JP2007067153A - Semiconductor wafer polishing solution composition and method for polishing semiconductor wafer - Google Patents

Semiconductor wafer polishing solution composition and method for polishing semiconductor wafer Download PDF

Info

Publication number
JP2007067153A
JP2007067153A JP2005250988A JP2005250988A JP2007067153A JP 2007067153 A JP2007067153 A JP 2007067153A JP 2005250988 A JP2005250988 A JP 2005250988A JP 2005250988 A JP2005250988 A JP 2005250988A JP 2007067153 A JP2007067153 A JP 2007067153A
Authority
JP
Japan
Prior art keywords
semiconductor wafer
polishing
weight
liquid composition
wafer polishing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005250988A
Other languages
Japanese (ja)
Other versions
JP4555752B2 (en
Inventor
Nobukatsu Kato
宣勝 加藤
Sorato Maruyama
空人 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaguchi Seiken Kogyo Co Ltd
Original Assignee
Yamaguchi Seiken Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaguchi Seiken Kogyo Co Ltd filed Critical Yamaguchi Seiken Kogyo Co Ltd
Priority to JP2005250988A priority Critical patent/JP4555752B2/en
Publication of JP2007067153A publication Critical patent/JP2007067153A/en
Application granted granted Critical
Publication of JP4555752B2 publication Critical patent/JP4555752B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor wafer polishing solution composition suited for polishing a gallium arsenide wafer. <P>SOLUTION: Wet synthesizing silica of 7 parts by weight, sodium metaphosphorate with a polymerization degree of 13-15 of 0.5 parts by weight, sodium dichloroisocyanurate of 23.1 parts by weight, sodium tripolyphosphorate of 30.3 parts by weight, sodium sulfate of 34.7 parts by weight, and sodium carbonate of 4.4 parts by weight, are mixed to prepare a semiconductor wafer polishing solution composition. Pure water of 4,900 parts by weight is added to and mixed with the composition of 100 parts by weight to obtain a semiconductor wafer polishing dilute solution. By feeding a polishing pad of a double-sided polisher the obtained dilute solution, a gallium arsenide wafer is polished to obtain a polished surface with little surface roughness (Ra) and less scratches/flaws. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、半導体ウェーハ研磨液組成物及び半導体ウェーハ研磨方法に関する。   The present invention relates to a semiconductor wafer polishing liquid composition and a semiconductor wafer polishing method.

従来より、半導体ウェーハ研磨液組成物が種々知られている。半導体ウェーハの研磨液組成物としては、研磨速度や研磨面の平坦性、表面粗さなどの点において良好な研磨特性を有していることが求められる。例えば、特許文献1には、塩素化イソシアヌル酸、アルカリ金属のリン酸塩及びアルカリ金属の硫酸塩からなる半導体ウェーハ研磨液組成物が提案されている。このうち、アルカリ金属のリン酸塩としては、トリポリ燐酸ナトリウムと重合度3のメタリン酸ナトリウムとを配合したものが提案されている。この特許文献1の半導体ウェーハ研磨液組成物によれば、研磨液をアルカリ性にすることにより良好な研磨特性を確保することができる。また、特許文献2には、特許文献1の半導体ウェーハ研磨液組成物にアルカリ金属の炭酸塩を配合した半導体ウェーハ研磨液組成物が提案されている。この特許文献2の半導体ウェーハ研磨組成物によれば、アルカリ金属の炭酸塩を配合することで塩素化イソシアヌル酸由来の活性塩素の安定性を向上させ、良好な研磨特性を確保することができる。更に、特許文献3には、特許文献2の半導体ウェーハ研磨液組成物にシリカ粒子を配合した半導体ウェーハ研磨液組成物が提案されている。このうち、アルカリ金属のリン酸塩としては、トリポリ燐酸ナトリウムが好ましいと記載されている。この特許文献3の半導体ウェーハ研磨組成物によれば、半導体ウェーハの研磨液中にシリカ粒子を配合することで研磨速度の向上を図ることができるとともに、他の成分によって表面の平坦度を確保することができる。
特公平7−67666号(表−1中の実施例8) 特許第3147168号 特許第3077665号
Conventionally, various semiconductor wafer polishing liquid compositions are known. The semiconductor wafer polishing liquid composition is required to have good polishing characteristics in terms of polishing rate, flatness of the polished surface, surface roughness, and the like. For example, Patent Document 1 proposes a semiconductor wafer polishing liquid composition comprising chlorinated isocyanuric acid, an alkali metal phosphate and an alkali metal sulfate. Among these, as an alkali metal phosphate, a blend of sodium tripolyphosphate and sodium metaphosphate having a polymerization degree of 3 has been proposed. According to the semiconductor wafer polishing liquid composition of Patent Document 1, good polishing characteristics can be ensured by making the polishing liquid alkaline. Patent Document 2 proposes a semiconductor wafer polishing liquid composition obtained by blending an alkali metal carbonate with the semiconductor wafer polishing liquid composition of Patent Document 1. According to the semiconductor wafer polishing composition of Patent Document 2, the stability of active chlorine derived from chlorinated isocyanuric acid can be improved by blending an alkali metal carbonate, and good polishing characteristics can be ensured. Further, Patent Document 3 proposes a semiconductor wafer polishing liquid composition in which silica particles are blended with the semiconductor wafer polishing liquid composition of Patent Document 2. Among these, it is described that sodium tripolyphosphate is preferable as the alkali metal phosphate. According to the semiconductor wafer polishing composition of Patent Document 3, the polishing rate can be improved by blending silica particles in the semiconductor wafer polishing liquid, and the surface flatness is ensured by other components. be able to.
Japanese Patent Publication No. 7-67666 (Example 8 in Table 1) Japanese Patent No. 3147168 Japanese Patent No. 3077665

このように、上述の特許文献1や特許文献2,特許文献3の半導体ウェーハの研磨液組成物において良好な研磨特性を有するよう種々の改良がなされているが、これらの半導体ウェーハ研磨液組成物よりも更に良好な特性を有する半導体ウェーハの研磨液が要望されている。   As described above, various improvements have been made in the above-described semiconductor wafer polishing liquid compositions of Patent Document 1, Patent Document 2, and Patent Document 3 so as to have good polishing characteristics. There is a need for a semiconductor wafer polishing liquid having even better properties.

本発明は、このような課題に鑑みなされたものであり、半導体ウェーハを研磨するのに好適な半導体ウェーハ研磨液組成物及び半導体ウェーハ研磨方法を提供することを目的とする。   The present invention has been made in view of such problems, and an object thereof is to provide a semiconductor wafer polishing liquid composition and a semiconductor wafer polishing method suitable for polishing a semiconductor wafer.

本発明は、上述の目的の少なくとも一部を達成するために以下の手段を採った。   The present invention employs the following means in order to achieve at least a part of the above-described object.

