JP2007067200A - Method and device for manufacturing capacitor - Google Patents

Method and device for manufacturing capacitor Download PDF

Info

Publication number
JP2007067200A
JP2007067200A JP2005251872A JP2005251872A JP2007067200A JP 2007067200 A JP2007067200 A JP 2007067200A JP 2005251872 A JP2005251872 A JP 2005251872A JP 2005251872 A JP2005251872 A JP 2005251872A JP 2007067200 A JP2007067200 A JP 2007067200A
Authority
JP
Japan
Prior art keywords
anode
sponge
conductive
capacitor
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005251872A
Other languages
Japanese (ja)
Other versions
JP4753012B2 (en
Inventor
Yuji Furuta
雄司 古田
Takenori Umikawa
武則 海川
Masahiro Suzuki
雅博 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2005251872A priority Critical patent/JP4753012B2/en
Publication of JP2007067200A publication Critical patent/JP2007067200A/en
Application granted granted Critical
Publication of JP4753012B2 publication Critical patent/JP4753012B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide the manufacturing method of polymerizer and capacitor for stably and efficiently realizing the formation of a solid state electrolytic layer upon manufacturing the solid state electrolytic capacitor with the solid state electrolytic layer, through current carrying technique employing an anode substrate with a dielectric oxide film formed on the surface thereof as an anode. <P>SOLUTION: Upon forming the solid state electrolytic layer by the current carrying technique employing the anode substrate with the dielectric oxide film formed on the surface thereof as the anode, the current carrying is effected by employing an anode collector comprising a conductive sponge. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、通電手法を用いたコンデンサの製造方法及び製造装置、特に複数の金属基材上に一括して重合体層を形成するコンデンサの製造方法及び製造装置に関する。本発明のコンデンサの製造方法及び製造装置は、特に固体電解コンデンサの製造において有用である。   The present invention relates to a method and an apparatus for manufacturing a capacitor using an energization method, and more particularly to a method and an apparatus for manufacturing a capacitor that collectively form a polymer layer on a plurality of metal substrates. The method and apparatus for producing a capacitor of the present invention are particularly useful in the production of a solid electrolytic capacitor.

近年、電気機器のディジタル化、パーソナルコンピュータの高速化に伴い、小型で大容量のコンデンサ、高周波領域において低インピーダンスのコンデンサが要求されている。最近では、電子伝導性を有する導電性重合体を固体電解質として用いた固体電解コンデンサが提案されている。   In recent years, with the digitization of electrical equipment and the speeding up of personal computers, small and large-capacitance capacitors and low-impedance capacitors in the high-frequency region are required. Recently, a solid electrolytic capacitor using a conductive polymer having electronic conductivity as a solid electrolyte has been proposed.

固体電解コンデンサの基本素子は、一般に、エッチング処理された比表面積の大きな金属箔からなる陽極基体(導電性基材)に誘電体の酸化皮膜を形成し、この外側に対向する電極として固体の半導体(以下、固体電解質という。)層を形成し、望ましくはさらに導電ペーストなどの導電体層を形成して作製される。通常は固体電解質(陰極部分)と陽極との絶縁を確実とするためにさらにマスキング層が設けられ、適宜、電極が付加される。   A basic element of a solid electrolytic capacitor is generally formed by forming a dielectric oxide film on an anode base (conductive base) made of a metal foil having a large specific surface area that has been etched, and a solid semiconductor as an electrode facing the outside. (Hereinafter referred to as a solid electrolyte) A layer is formed, and a conductor layer such as a conductive paste is preferably formed. Usually, in order to ensure insulation between the solid electrolyte (cathode portion) and the anode, a masking layer is further provided, and electrodes are appropriately added.

一般に、陽極基体に誘電体の酸化皮膜を形成し、これに重合して固体電解質となるモノマーの溶液中に浸漬し、陽極基体を「+」電極、モノマー溶液を「−」電極(例えば、ステンレス製の浸漬槽の壁)に接続して通電(以下、「給電」ともいう。)により重合を行い、固体電解質層を形成する。
一般に陽極基体は小寸法であり、かつ多数個の一括処理が望ましいため、通常は、支持部材を用いて複数の素子を同時に処理している。すなわち、図1に示すように、支持部材(テンポラリーバーと称される)1に複数の陽極基体2を取り付け(図1(a))、各陽極基体2をモノマー溶液3中に浸漬(図1(b))し、テンポラリーバーへの通電により電解重合を行い必要な厚みの固体電解質層を形成する。製品部分4を残片5から分離して固体電解コンデンサ素子を得る。実際には、複数のテンポラリーバーを枠体に保持し、この枠体に保持された支持部材について一括して処理を行なう(後述する図2〜3参照)。
In general, a dielectric oxide film is formed on an anode substrate, and is polymerized to be immersed in a monomer solution that becomes a solid electrolyte. The anode substrate is a “+” electrode and the monomer solution is a “−” electrode (for example, stainless steel). A solid electrolyte layer is formed by conducting polymerization by energization (hereinafter also referred to as “power feeding”).
In general, since the anode substrate has a small size and it is desirable to process a plurality of pieces at once, usually, a plurality of elements are processed simultaneously using a supporting member. That is, as shown in FIG. 1, a plurality of anode substrates 2 are attached to a support member (referred to as a temporary bar) 1 (FIG. 1 (a)), and each anode substrate 2 is immersed in a monomer solution 3 (FIG. 1). (B)) and then conducting electropolymerization by energizing the temporary bar to form a solid electrolyte layer having a required thickness. The product portion 4 is separated from the remaining piece 5 to obtain a solid electrolytic capacitor element. Actually, a plurality of temporary bars are held in the frame, and the support members held in the frame are collectively processed (see FIGS. 2 to 3 described later).

