JP2007067435A - Separator - Google Patents

Separator Download PDF

Info

Publication number
JP2007067435A
JP2007067435A JP2006297881A JP2006297881A JP2007067435A JP 2007067435 A JP2007067435 A JP 2007067435A JP 2006297881 A JP2006297881 A JP 2006297881A JP 2006297881 A JP2006297881 A JP 2006297881A JP 2007067435 A JP2007067435 A JP 2007067435A
Authority
JP
Japan
Prior art keywords
magnet
superconducting
main
magnets
normal conducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006297881A
Other languages
Japanese (ja)
Inventor
Ryoichi Hirose
量一 広瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Superconductor Technology Inc
Original Assignee
Japan Superconductor Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Superconductor Technology Inc filed Critical Japan Superconductor Technology Inc
Priority to JP2006297881A priority Critical patent/JP2007067435A/en
Publication of JP2007067435A publication Critical patent/JP2007067435A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a strong magnetic force field generator which is inexpensive and is manufactured easily. <P>SOLUTION: In the periphery of hollow cylindrical space, the generator is provided with a main magnet 1 which consists of a super-conductive magnet in the innermost layer, and three or more super-conductive magnets arranged concentrically to the super-conductive magnet. In an upper part or a lower part in the height direction of the main magnet 1, an auxiliary magnet 2, which consists of one or more super-conductive magnets, is arranged in a position which has a central axis coaxially with a central axis line parallel to the height direction of the main magnet 1. The magnetic fields, which are formed, respectively, by the super-conductive magnet in the innermost layer and the three or more super-conductive magnets which constitute the main magnet 1, are made to be the same direction. The magnetic field which is formed by the auxiliary magnet 2 is made to be the opposite direction to the magnetic field which is formed by the main magnet 1. The super-conductive magnet in the innermost layer and the three or more super-conductive magnets are fixed and arranged, respectively, so that, with respect to the center line in the direction perpendicular to the height direction of the super-conductive magnet in the innermost layer, the center line in the direction perpendicular to in the height direction of at least one of the three or more the super-conductive magnet is located in the opposite side to the side in which the auxiliary magnet is arranged. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、磁石に急磁場勾配を形成する事により強磁気力場を形成するものであって、特に、該強磁気力場内で、物質に重力に抗して浮揚力を与えたり、物質の磁気的特性に応じて分離したりする等の装置に使用可能な強磁気力場発生装置に関するものである。   The present invention forms a strong magnetic force field by forming a steep magnetic field gradient in a magnet. In particular, in the strong magnetic force field, a levitation force is applied to a material against gravity, The present invention relates to an apparatus for generating a strong magnetic force that can be used in an apparatus that performs separation according to magnetic characteristics.

磁場が物質に及ぼす力は、電磁気学により解明されており、磁場の強さ(B)と、磁場勾配(dB/dz)の積(B・dB/dz,以下単に磁気力場という)に比例する。前記磁場勾配(dB/dz)が重力の方向に存する場合には、物質を重力に抗して磁気力で浮揚させて無重力状態となす事が可能となり、逆方向の場合には大きな重力を付与させる過重力の発生が可能となる。   The force that a magnetic field exerts on a substance has been elucidated by electromagnetism, and is proportional to the product of the magnetic field strength (B) and the magnetic field gradient (dB / dz) (B · dB / dz, hereinafter simply referred to as a magnetic force field). To do. When the magnetic field gradient (dB / dz) exists in the direction of gravity, the substance can be lifted by a magnetic force against gravity to be in a weightless state, and in the opposite direction, a large gravity is applied. Overgravity can be generated.

磁気力により無重力状態を形成すれば、現在無重力下の宇宙空間で行われている結晶成長試験,物質の合成試験或いは植物の発芽発根試験等を地上で行う事が可能となり、試験コストは格段に安価となる。又、大きな過重力を発生させる場合には、過重力下における植物の成長試験や接触面を有しない異方性圧力下における諸物性の研究等に利用する事が可能となる。   If a weightless state is formed by magnetic force, it is possible to carry out crystal growth tests, material synthesis tests, plant germination rooting tests, etc. that are currently performed in space under weightlessness, and the test cost is significantly higher. It will be cheaper. In the case of generating a large amount of hypergravity, it can be used for a growth test of plants under the excessive gravity, a study of various physical properties under an anisotropic pressure having no contact surface, or the like.

係る磁気力場を発生させて物質を浮揚させる装置としては、従来はソレノイド型又はパンケーキ型の超電導コイル或いはビッター型の常電導コイルを用いて、その中央空間部の端部付近の磁場力場が最大となる位置に物質を入れた容器を配置し、該容器から物質を浮揚させるものがある。ところで、水(反磁性物質)を重力に抗して浮揚させるには、約1400T・T/m以上の磁気力場が必要とされているが、一般に市販されている強磁場コイルでは、この磁気力場を得る事は極めて困難であり、高価な装置が必要とされている。   As a device for generating a magnetic force field to levitate a substance, conventionally, a solenoid type or pancake type superconducting coil or a bitter type normal conducting coil is used, and a magnetic field force field near the end of the central space portion is used. There is a container in which a container in which a substance is placed is placed at a position where the maximum value is obtained and the substance is levitated from the container. By the way, in order to float water (diamagnetic material) against gravity, a magnetic force field of about 1400 T · T / m or more is required. Obtaining a force field is extremely difficult and expensive equipment is required.

