JP2007066970A - Electromagnetic shield material - Google Patents

Electromagnetic shield material Download PDF

Info

Publication number
JP2007066970A
JP2007066970A JP2005247580A JP2005247580A JP2007066970A JP 2007066970 A JP2007066970 A JP 2007066970A JP 2005247580 A JP2005247580 A JP 2005247580A JP 2005247580 A JP2005247580 A JP 2005247580A JP 2007066970 A JP2007066970 A JP 2007066970A
Authority
JP
Japan
Prior art keywords
less
steel pipe
electromagnetic shielding
magnetic field
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005247580A
Other languages
Japanese (ja)
Other versions
JP5034190B2 (en
Inventor
Yasuhide Ishiguro
康英 石黒
Yoshikazu Kawabata
良和 河端
Masayuki Sakaguchi
雅之 坂口
Yasue Koyama
康衛 小山
Takashi Sakata
坂田  敬
Masayoshi Ishida
昌義 石田
Motoaki Itaya
元晶 板谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005247580A priority Critical patent/JP5034190B2/en
Publication of JP2007066970A publication Critical patent/JP2007066970A/en
Application granted granted Critical
Publication of JP5034190B2 publication Critical patent/JP5034190B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Soft Magnetic Materials (AREA)
  • Regulation Of General Use Transformers (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a tubular electromagnetic shield material employing a steel pipe. <P>SOLUTION: A steel pipe having a composition containing 0.01% or less of C, 95% or more of Fe, or further containing a proper amount of Si and Al, or a proper amount of Cr is preferably subjected to shrink rolling or further subjected to annealing treatment, thus obtaining a steel pipe having such a composition as the three-dimensional random strength ratio of X ray is 3.0 or above, the r value is 2.0 or above, and the average crystal grain size is 20 μm or above in the crystal orientation in which <100> is oriented in the circumferential direction and <011> is oriented in the rolling direction. When a tubular electromagnetic shield material is composed using that steel pipe, electromagnetic shield characteristics are enhanced remarkably. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電磁シールド材に係り、とくに、電磁シールド特性に優れたパイプ(管)形状の電磁シールド材に関する。   The present invention relates to an electromagnetic shielding material, and more particularly, to an electromagnetic shielding material having a pipe shape that is excellent in electromagnetic shielding characteristics.

電磁シールド材として、従来から電磁特性に優れた材料の薄板、厚板が使用されてきた。電磁特性に優れた材料としては、磁化容易方向<100>が面内に無方向に配向された無方向性電磁鋼板や、磁化容易方向<100>が圧延方向に平行に強く配向された方向性珪素鋼板などがある。
しかし、これら電磁特性に優れた鋼板を、例えば磁気シールド用として使用する場合には、これら鋼板を加工し、溶接等で接合、組み立して所望形状に仕上げる工程が必要となる。このように、鋼板を素材とする場合には、複雑な工程を必要とするうえ、溶接部等の非定常部が形成され、電磁シールド特性が劣化するという問題があった。このような問題を回避するため、電磁特性に優れた鋼管を素材とすることが考えられる。
Conventionally, a thin plate or a thick plate made of a material excellent in electromagnetic characteristics has been used as an electromagnetic shielding material. Examples of a material having excellent electromagnetic characteristics include a non-oriented electrical steel sheet in which the easy magnetization direction <100> is oriented in the in-plane direction, and a directionality in which the easy magnetization direction <100> is strongly oriented parallel to the rolling direction. There are silicon steel sheets.
However, when these steel plates having excellent electromagnetic characteristics are used for, for example, magnetic shielding, a process is required in which these steel plates are processed, joined by welding or the like, and assembled into a desired shape. As described above, when a steel plate is used as a raw material, there is a problem that a complicated process is required and an unsteady part such as a welded part is formed, resulting in deterioration of electromagnetic shielding characteristics. In order to avoid such a problem, it is conceivable to use a steel pipe having excellent electromagnetic characteristics as a material.

電磁鋼板を電縫溶接して電磁特性に優れた鋼管とすることは、電磁鋼板がSi含有量が高く電縫溶接が難しいうえ、電縫溶接部の電磁特性が劣化するという問題がある。また、電磁鋼のビレットを使用して電磁特性に優れた継目無鋼管とすることも考えられるが、電磁鋼は延性が低く、製管作業が困難になるという問題がある。
このような問題に対し、例えば特許文献1には、Si、Alを高くした組成の鋼を用い、熱間押出し条件、熱間圧延条件を適正範囲に調整して継目無管とし、ついで、再結晶温度以下で圧延を行い、さらに最終焼鈍を施す、電磁材料管の製造方法が提案されている。しかし、特許文献1に記載された技術では、熱間押出し工程を必須工程としており製造コストが高いという問題があった。
Making a steel pipe excellent in electromagnetic characteristics by electro-magnetic welding of an electromagnetic steel sheet has a problem that the electromagnetic steel sheet has a high Si content and is difficult to be electro-welded, and the electromagnetic characteristics of the ERW weld are deteriorated. Although it is conceivable to use a billet of electromagnetic steel to make a seamless steel pipe excellent in electromagnetic characteristics, there is a problem that the electromagnetic steel has low ductility and it is difficult to make a pipe.
To deal with such problems, for example, Patent Document 1 uses a steel with a high Si and Al composition, and adjusts the hot extrusion conditions and hot rolling conditions to appropriate ranges to make seamless pipes. There has been proposed a method for manufacturing an electromagnetic material tube, in which rolling is performed at a temperature lower than the crystal temperature and further final annealing is performed. However, the technique described in Patent Document 1 has a problem that the hot extrusion process is an essential process and the manufacturing cost is high.

また、特許文献2には、99.5%以上のFeを含み残部が不純物からなる鋼組成の鋼片または鋳片を1100〜1350℃に加熱し、熱間圧延を行なって素材としたのち、製管し、500〜1000℃で熱処理する電磁鋼管の製造方法が提案されている。特許文献2に記載された技術によれば、電磁気シールド用として十分な特性の鋼管が得られるとしているが、しかしこの技術は、熱処理による単なる粒成長を図っているだけで、結晶方位の配向性にまで配慮されておらず、更なる高い電磁シールド特性を要求される使途には特性が不足するという問題を残していた。
特開平2−236226号公報 特公平7−68579号公報
Also, in Patent Document 2, a steel slab or slab having a steel composition containing 99.5% or more Fe and the balance being impurities is heated to 1100 to 1350 ° C. and hot-rolled to obtain a raw material. And the manufacturing method of the electromagnetic steel pipe heat-processed at 500-1000 degreeC is proposed. According to the technique described in Patent Document 2, it is said that a steel pipe having sufficient characteristics for an electromagnetic shield can be obtained. However, this technique merely aims at grain growth by heat treatment, and the orientation of crystal orientation. Therefore, there is a problem that the characteristics are insufficient for the purpose of use that requires higher electromagnetic shielding characteristics.
JP-A-2-236226 Japanese Examined Patent Publication No. 7-68579

本発明は、上記した従来技術の問題を解決し、電磁シールド特性に優れた、鋼管を用いた管(パイプ)形状の電磁シールド材を提案することを目的とする。
なお、本発明でいう「電磁シールド特性に優れた」とは、外部磁場の影響を電磁シールド材の内部で受けにくいこと、および、電磁シールド材の内部の磁場が外部に出にくいこと、を意味する。外部磁場の影響を電磁シールド材の内部で受けにくいことは、磁界強度比である、(内部磁場)/(外部磁場)が小さいことであり、また、電磁シールド材の内部の磁場が外部に出にくいことは、(外部磁場)/(内部磁場)が小さいことである。
The object of the present invention is to solve the above-described problems of the prior art and to propose a pipe-shaped electromagnetic shielding material using a steel pipe that is excellent in electromagnetic shielding characteristics.
In the present invention, “excellent in electromagnetic shielding characteristics” means that the influence of an external magnetic field is not easily received inside the electromagnetic shielding material, and that the magnetic field inside the electromagnetic shielding material is difficult to be exposed to the outside. To do. It is difficult to receive the influence of an external magnetic field inside the electromagnetic shielding material because the magnetic field strength ratio (internal magnetic field) / (external magnetic field) is small, and the magnetic field inside the electromagnetic shielding material is exposed to the outside. What is difficult is that (external magnetic field) / (internal magnetic field) is small.

なお、本発明では、磁界強度比は、外部磁場強度を50ガウス(gauss)として、電磁シールド材の内部磁場を測定して求めた値を用い、同一肉厚の電磁シールド材(基準材)の磁界強度比と比較して、電磁シールド特性を評価するものとする。なお、基準材として、本発明では付加的処理を加えない製管ままの材料(電縫鋼管まま)を用いるものとする。
電磁シールド性は、定性的には、電磁シールド材の肉厚が厚くなるほど向上するため、肉厚が異なる場合には、磁界強度比の値そのものが重要ではなくなる。本発明では、同一肉厚の電磁シールド材(基準材)の磁界強度比と比較して、小さい磁界強度比を有する場合を、「電磁シールド特性に優れた」電磁シールド材であるとする。
In the present invention, the magnetic field strength ratio is the value obtained by measuring the internal magnetic field of the electromagnetic shielding material with the external magnetic field strength being 50 gauss, and using the same thickness of the electromagnetic shielding material (reference material). The electromagnetic shielding characteristics shall be evaluated in comparison with the magnetic field strength ratio. In addition, as a reference material, in this invention, the material as it is made as a pipe which does not add an additional process (as an electric resistance steel pipe) shall be used.
The electromagnetic shielding properties qualitatively improve as the thickness of the electromagnetic shielding material increases. Therefore, when the thickness is different, the value of the magnetic field strength ratio itself is not important. In the present invention, when the magnetic field strength ratio is small compared to the magnetic field strength ratio of the electromagnetic shielding material (reference material) having the same thickness, the electromagnetic shielding material is “excellent in electromagnetic shielding characteristics”.