この場合、各導体2には基本的には等しい条件で電圧が印加されることが好ましい。このため、前記支持部材のそれぞれに「+」電極を接続するか、あるいは、「+」電源に接続された金属集電体を複数の支持部材に共通に接触させて給電する方法がとられている(例えば、特開平11−150044号公報(特許文献1)、特開平2003−86467号公報(特許文献2)等)。
しかし、支持部材のそれぞれに「+」電極を接続するためには多数の「+」電極端子及びそのための回路が必要となり装置構成が複雑になる。また、化成時の液はねや空気酸化等により「+」電極端子の導通が経時的に劣化する場合がある。
一方、「+」電源に接続された金属集電体を複数の支持部材に共通に接触させるためには、金属集電体と支持部材との均一な接触を実現しなければならない。しかし、例えば、支持部材は繰り返し使用され、その度に撓みや歪みが蓄積するため、枠体内の支持部材の位置には微小なずれが生じることがあり、このような支持部材に対し通常の金属平板を集電体として押し当てた場合、金属集電体と支持部材との間の接触が不良、不均一または不安定となって化成製品の不良や製品品質のバラツキを生じる原因の一つとなっていた。
コンデンサの電極として固体電解質層(半導体層)を形成する方法としては、例えば、特開2000−188239号公報(特許文献3)や特開平2−299213号公報(特許文献4)に記載された通電手法による方法がある。これらについても、上述した化成の場合と同様の問題点がある。
In this case, it is preferable that a voltage is applied to each conductor 2 under basically the same conditions. For this reason, a method is adopted in which a “+” electrode is connected to each of the support members, or a metal current collector connected to a “+” power supply is brought into contact with a plurality of support members in common to supply power. (For example, JP-A-11-150044 (Patent Document 1), JP-A-2003-86467 (Patent Document 2), etc.).
However, in order to connect the “+” electrode to each of the support members, a large number of “+” electrode terminals and a circuit therefor are required, which complicates the apparatus configuration. In addition, continuity of the “+” electrode terminal may deteriorate over time due to liquid splashing, air oxidation, or the like during formation.
On the other hand, in order for the metal current collector connected to the “+” power source to contact the plurality of support members in common, uniform contact between the metal current collector and the support member must be realized. However, for example, since the support member is repeatedly used and bending and distortion accumulate each time, the position of the support member in the frame may be slightly displaced. When a flat plate is pressed as a current collector, the contact between the metal current collector and the support member is poor, uneven or unstable, which is one of the causes of chemical product defects and product quality variations. It was.
As a method of forming a solid electrolyte layer (semiconductor layer) as an electrode of a capacitor, for example, energization described in Japanese Patent Application Laid-Open No. 2000-188239 (Patent Document 3) and Japanese Patent Application Laid-Open No. Hei 2-299213 (Patent Document 4). There is a method by a method. These also have the same problems as in the case of chemical conversion described above.

特開平11−150044号公報Japanese Patent Laid-Open No. 11-150044 特開平2003−86467号公報JP-A-2003-86467 特開2000−188239号公報JP 2000-188239 A 特開平2−299213号公報JP-A-2-299213

従って、本発明の課題は、誘電体酸化皮膜を形成した陽極基体に固体電解質層を形成することを含め、固体電解質層を形成するための電解重合、特に多数の該基体への電解重合を安定して効率的に実現するための電解重合方法及び電解重合装置を提供することを目的とする。   Therefore, an object of the present invention is to stabilize the electrolytic polymerization for forming a solid electrolyte layer, particularly the electrolytic polymerization to a large number of the substrates, including forming a solid electrolyte layer on an anode substrate on which a dielectric oxide film is formed. It is an object of the present invention to provide an electrolytic polymerization method and an electrolytic polymerization apparatus for efficiently realizing the above.

本発明者らは、上記問題を解決し、効率的かつ効果的な通電手法により重合を行う方法について鋭意した結果、金属製スポンジを含む陽極集電体を用いて通電を行なうことにより上記問題が解消されることを見出し、本発明を完成するに至った。
すなわち、本発明は以下に示す重合方法及び重合装置及び前記重合方法による工程を含む固体電解コンデンサの製造方法に関する。
The inventors of the present invention have solved the above problems and devised a method for performing polymerization by an efficient and effective energization technique, and as a result, the above problems are caused by energization using an anode current collector containing a metal sponge. As a result, the present invention has been completed.
That is, this invention relates to the manufacturing method of the solid electrolytic capacitor including the process by the superposition | polymerization method and superposition | polymerization apparatus which are shown below, and the said superposition | polymerization method.

1.表面に誘電体酸化皮膜を形成した陽極基体を陽極として通電手法により固体電解質層を形成する固体電解コンデンサの製造方法において、前記通電を導電性スポンジを含む陽極集電体を用いて行なうことを特徴とするコンデンサの製造方法。
2.重合して固体電解質となるモノマーの溶液中に、導電性支持部材に固定した複数個の陽極基体を一括して浸漬し、前記陽極集電体を前記導電性支持部材に密着させて通電する前記1に記載のコンデンサの製造方法。
3.複数の導電性支持部材を枠体内に保持し、枠体内に保持した前記複数の導電性支持部材に陽極集電体を密着させて通電する前記2に記載のコンデンサの製造方法。
4.導電性スポンジが金属製スポンジである前記1〜3のいずれかに記載のコンデンサの製造方法。
5.金属製スポンジが互いに絡み合った金属箔または金属線の集合体である前記4に記載のコンデンサの製造方法。
6.金属製スポンジがステンレス製スポンジである前記4または5に記載のコンデンサの製造方法。
7.導電性スポンジが研磨材を含むスポンジである前記1〜6のいずれかに記載のコンデンサの製造方法。
8.研磨材が、酸化アルミニウム、酸化ケイ素、酸化セリウム、酸化チタン、炭化ケイ素、及びダイヤモンドからなる群から選択される前記7に記載のコンデンサの製造方法。
9.研磨材の平均粒径が1〜120μmである前記7または8に記載のコンデンサの製造方法。
10.研磨材がバインダーにより導電性スポンジに固定されている前記7〜9のいずれかに記載のコンデンサの製造方法。
11.陽極基体が表面に多孔質層を有する前記1〜10のいずれかに記載のコンデンサの製造方法。
12.陽極基体が、アルミニウム、タンタル、ニオブ、チタン、ジルコニウム、マグネシウム、珪素、これらの合金、及び一酸化ニオブからなる群から選択される前記1〜11のいずれかに記載のコンデンサの製造方法。
13.表面に誘電体酸化皮膜を形成した陽極基体を陽極として通電手法によりモノマーを重合して固体電解質層を形成するコンデンサの製造装置において、前記通電を導電性スポンジを含む陽極集電体を介して行なうことを特徴とするコンデンサの製造装置。
14.複数の陽極基体の支持部材を保持し得る枠体、導電性スポンジを含む陽極集電体、陰極部を有するモノマー溶液槽を含む前記13に記載のコンデンサの製造装置。
15.陽極集電体が金属板の片面に導電性スポンジを取り付けてなる部材であり、導電性スポンジを前記枠体に保持された支持部材に対して密着させる機構をさらに備えた前記14に記載のコンデンサの製造装置。
16.導電性スポンジに導電性高分子を含むバインダーを用いて研磨材を固定したことを特徴とする集電体材料。
1. In a method for manufacturing a solid electrolytic capacitor in which a solid electrolyte layer is formed by an energization technique using an anode substrate having a dielectric oxide film formed on a surface as an anode, the energization is performed using an anode current collector including a conductive sponge. And a capacitor manufacturing method.
2. A plurality of anode bases fixed to a conductive support member are collectively immersed in a monomer solution that is polymerized to become a solid electrolyte, and the anode current collector is brought into close contact with the conductive support member to conduct electricity. 2. A method for producing a capacitor as described in 1.
3. 3. The method of manufacturing a capacitor as described in 2 above, wherein a plurality of conductive support members are held in a frame body, and an anode current collector is brought into close contact with the plurality of conductive support members held in the frame body and energized.
4). 4. The method for producing a capacitor according to any one of 1 to 3, wherein the conductive sponge is a metal sponge.
5. 5. The method for producing a capacitor as described in 4 above, wherein the metal sponge is an assembly of metal foils or metal wires intertwined with each other.
6). 6. The method for producing a capacitor as described in 4 or 5 above, wherein the metal sponge is a stainless sponge.
7). 7. The method for producing a capacitor according to any one of 1 to 6, wherein the conductive sponge is a sponge containing an abrasive.
8). 8. The method for producing a capacitor as described in 7 above, wherein the abrasive is selected from the group consisting of aluminum oxide, silicon oxide, cerium oxide, titanium oxide, silicon carbide, and diamond.
9. 9. The method for producing a capacitor as described in 7 or 8 above, wherein the abrasive has an average particle diameter of 1 to 120 μm.
10. 10. The method for producing a capacitor according to any one of 7 to 9, wherein the abrasive is fixed to the conductive sponge with a binder.
11. 11. The method for producing a capacitor as described in any one of 1 to 10 above, wherein the anode substrate has a porous layer on the surface.
12 12. The method for producing a capacitor according to any one of 1 to 11, wherein the anode substrate is selected from the group consisting of aluminum, tantalum, niobium, titanium, zirconium, magnesium, silicon, alloys thereof, and niobium monoxide.
13. In an apparatus for manufacturing a capacitor in which a solid electrolyte layer is formed by polymerizing a monomer by an energization technique using an anode substrate having a dielectric oxide film formed on the surface as an anode, the energization is performed through an anode current collector including a conductive sponge. Capacitor manufacturing apparatus characterized by the above.
14 14. The apparatus for producing a capacitor as described in 13 above, comprising a frame capable of holding a plurality of anode base support members, an anode current collector including a conductive sponge, and a monomer solution tank having a cathode portion.
15. 15. The capacitor according to 14, wherein the anode current collector is a member obtained by attaching a conductive sponge to one side of a metal plate, and further includes a mechanism for closely attaching the conductive sponge to a support member held by the frame body Manufacturing equipment.
16. A current collector material, wherein an abrasive is fixed to a conductive sponge using a binder containing a conductive polymer.