すなわち、本発明の半導体ウェーハ研磨組成物は、半導体ウェーハを研磨するときに使用するウェーハ研磨液組成物であって、研磨材、酸化剤、金属イオン封鎖剤、硫酸塩、炭酸塩及び平均重合度が13以上であるアルカリ金属のメタリン酸塩を含有するものである。この半導体ウェーハ研磨液組成物によれば、研磨後の半導体ウェーハの表面を円滑に仕上げることができるとともにスクラッチや傷が全くないか又はほとんどない状態に仕上げることができる。ここで、平均重合度は数平均で表される数平均重合度を示す(以下同じ)。   That is, the semiconductor wafer polishing composition of the present invention is a wafer polishing liquid composition used when polishing a semiconductor wafer, and comprises an abrasive, an oxidizing agent, a sequestering agent, a sulfate, a carbonate, and an average degree of polymerization. Contains an alkali metal metaphosphate having a salt of 13 or more. According to this semiconductor wafer polishing liquid composition, the surface of the semiconductor wafer after polishing can be finished smoothly and finished with no or almost no scratches or scratches. Here, the average degree of polymerization indicates the number average degree of polymerization represented by the number average (the same applies hereinafter).

また、本発明の半導体ウェーハ研磨方法は、半導体ウェーハを研磨する半導体ウェーハ研磨方法であって、本発明の半導体ウェーハ研磨組成物を用いて半導体ウェーハを研磨するものである。この半導体ウェーハ研磨方法によれば、研磨後の半導体ウェーハの表面を円滑に仕上げることができるとともにスクラッチや傷が全くないか又はほとんどない状態に仕上げることができる。   The semiconductor wafer polishing method of the present invention is a semiconductor wafer polishing method for polishing a semiconductor wafer, and polishes a semiconductor wafer using the semiconductor wafer polishing composition of the present invention. According to this semiconductor wafer polishing method, the surface of the semiconductor wafer after polishing can be finished smoothly, and can be finished in a state where there is no or almost no scratches or scratches.

本発明の半導体ウェーハ研磨組成物は、半導体ウェーハを研磨するときに使用するウェーハ研磨液組成物であって、研磨材、酸化剤、金属イオン封鎖剤、硫酸塩、炭酸塩及び平均重合度が13以上であるアルカリ金属のメタリン酸塩を含有するものである。   The semiconductor wafer polishing composition of the present invention is a wafer polishing liquid composition used when polishing a semiconductor wafer, and has an abrasive, an oxidizing agent, a sequestering agent, a sulfate, a carbonate, and an average polymerization degree of 13. It contains the above-mentioned alkali metal metaphosphate.

ここで、研磨材としては、特に限定されるものではないが、例えば湿式合成シリカ、フュームドシリカ及びコロイダルシリカからなる群より選ばれる1種又は2種以上が挙げられ、そのうち湿式合成シリカが好ましい。研磨材としてシリカを用いる場合、その平均粒径は5nm未満では研磨速度が低下し150nmを超えると研磨される被研磨面の粗度が必ずしも良好でなくなることから、5〜150nmの範囲であることが好ましく、7〜60nmの範囲であることがより好ましく、10〜20nmの範囲であることが更に好ましい。加えて、このシリカが凝集した状態である二次粒子の平均粒径は、0.01〜5μmの範囲であることが好ましく、0.05〜3μmの範囲であることがより好ましく、0.1〜2μmの範囲であることが更に好ましい。また、半導体ウェーハ研磨液組成物中のシリカの含有量は、3重量%未満では研磨速度が低下することがあり35重量%を超えると研磨速度は向上するが表面品質が低下することがあるから、3〜35重量%の範囲であることが好ましく、3〜20重量%の範囲であることがより好ましい。あるいは、研磨材としては、α−アルミナ、γ−アルミナ、θ−アルミナ、δ−アルミナ、η−アルミナ及びκ−アルミナからなる群より選ばれる1種又は2種以上が挙げられ、そのうちγ−アルミナが好ましい。研磨材としてアルミナを用いる場合、二次粒子の平均粒径は0.001μm未満では研磨速度が低下し5μmを超えると研磨される被研磨面の粗度が必ずしも良好でなくなることから、0.001〜5μmの範囲であることが好ましく、0.01〜1μmの範囲であることがより好ましく、0.1〜0.3μmの範囲であることが更に好ましい。また、半導体ウェーハ研磨液組成物中のアルミナの含有量は、5重量%未満では研磨速度が低下することがあり35重量%を超えると研磨速度は向上するが表面品質が低下することがあるから、5〜35重量%の範囲であることが好ましく、5〜20重量%の範囲であることがより好ましい。なお、本明細書で平均粒径とは、湿式合成シリカやヒュームドシリカ、アルミナの平均粒径(Dp)の場合は、レーザ光回折法を用いて測定された値である。また、コロイダルシリカの場合は、周知のシアーズ滴定法によって測定された値である。シアーズ滴定法とは、アナリティカル・ケミストリ(ANALYTICAL CHEMISTRY)第28巻第12号(1956年12月)第1981頁に説明されているように水酸化ナトリウムを用いた滴定による比表面積から換算される粒子径の測定方法である。   Here, the abrasive is not particularly limited, and examples thereof include one or more selected from the group consisting of wet synthetic silica, fumed silica and colloidal silica, and of these, wet synthetic silica is preferable. . When silica is used as the abrasive, the average particle size is in the range of 5 to 150 nm because the polishing rate decreases when the average particle size is less than 5 nm and the roughness of the polished surface is not always good when the average particle size exceeds 150 nm. Is more preferable, it is more preferable that it is the range of 7-60 nm, and it is still more preferable that it is the range of 10-20 nm. In addition, the average particle size of the secondary particles in which the silica is agglomerated is preferably in the range of 0.01 to 5 μm, more preferably in the range of 0.05 to 3 μm, More preferably, it is in the range of ˜2 μm. In addition, if the content of silica in the semiconductor wafer polishing liquid composition is less than 3% by weight, the polishing rate may decrease. If it exceeds 35% by weight, the polishing rate is improved but the surface quality may be decreased. The range is preferably 3 to 35% by weight, and more preferably 3 to 20% by weight. Alternatively, the abrasive may be one or more selected from the group consisting of α-alumina, γ-alumina, θ-alumina, δ-alumina, η-alumina and κ-alumina, of which γ-alumina Is preferred. When alumina is used as the polishing material, the average particle size of the secondary particles is less than 0.001 μm, the polishing rate decreases, and if it exceeds 5 μm, the roughness of the surface to be polished is not necessarily good. It is preferably in the range of ˜5 μm, more preferably in the range of 0.01 to 1 μm, and still more preferably in the range of 0.1 to 0.3 μm. Also, if the content of alumina in the semiconductor wafer polishing liquid composition is less than 5% by weight, the polishing rate may decrease, and if it exceeds 35% by weight, the polishing rate will improve but the surface quality may decrease. 5 to 35% by weight, and more preferably 5 to 20% by weight. In the present specification, the average particle diameter is a value measured by a laser diffraction method in the case of the average particle diameter (Dp) of wet synthetic silica, fumed silica, or alumina. In the case of colloidal silica, it is a value measured by a well-known Sears titration method. The Sears titration method is converted from the specific surface area by titration with sodium hydroxide as described in ANALYTICAL CHEMISTRY Vol. 28 No. 12 (December 1956), p. 1981. This is a method for measuring the particle diameter.