本発明では、磁界強度比を外部磁場強度を50ガウスとして求め、電磁シールド性を評価するが、50ガウス領域のみの電磁シールド特性を評価しているのではない。外部磁場を0〜100ガウス付近まで変化させた場合、外部磁場強度が20ガウス以上で電磁シールド性がゆるやかに向上していく。そのため、本発明では、その領域を代表する意味で外部磁場強度を50ガウスを用いて電磁シールド性を評価する。   In the present invention, the magnetic field strength ratio is determined with the external magnetic field strength being 50 gauss and the electromagnetic shielding properties are evaluated, but the electromagnetic shielding characteristics only in the 50 gauss region are not evaluated. When the external magnetic field is changed to around 0 to 100 gauss, the electromagnetic shielding properties are gradually improved when the external magnetic field strength is 20 gauss or more. Therefore, in the present invention, the electromagnetic shielding property is evaluated by using an external magnetic field strength of 50 gauss to represent the region.

電磁シールド材の内部で磁場を発生させ、外部へ磁気を漏らさない観点での電磁シールド性も、外部磁場を用いて評価した場合と同様の傾向を示す。このようなことから本発明では外部磁場強度を50ガウスとして、外部磁場を付加して電磁シールド材の内部磁場を測定して電磁シールド性を評価するものとした。   The electromagnetic shielding property from the viewpoint of generating a magnetic field inside the electromagnetic shielding material and not leaking the magnetism to the outside also shows the same tendency as when evaluated using an external magnetic field. Therefore, in the present invention, the external magnetic field strength is set to 50 gauss, the external magnetic field is added, the internal magnetic field of the electromagnetic shielding material is measured, and the electromagnetic shielding property is evaluated.

本発明者らは、上記した課題を達成するために、鋼管の電磁特性に及ぼす各種要因について鋭意考究した。その結果、鋼管の電磁特性、とくに軟磁性特性をさらに向上させるためには、
(イ)鋼管の円周方向に<100>方向、圧延方向に<011>方向が強く配向した結晶組織に調整すること、
(ロ)結晶粒径を、比較的粗大な粒とすること、好ましくは20μm以上の粒とすること、
(ハ)電縫溶接部等の非定常部をなくすこと、
(ニ)C含有量を0.01質量%未満とすること、
が重要であることを見出した。そして、更なる電磁特性向上のためには、
(ホ)鋼管の縮径圧延後、あるいは所望形状に加工した後、750℃以上Ac変態点以下の温度で焼鈍処理を施すこと、
が望ましいことを知見した。このような鋼管を使用することにより、管形状の電磁シールド材の電磁シールド特性が向上することを知見した。
In order to achieve the above-mentioned problems, the present inventors diligently studied various factors affecting the electromagnetic characteristics of steel pipes. As a result, in order to further improve the electromagnetic properties of steel pipes, especially soft magnetic properties,
(B) adjusting the crystal structure in which the <100> direction in the circumferential direction of the steel pipe and the <011> direction in the rolling direction are strongly oriented;
(B) making the crystal grain size relatively coarse, preferably 20 μm or more;
(C) Eliminating unsteady parts such as ERW welds,
(D) the C content is less than 0.01% by mass,
Found that is important. And for further improvement of electromagnetic characteristics,
(E) Annealing treatment is performed at a temperature of 750 ° C. or more and Ac 1 transformation point or less after the steel pipe is reduced in diameter or processed into a desired shape.
I found that is desirable. It has been found that the use of such a steel pipe improves the electromagnetic shielding characteristics of the pipe-shaped electromagnetic shielding material.

本発明は、上記した知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨はつぎの通りである。
(1)鋼管を用いた管形状の電磁シールド材であって、前記鋼管が、質量%で、C:0.01%未満を含み、Feを95%以上含む組成と、円周方向に<100>方向、かつ圧延方向に<011>方向が配向した結晶方位の、X線の三次元ランダム強度比が3.0以上である組織を有する鋼管であることを特徴とする電磁シールド性に優れた電磁シールド材。
The present invention has been completed based on the above findings and further studies. That is, the gist of the present invention is as follows.
(1) A pipe-shaped electromagnetic shielding material using a steel pipe, wherein the steel pipe contains, by mass%, C: less than 0.01%, Fe containing 95% or more, and <100> direction in the circumferential direction. An electromagnetic shielding material excellent in electromagnetic shielding properties, characterized by being a steel pipe having a structure in which the three-dimensional random intensity ratio of X-rays is 3.0 or more in a crystal orientation in which the <011> direction is oriented in the rolling direction.

(2)(1)において、前記鋼管の圧延方向のr値が2.0以上であることを特徴とする電磁シールド材。
(3)(1)または(2)において、前記鋼管の組織が、20μm以上の平均結晶粒径を有する組織であることを特徴とする電磁シールド材。
(4)(1)ないし(3)のいずれかにおいて、前記鋼管の組成が、質量%で、C:0.01%未満を含みさらに、Si:0.45%以下、Mn:0.1〜1.4%、S:0.01%以下、P:0.025%以下、Al:0.01〜0.06%、N:0.005%以下を含有し、残部Feおよび不可避的不純物からなる組成であることを特徴とする電磁シールド材。
(2) The electromagnetic shielding material according to (1), wherein an r value in the rolling direction of the steel pipe is 2.0 or more.
(3) The electromagnetic shielding material according to (1) or (2), wherein the structure of the steel pipe is a structure having an average crystal grain size of 20 μm or more.
(4) In any one of (1) to (3), the composition of the steel pipe is, by mass%, including C: less than 0.01%, Si: 0.45% or less, Mn: 0.1-1.4%, S: 0.01 %, P: 0.025% or less, Al: 0.01 to 0.06%, N: 0.005% or less, and the composition comprising the balance Fe and unavoidable impurities.

(5)(1)ないし(3)のいずれかにおいて、前記鋼管の組成が、質量%で、C:0.01%未満を含みさらに、Si:0.45%超3.5%以下、Mn:0.1〜1.4%、S:0.01%以下、P:0.025%以下、Al:0.06%超0.5%以下、N:0.005%以下を含有し、残部Feおよび不可避的不純物からなる組成であることを特徴とする電磁シールド材。
(6)(4)または(5)において、前記鋼管の組成に加えてさらに、質量%で、次A〜C群
A群:Ti:0.05%以下、Nb:0.05%以下、B:0.005%以下のうちの1種または2種以 上、
B群:Cr:5%以下、Ni:5%以下、Mo:0.05%以下のうちの1種または2種以上、
C群:Ca:0.005%以下、REM:0.05%以下のうちの1種または2種、
のうちから選ばれた1群または2群以上を含有することを特徴とする電磁シールド材。
(5) In any one of (1) to (3), the composition of the steel pipe includes, by mass%, C: less than 0.01%, Si: more than 0.45%, 3.5% or less, Mn: 0.1 to 1.4%, An electromagnetic shielding material comprising: S: 0.01% or less, P: 0.025% or less, Al: more than 0.06%, 0.5% or less, N: 0.005% or less, and the remaining Fe and inevitable impurities.
(6) In (4) or (5), in addition to the composition of the steel pipe, by mass%, the following groups A to C: Group A: Ti: 0.05% or less, Nb: 0.05% or less, B: 0.005% or less One or more of these,
Group B: Cr: 5% or less, Ni: 5% or less, Mo: 0.05% or less
Group C: Ca: 0.005% or less, REM: 0.05% or less, 1 type or 2 types
An electromagnetic shielding material comprising one group or two or more groups selected from among the above.

本発明によれば、電磁シールド性に優れた、管形状の電磁シールド材を容易にかつ安価に製造でき、産業上格段の効果を奏する。また、本発明によれば、非定常部もなく、電磁シールド特性の劣化が少ないという効果もある。   ADVANTAGE OF THE INVENTION According to this invention, the electromagnetic shield material excellent in electromagnetic shielding property can be manufactured easily and cheaply, and there exists a remarkable effect on industry. In addition, according to the present invention, there is no unsteady portion, and there is an effect that there is little deterioration of the electromagnetic shielding characteristics.

本発明の電磁シールド材は、鋼管を用いた管形状の電磁シールド材でる。使用する鋼管は、質量%で、C:0.01%未満を含み、Feを95%以上含む組成を有する鋼管とする。
まず、本発明で使用する鋼管の組成限定理由について説明する。なお、以下、組成における質量%は、単に%と記す。
C:0.01%未満
Cは、電磁特性を低下させる元素であるため、電磁シールド性の観点からはできるだけ低減することが望ましく、0.01%未満に限定した。なお、好ましくは0.004%以下である。なお、0.001%以下のCの低減は精錬時間を異常に長引かせて精錬コストの高騰を招くため、下限とすることが経済的な観点から望ましい。
The electromagnetic shielding material of the present invention is a tubular electromagnetic shielding material using a steel pipe. The steel pipe to be used is a steel pipe having a composition containing less than 0.01% C: less than 95% Fe and 95% Fe or more.
First, the reasons for limiting the composition of the steel pipe used in the present invention will be described. Hereinafter, mass% in the composition is simply referred to as%.
C: Less than 0.01% Since C is an element that deteriorates electromagnetic characteristics, it is desirable to reduce it as much as possible from the viewpoint of electromagnetic shielding properties, and it is limited to less than 0.01%. In addition, Preferably it is 0.004% or less. In addition, since the reduction of C of 0.001% or less causes the refining time to be abnormally prolonged and increases the refining cost, the lower limit is desirable from an economical viewpoint.