本発明によれば、誘電体酸化皮膜を形成した陽極基体への固体電解質層形成、特に多数の該基体上への重合を安定して効率的に行なうことが可能である。例えば、固体電解コンデンサの製造において必要とされる固体電解質層形成工程を安定かつ効率的に実施でき、電気的特性の改善された製品を安定的に得ることが可能となる。   According to the present invention, it is possible to stably and efficiently perform formation of a solid electrolyte layer on an anode substrate on which a dielectric oxide film is formed, in particular, polymerization on a large number of the substrates. For example, it is possible to stably and efficiently carry out a solid electrolyte layer forming step required in the production of a solid electrolytic capacitor, and it is possible to stably obtain a product with improved electrical characteristics.

以下、本発明の方法及び装置をより具体的に説明する。
本発明の方法は、上述の通り、表面に誘電体酸化皮膜を形成した陽極基体を陽極として通電手法により固体電解質層形成する固体電解コンデンサの製造方法において、前記通電を導電性スポンジを含む陽極集電体を用いて行なうことを特徴とする。
Hereinafter, the method and apparatus of the present invention will be described more specifically.
As described above, the method of the present invention is a method for producing a solid electrolytic capacitor in which a solid electrolyte layer is formed by an energization technique using an anode substrate having a dielectric oxide film formed on the surface as an anode, and the energization is performed by an anode assembly including a conductive sponge. It is characterized by using an electric body.

陽極集電体は複数の陽極基体に直接接触させてもよいが、本発明は、導電性支持部材に固定した複数個の陽極基体を一括して処理する方法において特に有用である。すなわち、導電性支持部材に固定した複数個の陽極基体を、例えばモノマー溶液に浸漬し、前記陽極集電体を前記導電性支持部材に密着させて通電する。このような方法は、固体電解コンデンサ用の陽極基体を導電性支持部材(前述したテンポラリーバー)に取り付け、これを処理単位として通電手法により重合を行なう工程に適しており、特に、複数の前記導電性支持部材を枠体内に保持し、枠体内に保持した前記複数の導電性支持部材について一括して処理を行なう場合に有用である。   Although the anode current collector may be brought into direct contact with a plurality of anode substrates, the present invention is particularly useful in a method for collectively treating a plurality of anode substrates fixed to a conductive support member. That is, a plurality of anode bases fixed to a conductive support member are immersed in, for example, a monomer solution, and the anode current collector is brought into close contact with the conductive support member to conduct electricity. Such a method is suitable for a process in which an anode substrate for a solid electrolytic capacitor is attached to a conductive support member (the above-described temporary bar) and polymerization is performed by an energization method using this as a processing unit. This is useful when the conductive support member is held in the frame and the plurality of conductive support members held in the frame are collectively processed.

この態様における本発明の方法の一例を図2に模式的に示す。
図2は、陽極基体15を導電性支持部材10に取り付け、これを枠体36に複数枚嵌め込んだ状態を示す。図では最前面の支持部材10の表面のみが見えており、その背後の支持部材10は上端のみが見えているが、いずれの支持部材の下端にも陽極基体15が取り付けられている。
図は、陽極基体15を導電性支持部材10に取り付け、これを枠体36に複数枚嵌め込んだ状態を示す。図では陽極リードを有する陽極基体15の陽極リード部を導電性支持部材10に取り付けているが、図1に示すように陽極リードを有さない陽極基体(図1では陽極基体2)を導電性支持部材10(図1では支持部材1)に取り付けてもよい。取り付けは直接、溶接またはハンダ付等を用いればよい。
図中、枠体36は、導電性支持部材10に対応したスリット37を備えた受端ブロック38、39を有し、脚部41、42を有する。
An example of the method of the present invention in this embodiment is schematically shown in FIG.
FIG. 2 shows a state in which a plurality of anode bases 15 are attached to the conductive support member 10 and are fitted into the frame 36. In the figure, only the surface of the foremost support member 10 is visible and the support member 10 behind it is only visible at the upper end, but the anode base 15 is attached to the lower end of any of the support members.
The figure shows a state in which a plurality of anode bases 15 are attached to the conductive support member 10 and are fitted into the frame 36. In the figure, the anode lead portion of the anode substrate 15 having the anode lead is attached to the conductive support member 10, but as shown in FIG. 1, the anode substrate having no anode lead (the anode substrate 2 in FIG. 1) is conductive. You may attach to the supporting member 10 (in FIG. 1, the supporting member 1). For attachment, welding or soldering may be used directly.
In the figure, the frame body 36 includes receiving end blocks 38 and 39 having slits 37 corresponding to the conductive support member 10, and leg portions 41 and 42.