メタリン酸塩の平均重合度としては、平均重合度が12以下では研磨速度や表面品質が低下することがあるから、平均重合度が13以上が好ましい。ここで、研磨剤としてシリカを用いる場合には、メタリン酸塩の平均重合度は、平均重合度が40を超えるものは入手しにくいことから13〜40がより好ましく、表面品質の観点から13〜15が更に好ましい。また、研磨剤としてアルミナを用いる場合には、メタリン酸塩の平均重合度は、平均重合度が15を超えると研磨速度は向上するが表面品質が低下することがあるから、13〜15がより好ましい。半導体ウェーハ研磨液組成物中のメタリン酸塩の含有量は、0.1重量%未満であったり5重量%を超えたりすると被研磨面の品質が低下することがあるから、0.1〜5重量%の範囲が好ましく、0.3〜3重量%の範囲がより好ましい。   As the average polymerization degree of the metaphosphate, the average polymerization degree is preferably 13 or more because the polishing rate and the surface quality may be lowered when the average polymerization degree is 12 or less. Here, when silica is used as the abrasive, the average degree of polymerization of the metaphosphate is more preferably 13 to 40 because it is difficult to obtain those having an average degree of polymerization exceeding 40, and from the viewpoint of surface quality, 13 to 40 is preferable. 15 is more preferable. When alumina is used as the polishing agent, the average polymerization degree of the metaphosphate is higher when the average polymerization degree exceeds 15, but the polishing rate is improved but the surface quality may be lowered. preferable. Since the content of the metaphosphate in the semiconductor wafer polishing liquid composition is less than 0.1% by weight or exceeds 5% by weight, the quality of the polished surface may be lowered. The range of wt% is preferable, and the range of 0.3 to 3 wt% is more preferable.

酸化剤としては、ハロゲン化イソシアヌル酸又はその塩が挙げられるが、このうち塩素化イソシアヌル酸塩が好ましい。この塩素化イソシアヌル酸塩としては、ジクロロイソシアヌル酸ナトリウム、ジクロロイソシアヌル酸カリウム、ジクロロイソシアヌル酸アンモニウムなどが挙げられる。このうち、ジクロロイソシアヌル酸ナトリウムが好ましい。また、半導体ウェーハ研磨液組成物中の塩素化イソシアヌル酸塩の含有量は、10重量%未満では酸化力の低下に起因して研磨速度が低下することがあり50重量%を超えると表面品質が低下することがあるから、10〜50重量%の範囲であることが好ましく、20〜30重量%の範囲であることがより好ましい。   Examples of the oxidizing agent include halogenated isocyanuric acid or a salt thereof, and among these, a chlorinated isocyanurate is preferable. Examples of the chlorinated isocyanurate include sodium dichloroisocyanurate, potassium dichloroisocyanurate, and ammonium dichloroisocyanurate. Of these, sodium dichloroisocyanurate is preferred. In addition, when the content of chlorinated isocyanurate in the semiconductor wafer polishing liquid composition is less than 10% by weight, the polishing rate may decrease due to the decrease in oxidizing power. Since it may fall, it is preferable that it is the range of 10-50 weight%, and it is more preferable that it is the range of 20-30 weight%.

金属イオン封鎖剤としては、トリポリリン酸塩が挙げられ、具体的には、トリポリリン酸ナトリウム、トリポリリン酸カリウム、トリポリリン酸アンモニウムなどが挙げられる。このうち、トリポリリン酸ナトリウムが好ましい。また、半導体ウェーハ研磨液組成物中のトリポリリン酸塩の含有量は、10重量%未満では研磨中に発生した半導体ウェーハ由来の金属イオンを十分に捕捉しないことに起因して研磨速度が低下することがあり40重量%を超えると研磨速度は向上するが表面品質が低下することがあるから、10〜40重量%の範囲であることが好ましく、25〜35重量%の範囲であることがより好ましい。   Examples of the sequestering agent include tripolyphosphate, and specific examples include sodium tripolyphosphate, potassium tripolyphosphate, and ammonium tripolyphosphate. Of these, sodium tripolyphosphate is preferred. In addition, if the content of tripolyphosphate in the semiconductor wafer polishing liquid composition is less than 10% by weight, the polishing rate decreases due to insufficient capture of metal ions derived from the semiconductor wafer generated during polishing. When the amount exceeds 40% by weight, the polishing rate is improved, but the surface quality may be lowered. Therefore, the range is preferably 10 to 40% by weight, and more preferably 25 to 35% by weight. .

硫酸塩としては、特に限定されるものではないが、硫酸ナトリウム、硫酸カリウム、硫酸アンモニウムなどが挙げられる。このうち、硫酸ナトリウムが好ましい。また、半導体ウェーハ研磨液組成物中の硫酸塩の含有量は、10重量%未満では研磨速度が低下することがあり50重量%を超えると研磨速度は向上するが表面品質が低下することがあるから、10〜50重量%の範囲であることが好ましく、25〜35重量%の範囲であることがより好ましい。   Although it does not specifically limit as a sulfate, Sodium sulfate, potassium sulfate, ammonium sulfate, etc. are mentioned. Of these, sodium sulfate is preferred. Also, if the sulfate content in the semiconductor wafer polishing liquid composition is less than 10% by weight, the polishing rate may decrease. If it exceeds 50% by weight, the polishing rate will improve but the surface quality may decrease. Therefore, it is preferably in the range of 10 to 50% by weight, and more preferably in the range of 25 to 35% by weight.

炭酸塩としては、特に限定されるものではないが、炭酸ナトリウム、炭酸カリウム、炭酸アンモニウムなどが挙げられる。このうち、炭酸ナトリウムが好ましい。また、半導体ウェーハ研磨液組成物中の炭酸塩の含有量は、2重量%未満の場合や10重量%を超える場合では研磨速度が低下することがあるから、2〜10重量%の範囲であることが好ましく、3〜5重量%の範囲であることがより好ましい。   Although it does not specifically limit as carbonate, Sodium carbonate, potassium carbonate, ammonium carbonate, etc. are mentioned. Of these, sodium carbonate is preferred. Further, the content of carbonate in the semiconductor wafer polishing liquid composition is in the range of 2 to 10% by weight because the polishing rate may decrease when it is less than 2% by weight or more than 10% by weight. It is preferable that it is in the range of 3 to 5% by weight.

