,図10Bにおける超音波振動子2のX方向の中心からの超音波5が第2表面領域32で角度θが31°をなすように形成されているため、この31°の角度をなす面の法線方向に、図10Aの場合には伝搬媒質部3側に約286mm離れた所に中心のある円弧の一部として、図10Bの場合には環境流体4側に中心のある円弧の一部として形成されている。 That is, in the sixth embodiment, the interface of the propagation medium unit 3 with the environmental fluid 4, that is, the second surface region 32 is a curved surface, from the center in the X direction of the ultrasonic transducer 2 in FIGS. 10A and 10B. for ultrasonic 5 is formed at an angle theta 1 is 31 ° in the second surface region 32, in the normal direction of the plane forming an angle of 31 °, the propagation medium portion in the case of FIG. 10A As shown in FIG. 10B, it is formed as a part of a circular arc centered on the environmental fluid 4 side as a part of a circular arc centered at a position about 286 mm away on the 3 side.

本第6実施形態の超音波送受波器1Eは、以上で説明したサイズに限定されて形成される物でなく、適時、必要なサイズに設計、形成されるものである。   The ultrasonic transducer 1E according to the sixth embodiment is not limited to the size described above, but is designed and formed in a necessary size at the appropriate time.

第5実施形態と同様に、超音波送受波器1Eの伝搬媒質部3は、図10C,図10Dに示すように保護部13で覆われていても良い。この場合には、同様に低い強度の伝搬媒質部3を用いることができ、超音波送受波器1Eの設計範囲を広げることが可能になるほか、取り扱い性や長期信頼性、外部からの衝撃などに対する信頼性を向上させることができる。   Similarly to the fifth embodiment, the propagation medium portion 3 of the ultrasonic transducer 1E may be covered with a protection portion 13 as shown in FIGS. 10C and 10D. In this case, similarly, the low-intensity propagation medium section 3 can be used, and the design range of the ultrasonic transducer 1E can be expanded, and handling, long-term reliability, external impact, etc. The reliability with respect to can be improved.

なお、上記様々な実施形態のうちの任意の実施形態を適宜組み合わせることにより、それぞれの有する効果を奏するようにすることができる。   It is to be noted that, by appropriately combining arbitrary embodiments of the various embodiments described above, the effects possessed by them can be produced.

本発明の超音波送受波器によれば、環境の変化(例えば−20℃〜60℃)に対して、安定に高感度に、かつ広い周波数にわたって送波、あるいは受波することができるため、安定して精度の高い超音波計測が可能となるものである。本発明の超音波送受波器の使用可能な具体的な用途としては、自動車の高精度バックソナー、屋外で働くロボットの制御(障害物検知など)、寒暖差の大きい屋外設置型の都市ガス用又はプロパンガス用のガス流量測定メータ、屋外に設置された配管径が大きな業務用ガス流量測定メータ(配管径が大きいと、超音波の減衰が大きいため、高感度が必要)、半導体プロセスなどの高精度な流量の制御のための流量メータ(感度が良いと分解能が上がるため、高精度測定が可能)などが挙げられる。   According to the ultrasonic wave transmitter / receiver of the present invention, it is possible to stably transmit and receive waves over a wide frequency with high sensitivity to environmental changes (for example, −20 ° C. to 60 ° C.). This enables stable and accurate ultrasonic measurement. The ultrasonic transmitter / receiver of the present invention can be used for specific applications such as high-accuracy back sonar for automobiles, control of robots that work outdoors (such as obstacle detection), and outdoor installation type city gas with a large temperature difference. Or a gas flow meter for propane gas, a business gas flow meter with a large pipe diameter installed outdoors (high sensitivity is required because the attenuation of ultrasonic waves is large when the pipe diameter is large), semiconductor processes, etc. For example, a flow meter for controlling the flow rate with high accuracy (higher sensitivity allows higher resolution because of higher resolution).