本発明の重合処理においては、図2の装置を、例えば、モノマー溶液槽上に移動させ、誘電体酸化皮膜を形成した陽極基体15を所望の深さまで浸漬させる。次いで、陽極集電体20を導電性支持部材10上に載せ図中の矢印で示すように下方に圧力を加えて陽極集電体20を導電性支持部材10に密着させる。これは、例えば、枠体36をモノマー溶液槽(図示していない)の壁面に脚部41、42が引っかかるように載せて固定する。次いで、適当な押圧手段により陽極集電体20を導電性支持部材10上に押し当てる。陽極集電体20の底面は基本的には概ね平面であるが、導電性支持部材10に対して押圧されることによりその上端を包み込むように変形し密着する。この際、導電性スポンジが金属製であるか及び/または研磨材を含む場合には、各導電性支持部材10との接触面を研磨する作用も生じる。
なお、図には示していないが、陽極集電体20は慣用の方法をもって電源の「+」極に接続する。
また、図2では陽極集電体20を導電性支持部材10上に載せ下方に向けて圧力を加えて陽極集電体20を導電性支持部材10の上端に密着させているが、例えば、陽極集電体20をクシ状部材の剛性骨格とし、クシの歯に当たる部分に導電性スポンジを設けて、この歯を隣接する導電性支持部材10間に挿入し、横方向に力を加えて導電性スポンジ部分が導電性支持部材10の上側面に密着するように構成してもよい。
このように、陽極集電体20は導電性支持部材10のいずれの部分に密着させてもよいが、通常、導電性支持部材10の下方にはモノマー溶液槽が位置するため、導電性支持部材10の上端面または上部側面に密着させることが好ましい。
In the polymerization treatment of the present invention, the apparatus shown in FIG. 2 is moved onto, for example, a monomer solution tank, and the anode substrate 15 on which the dielectric oxide film is formed is immersed to a desired depth. Next, the anode current collector 20 is placed on the conductive support member 10, and pressure is applied downward as shown by the arrow in the drawing to bring the anode current collector 20 into close contact with the conductive support member 10. For example, the frame 36 is placed and fixed so that the legs 41 and 42 are caught on the wall surface of the monomer solution tank (not shown). Next, the anode current collector 20 is pressed onto the conductive support member 10 by an appropriate pressing means. The bottom surface of the anode current collector 20 is basically a flat surface. However, when pressed against the conductive support member 10, the anode current collector 20 is deformed so as to wrap around its upper end and is in close contact therewith. At this time, when the conductive sponge is made of metal and / or contains an abrasive, an effect of polishing the contact surface with each conductive support member 10 also occurs.
Although not shown in the figure, the anode current collector 20 is connected to the “+” pole of the power source by a conventional method.
In FIG. 2, the anode current collector 20 is placed on the conductive support member 10 and pressure is applied downward to bring the anode current collector 20 into close contact with the upper end of the conductive support member 10. The current collector 20 is a rigid skeleton of a comb-shaped member, and a conductive sponge is provided in a portion that contacts the comb teeth, and the teeth are inserted between the adjacent conductive support members 10, and a lateral force is applied to make the conductive material conductive. You may comprise so that a sponge part may closely_contact | adhere to the upper surface of the electroconductive support member 10. FIG.
As described above, the anode current collector 20 may be in close contact with any portion of the conductive support member 10. However, since the monomer solution tank is usually located below the conductive support member 10, the conductive support member It is preferable to adhere to the upper end surface or the upper side surface of 10.

本発明においては陽極集電体が導電性スポンジを含むため、金属基材または導電性支持部材に密着させて圧力を付加することにより、導電性支持部材の形状や位置が不均一であったとしても、陽極集電体が変形し支持部材の上端に確実に密着するため、良好な通電を実現することができる。
なお、導電性支持部材の材質は特に限定されないが、鉄、アルミニウム、銅若しくはこれらの合金または表面メッキ品や表面被覆品が挙げられる。合金の例としてはステンレスが挙げられる。
In the present invention, since the anode current collector includes a conductive sponge, it is assumed that the shape and position of the conductive support member are non-uniform by applying pressure while being in close contact with the metal substrate or the conductive support member. However, since the anode current collector is deformed and securely adheres to the upper end of the support member, good energization can be realized.
In addition, although the material of an electroconductive support member is not specifically limited, Iron, aluminum, copper, or these alloys, surface plating products, and surface covering products are mentioned. An example of an alloy is stainless steel.

導電性スポンジは、導電体からなるスポンジ部材であればよい。但し、本願において、「スポンジ」は内部に空洞ないし空隙を有しある程度以上の弾性を呈するものを指し、通常の海綿状の多孔質体のほか、金属箔(リボン)が互いに絡み合ったいわゆる「金属スポンジ」や金属線が互いに絡み合ったスチールウール等、互いに絡み合った金属箔または金属線の集合体(本願ではこれらを「金属製スポンジ」と総称する)も含む。本発明ではこれらの金属製スポンジが好適に使用される。金属製スポンジを構成する箔または線は、可撓性(及び望ましくはある程度の弾性)を示す寸法、形状であればよい。金属の種類にもよるが、例えば、金属箔であれば厚さ0.01〜0.5mm、好ましくは0.01〜0.1mm、幅0.01〜1cm、好ましくは0.1〜3mm程度の材料が挙げられる。直径0.01〜0.5mm程度の範囲内の線でもよい。但し、これらの数値は目安として示すものであって、本発明を限定するものではない。   The conductive sponge may be a sponge member made of a conductor. However, in this application, “sponge” refers to a material having a cavity or void inside and exhibiting elasticity of a certain degree, and in addition to a normal sponge-like porous body, a so-called “metal” in which metal foils (ribbons) are entangled with each other. It also includes an assembly of metal foils or metal wires that are intertwined with each other, such as “sponge” or steel wool in which metal wires are intertwined with each other (herein these are collectively referred to as “metal sponges”). In the present invention, these metal sponges are preferably used. The foil or wire constituting the metal sponge may be any size and shape that exhibits flexibility (and desirably some degree of elasticity). Depending on the type of metal, for example, a metal foil having a thickness of 0.01 to 0.5 mm, preferably 0.01 to 0.1 mm, a width of 0.01 to 1 cm, preferably about 0.1 to 3 mm. Materials. A wire having a diameter of about 0.01 to 0.5 mm may be used. However, these numerical values are shown as a guide and do not limit the present invention.