本発明の半導体ウェーハ研磨組成物は、周期表第13−15族化合物半導体ウェーハを研磨するときに使用するのが好ましい。周期表第13−15族化合物半導体ウェーハとしては、Ga−As,Ga−P,Ga−Sb,Al−As,In−P,In−As,In−Sb,Ga−Al−As,Ga−As−Pなどからなる半導体ウェーハが挙げられ、そのうちGa−As,Ga−P,In−Pがより好ましい。   The semiconductor wafer polishing composition of the present invention is preferably used when polishing a periodic table group 13-15 compound semiconductor wafer. The periodic table group 13-15 compound semiconductor wafer includes Ga-As, Ga-P, Ga-Sb, Al-As, In-P, In-As, In-Sb, Ga-Al-As, and Ga-As. A semiconductor wafer made of -P or the like can be mentioned, and Ga-As, Ga-P, and In-P are more preferable.

本発明の半導体ウェーハ研磨液組成物のpHは、特に限定されるものではないが、ウェーハを研磨する際に通常9〜10.5の範囲に調整される。このpHの数値範囲は、研磨される半導体ウェーハの研磨速度、被研磨面の特性のほか、研磨液組成物の安定性の観点から決定したものである。   Although the pH of the semiconductor wafer polishing liquid composition of this invention is not specifically limited, When grinding | polishing a wafer, it is normally adjusted to the range of 9-10.5. This numerical value range of pH is determined from the viewpoint of the polishing rate of the semiconductor wafer to be polished, the characteristics of the surface to be polished, and the stability of the polishing composition.

本発明の半導体ウェーハ研磨液組成物は、必要に応じて、通常この種の半導体ウェーハ研磨液組成物に含まれる成分を含有していてもよい。そのような成分としては、例えば、界面活性剤、洗浄剤、防錆剤、表面改質剤、粘度調整剤、抗菌剤、分散剤などが挙げられる。   The semiconductor wafer polishing liquid composition of the present invention may contain components usually contained in this type of semiconductor wafer polishing liquid composition as necessary. Examples of such components include surfactants, detergents, rust inhibitors, surface modifiers, viscosity modifiers, antibacterial agents, and dispersants.

本発明の半導体ウェーハ研磨液組成物は、片面及び両面研磨機で半導体ウェーハを研磨する際に用いることができる。例えば、両面研磨機として、下面に研磨パッドを有し回転する上定盤と、上面に研磨パッドを有し回転する下定盤と、下定盤の研磨面に置かれたウェーハを上定盤の研磨面に押し付けるよう上下動可能であって且つ回転可能に上定盤の上方に設けられた保持装置とを備えたものを使用する場合には、本発明の半導体ウェーハ研磨液組成物に水を混合した希釈液を研磨パッドに供給しながら保持装置の作動により上定盤と下定盤とに挟持された半導体ウェーハを所定の加圧圧力で両面の研磨パッドに押し付けて研磨を行う。このように、研磨時に本発明の半導体ウェーハ研磨組成物と水とを混合するのは、半導体ウェーハ研磨組成物に含まれる酸化剤の経時変化によって研磨中における酸化力が低下するのを防ぐためである。なお、水は、媒体として使用されるものであり、その含有量は半導体ウェーハを研磨するうえで各種の含有成分が適切な濃度になるとともに適切な粘度となるよう適宜定めればよいが、例えば、半導体ウェーハ研磨組成物の濃度が1〜2%になるように調整してもよい。研磨パッドは、スウェードタイプ、不織布タイプ、その他いずれのタイプも使用することができる。本発明の研磨液組成物は第1研磨(ラッピング)、第2研磨(仕上げ研磨、ポリシング)のいずれにも使用することができる。本発明の半導体ウェーハ研磨液組成物は被研磨面のスクラッチ・傷等の発生が少ないため、仕上げの研磨に使用することができる。   The semiconductor wafer polishing liquid composition of the present invention can be used when polishing a semiconductor wafer with a single-sided and double-sided polishing machine. For example, as a double-side polishing machine, an upper surface plate rotating with a polishing pad on the lower surface, a lower surface plate rotating with a polishing pad on the upper surface, and a wafer placed on the polishing surface of the lower surface plate polishing the upper surface plate When using a device that can move up and down to be pressed against the surface and is provided with a holding device that is rotatably provided on the upper surface plate, water is mixed into the semiconductor wafer polishing composition of the present invention. Polishing is performed by pressing the semiconductor wafer sandwiched between the upper surface plate and the lower surface plate by the operation of the holding device against the polishing pad on both sides with a predetermined pressure while supplying the diluted liquid to the polishing pad. Thus, the semiconductor wafer polishing composition of the present invention and water are mixed at the time of polishing in order to prevent a reduction in oxidizing power during polishing due to a change with time of the oxidizing agent contained in the semiconductor wafer polishing composition. is there. In addition, water is used as a medium, and the content thereof may be appropriately determined so that various components have an appropriate concentration and an appropriate viscosity when polishing a semiconductor wafer. The concentration of the semiconductor wafer polishing composition may be adjusted to 1 to 2%. As the polishing pad, a suede type, a non-woven fabric type, or any other type can be used. The polishing composition of the present invention can be used for both the first polishing (lapping) and the second polishing (finish polishing, polishing). The semiconductor wafer polishing liquid composition of the present invention can be used for finishing polishing because scratches and scratches on the surface to be polished are small.

次に、本発明の半導体ウェーハ研磨液組成物を、実施例を用いて具体的に説明する。なお、本発明は以下の実施例に何ら限定されるものではなく、本発明の技術的範囲に属する限り、種々の態様で実施できることはいうまでもない。   Next, the semiconductor wafer polishing liquid composition of this invention is demonstrated concretely using an Example. In addition, this invention is not limited to the following Examples at all, and as long as it belongs to the technical scope of this invention, it cannot be overemphasized that it can implement with a various aspect.