Fe:95%以上
不純物が増加するにしたがい、結晶粒成長の阻害要因が増し、磁気シールド性が低下するため、不純物が少ない高純度とすることが望ましい。本発明では、不純物量を規制し、純度を上げる意味で、Fe分を95%以上とする。なお、好ましくは98%以上である。
本発明の基本組成は、上記したとおりであるが、更なる電磁シールド性向上のためには、必要に応じてSi、Alを、あるいはさらに高周波域での電磁特性を向上させるためにCr、Ni等を含有させてもよい。このような優れた電磁シールド性が要求される使途向けには、質量%で、C:0.01%未満を含みさらに、Si:0.45%以下、Mn:0.1〜1.4%、S:0.01%以下、P:0.025%以下、Al:0.01〜0.06%、N:0.005%以下を含有し、残部Feおよび不可避的不純物からなる高純度系の組成、あるいは質量%で、C:0.01%未満を含みさらに、Si:0.45%超3.5%以下、Mn:0.1〜1.4%、S:0.01%以下、P:0.025%以下、Al:0.06%超0.5%以下、N:0.005%以下を含有し、残部Feおよび不可避的不純物からなる高純度系組成とすることが好ましい。
Fe: 95% or more As the impurities increase, the hindrance to crystal grain growth increases and the magnetic shielding property decreases, so it is desirable to have a high purity with few impurities. In the present invention, the content of Fe is set to 95% or more in order to regulate the amount of impurities and increase the purity. In addition, Preferably it is 98% or more.
The basic composition of the present invention is as described above. However, in order to further improve electromagnetic shielding properties, Si and Al are added as necessary, or Cr and Ni are further improved in order to improve electromagnetic characteristics in a high frequency range. Etc. may be included. For applications where such excellent electromagnetic shielding properties are required, it is contained in mass%, including C: less than 0.01%, Si: 0.45% or less, Mn: 0.1-1.4%, S: 0.01% or less, P : 0.025% or less, Al: 0.01 to 0.06%, N: 0.005% or less, the composition of high-purity system consisting of the balance Fe and unavoidable impurities, or mass%, C: less than 0.01%, and Si : More than 0.45%, 3.5% or less, Mn: 0.1 to 1.4%, S: 0.01% or less, P: 0.025% or less, Al: more than 0.06%, 0.5% or less, N: 0.005% or less, balance Fe and inevitable A high-purity composition composed of impurities is preferable.

Si:0.45%以下、または0.45%超3.5%以下
Siは、脱酸剤として作用し、少なくとも0.01%以上含有する。また、Siは、電磁特性、とくに鉄損特性を向上させ、また固溶してシールド材(鋼管)の強度を増加させる元素であるが、0.45%を超える含有は、電縫溶接性を低下させる傾向がある。このため、Siは0.45%以下に限定することが好ましい。なお、とくに優れた電磁シールド性が要求される場合にはSiは0.45%超3.5%以下とすることができる。3.5%を超えるSiの含有は、低H(磁界)域の磁束密度(B)は優れるが、高H域の飽和磁束密度Bが低下し、さらに電縫溶接性が顕著に劣化する。
Si: 0.45% or less, or more than 0.45% and 3.5% or less
Si acts as a deoxidizer and contains at least 0.01% or more. Si is an element that improves electromagnetic properties, especially iron loss properties, and increases the strength of shield materials (steel pipes) by solid solution, but inclusion exceeding 0.45% reduces ERW weldability. Tend. For this reason, it is preferable to limit Si to 0.45% or less. In addition, when particularly excellent electromagnetic shielding properties are required, Si can be more than 0.45% and 3.5% or less. When Si exceeds 3.5%, the magnetic flux density (B) in the low H (magnetic field) region is excellent, but the saturation magnetic flux density B in the high H region is lowered, and the electric resistance weldability is remarkably deteriorated.

Mn:0.1〜1.4%
Mnは、Sと結合してMnSを形成し、Sの悪影響を除去して熱間加工性を向上させる元素であり、S含有量に応じて含有することが望ましく、本発明では0.1%以上含有させることが好ましい。また、Mnは、固溶してシールド材(鋼管)の強度を増加させる元素であり、所望のシールド材(鋼管)強度に応じて含有することが望ましいが、1.4%を超える含有は靭性を劣化させる。このため、Mnは0.1〜1.4%の範囲に限定することが好ましい。なお、より好ましくは0.3〜0.6%である。
Mn: 0.1-1.4%
Mn is an element that combines with S to form MnS, removes the adverse effects of S and improves hot workability, and is preferably contained according to the S content. It is preferable to make it. Mn is an element that increases the strength of the shield material (steel pipe) by solid solution, and it is desirable to contain it according to the strength of the desired shield material (steel pipe), but inclusion over 1.4% deteriorates toughness. Let For this reason, it is preferable to limit Mn to the range of 0.1 to 1.4%. In addition, More preferably, it is 0.3 to 0.6%.

S:0.01%以下
Sは、鋼中では介在物として存在し、加工性を低下させるとともに、MnSとして電磁シールド性を阻害するため、できるだけ低減することが望ましい。このようなことから、Sは0.01%以下に限定することが好ましい。しかし、過度のSの低減は精錬コストの高騰を招くため、0.001%以上とすることが望ましい。なお、電磁特性向上のために、SiやAlを多量に含有する場合には、打抜き性向上のため、Sは0.001%以下まで低減することが好ましい。
S: 0.01% or less S is present as an inclusion in steel, lowers workability and inhibits electromagnetic shielding properties as MnS, so it is desirable to reduce it as much as possible. For these reasons, S is preferably limited to 0.01% or less. However, excessive reduction of S leads to an increase in refining costs, so 0.001% or more is desirable. In addition, when Si and Al are contained in a large amount for improving electromagnetic characteristics, it is preferable to reduce S to 0.001% or less for improving punchability.

P:0.025%以下
Pは、固溶してシールド材(鋼管)強度の増加に寄与するとともに、電磁シールド性を向上させる元素であるが、Pは粒界に偏析する傾向が強く、磁壁の移動を妨げるという悪影響を及ぼす可能性が強く、本発明では0.025%以下に限定することが好ましい。なお、過度の低減は製錬コストの高騰を招くため、0.005%程度を下限とすることが望ましい。
P: 0.025% or less P is an element that dissolves and contributes to an increase in the strength of the shielding material (steel pipe) and improves the electromagnetic shielding properties. However, P has a strong tendency to segregate at the grain boundary and moves the domain wall. In the present invention, it is preferably limited to 0.025% or less. In addition, since excessive reduction leads to a rise in smelting cost, it is desirable to set the lower limit to about 0.005%.

Al:0.01〜0.06%、または0.06%超0.5%以下
Alは、脱酸剤として作用するとともに、AlNを形成し固溶N量を低減する元素である。このような効果は0.01%以上の含有で認められるが、N含有量によっては0.06%を超える含有は介在物量を増加させ、電磁シールド性を低下させる場合が多い。このため、Alは0.01〜0.06%の範囲に限定することが好ましい。なお、より好ましくはN含有量との関係で27/14N以上3×27/14N以下である。Ti、b等の強力な窒化物形成元素を含有する場合にはAl量は少なくてもよい。なお、Alは、Siとともに、電磁シールド性を向上させる元素であり、とくに低H(磁界)域での優れた電磁シールド性が要求される場合には、Alは0.06%超0.5%以下含有することができる。しかし、0.5%を超えるAlの含有は、かえって電磁特性の劣化を引き起こすことがある。
Al: 0.01 to 0.06%, or more than 0.06% and 0.5% or less
Al is an element that acts as a deoxidizer and forms AlN to reduce the amount of dissolved N. Such an effect is recognized at a content of 0.01% or more, but depending on the N content, a content exceeding 0.06% often increases the amount of inclusions and lowers the electromagnetic shielding properties. For this reason, it is preferable to limit Al to the range of 0.01 to 0.06%. More preferably, it is 27 / 14N or more and 3 × 27 / 14N or less in relation to the N content. In the case of containing a strong nitride-forming element such as Ti or b, the amount of Al may be small. Al, together with Si, is an element that improves electromagnetic shielding properties. In particular, when excellent electromagnetic shielding properties in a low H (magnetic field) region are required, Al is contained more than 0.06% and 0.5% or less. be able to. However, Al content exceeding 0.5% may cause deterioration of electromagnetic characteristics.

N:0.005%以下
Nは、鋼では侵入型固溶元素として強度を増加させるが、内部応力を高め電磁シールド性を低下させるとともに、AlNを形成し電磁シールド性に悪影響を及ぼす。このため、Nは、できるだけ低減することが望ましいが0.005%までは許容できる。このため、Nは0.005%以下に限定することが好ましい。なお、製錬コストとの関係で0.001%程度が下限である。なお、電磁シールド性向上のためにAlを多量含有させる場合には、AlNによる電磁シールド性の劣化を招かないように、Nは0.0025%以下に低減することが望ましい。
なお、上記した成分に加えてさらに、次A〜C群
A群:Ti:0.05%以下、Nb:0.05%以下、B:0.005%以下のうちの1種または2種以 上、
B群:Cr:5%以下、Ni:5%以下、Mo:0.05%以下のうちの1種または2種以上、
C群:Ca:0.005%以下、REM:0.05%以下のうちの1種または2種
のうちから選ばれた1群または2群以上を含有することが好ましい。
N: 0.005% or less N increases the strength as an interstitial solid solution element in steel, but increases the internal stress and decreases the electromagnetic shielding properties, and forms AlN to adversely affect the electromagnetic shielding properties. For this reason, it is desirable to reduce N as much as possible, but it is acceptable up to 0.005%. For this reason, it is preferable to limit N to 0.005% or less. The lower limit is about 0.001% in relation to smelting costs. In the case where a large amount of Al is contained for improving electromagnetic shielding properties, it is desirable to reduce N to 0.0025% or less so as not to cause deterioration of electromagnetic shielding properties due to AlN.
In addition to the above-mentioned components, the following groups A to C: Group A: Ti: 0.05% or less, Nb: 0.05% or less, B: 0.005% or less, or one or more of the following:
Group B: Cr: 5% or less, Ni: 5% or less, Mo: 0.05% or less
It is preferable to contain 1 group or 2 groups or more selected from 1 type or 2 types in C group: Ca: 0.005% or less and REM: 0.05% or less.

A群のTi、Nb、Bは、炭化物、窒化物等を形成して、シールド材(鋼管)の強度を増加させる元素であり、必要に応じ選択して含有できる。Ti:0.05%、Nb:0.005%、B:0.005%を超える含有は、電磁シールド性を劣化させる場合が多いため、Ti:0.05%、Nb:0.05%、B:0.005%をそれぞれ上限とすることが好ましい。
B群:Cr、Mo、Niは、焼入れ性、耐食性を向上させる元素であり、必要に応じ選択して含有できる。Cr:5%、Ni:5%、Mo:0.05%を超える含有は、電磁シールド性を劣化させるため、Cr:5%、Mo:0.05%、Ni:5%をそれぞれ上限とすることが好ましい。
Group A Ti, Nb, and B are elements that form carbides, nitrides, and the like to increase the strength of the shielding material (steel pipe), and can be selected and contained as necessary. Ti: 0.05%, Nb: 0.005%, B: If the content exceeds 0.005%, the electromagnetic shielding properties are often deteriorated. Therefore, Ti: 0.05%, Nb: 0.05%, B: 0.005% should be the upper limit. Is preferred.
Group B: Cr, Mo, and Ni are elements that improve hardenability and corrosion resistance, and can be selected and contained as necessary. If the content exceeds Cr: 5%, Ni: 5%, and Mo: 0.05%, the electromagnetic shielding properties are deteriorated, so Cr: 5%, Mo: 0.05%, and Ni: 5% are preferably set as upper limits, respectively.