そこで、この問題を解決し、安価に強磁気力場を発生する手段として、特開2000−77225号公報に開示されているものがある。同公報によると、この強磁気力場発生装置の構造して種々のものが提案されており、その1つに図7に示す構造のものがある。即ち、この強磁気力場発生装置11は、同図に示されている様に、強磁場B1を発生する超電導コイルで形成した内側コイル12Bと外側コイル12Aとの多層コイルからなる主コイル12と、前記内側コイル12Bの上部に、該主コイル12とは逆方向の磁場B2を発生する超電導コイルで形成した補助コイル13を配置し、これらをフランジ部14aを有する巻枠14に保持させた構造のものである。係る構造を採用する事により、主コイル12と補助コイル13の境界付近で磁場勾配(dB/dz)を急勾配となす事が可能となし、従って、強磁気力場を形成する事を可能にしている。   Therefore, as a means for solving this problem and generating a strong magnetic force field at low cost, there is one disclosed in Japanese Patent Laid-Open No. 2000-77225. According to the publication, various structures of this strong magnetic force field generator have been proposed, and one of them has the structure shown in FIG. That is, as shown in the figure, the strong magnetic force field generator 11 includes a main coil 12 composed of a multi-layer coil of an inner coil 12B and an outer coil 12A formed of a superconducting coil that generates a strong magnetic field B1. A structure in which an auxiliary coil 13 formed of a superconducting coil that generates a magnetic field B2 in a direction opposite to that of the main coil 12 is disposed above the inner coil 12B, and these are held by a winding frame 14 having a flange portion 14a. belongs to. By adopting such a structure, it is possible to make the magnetic field gradient (dB / dz) steep near the boundary between the main coil 12 and the auxiliary coil 13, and thus it is possible to form a strong magnetic force field. Yes.

係る構造の装置を表1に示す諸元で試作し、試験した結果が以下の通り記載されている。   An apparatus having such a structure is experimentally manufactured according to the specifications shown in Table 1, and the test results are described as follows.

Figure 2007067435
Figure 2007067435

この強磁気力場発生装置11をクライオスタット内に収容し、内外層の主コイル12A,12Bに110Aを、補助コイル13に500Aを夫々通電したところ、補助コイル13の内端付近(フランジ14a付近)に磁気力場の最大値が1400T・T/mとなり、水滴を浮揚させる事ができたと記載されている。   When this strong magnetic force field generator 11 is housed in a cryostat, the inner and outer layers of the main coils 12A and 12B are energized with 110A and the auxiliary coil 13 with 500A, respectively, near the inner end of the auxiliary coil 13 (near the flange 14a). Describes that the maximum value of the magnetic force field was 1400 T · T / m, and the water droplets could be levitated.

しかしながら、係る構造の装置では、理論的には製作可能であっても、現実問題としては、大きな問題がある。即ち、上記表1の諸元を有する前記図7に示した装置を用いて水を浮揚させ得る1400T・T/mの磁気力場を発生させるには、主コイル12A,12Bには150Aの電流を通電し、補助コイル13には600Aを通電する必要があるが、図7に示している様に、補助コイル13には内側主コイル12Bに対して図中F4で示した上向きの力が作用し、外側主コイル12Aには、内層側主コイル12Bに対して図中F5で示した下向きの力が作用する事になり、この合力は11トンにも達する。この巨大な力を巻枠14によって保持する必要があるが、これだけの力に耐える巨大な巻枠の製造は、技術的には可能であったとしても、これにコイルを巻き付けて保持させるのは非現実的である。   However, the apparatus having such a structure has a big problem as a real problem even though it can be manufactured theoretically. That is, in order to generate a magnetic force field of 1400 T · T / m capable of levitating water using the apparatus shown in FIG. 7 having the specifications of Table 1, the main coils 12A and 12B have a current of 150A. And the auxiliary coil 13 needs to be energized with 600A. As shown in FIG. 7, the auxiliary coil 13 is subjected to the upward force indicated by F4 on the inner main coil 12B. The downward force indicated by F5 in the figure acts on the inner main coil 12B on the outer main coil 12A, and this resultant force reaches 11 tons. Although it is necessary to hold this huge force by the reel 14, even if it is technically possible to manufacture a huge reel that can withstand such a force, it is necessary to wind and hold the coil around it. Unrealistic.

本発明は、係る問題点を解決し、巻枠に作用する力を最小限とした強磁気力場発生装置を提供する事を目的とするものである。   An object of the present invention is to provide a strong magnetic force field generator that solves such problems and minimizes the force acting on the reel.