[実施例1]
湿式合成シリカ(デグサジャパン(株)のカープレックス FPS−1)7重量部、メタリン酸ナトリウム(重合度n=13〜15、米山化学(株)の商品名ヘキサメタリン酸ナトリウム)0.5重量部、ジクロロイソシアヌル酸ナトリウム(CClNNaO)23.1重量部、トリポリリン酸ナトリウム(NaPO)30.3重量部、硫酸ナトリウム34.7重量部、炭酸ナトリウム4.4重量部を混合し、半導体ウェーハ研磨液組成物を調製した。この半導体ウェーハ研磨液組成物100重量部に対し、純水4900重量部を添加し混合することにより半導体ウェーハ研磨用希釈液とした。得られた半導体ウェーハ研磨用希釈液には、湿式合成シリカが0.14重量%、メタリン酸ナトリウムが0.01重量%、ジクロロイソシアヌル酸ナトリウムが0.462重量%、トリポリリン酸ナトリウムが0.606重量%、硫酸ナトリウム0.694重量%、炭酸ナトリウム0.088重量%が含まれている。この半導体ウェーハ研磨用希釈液についてのpHは、D−13ガラス電極式水素イオン濃度計(株式会社堀場製作所)により測定したところ、9.2であった。なお、湿式合成シリカの平均粒径は、レーザ回折・散乱式粒度分布測定機(島津製作所社製・SALD−2000J又はマイクロトラック社製・UPA)により測定したところ、14nm(BET比表面積値は200m2/g)であり、二次粒子の平均粒径は2μmであった。
[Example 1]
Wet synthetic silica (Degussa Japan Co., Ltd. Carplex FPS-1) 7 parts by weight, sodium metaphosphate (polymerization degree n = 13-15, trade name sodium hexametaphosphate of Yoneyama Chemical Co., Ltd.) 0.5 parts by weight, A semiconductor wafer polishing composition comprising 23.1 parts by weight of sodium dichloroisocyanurate (CClNNaO), 30.3 parts by weight of sodium tripolyphosphate (NaPO), 34.7 parts by weight of sodium sulfate, and 4.4 parts by weight of sodium carbonate. Was prepared. A diluted solution for polishing a semiconductor wafer was prepared by adding 4900 parts by weight of pure water to 100 parts by weight of the semiconductor wafer polishing liquid composition and mixing them. The resulting dilution for polishing a semiconductor wafer contained 0.14% by weight of wet synthetic silica, 0.01% by weight of sodium metaphosphate, 0.462% by weight of sodium dichloroisocyanurate, and 0.606 of sodium tripolyphosphate. % By weight, sodium sulfate 0.694% by weight, and sodium carbonate 0.088% by weight. The pH of the diluted semiconductor wafer polishing solution was 9.2 as measured with a D-13 glass electrode type hydrogen ion concentration meter (Horiba, Ltd.). The average particle size of the wet synthetic silica was measured with a laser diffraction / scattering particle size distribution analyzer (manufactured by Shimadzu Corp./SALD-2000J or Microtrac Corp./UPA). 2 / g), and the average particle size of the secondary particles was 2 μm.

[実施例2〜6,比較例1〜4]
実施例2〜6,比較例1〜4では、半導体ウェーハ研磨液組成物の各成分の種類や配合量、pHを表1に示すように変更した以外は、実施例1に準じて半導体ウェーハ研磨液組成物を調製した。調製した半導体ウェーハ研磨液組成物100重量部に対し、純水4900重量部を添加し混合することにより半導体ウェーハ研磨用希釈液とした。得られた半導体ウェーハ研磨用希釈液に含まれる各成分の純分の重量%と、硫酸ナトリウムの重量を100としたときの各成分の比率とを表2に示す。なお、実施例5で用いたメタリン酸ナトリウムは燐化学(株)の商品名ヘキサメタリン酸ソーダ((NaPO)PO)であり、実施例6で用いたメタリン酸ナトリウムは米山化学(株)の商品名(スーパー)ヘキサメタリン酸ナトリウム(平均重合度n=40)であり、比較例3で用いたメタリン酸ナトリウム(平均重合度n=3)及び比較例4で用いたメタリン酸ナトリウム(平均重合度n=4)はキシダ化学(株)製である。
[Examples 2-6, Comparative Examples 1-4]
In Examples 2-6 and Comparative Examples 1-4, semiconductor wafer polishing was performed according to Example 1 except that the types, blending amounts, and pH of each component of the semiconductor wafer polishing liquid composition were changed as shown in Table 1. A liquid composition was prepared. 4100 parts by weight of pure water was added to and mixed with 100 parts by weight of the prepared semiconductor wafer polishing liquid composition to obtain a diluted semiconductor wafer polishing liquid. Table 2 shows the weight% of each component contained in the obtained dilution for polishing a semiconductor wafer and the ratio of each component when the weight of sodium sulfate is 100. The sodium metaphosphate used in Example 5 is a trade name of sodium hexametaphosphate ((NaPO) PO) of Phosphor Chemical Co., Ltd., and the sodium metaphosphate used in Example 6 is a trade name of Yoneyama Chemical Co., Ltd. (Super) sodium hexametaphosphate (average polymerization degree n = 40), sodium metaphosphate used in Comparative Example 3 (average polymerization degree n = 3) and sodium metaphosphate used in Comparative Example 4 (average polymerization degree n = 4) is manufactured by Kishida Chemical Co., Ltd.

Figure 2007067153
Figure 2007067153

Figure 2007067153
Figure 2007067153

[実施例7,比較例5,6]
実施例7,比較例5,6では、研磨剤として湿式合成シリカの代わりにγ−アルミナ(昭和電工(株)の商品名UA−5605)を使用し、半導体ウェーハ研磨液組成物の各成分の種類や配合量、pHを表1に示すように変更した以外は、実施例1に準じて半導体ウェーハ研磨液組成物を調製した。調製した半導体ウェーハ研磨液組成物100重量部に対し、純水4900重量部を添加し混合することにより半導体ウェーハ研磨用希釈液とした。得られた半導体ウェーハ研磨用希釈液に含まれる各成分の純分の重量%を表2に示す。なお、γ−アルミナの二次粒子の平均粒径は、レーザ回折・散乱式粒度分布測定機(島津製作所社製・SALD−2000J又はマイクロトラック社製・UPA)により測定したところ、0.1〜0.3μmであり、BET法比表面積は60〜80m2/gであった。また、実施例7で用いたメタリン酸カリウムは燐化学(株)の商品名ヘキサメタリン酸カリウム(平均重合度n=13〜15)であり、比較例5で用いたメタリン酸ナトリウムは米山化学(株)の商品名(スーパー)ヘキサメタリン酸ナトリウム(平均重合度n=40)である。
[Example 7, Comparative Examples 5 and 6]
In Example 7 and Comparative Examples 5 and 6, γ-alumina (trade name UA-5605 of Showa Denko KK) was used as the polishing agent instead of wet synthetic silica, and each component of the semiconductor wafer polishing liquid composition was used. A semiconductor wafer polishing liquid composition was prepared according to Example 1 except that the type, blending amount, and pH were changed as shown in Table 1. 4100 parts by weight of pure water was added to and mixed with 100 parts by weight of the prepared semiconductor wafer polishing liquid composition to obtain a diluted semiconductor wafer polishing liquid. Table 2 shows the weight% of each component contained in the obtained dilution for polishing a semiconductor wafer. The average particle size of the secondary particles of γ-alumina was measured with a laser diffraction / scattering particle size distribution analyzer (SALD-2000J manufactured by Shimadzu Corporation or UPA manufactured by Microtrack Co.). The BET specific surface area was 60 to 80 m 2 / g. Moreover, the potassium metaphosphate used in Example 7 is potassium hexametaphosphate (average polymerization degree n = 13-15) of Phosphor Chemical Co., Ltd., and the sodium metaphosphate used in Comparative Example 5 is Yoneyama Chemical Co., Ltd. ) (Super) sodium hexametaphosphate (average polymerization degree n = 40).