本発明の第1実施形態における超音波送受波器の斜視図The perspective view of the ultrasonic transmitter-receiver in 1st Embodiment of this invention. 本発明の第1実施形態における超音波送受波器の断面図Sectional drawing of the ultrasonic transducer in 1st Embodiment of this invention 本発明の第1実施形態における斜め方向への超音波の送受波方法を説明する模式図The schematic diagram explaining the transmission / reception method of the ultrasonic wave to the diagonal direction in 1st Embodiment of this invention 本発明の第1実施形態における超音波の送受波方法を説明するフローチャートThe flowchart explaining the ultrasonic wave transmission / reception method in 1st Embodiment of this invention. 本発明の第1実施形態における別形態の超音波送受波器の断面図Sectional drawing of the ultrasonic transducer of another form in 1st Embodiment of this invention 本発明の第1実施形態における別形態の超音波送受波器の斜視図The perspective view of the ultrasonic transducer of another form in 1st Embodiment of this invention 本発明の第1実施形態における別形態の超音波送受波器の斜視図The perspective view of the ultrasonic transducer of another form in 1st Embodiment of this invention 本発明の第1実施形態における別形態の超音波送受波器の斜視図The perspective view of the ultrasonic transducer of another form in 1st Embodiment of this invention 本発明の第2実施形態における超音波送受波器の断面図Sectional drawing of the ultrasonic transducer in 2nd Embodiment of this invention 本発明の第2実施形態における反射超音波を示す図The figure which shows the reflected ultrasound in 2nd Embodiment of this invention. 本発明の第2実施形態における反射超音波を示す図The figure which shows the reflected ultrasound in 2nd Embodiment of this invention. 本発明の第2実施形態における超音波の送受波方法を説明するフローチャートFlowchart for explaining an ultrasonic wave transmitting / receiving method according to the second embodiment of the present invention. 本発明の第3実施形態における超音波送受波器の断面図Sectional drawing of the ultrasonic transducer in 3rd Embodiment of this invention. 本発明の第3実施形態における超音波送受波器の断面図Sectional drawing of the ultrasonic transducer in 3rd Embodiment of this invention. 本発明の第3実施形態における超音波の送受波方法を説明するフローチャートFlowchart for explaining an ultrasonic wave transmitting / receiving method according to the third embodiment of the present invention. 本発明の第3実施形態における温度と角度θの関係を示すグラフThe graph which shows the relationship between temperature and angle (theta) 1 in 3rd Embodiment of this invention. 本発明の第4実施形態における超音波送受波器の断面図Sectional drawing of the ultrasonic transducer in 4th Embodiment of this invention 本発明の第4実施形態における超音波送受波器の別形態の断面図Sectional drawing of another form of the ultrasonic transducer in 4th Embodiment of this invention 本発明の第4実施形態における超音波送受波器の変形時の断面図Sectional drawing at the time of deformation | transformation of the ultrasonic transducer in 4th Embodiment of this invention 本発明の第4実施形態における超音波送の送受波方法を説明するフローチャートThe flowchart explaining the transmission / reception method of ultrasonic transmission in 4th Embodiment of this invention. 本発明の第5実施形態における超音波送受波器の断面図Sectional drawing of the ultrasonic transducer in 5th Embodiment of this invention. 本発明の第5実施形態における超音波送受波器の断面図Sectional drawing of the ultrasonic transducer in 5th Embodiment of this invention. 図9Aの本発明の第5実施形態における超音波送受波器の別形態の断面図FIG. 9A is a cross-sectional view of another form of the ultrasonic transducer according to the fifth embodiment of the present invention. 図9Bの本発明の第5実施形態における超音波送受波器の別形態の断面図Sectional drawing of another form of the ultrasonic transducer in 5th Embodiment of this invention of FIG. 9B. 本発明り第6実施形態における超音波送受波器の断面図Sectional drawing of the ultrasonic transducer in 6th Embodiment of this invention 本発明り第6実施形態における超音波送受波器の断面図Sectional drawing of the ultrasonic transducer in 6th Embodiment of this invention 図10Aの本発明の第6実施形態における超音波送受波器の別形態の断面図Sectional drawing of another form of the ultrasonic transducer in 6th Embodiment of this invention of FIG. 10A. 図10Bの本発明の第6実施形態における超音波送受波器の別形態の断面図Sectional drawing of another form of the ultrasonic transducer in 6th Embodiment of this invention of FIG. 10B. 特許文献1における従来の超音波送受波器の断面図Cross-sectional view of a conventional ultrasonic transducer in Patent Document 1 特許文献1の超音波送受波器における超音波の角度θと環境流体温度に対する超音波反射率を示すグラフThe graph which shows the ultrasonic reflectivity with respect to the angle (theta) 1 of an ultrasonic wave and environmental fluid temperature in the ultrasonic transducer of patent document 1 特許文献1の超音波送受波器における超音波の角度θと環境流体温度に対する超音波反射率を示すグラフThe graph which shows the ultrasonic reflectivity with respect to the angle (theta) 2 of an ultrasonic wave, and environmental fluid temperature in the ultrasonic transducer of patent document 1