C群:Ca、REMは、介在物の形態を制御し、耐食性を向上させる元素であり、必要に応じ選択して含有できる。わずかでも水に触れる環境で使用される場合には、Ca、REMを含有することが好ましく、耐食性が向上する。なお、 Ca:0.005%、REM:0.05%を超える含有は、磁気特性を劣化させる。このため、Ca:0.005%、REM:0.05%を上限とすることが好ましい。   Group C: Ca and REM are elements that control the form of inclusions and improve corrosion resistance, and can be selected and contained as necessary. When used in an environment where even a slight amount of water comes into contact, it is preferable to contain Ca and REM, and the corrosion resistance is improved. In addition, the content exceeding Ca: 0.005% and REM: 0.05% deteriorates the magnetic properties. For this reason, it is preferable to make Ca: 0.005% and REM: 0.05% the upper limit.

上記した成分以外の残部はFeおよび不可避的不純物である。
上記した組成に加えてさらに、本発明で使用する鋼管は、円周方向に<100>方向、かつ圧延方向に<011>方向が配向した結晶方位の、X線の三次元ランダム強度比が3.0以上である組織を有する。
結晶方位を、鋼管の、円周方向に磁化容易軸である<100>方向を、かつ圧延方向に<011>方向が配向した結晶方位とすることにより、電磁シールド材として使用する鋼管の電磁シールド性が顕著に向上する。本発明では、円周方向に<100>方向、圧延方向に<011>方向が配向した結晶方位の、X線の三次元ランダム強度比を3.0以上とする。三次元ランダム方位強度が3.0未満では、優れた電磁シールド性が得られない。なお、好ましくは8.0以上、より好ましくは10以上である。
The balance other than the above components is Fe and inevitable impurities.
In addition to the above composition, the steel pipe used in the present invention has a three-dimensional random intensity ratio of X-rays of a crystal orientation in which the <100> direction in the circumferential direction and the <011> direction in the rolling direction are oriented. Having an organization that is more than that.
Electromagnetic shield of a steel pipe used as an electromagnetic shield material by making the crystal orientation the crystal orientation in which the <100> direction which is the easy axis of magnetization in the circumferential direction and the <011> direction is oriented in the rolling direction of the steel pipe The property is remarkably improved. In the present invention, the X-ray three-dimensional random intensity ratio of the crystal orientation in which the <100> direction is oriented in the circumferential direction and the <011> direction is oriented in the rolling direction is 3.0 or more. If the three-dimensional random orientation strength is less than 3.0, excellent electromagnetic shielding properties cannot be obtained. In addition, Preferably it is 8.0 or more, More preferably, it is 10 or more.

なお、管形状の電磁シールド材においては、磁場印可方向が必ずしも、鋼管の磁化容易結晶方位と一致するものではないが、鋼管の円周方向、圧延方向の結晶を上記した結晶配向となるように調整した鋼管を使用することにより、電磁シールド特性が顕著に向上するのである。
なお、ここでいう三次元ランダム強度比とは、ある特定結晶方位の配向の有無を示す指標であり、全く配向していない場合(ランダム)の結晶方位を1とし、配向性のある特定結晶方位の強度を、ランダムの場合で規格化したものである。数値が大きいほど強い配向性を示すことを意味する。
In the tube-shaped electromagnetic shielding material, the magnetic field application direction does not necessarily coincide with the easy magnetization crystal orientation of the steel pipe, but the crystal in the circumferential direction and rolling direction of the steel pipe has the crystal orientation described above. By using the adjusted steel pipe, the electromagnetic shielding characteristics are remarkably improved.
Here, the three-dimensional random intensity ratio is an index indicating the presence / absence of orientation of a specific crystal orientation. The crystal orientation in the case of no orientation (random) is defined as 1, and the specific crystal orientation with orientation. Is standardized in a random case. A larger value means stronger orientation.

具体的には、反射法による不完全極点図を測定し、特定結晶方位(本発明では円周方向に<100>方向、かつ圧延方向に<011>方向が配向した結晶方位)の積分強度をランダム強度で規格化して求める。なお、反射法および透過法をともに用いた完全極点図の測定からも同じ値が得られる。
さらに、本発明で使用する鋼管は、上記した結晶方位を有するとともに、平均結晶粒径が好ましくは5μm以上、より好ましくは10μm以上、さらに好ましくは20μm以上、望ましくは40μm以上である組織を有する。平均結晶粒径が5μm未満では、円周方向に<100>、かつ圧延方向に<011>が配向していても、優れた電磁シールド特性を確保することは望めない。本発明では、優れた電磁シールド特性を得るという観点から、結晶粒は比較的粗粒であることが好ましい。とくに、平均結晶粒径を20μm以上、さらには40μm以上とすることにより、より優れた電磁シールド特性を有する鋼管となる。
Specifically, an incomplete pole figure by a reflection method is measured, and the integrated intensity of a specific crystal orientation (in the present invention, a crystal orientation in which the <100> direction in the circumferential direction and the <011> direction in the rolling direction are oriented) is obtained. Standardized with random strength. The same value can be obtained from the measurement of a complete pole figure using both the reflection method and the transmission method.
Furthermore, the steel pipe used in the present invention has the above-described crystal orientation and a structure having an average crystal grain size of preferably 5 μm or more, more preferably 10 μm or more, further preferably 20 μm or more, and desirably 40 μm or more. When the average crystal grain size is less than 5 μm, it is not possible to ensure excellent electromagnetic shielding characteristics even if <100> is oriented in the circumferential direction and <011> is oriented in the rolling direction. In the present invention, the crystal grains are preferably relatively coarse from the viewpoint of obtaining excellent electromagnetic shielding characteristics. In particular, when the average crystal grain size is 20 μm or more, further 40 μm or more, a steel pipe having more excellent electromagnetic shielding characteristics can be obtained.

また、本発明で使用する鋼管は、圧延方向のr値が2.0以上であることが好ましい。圧延方向のr値が2.0以上であることにより、優れた電磁シールド特性が確保できる。r値が上記した値未満では、優れた電磁シールド特性の確保が難しくなる。なお、圧延方向のr値は、好ましくは4.0以上、より好ましくは8.0以上である。
r値は、従来から成形性の指標として用いられているが、本発明で用いる鋼管では円周方向に<100>、かつ圧延方向に<011>が配向された結晶方位を有することから、電磁シールド特性が向上することに連動して、圧延方向のr値と電磁シールド特性の対応がよく、r値が電磁シールド特性の指標として用いることもできる。
The steel pipe used in the present invention preferably has an r value in the rolling direction of 2.0 or more. When the r value in the rolling direction is 2.0 or more, excellent electromagnetic shielding characteristics can be secured. When the r value is less than the above value, it is difficult to ensure excellent electromagnetic shielding characteristics. The r value in the rolling direction is preferably 4.0 or more, more preferably 8.0 or more.
The r value is conventionally used as an index of formability, but the steel pipe used in the present invention has a crystal orientation in which <100> is oriented in the circumferential direction and <011> is oriented in the rolling direction. In conjunction with the improvement of the shield characteristics, the r value in the rolling direction and the electromagnetic shield characteristics are well matched, and the r value can also be used as an index of the electromagnetic shield characteristics.

なお、本発明では、r値の測定は、試験片の引張方向およびその垂直方向に歪ゲージを貼付して、引張試験を行い、それぞれの方向の変位を逐一取り込んで、伸び6〜7%付近における変位を用いてr値を計算するものとする。なお、伸び6〜7%でr値を計算するのは、降伏点伸びの領域を越えた塑性変形域で算出するためである。r値は次式
r値=−1/{1+ln(L0/L)/ln(W0/W)}
ここで、L:試験片の引張方向の長さ
0:試験片の引張方向の初期長さ
W:試験片の幅方向の長さ
0:試験片の幅方向の初期長さ
を用いて計算するものとする。なお、降伏点伸びが7%を超える場合には、塑性変形をした部分でr値を測定するものとする。なお、JIS 12号片(弧状試験片)で評価しても、鋼管を平板展開した平板試験片を使って評価してもよく、歪ゲージが貼れる面積が試験片の平行部に確保されれば試験片自体はJIS 5号、13号B等、とくに制限されない。ただし、円周方向のr値を測定する場合は平板展開しなければならない。
In the present invention, the r value is measured by attaching a strain gauge in the tensile direction of the test piece and in the direction perpendicular thereto, conducting a tensile test, taking in the displacement in each direction one by one, and extending around 6 to 7%. The r value is calculated using the displacement at. The reason why the r value is calculated at an elongation of 6 to 7% is that the calculation is performed in a plastic deformation region exceeding the yield point elongation region. The r value is the following equation: r value = −1 / {1 + ln (L 0 / L) / ln (W 0 / W)}
Where L: length of the specimen in the tensile direction
L 0 : initial length of the specimen in the tensile direction
W: Length of the specimen in the width direction
W 0 : Calculate using the initial length in the width direction of the test piece. When the yield point elongation exceeds 7%, the r value is measured at the plastically deformed portion. In addition, it may be evaluated with a JIS No. 12 piece (arc-shaped test piece) or with a flat plate test piece obtained by flattening a steel pipe, and if the area where the strain gauge can be attached is secured in the parallel part of the test piece The test piece itself is not particularly limited, such as JIS No. 5 or No. 13 B. However, when measuring the r value in the circumferential direction, it must be flattened.