本発明の強磁気力場発生装置は、超電導磁石又は常電導磁石を用いて、強磁気力場を発生させるものであって、中空筒状空間を中心に有し、前記中空筒状空間の周囲に、最内層の超電導磁石又は常電導磁石と、前記最内層の超電導磁石又は常電導磁石に対して同心円状に順に配置されている3つ以上の超電導磁石又は常電導磁石とからなる主磁石を備え、前記主磁石の高さ方向の上部又は下部に、前記主磁石の高さ方向に平行な中心軸線と同軸中心軸を有する位置に、少なくとも1つの超電導磁石又は常電導磁石からなる補助磁石を配置し、前記主磁石を構成する、前記最内層の超電導磁石又は常電導磁石、及び、前記3つ以上の超電導磁石又は常電導磁石のそれぞれにより形成される磁場は同方向となし、前記補助磁石により形成される磁場は、前記主磁石により形成される磁場とは逆方向となし、前記最内層の超電導磁石又は常電導磁石の高さ方向に直角な方向の中央線に対して、前記3つ以上の超電導磁石又は常電導磁石のうち少なくとも1つにおける高さ方向に直角な方向の中央線が、前記補助磁石が配置されている側と反対側に位置するように、前記最内層の超電導磁石又は常電導磁石、及び、前記3つ以上の超電導磁石又は常電導磁石のそれぞれを固定配置することによって、前記主磁石を構成する、前記最内層の超電導磁石又は常電導磁石、及び、前記3つ以上の超電導磁石又は常電導磁石のそれぞれに作用する吸引力及び反発力を低下させるものである。   The strong magnetic force field generator of the present invention generates a strong magnetic force field using a superconducting magnet or a normal conducting magnet, and has a hollow cylindrical space at the center, and the surroundings of the hollow cylindrical space. A main magnet comprising an innermost superconducting magnet or normal conducting magnet, and three or more superconducting magnets or normal conducting magnets arranged in a concentric order with respect to the innermost superconducting magnet or normal conducting magnet. An auxiliary magnet made of at least one superconducting magnet or normal conducting magnet at a position having a central axis parallel to the height direction of the main magnet and a coaxial central axis at the upper or lower part of the main magnet in the height direction. A magnetic field formed by each of the innermost superconducting magnet or normal conducting magnet and the three or more superconducting magnets or normal conducting magnets constituting the main magnet and having the same direction, the auxiliary magnet Magnetic field formed by Is in the direction opposite to the magnetic field formed by the main magnet, and the three or more superconducting magnets or the central line in the direction perpendicular to the height direction of the innermost superconducting magnet or normal conducting magnet or The superconducting magnet or the normal conducting magnet in the innermost layer such that a center line in a direction perpendicular to the height direction of at least one of the normal conducting magnets is located on the side opposite to the side on which the auxiliary magnet is disposed; And each of the three or more superconducting magnets or normal conducting magnets is fixedly arranged to constitute the main magnet, and the innermost superconducting magnet or normal conducting magnet, and the three or more superconducting magnets or The attractive force and the repulsive force acting on each of the normal conducting magnets are reduced.

また、本発明の強磁気力場発生装置においては、前記主磁石又は補助磁石のいずれか一方又は双方の前記中空筒状空間内に、強磁性体リング又は強磁性体盤を配置してなることが好ましい。   In the strong magnetic force field generator of the present invention, a ferromagnetic ring or a ferromagnetic disk is arranged in the hollow cylindrical space of either or both of the main magnet and the auxiliary magnet. Is preferred.

以上説明した如く、本発明の強磁気力場発生装置によれば、主磁石1と補助磁石2とを同軸上に上下に配置すると共に、主磁石は複数層の磁石で形成しているので、1つの磁石で高磁場を発生させる場合に比べて、効率的に強磁場を形成する事ができる。   As described above, according to the strong magnetic force field generator of the present invention, the main magnet 1 and the auxiliary magnet 2 are arranged on the same axis vertically, and the main magnet is formed of a plurality of layers of magnets. Compared with the case where a single magnet generates a high magnetic field, a strong magnetic field can be efficiently formed.

又、主磁石の内外層の各磁石の軸線に直交する方向の中心線Rの位置を、外側層の磁石が補助磁石から受ける反発力と最内層の磁石から受ける吸引力とがバランスする様に適宜ずらす事により、各磁石を保持した巻枠に作用する力を最小値となしているので、これらの磁石を保持する巻枠の製作は極めて容易となる。この結果、計算上は可能であっても製作が困難であった強磁気力場発生装置の製作が、安価に且つ容易となり、無重力場や過重力場における各種研究の促進が図られ、科学技術の一層の進歩発展に大きく寄与する事が期待される。   Also, the position of the center line R in the direction perpendicular to the axis of each magnet in the inner and outer layers of the main magnet is set so that the repulsive force that the outer layer magnet receives from the auxiliary magnet and the attractive force that the innermost layer magnet receives from the magnet are balanced. By appropriately shifting, the force acting on the reel holding each magnet is made the minimum value, so that the reel holding these magnets can be manufactured very easily. As a result, the production of a strong magnetic force field generator, which was computationally possible but difficult to manufacture, has become inexpensive and easy, and various researches in zero-gravity and hypergravity fields have been promoted. It is expected to contribute greatly to further progress and development.