[研磨試験]
半導体ウェーハとしてヒ化ガリウムウェーハ及びリン化ガリウムウェーハを用いた。ヒ化ガリウムウェーハ及びリン化ガリウムウェーハはディスクの直径が2インチのものを使用した。また、研磨試験機として1ウェイ式両面ポリシングマシン4BF(HAMAI CO.LTD社) 、研磨パッドとしてスウェード状のポリウレタン(ローデルニッタ社、Suba 400)を使用し、研磨パッドへの半導体ウェーハ研磨用希釈液の供給量を100mL/minとし、定盤回転速度を60rpm/minとし、1回の研磨時間を20分として、ラッピング(研磨加工)を行ったあとのディスクにつきポリシング(鏡面加工)を行い、ウェーハを流水で洗浄、室温で乾燥後に被研磨面の特性評価に供した。ポリシングは同じ条件で3回実施し、各データ値は3回の平均値とした。なお、ポリシング時の加圧圧力は、80g/cm2(7.8kPa)とした。また、ポリシングの前段階のラッピングについては、ポリシング時と同じウェーハ研磨液を用いて30分間1次ラップを行った。
[Polishing test]
Gallium arsenide wafers and gallium phosphide wafers were used as semiconductor wafers. Gallium arsenide wafers and gallium phosphide wafers having a disk diameter of 2 inches were used. In addition, a 1-way double-side polishing machine 4BF (HAMAI CO. LTD) is used as a polishing test machine, and a suede-like polyurethane (Rodernitta, Suba 400) is used as a polishing pad. The supply amount is set to 100 mL / min, the platen rotation speed is set to 60 rpm / min, the polishing time for one polishing is set to 20 minutes, polishing (mirror processing) is performed on the disk after lapping (polishing), and the wafer is removed. After washing with running water and drying at room temperature, the surface to be polished was evaluated. Polishing was performed three times under the same conditions, and each data value was an average of three times. The pressure applied during polishing was 80 g / cm 2 (7.8 kPa). For lapping in the previous stage of polishing, primary lapping was performed for 30 minutes using the same wafer polishing liquid as that used during polishing.

[被研磨面の特性評価]
被研磨面の特性評価は、研磨速度、表面粗さ(Ra)、スクラッチ・傷の有無の3つの項目について行った。研磨速度は、下記数1式により求めた。また、表面粗さ(Ra)は、算術平均粗さであり、光干渉式非接触3次元表面形状計測装置であるZYGO New View5000(ザイゴ社)を用いて測定した。この測定は、0.08mm以上の周波数をカットして行った。スクラッチ・傷の有無は、光学顕微鏡を用い、倍率100倍でウェーハ表面を90度おきに1箇所の測定面積を5.000mm×2.000mmとして4箇所測定し、スクラッチ・傷の個数を調べ、スクラッチ・傷が認められなかったものを評価Sとし、スクラッチ・傷が5個未満だったものを評価Aとし、スクラッチ・傷が5個以上10個未満だったものを評価Bとし、スクラッチ・傷が10個以上だったものを評価Cとした。各実施例、各比較例の評価結果を表3に示す。
[Characteristic evaluation of polished surface]
The characteristics of the surface to be polished were evaluated for three items: polishing rate, surface roughness (Ra), and presence / absence of scratches / scratches. The polishing rate was determined by the following equation (1). Moreover, surface roughness (Ra) is arithmetic mean roughness, and was measured using ZYGO New View5000 (Zygo) which is an optical interference type non-contact three-dimensional surface shape measuring apparatus. This measurement was performed by cutting a frequency of 0.08 mm or more. Presence / absence of scratches / scratches was measured using an optical microscope at a magnification of 100 ×, measuring the number of scratches / scratches at four locations with a measurement area of 5.000 mm × 2.000 mm every 90 degrees on the wafer surface. Scratch / scratch was evaluated as S, Scratch / scratch was less than 5 evaluation A, Scratch / scratch was 5 or more but less than 10 evaluation B, scratch / scratch Was rated C. Table 3 shows the evaluation results of each example and each comparative example.

Figure 2007067153
Figure 2007067153

Figure 2007067153
Figure 2007067153

まず、ヒ化ガリウムウェーハについて検討する。研磨剤として湿式合成シリカを用いた実施例1〜6及び比較例1〜4を比較・検討すると、比較例1,3及び4では、表3に示すように、ヒ化ガリウムウェーハの被研磨面はスクラッチ・傷が多く表面粗さ(Ra)が良好な値とは言えなかった。また、比較例2では、被研磨面はスクラッチ・傷はほとんどなく表面粗さ(Ra)も良好な値であったものの研磨速度が遅かった。これに対して、実施例1〜6ではヒ化ガリウムウェーハの被研磨面はスクラッチ・傷がほとんどなく研磨速度も比較的良好な値が得られた。特に実施例1〜5では表面粗さ(Ra)も良好な値が得られた。次に、研磨剤としてγ−アルミナを用いた実施例7及び比較例5〜6を比較・検討すると、比較例5及び6では、ヒ化ガリウムウェーハの被研磨面はスクラッチ・傷が多く、比較例6では研磨速度が遅かった。これに対して、実施例7ではヒ化ガリウムウェーハの被研磨面はスクラッチ・傷が少なかった。なお、実施例1〜7のうち実施例7では研磨剤としてγ−アルミナを用いているが、被研磨面のスクラッチ・傷の評価結果から、湿式合成シリカを用いる実施例1〜6が好ましい。また、実施例6ではアルカリ金属のメタリン酸塩として平均重合度n=40のメタリン酸ナトリウムを用いているが、被研磨面の表面粗さ(Ra)の評価結果から、平均重合度n=13〜15のメタリン酸ナトリウムを用いる実施例1〜5がより好ましい。   First, gallium arsenide wafers are examined. When Examples 1 to 6 and Comparative Examples 1 to 4 using wet synthetic silica as an abrasive were compared and examined, in Comparative Examples 1, 3 and 4, as shown in Table 3, the surface to be polished of a gallium arsenide wafer There were many scratches and scratches, and the surface roughness (Ra) was not a good value. In Comparative Example 2, the surface to be polished had almost no scratches or scratches, and the surface roughness (Ra) was a good value, but the polishing rate was slow. In contrast, in Examples 1 to 6, the polished surface of the gallium arsenide wafer was almost free from scratches and scratches, and a relatively good polishing rate was obtained. Particularly in Examples 1 to 5, good values were obtained for the surface roughness (Ra). Next, when Example 7 and Comparative Examples 5 to 6 using γ-alumina as an abrasive were compared and examined, in Comparative Examples 5 and 6, the polished surface of the gallium arsenide wafer had many scratches and scratches. In Example 6, the polishing rate was slow. In contrast, in Example 7, the polished surface of the gallium arsenide wafer had few scratches and scratches. In Examples 1 to 7, Example 7 uses γ-alumina as an abrasive, but Examples 1 to 6 using wet synthetic silica are preferable from the evaluation results of scratches and scratches on the polished surface. In Example 6, sodium metaphosphate having an average polymerization degree n = 40 is used as the alkali metal metaphosphate. From the evaluation result of the surface roughness (Ra) of the polished surface, the average polymerization degree n = 13. Examples 1-5 using ~ 15 sodium metaphosphate are more preferred.