符号の説明Explanation of symbols

1,1A,1B,1C,1D,1E 超音波送受波器
2 超音波振動子
3 伝搬媒質部
31 第1表面領域
32 第2表面領域
4 環境流体
5 超音波
6 信号線
7 送受波回路
8 温度検知部
9 制御回路
10 充填材
11 背面負荷材
12 音響整合層
13 保護部
14 検知用振動子
15 温度調節部
16 アクチュエータ
1, 1A, 1B, 1C, 1D, 1E Ultrasonic transducer 2 Ultrasonic transducer 3 Propagation medium section 31 First surface area 32 Second surface area 4 Environmental fluid 5 Ultrasonic wave 6 Signal line 7 Transceiver circuit 8 Temperature Detection unit 9 Control circuit 10 Filling material 11 Back load material 12 Acoustic matching layer 13 Protection unit 14 Detection vibrator 15 Temperature adjustment unit 16 Actuator

Claims (12)

環境流体で満たされた周囲の空間に対して超音波の送波又は受波を行う超音波送受波器であって、
少なくとも超音波振動子と、
前記超音波振動子と前記環境流体との間に充填されて、前記超音波の伝搬経路を形成する伝搬媒質部とを備えるとともに、
前記伝搬媒質部の密度ρ、前記伝搬媒質部における音速C、前記周囲空間を満たす前記環境流体の密度ρ、前記環境流体における音速Cが、(ρ/ρ)<(C/C)<1の関係を満足する材料より前記伝搬媒質部を構成し、
前記超音波振動子は超音波の送波又は受波の指向性を制御する指向性制御部をさらに備える超音波送受波器。
An ultrasonic transducer for transmitting or receiving ultrasonic waves to the surrounding space filled with environmental fluid,
At least an ultrasonic transducer,
A propagation medium that is filled between the ultrasonic transducer and the environmental fluid and forms a propagation path of the ultrasonic wave; and
The density ρ 1 of the propagation medium part, the sound speed C 1 in the propagation medium part, the density ρ 2 of the environmental fluid filling the surrounding space, and the sound speed C 2 in the environmental fluid are (ρ 2 / ρ 1 ) <(C 1 / C 2 ) <1 to form the propagation medium portion from a material satisfying the relationship:
The ultrasonic transducer further includes a directivity control unit that controls directivity of ultrasonic transmission or reception.
前記超音波振動子を複数備えるとともに、
前記指向性制御部は、送波の場合には、前記複数の超音波振動子のうちの隣り合う超音波振動子の駆動タイミングをずらし、受波の場合には、前記複数の超音波振動子のうちの隣り合う超音波振動子の受波信号の加算タイミングをずらすことにより、送波の場合及び受波の場合の超音波の波面の位相を制御することにより、前記超音波の送波又は受波の指向性を制御する請求項1に記載の超音波送受波器。
With a plurality of the ultrasonic transducers,
The directivity control unit shifts the drive timing of adjacent ultrasonic transducers among the plurality of ultrasonic transducers in the case of transmission, and the plurality of ultrasonic transducers in the case of reception. By shifting the addition timing of the reception signals of the adjacent ultrasonic transducers of the two, by controlling the phase of the ultrasonic wave front in the case of transmission and reception, the transmission of the ultrasonic wave or The ultrasonic transducer according to claim 1, wherein the directivity of received waves is controlled.
前記環境流体の温度を測定する温度計をさらに備え、
前記指向性制御部は、前記温度計で測定された前記環境流体の温度の情報を基に、前記超音波の波面の位相を制御する請求項2に記載の超音波送受波器。
A thermometer for measuring the temperature of the environmental fluid;
The ultrasonic transducer according to claim 2, wherein the directivity control unit controls a phase of a wavefront of the ultrasonic wave based on information on a temperature of the environmental fluid measured by the thermometer.
前記伝搬媒質部と前記環境流体の界面で反射した超音波を受波する反射超音波受波装置をさらに備え、
前記指向性制御部は、前記伝搬媒質部と前記環境流体の界面で反射して前記反射超音波受波装置で受波された反射超音波の情報に基づいて前記超音波の波面の位相を制御する請求項2に記載の超音波送受波器。
A reflection ultrasonic wave receiving device for receiving an ultrasonic wave reflected at the interface between the propagation medium part and the environmental fluid;
The directivity control unit controls the phase of the wavefront of the ultrasonic wave based on information of the reflected ultrasonic wave reflected at the interface between the propagation medium unit and the environmental fluid and received by the reflected ultrasonic wave receiving device. The ultrasonic transducer according to claim 2.
環境流体で満たされた周囲の空間に対して超音波の送波又は受波を行う超音波送受波器であって、
少なくとも超音波振動子と、
前記超音波振動子と前記環境流体との間に充填されて、前記超音波の伝搬経路を形成する伝搬媒質部とを備えるとともに、
前記伝搬媒質部の密度ρ、前記伝搬媒質部における音速C、前記周囲空間を満たす前記環境流体の密度ρ、前記環境流体における音速Cが、(ρ/ρ)<(C/C)<1の関係を満足する材料より前記伝搬媒質部を構成し、
前記伝搬媒質部の音速を変化させる音速制御部をさらに備える超音波送受波器。
An ultrasonic transducer for transmitting or receiving ultrasonic waves to the surrounding space filled with environmental fluid,
At least an ultrasonic transducer,
A propagation medium that is filled between the ultrasonic transducer and the environmental fluid and forms a propagation path of the ultrasonic wave; and
The density ρ 1 of the propagation medium part, the sound speed C 1 in the propagation medium part, the density ρ 2 of the environmental fluid filling the surrounding space, and the sound speed C 2 in the environmental fluid are (ρ 2 / ρ 1 ) <(C 1 / C 2 ) <1 to form the propagation medium portion from a material satisfying the relationship:
An ultrasonic transducer further comprising a sound speed controller that changes the sound speed of the propagation medium.