導電性スポンジの材質は特に限定されないが、高湿度環境でも良導性を維持し得る金属または合金が好ましい。このような金属の例としては、ステンレスが挙げられる。ステンレスはある程度の硬度を有するため、支持部材表面を削って新鮮な表面と接触させ得る点でも有用である。
さらに、導電性スポンジが研磨材を含むものであれば新鮮な支持部材表面を維持する効果がさらに高まるために好ましい。研磨材は、モノマー溶液への混入をできるだけ避けるために金属製スポンジに担持されるものが好ましい。研磨材は、単に導電性スポンジの網目構造中に坦持されるだけでもよいが、より確実に坦持させるためにバインダーを用いて研磨材を導電性スポンジに固定してもよい。
研磨材の材質としては、例えば、酸化アルミニウム、酸化ケイ素、酸化セリウム、酸化チタン、炭化ケイ素、ダイヤモンド等が挙げられる。
研磨材の平均粒径は、大きすぎても小さすぎても導電性スポンジに坦持されにくくなることがあるので、好ましくは1〜300μm、より好ましくは5〜100μmである。
バインダーは、一般にバインダーとして用いられる樹脂(例えば、フェノール樹脂、ウレタン樹脂、メラミン樹脂、尿素樹脂、アクリル樹脂、ポリエステル樹脂、エポキシ樹脂、スチロール樹脂、ビニル樹脂等)が使用できるが、好ましくは導電性を有する樹脂(例えば、固体電解質として用いられる導電性高分子)が好ましい。
陽極集電体は導電性スポンジ部分と他の部材との複合材料でもよい。導電性スポンジと組み合わせ得る材料としては、金属板、セラミック板等の剛性材料、ゴム板等の弾性材料が挙げられる。金属板と導電性スポンジ部分の組み合わせとすれば、金属板側から圧力を加えて導電性スポンジ部分を金属基材または導電性支持部材に密着させることが容易であり、上述のように所望の形状を有する金属部の一部に導電性スポンジ部分を付着させてもよい。また、金属板上に外部電源との接続部分を設け、導電性スポンジ部分は使い捨てとすることもできる。使い捨てが可能な態様では、導電性スポンジ表面の良導性が常に維持されるため、特に好ましい。導電性スポンジを金属板に組み合わせるには、全体をワイヤで巻き締める、金属板に鍵状部分を設けて導電性スポンジを引っ掛け、あるいは突き刺す、金属板にクランプ手段を設けて導電性スポンジを挟み込んで固定するなどの方法を採ればよい。
The material of the conductive sponge is not particularly limited, but a metal or an alloy that can maintain good conductivity even in a high humidity environment is preferable. An example of such a metal is stainless steel. Since stainless steel has a certain degree of hardness, it is also useful in that the surface of the support member can be scraped and brought into contact with a fresh surface.
Furthermore, it is preferable that the conductive sponge contains an abrasive because the effect of maintaining a fresh support member surface is further enhanced. The abrasive is preferably carried on a metal sponge so as to avoid mixing into the monomer solution as much as possible. The abrasive may simply be carried in the network structure of the conductive sponge, but the abrasive may be fixed to the conductive sponge using a binder in order to carry the abrasive more reliably.
Examples of the material for the abrasive include aluminum oxide, silicon oxide, cerium oxide, titanium oxide, silicon carbide, and diamond.
The average particle size of the abrasive is preferably 1 to 300 μm, more preferably 5 to 100 μm because it may be difficult to be carried by the conductive sponge if it is too large or too small.
As the binder, a resin generally used as a binder (for example, a phenol resin, a urethane resin, a melamine resin, a urea resin, an acrylic resin, a polyester resin, an epoxy resin, a styrene resin, a vinyl resin, etc.) can be used. A resin (for example, a conductive polymer used as a solid electrolyte) is preferable.
The anode current collector may be a composite material of a conductive sponge portion and another member. Examples of materials that can be combined with the conductive sponge include rigid materials such as metal plates and ceramic plates, and elastic materials such as rubber plates. If the combination of the metal plate and the conductive sponge portion is used, it is easy to apply pressure from the metal plate side to closely adhere the conductive sponge portion to the metal substrate or the conductive support member. A conductive sponge portion may be attached to a part of the metal portion having a slag. Moreover, a connection part with an external power supply can be provided on the metal plate, and the conductive sponge part can be disposable. In the aspect which can be disposable, since the good conductivity of the surface of a conductive sponge is always maintained, it is especially preferable. In order to combine the conductive sponge with the metal plate, the whole is wrapped with a wire, a key-like portion is provided on the metal plate, and the conductive sponge is hooked or pierced, and a clamp means is provided on the metal plate to sandwich the conductive sponge. What is necessary is just to take the method of fixing.

なお、本発明は種々の固体電解コンデンサ用陽極基体に対して適用できる。陽極基材は多孔質であることが好ましい。また、陽極基体としては、好ましくは弁作用金属、導電性を有する弁作用金属の酸化物等が挙げられる。このような陽極基体の例としては、アルミニウム、タンタル、ニオブ、チタン、ジルコニウム、マグネシウム、珪素またはこれらの合金、及び一酸化にオブが挙げられる。
このような陽極基体の表面に誘電体酸化皮膜を形成する方法は、公知の方法等を用いることができる。例えば、多孔質のタンタル焼結体を使用する場合には、ホウ酸、リン酸、アジピン酸、またはそれらのナトリウム塩、アンモニウム塩などを含む水溶液中で陽極酸化して誘電体酸化皮膜を形成することができる。
このように誘電体酸化皮膜を形成した陽極基体に前述したように固体電解質層を形成する。固体電解質層の形成は、再化成とともに繰り返し複数回行ってもよい。
その後、必要であれば、固体電解質層上にカーボンペースト層、銀ペースト層等の導電体層を形成し、外装してコンデンサとすることができる。
The present invention can be applied to various anode substrates for solid electrolytic capacitors. The anode substrate is preferably porous. Moreover, as an anode base | substrate, Preferably the valve action metal, the oxide of the valve action metal which has electroconductivity, etc. are mentioned. Examples of such anode substrates include aluminum, tantalum, niobium, titanium, zirconium, magnesium, silicon or alloys thereof, and oboxide.
As a method of forming a dielectric oxide film on the surface of such an anode substrate, a known method or the like can be used. For example, when a porous tantalum sintered body is used, a dielectric oxide film is formed by anodic oxidation in an aqueous solution containing boric acid, phosphoric acid, adipic acid, or a sodium salt or an ammonium salt thereof. be able to.
As described above, the solid electrolyte layer is formed on the anode substrate on which the dielectric oxide film is thus formed. The formation of the solid electrolyte layer may be repeated a plurality of times together with re-chemical conversion.
Thereafter, if necessary, a conductor layer such as a carbon paste layer or a silver paste layer may be formed on the solid electrolyte layer and packaged to form a capacitor.

本発明の装置は、導電性スポンジを含む陽極集電体を有することを特徴とし、誘電体酸化皮膜を形成した陽極基体に通電手法により固体電解質層を形成する装置であり、好ましくは、複数の該陽極基体を保持し得る枠体、導電性スポンジを含む陽極集電体、陰極部を有するポリマー溶液槽を含む。上述のように、本発明において枠体36の形状は特に限定されないが、図2または3に示す形態が例として挙げられる。本発明の装置は、図3に示すように、金属板25と導電性スポンジ20の組み合わせを含み、導電性スポンジを前記枠体に保持された支持部材に対して密着させる機構を備えることが好ましい。
また、本発明は、導電性スポンジに導電性高分子を含むバインダーを用いて研磨材を固定したことを特徴とする集電体材料を提供する。この集電体材料は上記方法・装置において好適に用いることのできるが、金属電極板に通電を行なう際の集電体材料として広く他の技術分野でも用いることが可能である。
The apparatus of the present invention is characterized by having an anode current collector containing a conductive sponge, and is an apparatus for forming a solid electrolyte layer on an anode substrate on which a dielectric oxide film is formed by an energization technique, preferably a plurality of A frame body capable of holding the anode substrate, an anode current collector including a conductive sponge, and a polymer solution tank having a cathode portion. As described above, the shape of the frame body 36 is not particularly limited in the present invention, but the form shown in FIG. 2 or 3 is given as an example. As shown in FIG. 3, the apparatus of the present invention preferably includes a combination of a metal plate 25 and a conductive sponge 20, and includes a mechanism for bringing the conductive sponge into close contact with the support member held by the frame body. .
The present invention also provides a current collector material in which an abrasive is fixed to a conductive sponge using a binder containing a conductive polymer. Although this current collector material can be suitably used in the above-mentioned method and apparatus, it can be widely used in other technical fields as a current collector material when energizing a metal electrode plate.