次に、リン化ガリウムウェーハについて検討する。研磨剤として湿式合成シリカを用いた実施例1〜3及び比較例1を比較・検討すると、比較例1では、表3に示すように、リン化ガリウムウェーハの被研磨面はスクラッチ・傷が多かった。これに対して、実施例1〜3ではリン化ガリウムウェーハの被研磨面はスクラッチ・傷がほとんどなかった。次に、研磨剤としてγ−アルミナを用いた実施例7と比較例6とを比較・検討すると、比較例6では、リン化ガリウムウェーハの被研磨面はスクラッチ・傷が多かった。これに対して、実施例7ではリン化ガリウムウェーハの被研磨面はスクラッチ・傷が少なかった。なお、実施例1〜3,7のうち実施例7では研磨剤としてγ−アルミナを用いているが、被研磨面のスクラッチ・傷及び表面粗さ(Ra)の評価結果から、湿式合成シリカを用いる実施例1〜3が好ましい。   Next, the gallium phosphide wafer will be examined. Comparing and examining Examples 1 to 3 and Comparative Example 1 using wet synthetic silica as an abrasive, in Comparative Example 1, as shown in Table 3, the polished surface of the gallium phosphide wafer has many scratches and scratches. It was. On the other hand, in Examples 1-3, the to-be-polished surface of the gallium phosphide wafer was hardly scratched or scratched. Next, when Example 7 using γ-alumina as an abrasive and Comparative Example 6 were compared and examined, in Comparative Example 6, the polished surface of the gallium phosphide wafer had many scratches and scratches. In contrast, in Example 7, the polished surface of the gallium phosphide wafer had few scratches and scratches. In Examples 1 to 3 and 7, Example 7 uses γ-alumina as an abrasive. From the evaluation results of scratches and scratches on the surface to be polished and surface roughness (Ra), wet synthetic silica was used. Examples 1 to 3 used are preferred.

Claims (7)

半導体ウェーハを研磨するときに使用する半導体ウェーハ研磨液組成物であって、
研磨材、酸化剤、金属イオン封鎖剤、硫酸塩、炭酸塩及び平均重合度が13以上であるアルカリ金属のメタリン酸塩を含有する、半導体ウェーハ研磨液組成物。
A semiconductor wafer polishing liquid composition used when polishing a semiconductor wafer,
A semiconductor wafer polishing liquid composition comprising an abrasive, an oxidizing agent, a sequestering agent, a sulfate, a carbonate and an alkali metal metaphosphate having an average polymerization degree of 13 or more.
前記研磨材は湿式合成シリカ、フュームドシリカ及びコロイダルシリカからなる群より選ばれる少なくとも1種であり、
前記メタリン酸塩は平均重合度が13〜40である、
請求項1に記載の半導体ウェーハ研磨液組成物。
The abrasive is at least one selected from the group consisting of wet synthetic silica, fumed silica and colloidal silica,
The metaphosphate has an average degree of polymerization of 13-40.
The semiconductor wafer polishing liquid composition according to claim 1.
前記研磨材は、α−アルミナ、γ−アルミナ、θ−アルミナ、δ−アルミナ、η−アルミナ及びκ−アルミナからなる群より選ばれる少なくとも1種であり、
前記メタリン酸塩は平均重合度が13〜15である、
請求項1に記載の半導体ウェーハ研磨液組成物。
The abrasive is at least one selected from the group consisting of α-alumina, γ-alumina, θ-alumina, δ-alumina, η-alumina, and κ-alumina,
The metaphosphate has an average degree of polymerization of 13 to 15.
The semiconductor wafer polishing liquid composition according to claim 1.
前記メタリン酸塩は、該半導体ウェーハ研磨組成物中の含有量が0.1〜5重量%である、
請求項1〜3のいずれかに記載の半導体ウェーハ研磨液組成物。
The metaphosphate has a content in the semiconductor wafer polishing composition of 0.1 to 5% by weight,
The semiconductor wafer polishing liquid composition in any one of Claims 1-3.
前記酸化剤は塩素化イソシアヌル酸塩であり、
前記金属イオン封鎖剤はトリポリリン酸塩である、
請求項1〜4のいずれかに記載の半導体ウェーハ研磨液組成物。
The oxidizing agent is chlorinated isocyanurate;
The sequestering agent is tripolyphosphate;
The semiconductor wafer polishing liquid composition in any one of Claims 1-4.
砒化ガリウムウェーハ又はリン化ガリウムウェーハを研磨するときに使用する、請求項1〜5のいずれかに記載の半導体ウェーハ研磨液組成物。   The semiconductor wafer polishing liquid composition according to claim 1, which is used when polishing a gallium arsenide wafer or a gallium phosphide wafer. 半導体ウェーハを研磨する半導体ウェーハ研磨方法であって、
請求項1〜6のいずれかに記載のウェーハ研磨液組成物を用いて半導体ウェーハを研磨する、
半導体ウェーハ研磨方法。
A semiconductor wafer polishing method for polishing a semiconductor wafer,
A semiconductor wafer is polished using the wafer polishing liquid composition according to claim 1,
Semiconductor wafer polishing method.
JP2005250988A 2005-08-31 2005-08-31 Semiconductor wafer polishing liquid composition and semiconductor wafer polishing method Active JP4555752B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005250988A JP4555752B2 (en) 2005-08-31 2005-08-31 Semiconductor wafer polishing liquid composition and semiconductor wafer polishing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005250988A JP4555752B2 (en) 2005-08-31 2005-08-31 Semiconductor wafer polishing liquid composition and semiconductor wafer polishing method

Publications (2)

Publication Number Publication Date
JP2007067153A true JP2007067153A (en) 2007-03-15
JP4555752B2 JP4555752B2 (en) 2010-10-06

Family

ID=37928996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005250988A Active JP4555752B2 (en) 2005-08-31 2005-08-31 Semiconductor wafer polishing liquid composition and semiconductor wafer polishing method

Country Status (1)

Country Link
JP (1) JP4555752B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011142052A1 (en) * 2010-05-10 2011-11-17 住友電気工業株式会社 Polishing agent, method for producing compound semiconductor, and method for manufacturing semiconductor device
WO2013077371A1 (en) * 2011-11-25 2013-05-30 株式会社 フジミインコーポレーテッド Polishing composition
WO2019188747A1 (en) * 2018-03-28 2019-10-03 株式会社フジミインコーポレーテッド Gallium compound semiconductor substrate polishing composition
WO2021065644A1 (en) * 2019-09-30 2021-04-08 株式会社フジミインコーポレーテッド Polishing composition
CN115386299A (en) * 2022-08-16 2022-11-25 威科赛乐微电子股份有限公司 Gallium arsenide substrate polishing solution and application thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6384872A (en) * 1986-09-29 1988-04-15 Nissan Chem Ind Ltd Polishing agent for iii-v compound semiconductor
JPH04146075A (en) * 1990-10-08 1992-05-20 Nissan Chem Ind Ltd Abrasive agent for iii-v compound semiconductor
JPH11283943A (en) * 1998-03-30 1999-10-15 Sumitomo Electric Ind Ltd Abrasive for iii-v compound semiconductor and its feeding method
JP2002176041A (en) * 2000-08-30 2002-06-21 Kishimoto Sangyo Co Ltd Resist residual removal agent
JP2003220551A (en) * 2001-11-20 2003-08-05 Hitachi Ltd Abrasive compound, abrasive grain, and manufacturing method for them, and polishing method and manufacturing method for semiconductor device
JP2004327614A (en) * 2003-04-23 2004-11-18 Sumitomo Metal Mining Co Ltd Polishing solution for iii-v compound semiconductor wafer and method for polishing iii-v compound semiconductor wafer using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6384872A (en) * 1986-09-29 1988-04-15 Nissan Chem Ind Ltd Polishing agent for iii-v compound semiconductor
JPH04146075A (en) * 1990-10-08 1992-05-20 Nissan Chem Ind Ltd Abrasive agent for iii-v compound semiconductor
JPH11283943A (en) * 1998-03-30 1999-10-15 Sumitomo Electric Ind Ltd Abrasive for iii-v compound semiconductor and its feeding method
JP2002176041A (en) * 2000-08-30 2002-06-21 Kishimoto Sangyo Co Ltd Resist residual removal agent
JP2003220551A (en) * 2001-11-20 2003-08-05 Hitachi Ltd Abrasive compound, abrasive grain, and manufacturing method for them, and polishing method and manufacturing method for semiconductor device
JP2004327614A (en) * 2003-04-23 2004-11-18 Sumitomo Metal Mining Co Ltd Polishing solution for iii-v compound semiconductor wafer and method for polishing iii-v compound semiconductor wafer using the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011142052A1 (en) * 2010-05-10 2011-11-17 住友電気工業株式会社 Polishing agent, method for producing compound semiconductor, and method for manufacturing semiconductor device
JP2011238763A (en) * 2010-05-10 2011-11-24 Sumitomo Electric Ind Ltd Polishing agent, method for producing compound semiconductor, and method for producing semiconductor device
CN102484059A (en) * 2010-05-10 2012-05-30 住友电气工业株式会社 Polishing agent, method for producing compound semiconductor, and method for manufacturing semiconductor device
US8841215B2 (en) 2010-05-10 2014-09-23 Sumitomo Electric Industries, Ltd. Polishing agent, compound semiconductor manufacturing method, and semiconductor device manufacturing method
WO2013077371A1 (en) * 2011-11-25 2013-05-30 株式会社 フジミインコーポレーテッド Polishing composition
JP2013115154A (en) * 2011-11-25 2013-06-10 Fujimi Inc Polishing composition
WO2019188747A1 (en) * 2018-03-28 2019-10-03 株式会社フジミインコーポレーテッド Gallium compound semiconductor substrate polishing composition
JPWO2019188747A1 (en) * 2018-03-28 2021-04-08 株式会社フジミインコーポレーテッド Composition for polishing gallium compound-based semiconductor substrate
JP7424967B2 (en) 2018-03-28 2024-01-30 株式会社フジミインコーポレーテッド Gallium compound-based semiconductor substrate polishing composition
WO2021065644A1 (en) * 2019-09-30 2021-04-08 株式会社フジミインコーポレーテッド Polishing composition
CN115386299A (en) * 2022-08-16 2022-11-25 威科赛乐微电子股份有限公司 Gallium arsenide substrate polishing solution and application thereof
CN115386299B (en) * 2022-08-16 2023-08-22 威科赛乐微电子股份有限公司 Gallium arsenide substrate polishing solution and application thereof

Also Published As

Publication number Publication date
JP4555752B2 (en) 2010-10-06

Similar Documents

Publication Publication Date Title
KR102145405B1 (en) Composite particles, method of refining and use thereof
TWI745288B (en) Polishing agent for resin polishing, storage liquid for polishing agent, and polishing method
US7204865B2 (en) Polishing composition
KR102301462B1 (en) Composite particles, method of refining and use thereof
US8974691B2 (en) Composition for polishing and composition for rinsing
US6027669A (en) Polishing composition
US20080237535A1 (en) Composition for polishing semiconductor wafer, and method of producing the same
JP4163785B2 (en) Polishing composition and polishing method
TWI586795B (en) Polishing liquid composition for magnetic disk substrate
KR20000035505A (en) Polishing composition and rinsing composition
JP4555752B2 (en) Semiconductor wafer polishing liquid composition and semiconductor wafer polishing method
JP2015129217A (en) Polishing agent, polishing agent set and method for polishing substrate
JP2014205756A (en) Rough polishing abrasive composition, method for polishing magnetic disk substrate, method for producing magnetic disk substrate, and magnetic disk substrate
JP2007300070A (en) Etchant composition for polishing semiconductor wafer, manufacturing method of polishing composition using same, and polishing method
JP4749775B2 (en) Wafer polishing liquid composition and wafer polishing method
JP2003297777A (en) Composition for polishing, method for modifying the same and method for polishing the same
JPH09296161A (en) Abrasive grain for polishing and polishing composition
JP4346712B2 (en) Wafer edge polishing method
TWI808978B (en) Silicon oxide slurry for polishing liquid composition
JPWO2005029563A1 (en) Silicon wafer polishing composition and polishing method
JP4955253B2 (en) Polishing composition for polishing device wafer edge, method for producing the same, and polishing method
EP3859768A1 (en) Composition for polishing gallium oxide substrate
JP6584935B2 (en) Polishing liquid composition for magnetic disk substrate
JPH10245545A (en) Polishing aid for silicone wafer
TW200424302A (en) Polishing composition, preparation method thereof and wafer polishing method using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100209

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100326

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100622

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100716

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4555752

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250