つぎに、本発明で使用する鋼管の好ましい製造方法について説明する。
本発明では、上記した組成を有する鋼管を素材として加熱し、縮径圧延を施す。
本発明で素材として使用する鋼管は、上記した組成を有する以外、その製造方法はとくに限定されない。通常公知の方法で製造された継目無鋼管、あるいは通常公知の方法で製造された電縫鋼管等の溶接鋼管がいずれも好適に用いることができる。
Below, the preferable manufacturing method of the steel pipe used by this invention is demonstrated.
In the present invention, a steel pipe having the above composition is heated as a raw material and subjected to reduction rolling.
The manufacturing method of the steel pipe used as a raw material in the present invention is not particularly limited except that it has the above-described composition. Either a seamless steel pipe manufactured by a generally known method or a welded steel pipe such as an ERW steel pipe manufactured by a generally known method can be suitably used.

縮径圧延に際し、素材である鋼管を加熱する方法は特に限定する必要はない。加熱炉による加熱、誘導加熱による加熱等いずれも利用することが可能である。なお、継目無鋼管のような熱間で造管・製管されるものは、製管後、直に縮径圧延装置に送り、縮径圧延することもできる。また、再加熱したのち、縮径圧延することも可能である。
再加熱する場合、縮径圧延の加熱温度は、1100℃以下とすることが好ましい。加熱温度が1100℃を超えると、鋼管の表面性状が劣化する。圧延後、研磨あるいはエッチング処理等を施して使用する場合には、加熱温度の上限を限定する必要はない。なお、加熱温度は750℃以上とすることが好ましい。加熱温度が750℃未満では、変形抵抗が高くなり所定以上の縮径率を確保することがむずかしくなるとともに、冷却後の鋼管に縮径圧延の歪が残留し電磁シールド特性が低下する。上記した加熱温度の下限値は所定温度以上の縮径圧延の圧延終了温度を確保するために必要となる。なお、電縫鋼管等の溶接部を有する鋼管では、加熱温度はAc変態点以上とすることが、非定常部を除去し、鋼管全体の電磁シールド特性を向上させる観点から好ましい。
The method for heating the steel pipe as the raw material during the diameter reduction rolling need not be particularly limited. Either heating by a heating furnace, heating by induction heating, or the like can be used. In addition, what is pipe-formed and manufactured hot like a seamless steel pipe can be directly sent to a reduced diameter rolling apparatus and reduced in diameter after the production. It is also possible to reduce the diameter after reheating.
In the case of reheating, the heating temperature of the reduced diameter rolling is preferably 1100 ° C. or less. When the heating temperature exceeds 1100 ° C, the surface properties of the steel pipe deteriorate. When using after rolling or polishing or etching, it is not necessary to limit the upper limit of the heating temperature. In addition, it is preferable that heating temperature shall be 750 degreeC or more. When the heating temperature is less than 750 ° C., the deformation resistance becomes high and it becomes difficult to secure a diameter reduction ratio equal to or higher than a predetermined value, and the distortion of the diameter reduction rolling remains in the cooled steel pipe, and the electromagnetic shielding characteristics are deteriorated. The lower limit value of the heating temperature described above is necessary to ensure the rolling end temperature of the reduced diameter rolling equal to or higher than the predetermined temperature. Note that, in a steel pipe having a welded portion such as an electric resistance steel pipe, it is preferable that the heating temperature is set to the Ac 3 transformation point or more from the viewpoint of removing the unsteady portion and improving the electromagnetic shielding characteristics of the entire steel pipe.

縮径圧延は、縮径率:15%以上で、圧延終了温度が730℃以上900℃以下である圧延とすることが好ましい。これにより、鋼管組織を、円周方向に<100>方向、圧延方向に<011>方向が配向した結晶方位を有し、粒成長し比較的粗大な結晶を有する組織とすることができる。
縮径率が、15%未満では、縮径量が不足し、結晶が上記した所望の結晶方位に配向しにくくなる。一方、縮径率の上限は、製品寸法や、圧延機の能力により決定され、とくに限定されないが、85〜90%程度とすることが好ましい。なお、より好ましくは縮径率は45〜80%である。
The reduction rolling is preferably a rolling with a reduction ratio of 15% or more and a rolling end temperature of 730 ° C. or more and 900 ° C. or less. As a result, the steel pipe structure can be made to have a crystal orientation in which the <100> direction is oriented in the circumferential direction and the <011> direction is oriented in the rolling direction, and the grains grow and have relatively coarse crystals.
When the diameter reduction ratio is less than 15%, the amount of diameter reduction is insufficient, and the crystal is difficult to be oriented in the desired crystal orientation described above. On the other hand, the upper limit of the diameter reduction rate is determined by the product size and the capability of the rolling mill and is not particularly limited, but is preferably about 85 to 90%. More preferably, the diameter reduction rate is 45 to 80%.

縮径圧延の圧延終了温度は、900℃以下、とすることが好ましい。縮径圧延の圧延終了温度が、900℃を超えて高くなると、オーステナイト域で縮径圧延を完了していることになり、上記した所望の結晶方位に配向せず、ランダム方位となり、電磁特性が向上しない。なお、ここでいう圧延終了温度は、鋼管表面で測定した温度を用いるものとする。なお、圧延終了温度は730℃以上とすることが好ましい。730℃未満では縮径圧延の歪が残留するとともに、円周方向に<100>方位、圧延方向に<011>方位が配向した結晶方位を得にくくなり、電磁特性が低下する。より好ましくは750℃以上である。   The rolling end temperature of the reduced diameter rolling is preferably 900 ° C. or lower. When the rolling end temperature of the reduced diameter rolling becomes higher than 900 ° C., the reduced diameter rolling is completed in the austenite region, the orientation is not oriented in the desired crystal orientation described above, the random orientation is obtained, and the electromagnetic characteristics are increased. Does not improve. In addition, the temperature measured on the steel pipe surface shall be used for the rolling completion temperature here. The rolling end temperature is preferably 730 ° C. or higher. If the temperature is lower than 730 ° C., the strain of reduced diameter rolling remains, and it becomes difficult to obtain a crystal orientation in which the <100> orientation is oriented in the circumferential direction and the <011> orientation is oriented in the rolling direction, and electromagnetic characteristics are deteriorated. More preferably, it is 750 ° C. or higher.

また、本発明では、縮径圧延を、減肉率:40%以下、あるいは増肉率:40%以下の縮径圧延とすることがより好ましい。減肉率あるいは増肉率が40%を超えて大きくなると、結晶方位の回転が大きくなりすぎて、結晶方位の配向に影響し、上記した所望の結晶方位の配向が得られなくなる。このため、縮径圧延の減肉率は40%以下、あるいは増肉率は40%以下に限定することがより好ましい。なお、縮径圧延ままの状態で使用する場合には、増肉率を10〜25%にすることがより好ましい。一方、縮径圧延後、焼鈍処理を施す場合には、減肉率を10〜25%にすることがより好ましい。このように範囲に限定することによって、円周方向の<100>方位の配向が強まり、それに伴い、電磁シールド特性がより向上する。   In the present invention, it is more preferable that the diameter reduction rolling be reduced diameter rolling with a reduction ratio of 40% or less, or a reduction ratio of 40% or less. When the thickness reduction ratio or the thickness increase ratio exceeds 40%, the rotation of the crystal orientation becomes too large, affecting the orientation of the crystal orientation, and the desired orientation of the crystal orientation cannot be obtained. For this reason, it is more preferable that the thickness reduction ratio of the reduced diameter rolling is limited to 40% or less, or the thickness increase ratio is limited to 40% or less. In addition, when using it in the state as reduced diameter rolling, it is more preferable to make the thickness increase rate 10 to 25%. On the other hand, when the annealing treatment is performed after the diameter reduction rolling, it is more preferable to set the thickness reduction rate to 10 to 25%. By limiting to the range as described above, the orientation in the <100> direction in the circumferential direction is strengthened, and accordingly, the electromagnetic shielding characteristics are further improved.

なお、減肉率、増肉率、すなわち肉厚変化率は、次式
肉厚変化率=[{(縮径圧延の肉厚)−(素管の肉厚)}/(素管の肉厚)]×100(%)
で算出された値を使用するものとする。
また、本発明では、上記した縮径圧延後に、あるいはさらに所望形状に加工したのちに、750℃以上Ac 1 変態点以下の温度で焼鈍処理を施すことが好ましい。
The thickness reduction rate, the rate of increase of wall thickness, that is, the rate of change in thickness is the following formula: rate of change in thickness = [{(thickness of reduced diameter rolling) − (thickness of blank tube)} / (thickness of blank tube) )] X 100 (%)
The value calculated in is used.
In the present invention, it is preferable to perform an annealing treatment at a temperature not lower than 750 ° C. and not higher than the Ac 1 transformation point after the above-described reduction rolling or after further processing into a desired shape.

750℃以上Ac 1 変態点以下の温度で、焼鈍処理を施すことにより、結晶粒がさらに成長し、電磁シールド特性がより向上する。焼鈍温度が750℃未満では、結晶粒の成長が遅く、望ましい粒径の結晶粒まで成長させるために長時間を要する。一方、焼鈍温度がAc 1 変態点を超えて高くなると、結晶方位が崩れ、ランダム化しはじめる。このため、焼鈍処理は750℃以上Ac 1 変態点以下の温度で行なうとした。 By performing the annealing treatment at a temperature of 750 ° C. or more and below the Ac 1 transformation point, crystal grains further grow and electromagnetic shielding characteristics are further improved. When the annealing temperature is less than 750 ° C., the growth of crystal grains is slow, and it takes a long time to grow to crystal grains having a desired grain size. On the other hand, when the annealing temperature rises beyond the Ac 1 transformation point, the crystal orientation is broken and randomization begins. For this reason, the annealing treatment was performed at a temperature of 750 ° C. or higher and Ac 1 transformation point or lower.