以下、実施例によって本発明をさらに具体的に説明する。なお、これらは説明のための例示であって、本発明はこの例に限定されるものではない。
実施例1
誘電体酸化皮膜を形成した陽極基体を取り付けた支持部材として、長さ250mm、幅20mm、厚さ2mmのステンレス製支持部材に、その左右30mmを残して、誘電体酸化皮膜を形成した陽極基体32個がそのリード部分を溶接することにより等間隔かつ等寸に整列接続されているものを用いた。
なお、誘電体酸化皮膜を形成した陽極基体は、陽極リードを有するCV10万μF・V/gのタンタル焼結体(大きさ4.5×3.3×1mm、質量81mg、3.3×1mmの面よりリード線0.29mmφが7mm表面に出ている)を1%燐酸水溶液で80℃,9V、8時間化成し、焼結体の内部細孔表面と外部表面及びリード線の一部に五酸化二タンタルを主成分とする誘電体層を形成したものである。
この誘電体酸化皮膜を形成した陽極基体を取り付けた支持部材を200枚準備し、これらの支持部材を6mmの間隔で枠体に挿入し平行に固定した。
Hereinafter, the present invention will be described more specifically with reference to examples. Note that these are illustrative examples, and the present invention is not limited to these examples.
Example 1
As a support member to which an anode substrate on which a dielectric oxide film is formed is attached, an anode substrate 32 having a dielectric oxide film formed on a stainless steel support member having a length of 250 mm, a width of 20 mm, and a thickness of 2 mm, leaving 30 mm on the left and right. The individual pieces were aligned and connected at equal intervals and equal dimensions by welding the lead portions.
The anode substrate on which the dielectric oxide film is formed has a CV 100,000 μF · V / g tantalum sintered body having an anode lead (size 4.5 × 3.3 × 1 mm, mass 81 mg, 3.3 × 1 mm from the lead wire 0.29). mmφ is exposed on the surface of 7mm) with 1% phosphoric acid aqueous solution at 80 ° C, 9V for 8 hours, and tantalum pentoxide is the main component on the inner pore surface and outer surface of the sintered body and part of the lead wire A dielectric layer is formed.
Two hundred supporting members to which the anode substrate on which this dielectric oxide film was formed were attached were prepared, and these supporting members were inserted into the frame at intervals of 6 mm and fixed in parallel.

3,4−エチレンジオキシチオフェン10質量%、アントラキノン−2−スルホン酸3質量%、エチレングリコール20質量%をそれぞれ含む水溶液(モノマー溶液)を固体電解質層形成容器(モノマー溶液槽)に入れ、前記支持部材に取り付けられた焼結体部分のみがモノマー溶液に浸漬するように前記枠体をこの容器上に位置調整して設置した。
陽極側集電体として、長さ1290mm、幅20mm、厚さ1mmのステンレス板にステンレス製スポンジをワイヤーで固定したものを用い、ステンレス製スポンジが下になるようにして陽極側集電体を支持部材上に載せ、ステンレス板表面を押圧することによりステンレス製スポンジと支持部材を密着させた。
陽極側集電体を陽極側、固体電解質層形成容器を陰極にして25mAの定電流で2時間通電し重合を行った。その後、枠体を引き上げ、順次、水洗、エタノール洗浄及び乾燥を行なった。
An aqueous solution (monomer solution) containing 10% by mass of 3,4-ethylenedioxythiophene, 3% by mass of anthraquinone-2-sulfonic acid, and 20% by mass of ethylene glycol was placed in a solid electrolyte layer forming container (monomer solution tank), and The frame was positioned and installed on this container so that only the sintered body portion attached to the support member was immersed in the monomer solution.
As the anode-side current collector, a stainless steel plate with a length of 1290 mm, width 20 mm, and thickness 1 mm fixed to a stainless steel sponge with a wire is used, and the anode-side current collector is supported with the stainless steel sponge facing down. The stainless steel sponge and the supporting member were brought into close contact with each other by placing on the member and pressing the surface of the stainless steel plate.
Polymerization was carried out by applying current at a constant current of 25 mA for 2 hours with the anode side current collector as the anode side and the solid electrolyte layer forming container as the cathode. Thereafter, the frame body was pulled up, and washed with water, washed with ethanol and dried sequentially.

次に、誘電体層の微小なLC(漏れ電流)の欠陥を修復するため、再化成(80℃、30分、7V)を行った。
前記通電手法による重合と再化成を20回繰り返した後、水洗・アルコール洗浄・乾燥し、コンデンサの陰極である固体電解質層を形成した。
ついでカーボンペースト層、銀ペースト層に焼結体部のみを順次浸漬・乾燥することを行い、導電体層を形成し陰極部を設けたコンデンサ素子を作製した。
Next, in order to repair a minute LC (leakage current) defect in the dielectric layer, re-forming (80 ° C., 30 minutes, 7 V) was performed.
Polymerization and re-chemical conversion by the current application method were repeated 20 times, followed by washing with water, washing with alcohol, and drying to form a solid electrolyte layer that was the cathode of the capacitor.
Subsequently, only the sintered body portion was sequentially dipped and dried in the carbon paste layer and the silver paste layer to form a capacitor element having a conductor layer and a cathode portion.

その後支持部材からコンデンサ素子をはずし、別途用意した銅合金リードフレームに、前記コンデンサ素子を載置、接続した。ついでエポキシ樹脂で外装し、チップ状コンデンサを640個を作製した。
以上作製したコンデンサの容量及びESRを以下の方法で測定した。測定結果を表1に示した。
コンデンサの容量:ヒューレットパッカード社製LCR測定器を用い、室温、120Hzで容量を測定した。
ESR値:コンデンサの等価直列抵抗を100kHzで測定した。
Thereafter, the capacitor element was removed from the support member, and the capacitor element was placed and connected to a separately prepared copper alloy lead frame. Then, it was covered with an epoxy resin to produce 640 chip capacitors.
The capacity and ESR of the capacitor produced above were measured by the following method. The measurement results are shown in Table 1.
Capacitor capacity: The capacity was measured at room temperature and 120 Hz using an LCR measuring instrument manufactured by Hewlett-Packard Company.
ESR value: The equivalent series resistance of the capacitor was measured at 100 kHz.

比較例1
集電体構造を、スポンジ構造部分を有しない長さ1290mm、幅20mm、厚さ1mmのステンレス平板とした他は実施例1と同じ条件で固体電解コンデンサを640個得た。このようにして得られた固体電解コンデンサの電気特性を表1に示す。
Comparative Example 1
640 solid electrolytic capacitors were obtained under the same conditions as in Example 1 except that the current collector structure was a stainless steel flat plate having a length of 1290 mm, a width of 20 mm, and a thickness of 1 mm without having a sponge structure portion. Table 1 shows the electrical characteristics of the solid electrolytic capacitor thus obtained.