以下、本発明について図面を用いて詳細に説明する。図1は、本発明に係る強磁気力場発生装置11の概念図を示すもので、主磁石1は、中空筒状空間Sを有する3層の超電導磁石又は常電導磁石(以下、超電導磁石又は単に磁石と記載する)1a,1b,1cから構成され、超電導磁石1aを最内層の磁石として、超電導磁石1a、超電導磁石1b、超電導磁石1cが、この順に内側から同心円状に配置された構造となっている。図示の例では、第1層の超電導磁石1aの高さは、他の2層の超電導磁石1b,1cに比して小さく構成され、第2層と第3層の超電導磁石1b,1cの高さは同一に形成されており、これらの磁石の高さ方向の中心軸線Zに直角な方向の中心線を、第1層の磁石1aはR1で示し、第2層及び第3層の磁石はR2で示している。この図示の例から明らかな様に、R2はR1に対して距離dだけずれた位置に配置されている。又、前記主磁石1の高さ方向の上部には、該主磁石1の高さ方向に平行な中心軸線Zと同軸の中心軸を有する位置に少なくとも1つの超電導磁石又は常電導磁石(以下、超電導磁石又は単に磁石と記載する)からなる補助磁石2を配置している。   Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is a conceptual diagram of a strong magnetic force field generator 11 according to the present invention. A main magnet 1 includes a superconducting magnet or a normal conducting magnet (hereinafter referred to as a superconducting magnet or a three-layer superconducting magnet having a hollow cylindrical space S). 1a, 1b, and 1c), the superconducting magnet 1a is the innermost layer magnet, and the superconducting magnet 1a, the superconducting magnet 1b, and the superconducting magnet 1c are arranged concentrically from the inside in this order. It has become. In the illustrated example, the height of the first superconducting magnet 1a is smaller than the other two superconducting magnets 1b and 1c, and the heights of the second and third superconducting magnets 1b and 1c are high. The first layer magnet 1a is indicated by R1, and the second layer magnet and the third layer magnet are indicated by R1. The center line is perpendicular to the central axis Z in the height direction of these magnets. This is indicated by R2. As is apparent from the illustrated example, R2 is arranged at a position shifted by a distance d from R1. Further, at the upper part of the main magnet 1 in the height direction, at least one superconducting magnet or normal conducting magnet (hereinafter, referred to as a central axis Z coaxial with the central axis Z parallel to the height direction of the main magnet 1). An auxiliary magnet 2 made of a superconducting magnet or simply described as a magnet is disposed.

そして、上記主磁石1を構成する3つの磁石1a〜1cには、同一方向の磁場が発生する様に通電され、前記補助磁石2には、前記主磁石1と逆方向の磁場が発生する様に形成されている。この様に、主磁石1を多層磁石構造とする事によって、1層構造の磁石の場合よりも、合理的に高磁場を発生する様にしている。これにより、前記特開2000−77225号公報に記載されている如く、前記主磁石1と補助磁石2との境界付近に強磁気力場が形成される事になる。   The three magnets 1 a to 1 c constituting the main magnet 1 are energized so that a magnetic field in the same direction is generated, and a magnetic field in the opposite direction to the main magnet 1 is generated in the auxiliary magnet 2. Is formed. In this way, the main magnet 1 has a multilayer magnet structure, so that a reasonably higher magnetic field is generated than in the case of a magnet having a single layer structure. As a result, a strong magnetic force field is formed in the vicinity of the boundary between the main magnet 1 and the auxiliary magnet 2 as described in JP-A-2000-77225.

図2は、図1の磁石配列を有する強磁気力場発生装置の巻枠を含めた断面図である。以下に強磁気力場発生装置における各巻枠と各磁石とについて説明する。上記配置の主磁石1と補助磁石2とを第1巻枠3に巻着することにより、強磁気力場発生装置11は形成されている。具体的には以下の通りである。該第1巻枠3は下部巻枠3aと上部巻枠3bとからなり、下部巻枠3aの巻芯全体に、下部巻枠3aの上下フランジの各内側が隠れる程度まで、最内層の磁石として第1主磁石1aとなる超電導コイルが巻着形成されている。そして、下部巻枠3aの外側に第2巻枠4が配置され、該第2巻枠4の巻芯全体に、該第2巻枠4の上下フランジの各内側が隠れる程度まで、第2主磁石1bとなる超電導コイルが巻着形成されている。同様にして第2巻枠4の外側に第3巻枠5が配置され、該巻枠5の巻芯全体に、該巻枠5の上下フランジの各内側が隠れる程度まで、第3主磁石1cとなる超電導コイルが巻着形成されている。このようにして主磁石1は形成されている。又、前記上部巻枠3bには、同様に超電導コイルが巻着形成されて補助磁石2を形成している。尚、前記第1巻枠3〜第3巻枠5は、適宜の手段により固着一体化されている。   FIG. 2 is a cross-sectional view including a winding frame of the strong magnetic force field generator having the magnet arrangement of FIG. Hereinafter, each winding frame and each magnet in the strong magnetic force field generator will be described. A strong magnetic force field generator 11 is formed by winding the main magnet 1 and the auxiliary magnet 2 arranged as described above around the first winding frame 3. Specifically, it is as follows. The first winding frame 3 is composed of a lower winding frame 3a and an upper winding frame 3b, and is used as an innermost layer magnet until the inner sides of the upper and lower flanges of the lower winding frame 3a are hidden by the entire core of the lower winding frame 3a. A superconducting coil serving as the first main magnet 1a is wound. Then, the second winding frame 4 is disposed outside the lower winding frame 3a, and the second main frame 4 is arranged so that the inner sides of the upper and lower flanges of the second winding frame 4 are hidden by the entire core of the second winding frame 4. A superconducting coil to be a magnet 1b is wound and formed. Similarly, the third main frame 1c is arranged to the extent that the inner sides of the upper and lower flanges of the winding frame 5 are hidden by the entire core of the winding frame 5 by arranging the third winding frame 5 on the outer side of the second winding frame 4. A superconducting coil is formed by winding. In this way, the main magnet 1 is formed. Similarly, a superconducting coil is wound around the upper winding frame 3b to form the auxiliary magnet 2. The first winding frame 3 to the third winding frame 5 are fixed and integrated by appropriate means.

図5は、上記本発明の装置と比較のために例示したものであって、主磁石1はは、図1のものと同一の3層の磁石1a,1b,1cからなり、その上部に補助磁石2を配置したものである。この比較例においては、第1主磁石1a〜第3主磁石1cは、夫々の高さ方向の軸線Zに対して直交する方向の中心線Rが、同一中心線となる様に配置されている。この場合には、第1主磁石1aに対し、前記補助磁石2には図中F1で示した様に上向きの反発力が作用し、第2主磁石1b及び第3主磁石1cには、前記補助磁石2による反発力と該補助磁石2が存在する事による該第2,第3主磁石1b,1cの中心線Rの上下における磁場の大きさの違いから下向きの力F2,F3が夫々発生する。   FIG. 5 shows an example for comparison with the apparatus of the present invention. The main magnet 1 is composed of the same three-layer magnets 1a, 1b, and 1c as in FIG. A magnet 2 is arranged. In this comparative example, the first main magnet 1a to the third main magnet 1c are arranged such that the center lines R in the direction orthogonal to the respective axial lines Z in the height direction are the same center line. . In this case, an upward repulsive force acts on the auxiliary magnet 2 as shown by F1 in the figure with respect to the first main magnet 1a, and the second main magnet 1b and the third main magnet 1c Due to the repulsive force of the auxiliary magnet 2 and the difference in the magnitude of the magnetic field above and below the center line R of the second and third main magnets 1b and 1c due to the presence of the auxiliary magnet 2, downward forces F2 and F3 are generated, respectively. To do.

この結果、この様な3つの主磁石1a〜1cの配置で前述の如く枠体3〜5に超電導コイルを巻着すると、該巻枠3〜5には大きな力が作用するので強固な巻枠が必要となるが、図1に示した如く、外側の第2,第3主磁石1b,1cの前記中心線R2を、内側の第1主磁石1aの前記中心線R1から下方にずらし、前記補助磁石2による下向きの反発力と、中心線をずらす事により生じる第1主磁石1aとの吸引力とがバランスして相殺する様になせば、上述の第2,第3主磁石1b,1cに作用する下向きの力F2,F3をゼロ(0)になす事が可能となる。   As a result, when a superconducting coil is wound around the frames 3 to 5 with the arrangement of the three main magnets 1a to 1c as described above, a large force is applied to the winding frames 3 to 5, so that the strong winding frame is applied. However, as shown in FIG. 1, the center line R2 of the outer second and third main magnets 1b and 1c is shifted downward from the center line R1 of the inner first main magnet 1a, and the If the downward repulsive force by the auxiliary magnet 2 and the attractive force with the first main magnet 1a generated by shifting the center line are balanced and cancelled, the second and third main magnets 1b and 1c described above are canceled out. It is possible to make the downward forces F2 and F3 acting on the zero zero (0).

次に、図1の如く主磁石を配置した本発明の実施例と、図5の如く主磁石を配置した比較例とについて、具体的な数値を用いて説明する。   Next, an embodiment of the present invention in which the main magnet is arranged as shown in FIG. 1 and a comparative example in which the main magnet is arranged as shown in FIG. 5 will be described using specific numerical values.

〔実施例〕
3つの超電導コイル1a〜1cからなる主磁石1と、1つの超電導コイルからなる補助磁石2を形成し、これを図1の如き配置で図2に示した如く一体の巻枠に巻着して、表2に示す諸元の強磁気力場発生装置を形成した。
〔Example〕
A main magnet 1 composed of three superconducting coils 1a to 1c and an auxiliary magnet 2 composed of one superconducting coil are formed, and these are wound around an integral reel as shown in FIG. A device for generating a strong magnetic force field having the specifications shown in Table 2 was formed.

Figure 2007067435
Figure 2007067435

上表において、第2,第3コイル1b,1cの前記中心線R2は、前記最内層の第1コイル1aの中心線R1から下方に5mmずらしており、補助コイル2の中心線R3(図1参照)は、前記第1コイル1aの中心線R1から上方に125mmの位置にある事を示している。   In the above table, the center line R2 of the second and third coils 1b, 1c is shifted downward by 5 mm from the center line R1 of the first coil 1a in the innermost layer, and the center line R3 of the auxiliary coil 2 (FIG. 1). Indicates a position 125 mm above the center line R1 of the first coil 1a.

この装置に通電して各コイルに表2に示した起磁力を発生したときの磁場強度(B:T)と、磁気力場(B/dB/dz:T・T/m)との中心線(R1)からの距離(z)との関係を計算で求めたところ、最大磁場15.4(T)を発生し、補助コイル2の内端付近で最大磁気力1500(T・T/m)を発生できると計算されたが、このときの第1主超電導コイル1aと補助超電導コイル2を組み込んだ巻枠3と、第2主超電導コイル1bと第3主超電導コイル1cを組み込んだ巻枠4,5との間に作用する軸方向の電磁力は略ゼロ(0)であった。この事から、巻枠3には格別に大きな電磁力が作用しないので、その製作は極めて容易である事が分かる。   The center line between the magnetic field strength (B: T) and the magnetic force field (B / dB / dz: T · T / m) when the coil is energized and the magnetomotive force shown in Table 2 is generated in each coil. When the relationship with the distance (z) from (R1) is calculated, a maximum magnetic field of 15.4 (T) is generated, and a maximum magnetic force of 1500 (T · T / m) is generated near the inner end of the auxiliary coil 2. The winding frame 3 incorporating the first main superconducting coil 1a and the auxiliary superconducting coil 2 at this time, and the winding frame 4 incorporating the second main superconducting coil 1b and the third main superconducting coil 1c. , 5 is approximately zero (0) in the axial direction. From this fact, it can be seen that a particularly large electromagnetic force does not act on the reel 3, so that its manufacture is extremely easy.

次に、上記装置に実際に通電して所定の起磁力を発生させたときの磁場強度と磁気力との分布を測定し、その結果を図6に示した。同図から明らかな様に、中心線の位置(z=0mm)で最大磁場15(T)強を発生し、z=70mm強の位置、即ち第1コイル1aの上端付近で最大磁気力1500(T・T/m)強が発生し、40mmの常温ボア中で水滴を浮揚させる事ができた。   Next, the distribution of magnetic field strength and magnetic force when the apparatus was actually energized to generate a predetermined magnetomotive force was measured, and the result is shown in FIG. As is clear from the figure, a maximum magnetic field of 15 (T) is generated at the position of the center line (z = 0 mm), and the maximum magnetic force 1500 (at the position of z = 70 mm, that is, near the upper end of the first coil 1a. (T · T / m) strength was generated, and water droplets could be floated in a 40 mm room temperature bore.

〔比較例〕
前記図5に示した如く、3つの主磁石1a〜1cの中心線Rを一致させる以外は、上記実施例と同一条件でシミュレーションを行ったところ、実施例と同様に、最大磁場15.4(T)を発生し、補助コイル2の内端付近で最大磁気力1500(T・T/m)を発生できると計算されたが、このときの第1主超電導コイル1aと補助超電導コイル2を組み込んだ巻枠3に作用する軸方向の電磁力F1と、第2主超電導コイル1bと第3主超電導コイル1cを組み込んだ巻枠4,5との間に作用する軸方向の電磁力F2,F3は、夫々2〜3トンにも達し、この力に抗して巻枠にコイルを支持させるには、高強度の巻枠が必要となり、現実的には製作不可能である事が理解される。
[Comparative example]
As shown in FIG. 5, when the simulation was performed under the same conditions as in the above example except that the center lines R of the three main magnets 1a to 1c were matched, the maximum magnetic field of 15.4 ( T) and the maximum magnetic force 1500 (T · T / m) near the inner end of the auxiliary coil 2 was calculated, but the first main superconducting coil 1a and the auxiliary superconducting coil 2 were incorporated at this time. The axial electromagnetic force F1 acting on the reel 3 and the axial electromagnetic forces F2, F3 acting between the second main superconducting coil 1b and the winding frames 4, 5 incorporating the third main superconducting coil 1c. Each of them reaches 2 to 3 tons, and it is understood that a high-strength reel is required to support the coil on the reel against this force, and it is impossible to manufacture in reality. .

次に、図3は、本発明の他の実施例を示す断面図であり、本例では、主磁石1の最内層の第1主磁石1aの中央の筒状空間(S)の略中央部に強磁性体製のリング6aを配置し、同様に、補助磁石2の中央の筒状空間の略中央部にも強磁性体製のリング6bを配置したものであり、これにより、各磁石1,2の磁力を強化させたものである。従って、係る強磁性体製のリング6a,6bを配置する事により、磁気力を更に強化させる事が可能となる。尚、図示の例では、主磁石1と補助磁石2の両方に前記強磁性体製リングを配置しているが、これはいずれか一方でも構わない。   Next, FIG. 3 is a cross-sectional view showing another embodiment of the present invention. In this example, a substantially central portion of the cylindrical space (S) at the center of the first main magnet 1a in the innermost layer of the main magnet 1 is shown. A ferromagnetic ring 6a is disposed in the same manner, and similarly, a ferromagnetic ring 6b is disposed substantially at the center of the cylindrical space in the center of the auxiliary magnet 2, whereby each magnet 1 , 2 is strengthened. Therefore, it is possible to further strengthen the magnetic force by arranging such ferromagnetic rings 6a and 6b. In the illustrated example, the ferromagnetic ring is disposed on both the main magnet 1 and the auxiliary magnet 2, but either one may be used.

次に、図4は、前記第1主磁石1aの筒状空間内の前記補助磁石2の近傍に強磁性体製の盤体6cを配置したものであって、同様の効果が期待されるものである。   Next, FIG. 4 shows a case where a ferromagnetic body 6c is arranged in the vicinity of the auxiliary magnet 2 in the cylindrical space of the first main magnet 1a, and the same effect is expected. It is.

尚、上記実施例では、主磁石1の上部に補助磁石2を配置した例を示したが、この場合は、重力に抗して浮揚力を発生させる事ができるものであり、前述の無重力状態の形成等に利用されるものである。一方、主磁石1の下部に補助磁石2を配置すれば、過重力状態が形成され、高重力下での各種試験等に使用されるものである。   In addition, although the example which has arrange | positioned the auxiliary magnet 2 to the upper part of the main magnet 1 was shown in the said Example, in this case, it can generate a levitation | floating force against gravity and the above-mentioned weightless state It is used for the formation of On the other hand, if the auxiliary magnet 2 is disposed below the main magnet 1, an overgravity state is formed, which is used for various tests under high gravity.

又、主磁石1は3つの磁石1a〜1cを用いる場合の例について説明したが、これは3つに限らず2つ或いは4つ以上でも良いことは言うまでもない。更に、第2主磁石1bと第3主磁石1cの高さが同一の場合の例について説明しているが、これらの高さが全て異なっていても全く問題はなく、要は、外側層の磁石が補助磁石や最内層の磁石の作用によって大きな力を受ける事の無い様に、その軸線に対して直交方向の中心線を最内層の磁石1aの中心線から適宜ずらして配置すれば良いのである。   Moreover, although the example in which the main magnet 1 uses the three magnets 1a-1c was demonstrated, it cannot be overemphasized that this is not restricted to three but two or four or more may be sufficient. Furthermore, although an example in which the heights of the second main magnet 1b and the third main magnet 1c are the same is described, there is no problem even if these heights are all different. Since the magnet is not subjected to a large force due to the action of the auxiliary magnet or the innermost layer magnet, the center line in the direction orthogonal to the axis may be appropriately shifted from the center line of the innermost layer magnet 1a. is there.

更に、上記実施例では、1つの補助磁石2を用いた場合の例を示しているが、この補助磁石2も複数中空コイルを同心円状に配置したものとなす事も可能である。   Furthermore, in the above-described embodiment, an example in which one auxiliary magnet 2 is used is shown, but this auxiliary magnet 2 can also be a concentric arrangement of a plurality of hollow coils.

図1は、本発明に係る強磁気力場発生装置の磁石配置の1例を示す概念図である。FIG. 1 is a conceptual diagram showing an example of a magnet arrangement of a strong magnetic force field generator according to the present invention. 図2は、図1の磁石配列を有する強磁気力場発生装置の巻枠を含めた断面図である。FIG. 2 is a cross-sectional view including a winding frame of the strong magnetic force field generator having the magnet arrangement of FIG. 図3は、本発明に係る強磁気力場発生装置の他の例を示す断面図である。FIG. 3 is a cross-sectional view showing another example of a strong magnetic force field generator according to the present invention. 図4は、本発明に係る強磁気力場発生装置の更に他の実施例を示す断面図である。FIG. 4 is a cross-sectional view showing still another embodiment of the magnetic force field generator according to the present invention. 図5は、比較例を示す強磁気力場発生装置の磁石配置を示す概念図である。FIG. 5 is a conceptual diagram showing a magnet arrangement of a strong magnetic force field generating device showing a comparative example. 図6は、本発明に係る強磁気力場発生装置で発生した磁場強度と磁気力の軸線方向の分布図である。FIG. 6 is a distribution diagram in the axial direction of the magnetic field strength and magnetic force generated by the strong magnetic force field generator according to the present invention. 図7は、従来の強磁気力場発生装置の1例を示す断面図である。FIG. 7 is a cross-sectional view showing an example of a conventional strong magnetic force field generator.

符号の説明Explanation of symbols

1 主磁石
1a 第1主磁石
1b 第2主磁石
1c 第3主磁石
2 補助磁石
3 第1巻枠
4 第2巻枠
5 第3巻枠
6a,6b 強磁性体リング
6c 強磁性体盤体
Z 中心軸線
R1 最内層主磁石の中心線
R2 外側層主磁石の中心線
R3 補助磁石の中心線
DESCRIPTION OF SYMBOLS 1 Main magnet 1a 1st main magnet 1b 2nd main magnet 1c 3rd main magnet 2 Auxiliary magnet 3 1st winding frame 4 2nd winding frame 5 3rd winding frames 6a and 6b Ferromagnetic ring 6c Ferromagnetic board body Z Center axis R1 Center line R2 of innermost layer main magnet Center line R3 of outer layer main magnet Center line of auxiliary magnet

Claims (2)

超電導磁石又は常電導磁石を用いて、強磁気力場を発生させる強磁気力場発生装置であって、
中空筒状空間を中心に有し、
前記中空筒状空間の周囲に、最内層の超電導磁石又は常電導磁石と、前記最内層の超電導磁石又は常電導磁石に対して同心円状に順に配置されている3つ以上の超電導磁石又は常電導磁石とからなる主磁石を備え、
前記主磁石の高さ方向の上部又は下部に、前記主磁石の高さ方向に平行な中心軸線と同軸中心軸を有する位置に、少なくとも1つの超電導磁石又は常電導磁石からなる補助磁石を配置し、
前記主磁石を構成する、前記最内層の超電導磁石又は常電導磁石、及び、前記3つ以上の超電導磁石又は常電導磁石のそれぞれにより形成される磁場は同方向となし、
前記補助磁石により形成される磁場は、前記主磁石により形成される磁場とは逆方向となし、
前記最内層の超電導磁石又は常電導磁石の高さ方向に直角な方向の中央線に対して、前記3つ以上の超電導磁石又は常電導磁石のうち少なくとも1つにおける高さ方向に直角な方向の中央線が、前記補助磁石が配置されている側と反対側に位置するように、前記最内層の超電導磁石又は常電導磁石、及び、前記3つ以上の超電導磁石又は常電導磁石のそれぞれを固定配置することによって、前記主磁石を構成する、前記最内層の超電導磁石又は常電導磁石、及び、前記3つ以上の超電導磁石又は常電導磁石のそれぞれに作用する吸引力及び反発力を低下させることを特徴とする強磁気力場発生装置。
A strong magnetic force field generator that generates a strong magnetic force field using a superconducting magnet or a normal conducting magnet,
Having a hollow cylindrical space at the center,
Around the hollow cylindrical space, an innermost superconducting magnet or normal conducting magnet, and three or more superconducting magnets or ordinary conducting arranged in order concentrically with respect to the innermost superconducting magnet or normal conducting magnet A main magnet composed of a magnet,
An auxiliary magnet made of at least one superconducting magnet or normal conducting magnet is arranged at a position having a central axis parallel to the height direction of the main magnet and a coaxial central axis at an upper part or a lower part of the main magnet in the height direction. ,
The magnetic field formed by each of the innermost superconducting magnet or normal conducting magnet and the three or more superconducting magnets or normal conducting magnets constituting the main magnet is in the same direction,
The magnetic field formed by the auxiliary magnet is in the opposite direction to the magnetic field formed by the main magnet,
A direction perpendicular to the height direction of at least one of the three or more superconducting magnets or normal conducting magnets with respect to a center line perpendicular to the height direction of the innermost superconducting magnet or normal conducting magnet. The innermost superconducting magnet or normal conducting magnet and the three or more superconducting magnets or normal conducting magnets are fixed so that the center line is located on the side opposite to the side where the auxiliary magnet is disposed. By disposing, the attraction force and the repulsive force acting on each of the innermost superconducting magnet or normal conducting magnet and the three or more superconducting magnets or normal conducting magnets constituting the main magnet are reduced. A strong magnetic force field generator.
前記主磁石又は補助磁石のいずれか一方又は双方の前記中空筒状空間内に、強磁性体リング又は強磁性体盤を配置してなる請求項1に記載の強磁気力場発生装置。   2. The apparatus for generating a strong magnetic force field according to claim 1, wherein a ferromagnetic ring or a ferromagnetic disk is disposed in the hollow cylindrical space of either or both of the main magnet and the auxiliary magnet.
JP2006297881A 2006-11-01 2006-11-01 Separator Pending JP2007067435A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006297881A JP2007067435A (en) 2006-11-01 2006-11-01 Separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006297881A JP2007067435A (en) 2006-11-01 2006-11-01 Separator

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002090095A Division JP4067851B2 (en) 2002-03-28 2002-03-28 Ferromagnetic force field generator

Publications (1)

Publication Number Publication Date
JP2007067435A true JP2007067435A (en) 2007-03-15

Family

ID=37929198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006297881A Pending JP2007067435A (en) 2006-11-01 2006-11-01 Separator

Country Status (1)

Country Link
JP (1) JP2007067435A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6312109A (en) * 1986-07-03 1988-01-19 Toshiba Corp Superconducting magnet
JPH0983022A (en) * 1995-09-14 1997-03-28 Kobe Steel Ltd Method and apparatus for positioning inner superconducting coil
JPH11329835A (en) * 1998-05-19 1999-11-30 Japan Science & Technology Corp Uniform magnetic force generating magnet
JPH11354320A (en) * 1998-06-12 1999-12-24 Furukawa Electric Co Ltd:The Substance floating magnet
JP2000077225A (en) * 1998-06-18 2000-03-14 Furukawa Electric Co Ltd:The Strong magnetic field generating coil
JP2002043116A (en) * 2000-07-24 2002-02-08 Kobe Steel Ltd Superconducting magnet device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6312109A (en) * 1986-07-03 1988-01-19 Toshiba Corp Superconducting magnet
JPH0983022A (en) * 1995-09-14 1997-03-28 Kobe Steel Ltd Method and apparatus for positioning inner superconducting coil
JPH11329835A (en) * 1998-05-19 1999-11-30 Japan Science & Technology Corp Uniform magnetic force generating magnet
JPH11354320A (en) * 1998-06-12 1999-12-24 Furukawa Electric Co Ltd:The Substance floating magnet
JP2000077225A (en) * 1998-06-18 2000-03-14 Furukawa Electric Co Ltd:The Strong magnetic field generating coil
JP2002043116A (en) * 2000-07-24 2002-02-08 Kobe Steel Ltd Superconducting magnet device

Similar Documents

Publication Publication Date Title
JP5534713B2 (en) Superconducting magnet
EP1653243B1 (en) Superconductive magnetic apparatus for magnetic resonance imaging unit
EP1154280A2 (en) Magnetic resonance apparatus including rose ring
JP5855878B2 (en) Superconducting magnet assembly
US9655291B2 (en) Multilayer magnetic shield
US4920095A (en) Superconducting energy storage device
JP6885874B2 (en) Cryostat and related magnetic levitation transport vehicles and systems
JP2018190969A (en) Superconducting magnet device
JP4179578B2 (en) Open superconducting magnet and magnetic resonance imaging system using the same
JP4067851B2 (en) Ferromagnetic force field generator
JP2007067435A (en) Separator
JP2007096333A (en) Fraction unit
JP3794535B2 (en) Ferromagnetic force field generating coil for material levitation or magnetic separation
JP2003180651A (en) Magnet for magnetic resonance imaging system
US6104192A (en) Magnetic resonance imaging system with floating pole pieces
JP2008270463A (en) Superconductive magnet device
JP2008130947A (en) Superconducting magnet device and magnetic resonance imaging device using the same
Chow et al. Shape effect of magnetic source on stabilizing range of vertical diamagnetic levitation
Cesnak et al. A cylindrical coil with graduated current density for very homogeneous magnetic fields
JP3624254B1 (en) Superconducting magnet device
JP2005353860A (en) Strong magnetic field generator
JP2004537947A (en) Uniform gravity controller using superconducting magnet
WO2015098588A1 (en) Superconducting magnet apparatus
JP4630196B2 (en) Magnetic resonance imaging system
KR20190103733A (en) Air core quadrupole magnet

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100406