前記音速制御部は、前記伝搬媒質部の温度を調整する温度調節部を備え、前記温度調節部により前記伝搬媒質部の温度を変化させて前記伝搬媒質部の音速を変化させる請求項5に記載の超音波送受波器。   The said sound speed control part is provided with the temperature adjustment part which adjusts the temperature of the said propagation medium part, The temperature of the said propagation medium part is changed by the said temperature adjustment part, The sound speed of the said propagation medium part is changed. Ultrasonic transducer. 前記音速制御部は、前記伝搬媒質部を圧縮、又は伸張させるアクチュエータを備えて、前記アクチュエータにより前記伝搬媒質への加圧力又は伸張力の付与により前記伝搬媒質部の音速を変化させる請求項5に記載の超音波送受波器。   The sound speed control unit includes an actuator that compresses or expands the propagation medium part, and changes the sound speed of the propagation medium part by applying a pressure or an extension force to the propagation medium by the actuator. The described ultrasonic transducer. 前記アクチュエータは、前記伝搬媒質部の側面と接するように配置される請求項7に記載の超音波送受波器。   The ultrasonic transducer according to claim 7, wherein the actuator is disposed in contact with a side surface of the propagation medium portion. 前記環境流体の温度を測定する温度計をさらに備え、
前記音速制御部は、前記温度計により測定された前記環境流体の温度の情報に基づいて前記伝搬媒質部の音速を変化させる請求項5〜8のいずれか1つに記載の超音波送受波器。
A thermometer for measuring the temperature of the environmental fluid;
The ultrasonic transducer according to any one of claims 5 to 8, wherein the sound velocity control unit changes the sound velocity of the propagation medium portion based on information on the temperature of the environmental fluid measured by the thermometer. .
前記伝搬媒質部と前記環境流体の界面で反射した超音波を受波する反射超音波受波装置をさらに備え、
前記音速制御部は、前記伝搬媒質部と前記環境流体との界面で反射して前記反射超音波受波装置で受波された反射超音波の情報に基づいて前記伝搬媒質部の音速を変化させる請求項5〜8のいずれか1つに記載の超音波送受波器。
A reflection ultrasonic wave receiving device for receiving an ultrasonic wave reflected at the interface between the propagation medium part and the environmental fluid;
The sound velocity control unit changes the sound velocity of the propagation medium portion based on information of the reflected ultrasonic wave reflected at the interface between the propagation medium portion and the environmental fluid and received by the reflected ultrasonic wave receiving device. The ultrasonic transducer according to any one of claims 5 to 8.
環境流体で満たされた周囲の空間に対して超音波の送波又は受波を行う超音波送受波器であって、
少なくとも超音波振動子と、
前記超音波振動子と前記環境流体との間に充填されて、前記超音波の伝搬経路を形成する伝搬媒質部とを備えるとともに、
前記伝搬媒質部の密度ρ、前記伝搬媒質部における音速C、前記周囲空間を満たす前記環境流体の密度ρ、前記環境流体における音速Cが、(ρ/ρ)<(C/C)<1の関係を満足する材料より前記伝搬媒質部を構成し、かつ、前記超音波振動子の超音波送受波面は凸面型又は凹面型の曲面である超音波送受波器。
An ultrasonic transducer for transmitting or receiving ultrasonic waves to the surrounding space filled with environmental fluid,
At least an ultrasonic transducer,
A propagation medium that is filled between the ultrasonic transducer and the environmental fluid and forms a propagation path of the ultrasonic wave; and
The density ρ 1 of the propagation medium part, the sound speed C 1 in the propagation medium part, the density ρ 2 of the environmental fluid filling the surrounding space, and the sound speed C 2 in the environmental fluid are (ρ 2 / ρ 1 ) <(C 1 / C 2) constitutes the propagation medium portion from materials satisfying <1 relationship, and the ultrasound transmitting and receiving surface of the ultrasonic vibrator ultrasonic transducer which is a convex type or concave type of surface.
環境流体で満たされた周囲の空間に対して超音波の送波又は受波を行う超音波送受波器であって、
少なくとも超音波振動子と、
前記超音波振動子と前記環境流体との間に充填されて、前記超音波の伝搬経路を形成する伝搬媒質部とを備えるとともに、
前記伝搬媒質部の密度ρ、前記伝搬媒質部における音速C、前記周囲空間を満たす前記環境流体の密度ρ、前記環境流体における音速Cが、(ρ/ρ)<(C/C)<1の関係を満足する材料より前記伝搬媒質部を構成し、かつ、前記伝搬媒質部と前記環境流体の界面は凸面型又は凹面型の曲面である超音波送受波器。
An ultrasonic transducer for transmitting or receiving ultrasonic waves to the surrounding space filled with environmental fluid,
At least an ultrasonic transducer,
A propagation medium that is filled between the ultrasonic transducer and the environmental fluid and forms a propagation path of the ultrasonic wave; and
The density ρ 1 of the propagation medium part, the sound speed C 1 in the propagation medium part, the density ρ 2 of the environmental fluid filling the surrounding space, and the sound speed C 2 in the environmental fluid are (ρ 2 / ρ 1 ) <(C 1 / C 2 ) An ultrasonic transducer in which the propagation medium portion is made of a material satisfying a relationship of 1 and the interface between the propagation medium portion and the environmental fluid is a convex or concave curved surface.
JP2005247412A 2005-08-29 2005-08-29 Ultrasonic transceiver Pending JP2007067500A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005247412A JP2007067500A (en) 2005-08-29 2005-08-29 Ultrasonic transceiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005247412A JP2007067500A (en) 2005-08-29 2005-08-29 Ultrasonic transceiver

Publications (1)

Publication Number Publication Date
JP2007067500A true JP2007067500A (en) 2007-03-15

Family

ID=37929256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005247412A Pending JP2007067500A (en) 2005-08-29 2005-08-29 Ultrasonic transceiver

Country Status (1)

Country Link
JP (1) JP2007067500A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009041313A1 (en) * 2007-09-28 2009-04-02 Krautkramer Japan Co., Ltd Ultrasonic flaw detecting method and its device
JP2009229355A (en) * 2008-03-25 2009-10-08 Toshiba Corp Device and method for monitoring oscillation of nuclear reactor
JP2011154040A (en) * 2011-04-08 2011-08-11 Toshiba Corp Apparatus for monitoring of reactor vibration
JP2013532278A (en) * 2011-04-27 2013-08-15 エンパイア テクノロジー ディベロップメント エルエルシー Measuring 3D coordinates of transmitter
JP2013156277A (en) * 2008-03-31 2013-08-15 Kjtd Co Ltd Ultrasonic flaw detection method and device thereof
JP2016099139A (en) * 2014-11-18 2016-05-30 愛知時計電機株式会社 Ultrasonic flowmeter
KR101812113B1 (en) * 2017-05-31 2018-01-30 한국해양과학기술원 Underwater acoustic beam steering device with 3d matrix
KR101937262B1 (en) * 2016-10-11 2019-01-10 현대오트론 주식회사 Ultrasonic sensor device and method therefor
JP7495082B2 (en) 2021-05-28 2024-06-04 株式会社村田製作所 SOUND WAVE DEFLECTION DEVICE AND SOUND WAVE DEFLECTION SYSTEM

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5279090B2 (en) * 2007-09-28 2013-09-04 株式会社Kjtd Ultrasonic flaw detection method and apparatus
US8584526B2 (en) 2007-09-28 2013-11-19 Krautkramer Japan Co., Ltd. Ultrasonic flaw detection method and ultrasonic flaw detection equipment
WO2009041313A1 (en) * 2007-09-28 2009-04-02 Krautkramer Japan Co., Ltd Ultrasonic flaw detecting method and its device
JP2013148597A (en) * 2007-09-28 2013-08-01 Kjtd Co Ltd Ultrasonic flaw detection method and device thereof
JP2009229355A (en) * 2008-03-25 2009-10-08 Toshiba Corp Device and method for monitoring oscillation of nuclear reactor
US8774340B2 (en) 2008-03-25 2014-07-08 Kabushiki Kaisha Toshiba Nuclear reactor vibration surveillance system and its method
JP2013156277A (en) * 2008-03-31 2013-08-15 Kjtd Co Ltd Ultrasonic flaw detection method and device thereof
JP5288291B2 (en) * 2008-03-31 2013-09-11 株式会社Kjtd Ultrasonic flaw detection method and apparatus
JP2011154040A (en) * 2011-04-08 2011-08-11 Toshiba Corp Apparatus for monitoring of reactor vibration
JP2013532278A (en) * 2011-04-27 2013-08-15 エンパイア テクノロジー ディベロップメント エルエルシー Measuring 3D coordinates of transmitter
JP2016099139A (en) * 2014-11-18 2016-05-30 愛知時計電機株式会社 Ultrasonic flowmeter
KR101937262B1 (en) * 2016-10-11 2019-01-10 현대오트론 주식회사 Ultrasonic sensor device and method therefor
KR101812113B1 (en) * 2017-05-31 2018-01-30 한국해양과학기술원 Underwater acoustic beam steering device with 3d matrix
JP7495082B2 (en) 2021-05-28 2024-06-04 株式会社村田製作所 SOUND WAVE DEFLECTION DEVICE AND SOUND WAVE DEFLECTION SYSTEM

Similar Documents

Publication Publication Date Title
JP2007067500A (en) Ultrasonic transceiver
US10770058B2 (en) Acoustic lens for micromachined ultrasound transducers
US10483453B2 (en) Method of forming a multilayer acoustic impedance converter for ultrasonic transducers
US8570837B2 (en) Multilayer backing absorber for ultrasonic transducer
CN110199179B (en) Ultrasonic flowmeter and method for detecting a throughflow parameter
US7692367B2 (en) Ultrasonic transducer
WO2004098234A1 (en) Ultrasonic sensor
CN109909140B (en) Piezoelectric micromechanical ultrasonic transducer and preparation method thereof
JP5026770B2 (en) Ultrasonic probe and ultrasonic diagnostic apparatus
CN110799809A (en) Measuring device and method for determining a fluid variable
JP2008232801A (en) Ultrasonic transducer and ultrasonic level gage
JP3672565B2 (en) Small section vascular ultrasound imaging transducer
JP3062170B2 (en) Sound conversion device
KR101116165B1 (en) Ultrasonic Transducer using Planar Parallel Langevin Mounting Piezoelectric Element, Method for Manufacturing the Ultrasonic Transducer
CN109211338B (en) Method and measuring device for determining a fluid quantity
JP2009267510A (en) Ultrasonic sensor
JP2009021852A (en) Ultrasonic wave transmitter
CN111307233A (en) Measuring device for determining a fluid variable
JP2006220637A (en) Sensor system
JP5156931B2 (en) Ultrasonic transducer and ultrasonic flow meter
US11965994B2 (en) Ultrasonic transducer for a measuring device
JP2011007764A (en) Ultrasonic level meter
Minialga et al. Testing and optimization of ultrasonic-pulse-locating antenna by laser vibrometer
JP2006220638A (en) Sensor system
JPH0463348B2 (en)