Figure 2007067200
上記の結果に示されるように、本発明によれば、集電体と支持部材間の接触が確実なものとなり、コンデンサ素子の固体電解質層形成が安定し、固体電解コンデンサの種々の電気特性が改善され収率が向上する。
Figure 2007067200
As shown in the above results, according to the present invention, the contact between the current collector and the support member is ensured, the formation of the solid electrolyte layer of the capacitor element is stable, and various electrical characteristics of the solid electrolytic capacitor are obtained. The yield is improved.

実施例2
実施例1で使用したものと同じステンレス製スポンジに平均粒子径50μmの酸化アルミニウム20質量%を分散させた3,4−エチレンジオキシチオフェン17質量%を含むイソプロパノール溶液に浸漬後、25℃で5分間放置し、次いで、酸化剤(過硫酸アンモニウム)20質量%とドーパント(ナフタレン−2−スルホン酸ナトリウム)3質量%とを含む混合水溶液に浸漬し酸化重合を行った。この含浸工程及び重合工程を合計8回繰り返した。ただし、2回目以降は酸化アルミニウムを含まない3,4−エチレンジオキシチオフェンを含むイソプロパノール溶液を用いた。このようにして導電性高分子をバインダーとし研磨材を坦持したステンレス製スポンジを得た。
このステンレス製スポンジを用いて実施例1と同様に固体電解コンデンサを作成した。得られた固体電解コンデンサの電気特性は実施例1と同様であった。
さらに、同じ支持部材及びステンレス製スポンジを100回繰り返し使用し固体電解コンデンサを作成した。100回目に作成した固体電解コンデンサの電気特性を表2に示す。
実施例3
実施例1を同じ支持部材及びステンレス製スポンジで100回繰り返し固体電解コンデンサを作成した。100回目に作成した固体電解コンデンサの電気特性を表2に示す。

Figure 2007067200
このように、研磨材を坦持した導電性スポンジを用いると、良好な特性を長時間維持することができる。 Example 2
After dipping in an isopropanol solution containing 17% by mass of 3,4-ethylenedioxythiophene in which 20% by mass of aluminum oxide having an average particle diameter of 50 μm is dispersed in the same stainless steel sponge as used in Example 1, 5 ° C. at 25 ° C. The mixture was allowed to stand for minutes, and then immersed in a mixed aqueous solution containing 20% by mass of an oxidizing agent (ammonium persulfate) and 3% by mass of a dopant (sodium naphthalene-2-sulfonate) to conduct oxidative polymerization. This impregnation step and polymerization step were repeated a total of 8 times. However, in the second and subsequent times, an isopropanol solution containing 3,4-ethylenedioxythiophene not containing aluminum oxide was used. In this manner, a stainless steel sponge having a conductive polymer as a binder and carrying an abrasive was obtained.
A solid electrolytic capacitor was prepared in the same manner as in Example 1 using this stainless steel sponge. The electrical characteristics of the obtained solid electrolytic capacitor were the same as in Example 1.
Furthermore, the same supporting member and stainless steel sponge were repeatedly used 100 times to produce a solid electrolytic capacitor. Table 2 shows the electrical characteristics of the solid electrolytic capacitor prepared for the 100th time.
Example 3
Example 1 was repeated 100 times with the same support member and stainless steel sponge to produce a solid electrolytic capacitor. Table 2 shows the electrical characteristics of the solid electrolytic capacitor prepared for the 100th time.
Figure 2007067200
As described above, when a conductive sponge carrying an abrasive is used, good characteristics can be maintained for a long time.

本発明の方法によれば、通電手法による重合体層の形成を効率的かつ安定的に行なうことができる。特に固体電解コンデンサの製造において有用であり、固体電解コンデンサの製造の効率化及び製品の高品質化に有効である。   According to the method of the present invention, the polymer layer can be formed efficiently and stably by an energization method. In particular, it is useful in the production of solid electrolytic capacitors, and is effective in improving the production efficiency of solid electrolytic capacitors and improving the quality of products.

固体電解コンデンサの製造プロセスの一例を示す模式図。The schematic diagram which shows an example of the manufacturing process of a solid electrolytic capacitor. 本発明の方法の一例を示す模式図。The schematic diagram which shows an example of the method of this invention. 本発明の装置の一例を示す模式図。The schematic diagram which shows an example of the apparatus of this invention.

符号の説明Explanation of symbols

1 支持部材(テンポラリーバー)
2 陽極基体(誘電体酸化皮膜を形成品)
3 処理液
4 陽極基体(固体電解質層形成品)
5 陽極基体
10 支持部材
15 金属基材
20 導電性スポンジ
25 金属板
36 枠体
37 スリット
38、39 受端ブロック
41、42 脚部
1 Support member (temporary bar)
2 Anode substrate (formed with dielectric oxide film)
3 Treatment liquid 4 Anode substrate (solid electrolyte layer formed product)
5 Anode Base 10 Support Member 15 Metal Base 20 Conductive Sponge 25 Metal Plate 36 Frame 37 Slit 38, 39 Receiving Block 41, 42 Leg

Claims (16)