なお、焼鈍後の冷却は、電磁シールド特性の観点から徐冷とすることが好ましい。焼鈍処理は、縮径圧延後でも、所望の製品形状に加工したのちでもいずれでも効果は同じである。焼鈍処理の条件を適正化することにより、容易に平均結晶粒径を20μm以上、好ましくは40μm以上にすることができる。
なお、縮径圧延後で上記した焼鈍処理前に、冷間引抜加工を施すことが好ましい。これにより、さらに優れた電磁シールド特性を有する鋼管となる。これは、冷間引抜加工により結晶粒の回転をある程度拘束した状態で冷間歪が印加されるため、焼鈍時に結晶粒の配向、粒の成長が促進されるためと考えられる。なお、冷間引抜加工は、減面率で15%以上60%以下の加工とすることが好ましい。なお、減面率は、次式
減面率(%)={(引抜前の鋼管断面積)−(引抜後の鋼管断面積)}/
(引抜前の鋼管断面積)×100
で計算するものとする。
The cooling after annealing is preferably slow cooling from the viewpoint of electromagnetic shielding characteristics. The effect of the annealing treatment is the same both after the reduced diameter rolling and after being processed into a desired product shape. By optimizing the conditions for the annealing treatment, the average crystal grain size can be easily made 20 μm or more, preferably 40 μm or more.
In addition, it is preferable to perform a cold drawing process after the diameter reduction rolling and before the above-described annealing treatment. Thereby, it becomes a steel pipe which has the further outstanding electromagnetic shielding characteristic. This is probably because cold strain is applied in a state in which the rotation of crystal grains is restricted to some extent by cold drawing, so that crystal grain orientation and grain growth are promoted during annealing. In addition, it is preferable that the cold drawing process is a process with a reduction in area of 15% or more and 60% or less. The area reduction ratio is the following formula: Area reduction ratio (%) = {(steel pipe cross-sectional area before drawing)-(steel pipe cross-sectional area after drawing)} /
(Cross-sectional area of steel pipe before drawing) × 100
It shall be calculated in

表1に示す組成の薄鋼帯板をロール成形しオープン管とし、端部を電縫溶接して得られた電縫鋼管を、素材鋼管とした。
これら素材鋼管を900〜1000℃に加熱したのち、表2に示す条件(縮径率、肉厚変動率:減肉(−)/増肉(+)、圧延終了温度)の縮径圧延を施し、外径:34mmφ、内径25mmφの鋼管とした。なお、肉厚変動率が2%以内の場合には、同一肉厚の鋼管と見なして、特性を評価した。一部の鋼管には、さらに焼鈍処理を施した。焼鈍処理は、875℃で保持する処理とした。なお、縮径圧延または焼鈍処理を施さない製管ままの電縫鋼管(素材鋼管)を比較材とした。
A thin steel strip having the composition shown in Table 1 was roll-formed to form an open pipe, and an ERW steel pipe obtained by electro-welding the end portion was used as a material steel pipe.
After heating these steel pipes to 900-1000 ° C, they were subjected to reduction rolling under the conditions shown in Table 2 (diameter reduction rate, wall thickness fluctuation rate: thinning (-) / thickening (+), rolling end temperature). The outer diameter was 34 mmφ and the inner diameter was 25 mmφ. When the wall thickness variation rate was within 2%, the steel pipes having the same wall thickness were regarded as being evaluated. Some steel pipes were further annealed. The annealing treatment was a treatment held at 875 ° C. In addition, the electric resistance welded steel pipe (raw material steel pipe) as it was made into a pipe without performing diameter reduction rolling or annealing treatment was used as a comparative material.

得られた鋼管について、電磁シールド特性の測定、組織の調査、r値の測定を実施した。測定方法はつぎの通りとした。
(1)電磁シールド特性
得られた鋼管から長さ300mmの試験材を切り出し、電磁シールド特性評価する評価材とした。磁化印可方法は、(イ)管の長手方向に平行な方向に磁場が印可される場合(図1)と、(ロ)管の長手方向に直交する方向にして磁場が印可される場合(図2)の、2通りとした。なお、外部磁場は、0〜90ガウスの範囲で変化させた。内部磁場の測定は、図1、2に示すように、試験材1の内部にガウスメータプローブ3を設置して、励磁コイル2により発生される外部磁場に対応して測定し、磁界強度比(=(内部磁場)/(外部磁場))を得た。なお、シールド効果を示すdB(=−20×log(磁界強度比))でも表示した。
(2)組織
得られた鋼管から試験材を採取し、結晶粒径の測定、結晶方位の測定を実施した。
The obtained steel pipe was subjected to measurement of electromagnetic shielding characteristics, investigation of structure, and measurement of r value. The measurement method was as follows.
(1) Electromagnetic shielding characteristics A test material having a length of 300 mm was cut out from the obtained steel pipe and used as an evaluation material for evaluating the electromagnetic shielding characteristics. In the magnetization application method, (a) a magnetic field is applied in a direction parallel to the longitudinal direction of the tube (FIG. 1), and (b) a magnetic field is applied in a direction orthogonal to the longitudinal direction of the tube (FIG. 1). 2). The external magnetic field was changed in the range of 0 to 90 gauss. As shown in FIGS. 1 and 2, the internal magnetic field is measured by installing a gauss meter probe 3 inside the test material 1 and measuring it according to the external magnetic field generated by the exciting coil 2. (Internal magnetic field) / (External magnetic field)). It is also displayed in dB (= −20 × log (magnetic field strength ratio)) indicating the shielding effect.
(2) Structure A test material was sampled from the obtained steel pipe, and the crystal grain size and crystal orientation were measured.

結晶粒径は、鋼管のL方向断面について、腐食液:ナイタールでエッチングし顕微鏡で観察して、直線交差線分法を用いて算出した。なお、測定位置は、最表層100μmを除いた板厚中央部とした。L方向に沿って結晶粒500個の線分長さを測定し、かつ、板厚方向に沿って同様に結晶粒500個の線分の長さを測定して、それぞれの方向における線分の長さをフェライト粒数で除し、粒径サイズを算出したあと、平均をとって、平均結晶粒径とした。   The crystal grain size was calculated using a straight line segment method for the L direction cross section of the steel pipe, etching with a corrosive solution: nital and observing with a microscope. The measurement position was the center of the plate thickness excluding the outermost layer of 100 μm. The lengths of 500 crystal grains along the L direction are measured, and the lengths of 500 crystal grains are similarly measured along the plate thickness direction. After dividing the length by the number of ferrite grains and calculating the grain size, the average was taken as the average grain size.

また、結晶方位は、X線回折法を用いて三次元ランダム強度比を測定して求めた。鋼管を平板展開して得られた試片について、表層500μm以上を研磨により除去し、鋼管の肉厚中央部付近から鏡面仕上した試験片を採取した。これら試験片にさらに研磨時の加工歪を除去するために化学研磨(腐食液:2〜3%フッ酸+過酸化水素水)を施した。
得られた測定用試験片について、X線回析装置を用いて、反射法による不完全極点図を測定した。得られた結果から鋼管の円周方向に<100>方向かつ圧延方向に<011>方向が配向した結晶方位の積分強度を、ランダム強度で規格化し三次元ランダム強度比を求めた。なお、X線源はCuKαを用いた。
(3)r値
得られた鋼管を平板展開した試験片または鋼管から切出した試験片(JIS 12号試験片)を用いて、r値を評価した。r値の測定方法は前記した方法と同様とした。
The crystal orientation was determined by measuring a three-dimensional random intensity ratio using an X-ray diffraction method. About the specimen obtained by flattening the steel pipe, a surface layer of 500 μm or more was removed by polishing, and a specimen having a mirror finish was collected from the vicinity of the thickness center of the steel pipe. These test pieces were further subjected to chemical polishing (corrosive solution: 2-3% hydrofluoric acid + hydrogen peroxide solution) in order to remove processing distortion during polishing.
About the obtained test piece for a measurement, the incomplete pole figure by the reflection method was measured using the X-ray diffraction apparatus. From the obtained results, the integrated strength of the crystal orientation in which the <100> direction in the circumferential direction of the steel pipe and the <011> direction in the rolling direction were oriented was normalized with the random strength to obtain a three-dimensional random strength ratio. Note that CuKα was used as the X-ray source.
(3) r value The r value was evaluated using a test piece obtained by flattening the obtained steel pipe or a test piece cut out from the steel pipe (JIS No. 12 test piece). The r value was measured in the same manner as described above.

得られた結果を表2に示す。   The obtained results are shown in Table 2.

Figure 2007066970
Figure 2007066970

Figure 2007066970
Figure 2007066970

なお、得られた電磁シールド特性を、シールド効果(dB)、磁界強度比と外部磁場との関係で、図3(管長手方向に平行に磁場印可)、図4(管長手方向に直交する方向に磁場印可)に示す。
本発明例はいずれも、円周方向に<100>方向、圧延方向に<011>方向が強く配向し、X線の三次元ランダム強度比が3.0以上、r値が2.0以上、平均粒径が20μm以上を有しており、図3、図4に示すように、X線の三次元ランダム強度比が1.0、r値が0.9、平均粒径が18μmの電縫鋼管まま(鋼管No.103)と比べて電磁シールド特性に優れている。とくに、縮径圧延に加えて焼鈍処理を施した鋼管(鋼管No.102)の電磁シールド特性が電縫鋼管まま(鋼管No.103)と比べて優れている。
The obtained electromagnetic shielding characteristics are shown in FIG. 3 (magnetic field applied in parallel to the longitudinal direction of the tube) and FIG. 4 (direction orthogonal to the longitudinal direction of the tube) in relation to the shielding effect (dB), the magnetic field strength ratio and the external magnetic field. Shows magnetic field application).
In all of the inventive examples, the <100> direction in the circumferential direction and the <011> direction in the rolling direction are strongly oriented, the X-ray three-dimensional random intensity ratio is 3.0 or more, the r value is 2.0 or more, and the average particle size is As shown in Fig. 3 and Fig. 4, it remains as an electric-welded steel pipe with an X-ray three-dimensional random intensity ratio of 1.0, an r value of 0.9, and an average particle diameter of 18 µm (steel pipe No. 103) Excellent electromagnetic shielding characteristics. In particular, the electromagnetic shielding properties of steel pipe (steel pipe No. 102) subjected to annealing treatment in addition to reduced diameter rolling are superior to those of ERW steel pipe (steel pipe No. 103).

図3から、鋼管No.101は、外部磁場の大きさが、10ガウス以上の領域では、磁界強度比:0.1以下(シールド効果:20dB以上)の電磁シールド効果を有し、50ガウス以上の領域では、磁界強度比:0.03以下(シールド効果:30dB以上)の電磁シールド効果を有していることが、また、鋼管No.102は、外部磁場の大きさが、10ガウス以上の領域では、磁界強度比:0.03以下(シールド効果:30dB以上)の電磁シールド効果を有し、50ガウス以上の領域では、磁界強度比:0.01以下(シールド効果:40dB以上)の電磁シールド効果を有していることが明らかである。さらに、鋼管No.101、鋼管No.102は、電縫鋼管まま(鋼管No.103)と比較して、外部磁場50ガウス以上の領域で、常に2倍以上の電磁シールド効果を有している。外部磁場印可方向が管長手方向に直交する場合の、図4においても、電磁シールド効果は図3の場合に比べてやや劣るものの、同様な傾向を有していることが示されている。   From Fig. 3, steel pipe No. 101 has an electromagnetic shielding effect with a magnetic field strength ratio of 0.1 or less (shielding effect: 20 dB or more) in an area where the magnitude of the external magnetic field is 10 gauss or more, and an area of 50 gauss or more. Then, the magnetic field strength ratio: 0.03 or less (shielding effect: 30 dB or more) has an electromagnetic shielding effect. Steel tube No. 102 has a magnetic field in the region where the magnitude of the external magnetic field is 10 gauss or more. Strength ratio: 0.03 or less (shielding effect: 30 dB or more) Electromagnetic shielding effect of 50 gauss or more, Magnetic field strength ratio: 0.01 or less (shielding effect: 40 dB or more) Is clear. Furthermore, steel pipe No. 101 and steel pipe No. 102 always have an electromagnetic shielding effect that is twice or more in an external magnetic field of 50 gauss or more as compared with an electric resistance steel pipe (steel pipe No. 103). . Also in FIG. 4 in the case where the external magnetic field application direction is orthogonal to the tube longitudinal direction, the electromagnetic shielding effect is slightly inferior to that in FIG.

すなわち、本発明範囲の組成を有する素材鋼管に、好ましくは縮径圧延、あるいはさらに焼鈍処理を施し、本発明範囲の組織とした鋼管を用いて管形状の電磁シールド材を形成することにより、良好な電磁シールド特性を有する電磁シールド材とすることができる。
また、図3、図4では、外部磁場が10ガウス以上の領域では磁界強度比が良好となる方向に滑らかに推移してゆく傾向があり、外部磁場が50ガウス以上で磁界強度比が良好となる方向が略飽和する傾向を示している。このため、電磁シールド特性の評価では、外部磁場を50ガウスとしたときの磁場強度比を用いて行うものとした。
(実施例2)
表1および表3に示す組成の薄鋼帯板をロール成形しオープン管とし、端部を電縫溶接して得られた電縫鋼管を、素材鋼管とした。
That is, the material steel pipe having the composition within the scope of the present invention is preferably subjected to reduced diameter rolling or further annealing treatment to form a pipe-shaped electromagnetic shielding material using the steel pipe having a structure within the scope of the present invention. It can be set as the electromagnetic shielding material which has an electromagnetic shielding characteristic.
3 and 4, there is a tendency for the magnetic field strength ratio to smoothly transition in a region where the external magnetic field is 10 gauss or more, and that the magnetic field strength ratio is good when the external magnetic field is 50 gauss or more. This direction tends to be substantially saturated. For this reason, the electromagnetic shielding characteristics were evaluated using the magnetic field strength ratio when the external magnetic field was 50 gauss.
(Example 2)
A thin steel strip having the composition shown in Tables 1 and 3 was roll-formed to form an open pipe, and an electric-welded steel pipe obtained by electro-welding the ends was used as a material steel pipe.

これら素材鋼管を900〜1000℃に加熱したのち、表4に示す条件(縮径率、肉厚変動率:減肉(−)/増肉(+)、圧延終了温度)の縮径圧延を施した。得られた鋼管の一部には、さらに冷間引抜加工を施し、同一サイズ(外径:34mmφ、内径25mmφ)の鋼管とした。なお、肉厚変動率が2%以内の場合には、同一肉厚の鋼管と見なして、特性を評価した。また、30%を超える肉厚変動が生じる場合には、素材鋼管肉厚を予め変えたものを用いて縮径圧延後の鋼管サイズを同一となるように配慮した。一部の鋼管には、さらに焼鈍処理を施した。焼鈍処理は、750〜920℃の範囲の温度で保持する処理とした。   After heating these steel pipes to 900-1000 ° C., they were subjected to reduction rolling under the conditions shown in Table 4 (reduction rate, thickness fluctuation rate: thickness reduction (−) / thickening increase (+), rolling end temperature). did. A part of the obtained steel pipe was further subjected to cold drawing to obtain a steel pipe of the same size (outer diameter: 34 mmφ, inner diameter 25 mmφ). When the wall thickness variation rate was within 2%, the steel pipes having the same wall thickness were regarded as being evaluated. Moreover, when the thickness fluctuation exceeding 30% occurred, the steel pipe size after the diameter reduction rolling was considered to be the same by using the material pipe thickness changed in advance. Some steel pipes were further annealed. The annealing treatment was performed at a temperature in the range of 750 to 920 ° C.

得られた鋼管について、電磁シールド特性の測定、組織の調査、r値の測定を実施した。測定方法は、基本的には実施例1と同様とした。
(1)電磁シールド特性
得られた鋼管から長さ300mmの試験材を切り出し、電磁シールド特性評価する評価材とした。磁化印可方法は、図1に示すように、管の長手方向に平行な方向に磁場を印可した。なお、外部磁場は、50ガウスとした。内部磁場の測定は、図1に示すように、試験材1の内部にガウスメータプローブ3を設置して、励磁コイル2により発生される外部磁場に対応して測定し、磁界強度比(=(内部磁場)/(外部磁場))を得た。得られた磁界強度比を、実施例1で得た縮径圧延または焼鈍処理を施さない製管ままの電縫鋼管(鋼管No.103)の磁界強度比との比、「磁界強度比の割合」として、各試験材の電磁シールド特性を評価した。
The obtained steel pipe was subjected to measurement of electromagnetic shielding characteristics, investigation of structure, and measurement of r value. The measurement method was basically the same as in Example 1.
(1) Electromagnetic shielding characteristics A test material having a length of 300 mm was cut out from the obtained steel pipe and used as an evaluation material for evaluating the electromagnetic shielding characteristics. As shown in FIG. 1, the magnetization application method applied a magnetic field in a direction parallel to the longitudinal direction of the tube. The external magnetic field was 50 gauss. As shown in FIG. 1, the internal magnetic field is measured by installing a gauss meter probe 3 inside the test material 1 and measuring it according to the external magnetic field generated by the exciting coil 2, and measuring the magnetic field strength ratio (= (internal Magnetic field) / (external magnetic field)). The ratio of the obtained magnetic field strength ratio to the magnetic field strength ratio of the as-made ERW steel pipe (steel pipe No. 103) not subjected to the reduction rolling or annealing treatment obtained in Example 1, “the ratio of the magnetic field strength ratio” The electromagnetic shielding characteristics of each test material were evaluated.

なお、(2)組織の調査、(3)r値の測定は、実施例1と同様とした。
得られた結果を表4に併記する。
Note that (2) the examination of the structure and (3) the measurement of the r value were the same as in Example 1.
The obtained results are also shown in Table 4.

Figure 2007066970
Figure 2007066970

Figure 2007066970
Figure 2007066970

本発明例はいずれも、円周方向に<100>方向、圧延方向に<011>方向が強く配向し、X線の三次元ランダム強度比が3.0以上、r値が2.0以上、平均粒径が20μm以上を有し、電縫鋼管まま(鋼管No.103)(基準材)に比べて磁界強度比の割合が1.5倍以上高く、優れた電磁シールド特性を有している。一方、本発明範囲を外れる比較例は、磁界強度比の割合が1.5倍未満と低く、電磁シールド特性の向上が認められない。   In all of the inventive examples, the <100> direction in the circumferential direction and the <011> direction in the rolling direction are strongly oriented, the X-ray three-dimensional random intensity ratio is 3.0 or more, the r value is 2.0 or more, and the average particle size is The ratio of the magnetic field strength ratio is 1.5 times higher than that of ERW steel pipe (steel pipe No. 103) (reference material), and it has excellent electromagnetic shielding characteristics. On the other hand, in the comparative example outside the scope of the present invention, the ratio of the magnetic field strength ratio is as low as less than 1.5 times, and no improvement in electromagnetic shielding characteristics is observed.

本発明例(鋼管No.203、No.204、No.205、No.208)は、X線の三次元ランダム強度比が7.6以上で、とくに鋼管No.203、No.204、No.205ではX線の三次元ランダム強度比が8.0以上と、電縫鋼管まま(鋼管No.103)(基準材)と比べて磁界強度比の割合が2倍を超えて高く、優れた電磁シールド特性を有している。鋼管No.208は、縮径圧延後の冷間引抜加工を施した例であるが、冷間引抜加工を施しても良好な電磁シールド効果を確保できることを示している。   Examples of the present invention (steel pipes No. 203, No. 204, No. 205, No. 208) have a three-dimensional random intensity ratio of X-rays of 7.6 or more, especially in the case of steel pipes No. 203, No. 204, No. 205. The X-ray three-dimensional random strength ratio is 8.0 or higher, and the ratio of magnetic field strength ratio is more than double that of ERW steel pipe (steel pipe No. 103) (reference material), and it has excellent electromagnetic shielding characteristics. is doing. Steel pipe No. 208 is an example in which the cold drawing after the diameter reduction rolling is performed, but it is shown that a good electromagnetic shielding effect can be secured even if the cold drawing is performed.

これに対し、比較例(鋼管No.201、No.206)は、縮径圧延後に、Ac1変態点を超えたオーステナイト域で焼鈍処理を行った例であり、縮径圧延時に形成された圧延集合組織が崩れランダム化するため、X線の三次元ランダム強度比が低く、またr値も低く、平均粒径も大きく、電磁シールド特性の向上が認められない。
また、比較例(鋼管No.202)は、電縫ままの鋼管に焼鈍処理のみを施した例で、縮径圧延を施さずに焼鈍処理を施しても、圧延集合組織の形成もなく単に結晶粒の粗大化が生じるだけで、X線の三次元ランダム強度比が低く、またr値も低く、電磁シールド特性の向上が認められない。
On the other hand, the comparative examples (steel pipes No. 201 and No. 206) are examples in which annealing treatment was performed in the austenite region exceeding the Ac 1 transformation point after the diameter reduction rolling, and the rolling formed during the diameter reduction rolling. Since the texture collapses and is randomized, the X-ray three-dimensional random intensity ratio is low, the r value is low, the average particle size is large, and no improvement in electromagnetic shielding characteristics is observed.
Moreover, the comparative example (steel pipe No. 202) is an example in which only the annealing process is applied to the steel pipe as-is-sewn. Even if the annealing process is performed without performing the diameter reduction rolling, there is no formation of a rolling texture. The coarsening of the grains only occurs, the X-ray three-dimensional random intensity ratio is low, and the r-value is low, and no improvement in electromagnetic shielding characteristics is observed.

比較例(鋼管No.206、No.207)は、肉厚変動率が大きい例であり、40%を超える増減肉は、結晶が回転し、縮径圧延時の圧延集合組織が最適な組織とならないため、X線の三次元ランダム強度比が低くなり、電磁シールド特性の向上は認められない。なお、鋼管No.206はAc1変態点を超えたオーステナイト域で焼鈍処理を行ったため、組織がランダム化している。 The comparative examples (steel pipes No. 206 and No. 207) are examples with a large wall thickness fluctuation rate. The increase and decrease of the thickness exceeding 40% is the structure in which the crystal rotates and the rolling texture during the diameter reduction rolling is optimal. Therefore, the three-dimensional random intensity ratio of X-rays is lowered and no improvement in electromagnetic shielding characteristics is observed. It should be noted that the steel pipe No.206 has performed an annealing treatment in the austenite region that exceeds the Ac 1 transformation point, the organization has been randomized.

このように、本発明によれば、電磁シールド特性に優れた電磁シールド材を容易に得ることができる。   Thus, according to the present invention, an electromagnetic shielding material excellent in electromagnetic shielding characteristics can be easily obtained.

電磁シール特性測定方法の概略を示す模式図である。It is a schematic diagram which shows the outline of the electromagnetic sealing characteristic measuring method. 電磁シール特性測定方法の概略を示す模式図である。It is a schematic diagram which shows the outline of the electromagnetic sealing characteristic measuring method. 磁界強度比、シール効果と外部磁界強度の関係を示すグラフである。It is a graph which shows the relationship between magnetic field strength ratio, a sealing effect, and external magnetic field strength. 磁界強度比、シール効果と外部磁界強度の関係を示すグラフである。It is a graph which shows the relationship between magnetic field strength ratio, a sealing effect, and external magnetic field strength.

符号の説明Explanation of symbols

1 試験片
2 励起コイル
3 ガウスメータプローブ
1 Test piece 2 Excitation coil 3 Gauss meter probe

Claims (6)

鋼管を用いた管形状の電磁シールド材であって、前記鋼管が、質量%で、C:0.01%未満を含み、Feを95%以上含む組成と、円周方向に<100>方向、かつ圧延方向に<011>方向が配向した結晶方位の、X線の三次元ランダム強度比が3.0以上である組織を有する鋼管であることを特徴とする電磁シールド性に優れた電磁シールド材。   A tube-shaped electromagnetic shielding material using a steel pipe, wherein the steel pipe contains, by mass%, C: less than 0.01%, a composition containing Fe of 95% or more, a <100> direction in the circumferential direction, and rolling An electromagnetic shielding material excellent in electromagnetic shielding characteristics, characterized by being a steel pipe having a structure in which a three-dimensional random intensity ratio of X-rays is 3.0 or more in a crystal orientation in which the <011> direction is oriented in the direction. 前記鋼管の圧延方向のr値が2.0以上であることを特徴とする請求項1に記載の電磁シールド材。   2. The electromagnetic shielding material according to claim 1, wherein an r value in the rolling direction of the steel pipe is 2.0 or more. 前記鋼管の組織が、20μm以上の平均結晶粒径を有する組織であることを特徴とする請求項1または2に記載の電磁シールド材。   The electromagnetic shielding material according to claim 1 or 2, wherein the structure of the steel pipe is a structure having an average crystal grain size of 20 µm or more. 前記鋼管の組成が、質量%で、C:0.01%未満を含みさらに、Si:0.45%以下、Mn:0.1〜1.4%、S:0.01%以下、P:0.025%以下、Al:0.01〜0.06%、N:0.005%以下を含有し、残部Feおよび不可避的不純物からなる組成であることを特徴とする請求項1ないし3のいずれかに記載の電磁シールド材。   The composition of the steel pipe is mass%, including C: less than 0.01%, Si: 0.45% or less, Mn: 0.1-1.4%, S: 0.01% or less, P: 0.025% or less, Al: 0.01-0.06% N: 0.005% or less, The composition which consists of remainder Fe and an unavoidable impurity, The electromagnetic shielding material in any one of Claim 1 thru | or 3 characterized by the above-mentioned. 前記鋼管の組成が、質量%で、C:0.01%未満を含みさらに、Si:0.45%超3.5%以下、Mn:0.1〜1.4%、S:0.01%以下、P:0.025%以下、Al:0.06%超0.5%以下、N:0.005%以下を含有し、残部Feおよび不可避的不純物からなる組成であることを特徴とする請求項1ないし3のいずれかに記載の電磁シールド材。   The composition of the steel pipe is by mass%, including C: less than 0.01%, Si: more than 0.45%, 3.5% or less, Mn: 0.1 to 1.4%, S: 0.01% or less, P: 0.025% or less, Al: 0.06 The electromagnetic shielding material according to any one of claims 1 to 3, wherein the electromagnetic shielding material contains more than 0.5% and 0.5% or less, N: 0.005% or less, and is composed of the remaining Fe and inevitable impurities. 前記鋼管の組成に加えてさらに、質量%で、下記A〜C群のうちから選ばれた1群または2群以上を含有することを特徴とする請求項4または5に記載の電磁シールド材。

A群:Ti:0.05%以下、Nb:0.05%以下、B:0.005%以下のうちの1種または2種以 上、
B群:Cr:5%以下、Ni:5%以下、Mo:0.05%以下のうちの1種または2種以上、
C群:Ca:0.005%以下、REM:0.05%以下のうちの1種または2種
The electromagnetic shielding material according to claim 4 or 5, further comprising one group or two or more groups selected from the following groups A to C in mass% in addition to the composition of the steel pipe.
Group A: Ti: 0.05% or less, Nb: 0.05% or less, B: One or more of 0.005% or less,
Group B: Cr: 5% or less, Ni: 5% or less, Mo: 0.05% or less
Group C: Ca: 0.005% or less, REM: 0.05% or less, 1 type or 2 types
JP2005247580A 2005-08-29 2005-08-29 Electromagnetic shielding material Active JP5034190B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005247580A JP5034190B2 (en) 2005-08-29 2005-08-29 Electromagnetic shielding material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005247580A JP5034190B2 (en) 2005-08-29 2005-08-29 Electromagnetic shielding material

Publications (2)

Publication Number Publication Date
JP2007066970A true JP2007066970A (en) 2007-03-15
JP5034190B2 JP5034190B2 (en) 2012-09-26

Family

ID=37928851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005247580A Active JP5034190B2 (en) 2005-08-29 2005-08-29 Electromagnetic shielding material

Country Status (1)

Country Link
JP (1) JP5034190B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000096143A (en) * 1998-09-22 2000-04-04 Kawasaki Steel Corp Manufacture of steel tube
JP2001214218A (en) * 2000-01-28 2001-08-07 Kawasaki Steel Corp High workability steel tube and producing method therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000096143A (en) * 1998-09-22 2000-04-04 Kawasaki Steel Corp Manufacture of steel tube
JP2001214218A (en) * 2000-01-28 2001-08-07 Kawasaki Steel Corp High workability steel tube and producing method therefor

Also Published As

Publication number Publication date
JP5034190B2 (en) 2012-09-26

Similar Documents

Publication Publication Date Title
JP6460229B2 (en) High strength stainless steel seamless steel pipe for oil well
JP6288390B1 (en) AZROLL ERW Steel Pipe for Line Pipe
EP1568792B1 (en) Hot-rolled steel sheet for high-strength electric-resistance welded pipe and method for manufacturing the same
JP4528356B2 (en) Steel pipe with excellent deformation characteristics
CN111094610B9 (en) Steel pipe and steel plate
JP6354910B2 (en) Hot-rolled steel sheet for thick-walled high-strength line pipe, welded steel pipe for thick-walled, high-strength line pipe, and manufacturing method thereof
JP6213703B1 (en) ERW steel pipe for line pipe
JP5765509B1 (en) ERW steel pipe for oil well
CN104968821B (en) Electric-resistance-welded steel pipe
WO2018008194A1 (en) Electroseamed steel pipe for line pipe
JP6315157B1 (en) ERW steel pipe for torsion beam
JP6384637B1 (en) ERW steel pipe for coiled tubing and manufacturing method thereof
JP2005002385A (en) Steel tube having excellent formability and toughness, and its production method
CN115298340B (en) High-strength steel sheet for acid-proof pipeline, method for producing same, and high-strength steel pipe using high-strength steel sheet for acid-proof pipeline
JP5971415B2 (en) Manufacturing method of martensitic stainless hot-rolled steel strip for welded steel pipe for line pipe
WO2006057098A1 (en) Steel pipe having excellent electromagnetic properties and process for producing the same
JP5034190B2 (en) Electromagnetic shielding material
JP4701687B2 (en) Steel pipe with excellent electromagnetic characteristics and method for producing the same
JP6825751B1 (en) Hot-rolled steel strip for cold roll-formed square steel pipe and its manufacturing method, and cold roll-formed square steel pipe manufacturing method
JP3932821B2 (en) ERW steel pipe excellent in strength and toughness and method for producing the same
JP6011509B2 (en) Steel pipe with excellent magnetic shielding characteristics and method for manufacturing the same
JP2011026695A (en) Electroseamed steel pipe superior in sour resistance at electroseamed weld part for high-strength thick-wall line pipe
JP7188649B1 (en) Electric resistance welded steel pipe for automobile parts, and method for manufacturing automobile parts
JP2011149081A (en) Method for manufacturing electroseamed steel pipe excellent in magnetic characteristic
JPH0688124A (en) Production of high mn nonmagnetic steel excellent in local ductility

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120605

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120618

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5034190

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250