表面に誘電体酸化皮膜を形成した陽極基体を陽極として通電手法により固体電解質層を形成する固体電解コンデンサの製造方法において、前記通電を導電性スポンジを含む陽極集電体を用いて行なうことを特徴とするコンデンサの製造方法。   In a method for manufacturing a solid electrolytic capacitor in which a solid electrolyte layer is formed by an energization technique using an anode substrate having a dielectric oxide film formed on a surface as an anode, the energization is performed using an anode current collector including a conductive sponge. And a capacitor manufacturing method. 重合して固体電解質となるモノマーの溶液中に、導電性支持部材に固定した複数個の陽極基体を一括して浸漬し、前記陽極集電体を前記導電性支持部材に密着させて通電する請求項1に記載のコンデンサの製造方法。   A plurality of anode bases fixed to a conductive support member are collectively immersed in a monomer solution that is polymerized to become a solid electrolyte, and the anode current collector is brought into close contact with the conductive support member for energization. Item 14. A method for manufacturing a capacitor according to Item 1. 複数の導電性支持部材を枠体内に保持し、枠体内に保持した前記複数の導電性支持部材に陽極集電体を密着させて通電する請求項2に記載のコンデンサの製造方法。   The method for manufacturing a capacitor according to claim 2, wherein a plurality of conductive support members are held in a frame, and an anode current collector is brought into close contact with the plurality of conductive support members held in the frame to conduct electricity. 導電性スポンジが金属製スポンジである請求項1〜3のいずれかに記載のコンデンサの製造方法。   The method for producing a capacitor according to claim 1, wherein the conductive sponge is a metal sponge. 金属製スポンジが互いに絡み合った金属箔または金属線の集合体である請求項4に記載のコンデンサの製造方法。   The method of manufacturing a capacitor according to claim 4, wherein the metal sponge is a metal foil or an assembly of metal wires intertwined with each other. 金属製スポンジがステンレス製スポンジである請求項4または5に記載のコンデンサの製造方法。   6. The method of manufacturing a capacitor according to claim 4, wherein the metal sponge is a stainless sponge. 導電性スポンジが研磨材を含むスポンジである請求項1〜6のいずれかに記載のコンデンサの製造方法。   The method for manufacturing a capacitor according to claim 1, wherein the conductive sponge is a sponge containing an abrasive. 研磨材が、酸化アルミニウム、酸化ケイ素、酸化セリウム、酸化チタン、炭化ケイ素、及びダイヤモンドからなる群から選択される請求項7に記載のコンデンサの製造方法。   The method for manufacturing a capacitor according to claim 7, wherein the abrasive is selected from the group consisting of aluminum oxide, silicon oxide, cerium oxide, titanium oxide, silicon carbide, and diamond. 研磨材の平均粒径が1〜120μmである請求項7または8に記載のコンデンサの製造方法。   The method for producing a capacitor according to claim 7 or 8, wherein the abrasive has an average particle diameter of 1 to 120 µm. 研磨材がバインダーにより導電性スポンジに固定されている請求項7〜9のいずれかに記載のコンデンサの製造方法。   The method for producing a capacitor according to claim 7, wherein the abrasive is fixed to the conductive sponge with a binder. 陽極基体が表面に多孔質層を有する請求項1〜10のいずれかに記載のコンデンサの製造方法。   The method for producing a capacitor according to claim 1, wherein the anode substrate has a porous layer on the surface. 陽極基体が、アルミニウム、タンタル、ニオブ、チタン、ジルコニウム、マグネシウム、珪素、これらの合金、及び一酸化ニオブからなる群から選択される請求項1〜11のいずれかに記載のコンデンサの製造方法。   The method for producing a capacitor according to claim 1, wherein the anode base is selected from the group consisting of aluminum, tantalum, niobium, titanium, zirconium, magnesium, silicon, alloys thereof, and niobium monoxide. 表面に誘電体酸化皮膜を形成した陽極基体を陽極として通電手法によりモノマーを重合して固体電解質層を形成するコンデンサの製造装置において、前記通電を導電性スポンジを含む陽極集電体を介して行なうことを特徴とするコンデンサの製造装置。   In an apparatus for manufacturing a capacitor in which a solid electrolyte layer is formed by polymerizing a monomer by an energization technique using an anode substrate having a dielectric oxide film formed on the surface as an anode, the energization is performed through an anode current collector including a conductive sponge. Capacitor manufacturing apparatus characterized by the above. 複数の陽極基体の支持部材を保持し得る枠体、導電性スポンジを含む陽極集電体、陰極部を有するモノマー溶液槽を含む請求項13に記載のコンデンサの製造装置。   The capacitor manufacturing apparatus according to claim 13, comprising: a frame body capable of holding a plurality of anode base support members; an anode current collector including a conductive sponge; and a monomer solution tank having a cathode portion. 陽極集電体が金属板の片面に導電性スポンジを取り付けてなる部材であり、導電性スポンジを前記枠体に保持された支持部材に対して密着させる機構をさらに備えた請求項14に記載のコンデンサの製造装置。   The anode current collector is a member formed by attaching a conductive sponge to one side of a metal plate, and further includes a mechanism for closely attaching the conductive sponge to a support member held by the frame. Capacitor manufacturing equipment. 導電性スポンジに導電性高分子を含むバインダーを用いて研磨材を固定したことを特徴とする集電体材料。   A current collector material, wherein an abrasive is fixed to a conductive sponge using a binder containing a conductive polymer.
JP2005251872A 2005-08-31 2005-08-31 Capacitor manufacturing method and manufacturing apparatus Expired - Fee Related JP4753012B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005251872A JP4753012B2 (en) 2005-08-31 2005-08-31 Capacitor manufacturing method and manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005251872A JP4753012B2 (en) 2005-08-31 2005-08-31 Capacitor manufacturing method and manufacturing apparatus

Publications (2)

Publication Number Publication Date
JP2007067200A true JP2007067200A (en) 2007-03-15
JP4753012B2 JP4753012B2 (en) 2011-08-17

Family

ID=37929034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005251872A Expired - Fee Related JP4753012B2 (en) 2005-08-31 2005-08-31 Capacitor manufacturing method and manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP4753012B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0264107A (en) * 1988-08-31 1990-03-05 Teijin Ltd Electroconductive composite material and production thereof
JP2001210559A (en) * 2000-01-25 2001-08-03 Hitachi Aic Inc Method for manufacturing solid electrolytic capacitor
JP2002219655A (en) * 2001-01-22 2002-08-06 Jsr Corp Abrasive sheet and its manufacturing method
JP2005101592A (en) * 2003-09-04 2005-04-14 Showa Denko Kk Sintered compact and chip solid electrolytic capacitor using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0264107A (en) * 1988-08-31 1990-03-05 Teijin Ltd Electroconductive composite material and production thereof
JP2001210559A (en) * 2000-01-25 2001-08-03 Hitachi Aic Inc Method for manufacturing solid electrolytic capacitor
JP2002219655A (en) * 2001-01-22 2002-08-06 Jsr Corp Abrasive sheet and its manufacturing method
JP2005101592A (en) * 2003-09-04 2005-04-14 Showa Denko Kk Sintered compact and chip solid electrolytic capacitor using the same

Also Published As

Publication number Publication date
JP4753012B2 (en) 2011-08-17

Similar Documents

Publication Publication Date Title
JP5079850B2 (en) Capacitor manufacturing method
TWI326097B (en)
JP2003512531A (en) Method of anodizing tantalum powder
WO2006049317A1 (en) Capacitor manufacturing jig, capacitor manufacturing device, and capacitor manufacturing method
JP5454782B2 (en) Electrode formed on the surface of solid electrolyte, and fuel cell, hydrogen generator, and hydrogen selective permeation device including the same
JP4761194B2 (en) Chemical conversion method and chemical conversion apparatus
JP4753012B2 (en) Capacitor manufacturing method and manufacturing apparatus
TWI417917B (en) Manufacturing method for manufacturing capacitor element, manufacturing method of capacitor element, capacitor element, and capacitor
JP4624160B2 (en) Biological electrode
JP5694888B2 (en) Anisotropic conductive member and manufacturing method thereof
JP5925682B2 (en) Solid electrolytic capacitor element, method for manufacturing the same, and jig for manufacturing
JP2007250920A (en) Method for manufacturing solid electrolytic capacitor
JP7006472B2 (en) Nickel film forming method
JP2012234922A (en) Method for manufacturing solid electrolytic capacitor, and solid electrolytic capacitor
JP2009194200A (en) Solid electrolytic capacitor
JP2009272598A (en) External electrode forming method of tantalum capacitor
JPH0536575A (en) Solid electrolytic capacitor and its manufacture
JPH05152169A (en) Manufacture of solid electrolytic capacitor
JP4505612B2 (en) Metal surface treatment method
JP2003086462A (en) Manufacturing method for solid electrolytic capacitor
RU2657747C2 (en) Electrolyzer anode for production of metal alloy powders
JP2022152802A (en) Electrolytic capacitor and manufacturing method thereof
JPS6211076B2 (en)
JPH11186105A (en) Solid electrolytic capacitor and its manufacture
JP2621211B2 (en) Method for manufacturing solid electrolytic capacitor

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070705

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080718

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110427

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110510

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4753012

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees