JP2007066954A - Resist coater and resist coating method - Google Patents

Resist coater and resist coating method Download PDF

Info

Publication number
JP2007066954A
JP2007066954A JP2005247335A JP2005247335A JP2007066954A JP 2007066954 A JP2007066954 A JP 2007066954A JP 2005247335 A JP2005247335 A JP 2005247335A JP 2005247335 A JP2005247335 A JP 2005247335A JP 2007066954 A JP2007066954 A JP 2007066954A
Authority
JP
Japan
Prior art keywords
gas
resist
nozzle
procedure
blowing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005247335A
Other languages
Japanese (ja)
Other versions
JP4816892B2 (en
Inventor
Takuma Matsumura
琢磨 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2005247335A priority Critical patent/JP4816892B2/en
Publication of JP2007066954A publication Critical patent/JP2007066954A/en
Application granted granted Critical
Publication of JP4816892B2 publication Critical patent/JP4816892B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coating Apparatus (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a coater and a coating method for coating a substrate for photomask with resist having a uniform in-plane film thickness, and to provide a resist coating method by which the thickness of a resist film can be adjusted arbitrarily during coating. <P>SOLUTION: The resist coater comprises a substrate mounting section, a nozzle drip portion located at a position parallel with the surface of a substrate on the upper surface side, and a device control section for managing the entirety. The nozzle drip portion 10 is an assembly consisting of a plurality of nozzles in odd rows having the same number of rows and columns wherein the central one is a resist drip nozzle 3 and a plurality of other nozzles are gas blow-out nozzle 4. After resist solution is dripped from the resist drip nozzle to the central surface of the substrate, above-mentioned procedure for blowing out gas from a gas blow-out nozzle located in close proximity to that nozzle and for blowing out gas from a gas blow-out nozzle next to that located in close proximity to that nozzle is repeated, and then a procedure for blowing gas from the outermost circumferential nozzle is carried out thus applying resist. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、半導体集積回路用のフォトマスクの製造時、レジスト膜の形成に用いるレジスト塗布装置およびレジスト塗布方法に関する。   The present invention relates to a resist coating apparatus and a resist coating method used for forming a resist film when manufacturing a photomask for a semiconductor integrated circuit.

近年の半導体集積回路の高集積化、回路のパターンの形状の微細化に伴い、半導体集積回路の製造に用いるフォトマスクにも、回路パターンの微細化、高精度化が要求されている。   With recent high integration of semiconductor integrated circuits and miniaturization of circuit pattern shapes, miniaturization and high precision of circuit patterns are also required for photomasks used in the manufacture of semiconductor integrated circuits.

すなわち、半導体集積回路の急激な微細化に伴い、半導体集積回路用のSiウエハ上にマスクパターンを転写するリソグラフィ技術も同時に進歩を遂げてきた。縮小投影露光装置(ステッパー)は解像性を向上させるために、i線(波長365nm)以降ではKrFエキシマレーザー(波長248nm),ArFエキシマレーザー(波長193nm)といった遠紫外線領域、さらにはF2レーザー(波長157nm)の真空紫外線領域へと、短波長化の一途を辿っている。露光光の波長が短波長化すれば、被転写基板上に形成したレジスト膜厚もより薄膜化となり、レジスト膜厚のバラツキの影響がより顕著となる問題がある。   That is, along with rapid miniaturization of semiconductor integrated circuits, lithography technology for transferring a mask pattern onto a Si wafer for semiconductor integrated circuits has also progressed simultaneously. In order to improve the resolution, the reduction projection exposure apparatus (stepper) has a far ultraviolet region such as a KrF excimer laser (wavelength 248 nm) and an ArF excimer laser (wavelength 193 nm) and further an F2 laser (wavelength 193 nm) after the i-line (wavelength 365 nm). The wavelength has been continuously shortened to the vacuum ultraviolet region having a wavelength of 157 nm. If the wavelength of the exposure light is shortened, there is a problem that the resist film thickness formed on the substrate to be transferred becomes thinner, and the influence of variations in resist film thickness becomes more remarkable.

回路パターンの微細化、高精度化の要求に応えるために、パターンの解像性の向上はもちろんのこと、パターン寸法の面内均一性の制御をより高いレベルまでに高めることが要求されている。回路パターンの微細化となれば、パターン解像の光量が微少量となり、レジスト膜厚のバラツキの影響がより顕著となる問題がある。   In order to meet the demands for circuit pattern miniaturization and high accuracy, it is required not only to improve the resolution of the pattern, but also to increase the control of in-plane uniformity of pattern dimensions to a higher level. . If the circuit pattern is miniaturized, there is a problem that the amount of light for pattern resolution becomes very small, and the influence of variations in resist film thickness becomes more remarkable.

また、回路パターンの配置密度の面内バラツキ、すなわちパターンの配置密度の疎密差に起因するパターン寸法の面内バラツキの制御をより高いレベルまでに高めることが要求されている。   Further, it is required to increase the control of the in-plane variation of the circuit pattern arrangement density, that is, the in-plane variation of the pattern dimension caused by the density difference of the pattern arrangement density to a higher level.

従来、フォトマスク上にパターンを形成する方法は、レジストへの露光光を照射し、その照射エネルギーの積算量、すなわちドーズ量だけ変質させ、重合等による不溶解性のレジストとなり、アルカリ溶液等による現像処理を経てレジストパターンを形成する。レジストパターンの形成では、レジストの断面形状の良否が重要となる。レジストでは、微細化のための感度アップをし、露光光の短波長化となり、その対応のため、レジスト膜のより薄膜化と、高感度化が重要となる。   Conventionally, a method for forming a pattern on a photomask is to irradiate the resist with exposure light, change the integrated amount of the irradiation energy, that is, change the dose amount, and form an insoluble resist by polymerization or the like. A resist pattern is formed through development processing. In forming the resist pattern, the quality of the cross-sectional shape of the resist is important. In resist, the sensitivity for miniaturization is increased and the wavelength of exposure light is shortened. To cope with this, it is important to make the resist film thinner and to increase the sensitivity.

最近、レジストは、より薄い膜厚となり、溶解/不溶解の境界の位置の変動が顕著となり、レジストの裾の形状が不安定となる問題がある。レジストの面内での膜厚がバラツキ上限に近づけば、該近傍のパターンは、溶解/不溶解の境界より外側に位置をシフトし、すなわち、レジストパターンの形状が大ききなり、逆に下限に近づけば、該近傍のパターンは、溶解/不溶解の境界より内側に位置をシフトし、レジストパターンの形状が小さくなる。所望のパターン形状が面内均一に形成できない問題がある。そのため、レジスト膜厚のバラツキが問題となる。   Recently, there is a problem that the resist has a thinner film thickness, the fluctuation of the position of the dissolution / indissolution boundary becomes remarkable, and the shape of the bottom of the resist becomes unstable. If the film thickness in the resist surface approaches the upper limit of variation, the neighboring pattern shifts to the outside of the dissolved / insoluble boundary, that is, the shape of the resist pattern increases, and conversely approaches the lower limit. For example, the position of the neighboring pattern shifts to the inner side of the boundary between dissolution and non-dissolution, and the shape of the resist pattern becomes smaller. There is a problem that a desired pattern shape cannot be formed uniformly in the surface. Therefore, the resist film thickness variation becomes a problem.

同様に、レジストは、より低いドーズ量の設定値となり、溶解/不溶解の境界の位置の変動が顕著となり、レジストの裾の形状が不安定となる問題がある。レジストの面内での照射領域の積算面積がバラツキ上限に近づけば、該近傍のパターンはドーズ量が不足傾向となり、溶解/不溶解の境界より内側に位置をシフトし、すなわち、レジストパターンの形状が小さくなり、逆に照射領域の全面積が下限に近づけば、該近傍のパターンはドーズ
量が過剰傾向となり、溶解/不溶解の境界より外側に位置をシフトし、レジストパターンの形状が大きくなる。所望のパターン形状が面内均一に形成できない問題がある。そのため、レジスト膜厚の平均値が問題となる、すなわち。照射領域の積算面積がバラツキ上限の領域では、レジスト膜厚をより薄い膜厚に微調整することが必要となる場合もある。
Similarly, there is a problem that the resist has a lower dose setting value, the position of the boundary between dissolution / dissolution becomes prominent, and the shape of the bottom of the resist becomes unstable. If the integrated area of the irradiated area in the resist surface approaches the upper limit of variation, the pattern in the vicinity tends to be insufficient in dose, and the position shifts to the inner side from the boundary of dissolution / dissolution, that is, the shape of the resist pattern Conversely, if the total area of the irradiated region approaches the lower limit, the dose pattern tends to be excessive, the position shifts outside the dissolved / insoluble boundary, and the resist pattern shape increases. . There is a problem that a desired pattern shape cannot be formed uniformly in the surface. Therefore, the average value of the resist film thickness becomes a problem. In a region where the integrated area of the irradiation region has a variation upper limit, it may be necessary to finely adjust the resist film thickness to a thinner film thickness.

先に、従来のフォトマスクの製造について説明する。最初に、フォトマスク用のマスクブランクの製造では、透明基板の片側全面に遮光膜を形成し、該遮光膜上に感光性レジストを塗布し、該レジスト膜の感度を揃えるためにプレベークの処理をして製造する。次いで、回路パターンの形成は、前記マスクブランクを用いて、描画、又は露光装置により、前記レジストへ描画、又は露光の処理を行い、レジストの現像処理、該レジストパターンをマスクとして遮光膜をエッチング処理後、レジストを剥膜処理して製造する。   First, the production of a conventional photomask will be described. First, in the manufacture of a mask blank for a photomask, a light-shielding film is formed on the entire surface of one side of a transparent substrate, a photosensitive resist is applied on the light-shielding film, and a pre-baking process is performed to align the sensitivity of the resist film. To manufacture. Next, the circuit pattern is formed by drawing or exposing the resist with the mask blank using the drawing or exposure apparatus, developing the resist, and etching the light shielding film using the resist pattern as a mask. Thereafter, the resist is stripped and manufactured.

前述したようなフォトマスクに対する要求を満足させるために、フォトマスクの製造、特にフォトマスク用のマスクブランクの製造では、レジストの塗布膜厚の面内均一性が要求され、同時にレジストの感度の面内均一性が要求されている。さらに、必要な場合、特定領域のレジスト膜厚をより薄く微調整することも要求される。   In order to satisfy the requirements for photomasks as described above, in the manufacture of photomasks, particularly in the manufacture of mask blanks for photomasks, in-plane uniformity of the resist coating thickness is required, and at the same time, the sensitivity of the resist Uniformity is required. Furthermore, if necessary, it is also required to finely adjust the resist film thickness in a specific region.

マスクブランクの製造では、感光性レジストを均一膜厚に塗布し、該レジスト膜の感度を均一に揃えるためにプレベークの処理をすることでパターン寸法の面内均一性を保つ制御をおこなってきた。   In the manufacture of a mask blank, a photosensitive resist is applied to a uniform film thickness, and pre-bake processing is performed to maintain the uniformity of the pattern dimensions in order to uniformly align the sensitivity of the resist film.

前記レジスト塗布工程では、スピンコータ装置を用いた、レジスト滴下回転方式によりレジスト膜を透明基板上に形成する方法である。   In the resist coating step, a resist film is formed on a transparent substrate by a resist dropping rotation method using a spin coater.

スピンコータ装置のレジスト滴下回転方式(以下スピンコータと記す)は、ステージ上にマスクブランクを載置し、高速で回転させながら上面からレジストを滴下する方法である。塗布方法は、基板を載置した基板載置部を高速度で回転させながら、基板の上面側のレジスト滴下ノズルから基板中心部に所定量のレジスト溶液を滴下し、該レジスト溶液を遠心力により基板周辺まで拡散する方法である。   The resist dropping rotation method (hereinafter referred to as a spin coater) of a spin coater is a method in which a mask blank is placed on a stage and the resist is dropped from the upper surface while rotating at high speed. The coating method is that a predetermined amount of resist solution is dropped from the resist dropping nozzle on the upper surface side of the substrate to the center of the substrate while rotating the substrate mounting portion on which the substrate is placed at a high speed, and the resist solution is removed by centrifugal force. This is a method of diffusing to the periphery of the substrate.

この塗布方法では、透明基板の面内のレジスト膜厚のバラツキが同心円傾向になる問題があり、使用するレジストの消費量に無駄がある。   In this coating method, there is a problem that variations in the resist film thickness in the surface of the transparent substrate tend to be concentric, and the consumption of the resist to be used is wasted.

透明基板は、四角形のため、四隅の区域のレジストが先に乾燥してしまい、面内のレジスト膜厚を均一に制御することが困難となる問題がある(特許文献1参照)。   Since the transparent substrate is quadrangular, the resist in the four corner areas is first dried, which makes it difficult to uniformly control the in-plane resist film thickness (see Patent Document 1).

以下に公知文献を記す。
特開平5―96224号公報
The known literature is described below.
JP-A-5-96224

本発明の課題は、フォトマスク用のマスクブランクにレジストを面内均一の膜厚で塗布するための装置及び塗布方法を提供することであり、さらに塗布時に、レジスト膜厚を任意の領域毎に調整する膜厚制御が可能なレジスト塗布方法を提供することである。   An object of the present invention is to provide an apparatus and a coating method for applying a resist to a mask blank for a photomask with a uniform in-plane film thickness. It is to provide a resist coating method capable of controlling the film thickness to be adjusted.

本発明の請求項1に係る発明は、レジスト塗布装置において、基板を載置する基板載置部と、該基板載置部の上面側に基板表面と平行で向き合うよう位置にノズル滴下部と、装置近傍の位置に付帯設備を含む装置全体を管理する装置制御部からなるレジスト塗布装置
であって、前記ノズル滴下部は、下記の数1式
K = (2n+1)×(2n+1) ――――数1
なお、Kは、ノズル滴下部のノズルの総数
nは、1以上の整数
の複数個のノズルよりなる集合体で、
中心の1個のノズルは、
レジスト滴下ノズルであり、
それ以外の複数個のノズルは、
ガス吹き出しノズルであることを特徴とするレジスト塗布装置である。
The invention according to claim 1 of the present invention is the resist coating apparatus, wherein the substrate mounting portion for mounting the substrate, the nozzle dropping portion at a position facing the substrate surface parallel to the upper surface side of the substrate mounting portion, It is a resist coating apparatus comprising an apparatus control unit that manages the entire apparatus including incidental equipment at a position near the apparatus, and the nozzle dropping unit is represented by the following equation (1): K = (2n + 1) × (2n + 1) Number 1
K is the total number of nozzles in the nozzle dropping section.
n is an aggregate composed of a plurality of integers of 1 or more,
The central nozzle is
A resist dripping nozzle,
The other nozzles are
The resist coating apparatus is a gas blowing nozzle.

本発明の請求項2に係る発明は、前記装置制御部には、被塗布基板を基板載置部に載置する動作から基板の片側表面にレジストを塗布する動作までの逐次に動作を実行する手順のうち、少なくとも下記の手順を含むことを特徴とする請求項1記載のレジスト塗布装置である。
(a)レジスト滴下ノズルより、基板の表面の中心近傍にレジスト溶液を滴下する手順。(b)前記レジスト滴下ノズルの直近にあるガス吹き出しノズルから、ガスを吹き出し、所定時間までガスの吹き出しを維持する手順。
(c)前記ガスの吹き出し後、直ちに前記ガス吹き出しノズルの直近にある次のガス吹き出しノズルから、ガスを吹き出し、所定時間までガスの吹き出しを維持する手順。
(d)前記(c)の手順を繰り返し、最外周のガス吹き出しノズルから、ガスを吹き出し、所定時間までガスの吹き出しを維持する手順。
In the invention according to claim 2 of the present invention, the apparatus control unit sequentially performs operations from the operation of placing the substrate to be coated on the substrate placing unit to the operation of applying the resist to one surface of the substrate. The resist coating apparatus according to claim 1, wherein at least the following procedure is included among the procedures.
(A) A procedure of dropping a resist solution near the center of the surface of the substrate from a resist dropping nozzle. (B) A procedure in which gas is blown out from a gas blowing nozzle in the immediate vicinity of the resist dropping nozzle, and the blowing of gas is maintained until a predetermined time.
(C) A procedure in which gas is blown out from the next gas blowing nozzle immediately adjacent to the gas blowing nozzle immediately after the gas is blown out, and the gas blowing is maintained until a predetermined time.
(D) A procedure in which the procedure of (c) is repeated, gas is blown out from the outermost gas blowing nozzle, and the gas blowing is maintained until a predetermined time.

本発明の請求項3に係る発明は、前記装置制御部には、被塗布基板を基板載置部に載置する動作から基板の片側表面にレジストを塗布する動作までの逐次に動作を実行する手順のうち、当該領域のレジスト膜厚をそれ以外の領域のレジスト膜厚より薄くするため、少なくとも下記の手順を含むことを特徴とする請求項1、又は2記載のレジスト塗布装置である。
(a)特定領域の直近にあるガス吹き出しノズルから、ガスを吹き出し、所定時間までガスの吹き出しを維持する手順において、再度手順を実行する、又は前記所定時間を延長する手順。
(b)前記ガスの吹き出し後、直ちに前記ガス吹き出しノズルの直近にある次のガス吹き出しノズルから、ガスを吹き出し、所定時間までガスの吹き出しを維持する手順において、再度(b)手順を実行する、又は前記所定時間を延長する手順。
(c)前記の手順を繰り返し、特定領域の最外周のガス吹き出しノズルから、ガスを吹き出し、所定時間までガスの吹き出しを維持する手順において、再度(c)手順を実行する、又は前記所定時間を延長する手順。
In the invention according to claim 3 of the present invention, the apparatus control unit sequentially performs operations from an operation of placing the substrate to be coated on the substrate placing unit to an operation of applying a resist to one surface of the substrate. 3. The resist coating apparatus according to claim 1, wherein the resist coating apparatus includes at least the following procedure in order to make the resist film thickness in the region smaller than the resist film thickness in the other region.
(A) In a procedure for blowing out gas from a gas blowing nozzle located in the immediate vicinity of a specific region and maintaining the blowing of gas until a predetermined time, a procedure for executing the procedure again or extending the predetermined time.
(B) Immediately after blowing out the gas, in the procedure of blowing out gas from the next gas blowing nozzle immediately adjacent to the gas blowing nozzle and maintaining the blowing of gas until a predetermined time, the step (b) is executed again. Or a procedure for extending the predetermined time.
(C) The above procedure is repeated, and in the procedure of blowing out gas from the outermost gas blowing nozzle in the specific region and maintaining the blowing of gas until a predetermined time, the procedure (c) is executed again, or the predetermined time is increased. Procedure to extend.

本発明の請求項4に係る発明は、前記装置制御部には、被塗布基板を基板載置部に載置する動作から基板の片側表面にレジストを塗布する動作までの逐次に動作を実行する手順のうち、当該領域のレジスト膜厚をそれ以外の領域のレジスト膜厚より薄くするため、少なくとも下記の手順を含むことを特徴とする請求項1乃至3のいずれか1項記載のレジスト塗布装置である。
(a)特定領域の直近にあるガス吹き出しノズルから、ガスを吹き出し、所定時間までガスの吹き出しを維持する手順において、ガスの流量及び/又はガスの圧力をより大きくする手順。
(b)前記ガスの吹き出し後、直ちに前記ガス吹き出しノズルの直近にあるガス吹き出しノズルから、ガスを吹き出し、所定時間までガスの吹き出しを維持する手順において、ガスの流量及び/又はガスの圧力をより大きくする手順。
(c)前記の手順を繰り返し、特定領域の最外周のガス吹き出しノズルから、ガスを吹き出し、所定時間までガスの吹き出しを維持する手順において、ガスの流量及び/又はガス
の圧力をより大きくする手順。
In the invention according to claim 4 of the present invention, the apparatus control unit sequentially performs operations from the operation of placing the substrate to be coated on the substrate placing unit to the operation of applying the resist on one surface of the substrate. 4. The resist coating apparatus according to claim 1, further comprising at least the following procedure in order to make the resist film thickness in the region smaller than the resist film thickness in the other region. It is.
(A) A procedure of increasing the gas flow rate and / or the gas pressure in a procedure of blowing out gas from a gas blowing nozzle in the immediate vicinity of the specific region and maintaining the blowing of gas until a predetermined time.
(B) Immediately after blowing out the gas, in the procedure of blowing out gas from the gas blowing nozzle immediately adjacent to the gas blowing nozzle and maintaining the blowing of gas until a predetermined time, the gas flow rate and / or the gas pressure is further increased. Steps to enlarge.
(C) The above procedure is repeated, and in the procedure in which gas is blown out from the outermost gas blowing nozzle in the specific region and the gas blowing is maintained until a predetermined time, the gas flow rate and / or the gas pressure is increased. .

本発明の請求項5に係る発明は、前記ガスは、窒素ガスであることを特徴とする請求項1乃至4のいずれか1項記載のレジスト塗布装置である。   The invention according to claim 5 of the present invention is the resist coating apparatus according to any one of claims 1 to 4, wherein the gas is nitrogen gas.

本発明の請求項6に係る発明は、基板片側の表面上にレジストを塗布するレジスト塗布方法において、請求項1乃至4のいずれか1項記載のレジスト塗布装置を用いたことを特徴とするレジスト塗布方法である。   According to a sixth aspect of the present invention, there is provided a resist coating method for coating a resist on one surface of a substrate, wherein the resist coating apparatus according to any one of the first to fourth aspects is used. Application method.

本発明の請求項1に係るレジスト塗布装置によれば、レジスト滴下ノズルを中心に、その外側の複数のガス吹き出しノズルを配置したことにより、レジスト滴下ノズルより滴下したレジスト溶液を、複数のガス吹き出しノズルのうち、中心のレジスト滴下ノズルの隣合うガス吹き出しノズルから外側のガス吹き出しノズルへ順次にガスを吹き出すことにより、レジスト溶液を中心から外側へ拡散するレジスト溶液の流れを形成し、該レジスト溶液の流れによるレジスト溶液の拡がりによる、透明基板の中心から外側の周辺部まで均一な膜厚に制御することができる。   According to the resist coating apparatus of the first aspect of the present invention, a plurality of gas blowing nozzles outside the resist dropping nozzle are arranged around the resist dropping nozzle so that the resist solution dropped from the resist dropping nozzle Among the nozzles, by sequentially blowing gas from the gas blowing nozzle adjacent to the central resist dropping nozzle to the outer gas blowing nozzle, a flow of the resist solution that diffuses the resist solution from the center to the outside is formed, and the resist solution It is possible to control the film thickness to be uniform from the center of the transparent substrate to the outer peripheral part by spreading of the resist solution due to the flow of.

本発明の請求項3、又は4に係るレジスト塗布装置によれば、特定の領域毎にレジストの塗布膜厚を調整する膜厚制御が可能となる。   According to the resist coating apparatus of the third or fourth aspect of the present invention, it is possible to control the film thickness by adjusting the coating thickness of the resist for each specific region.

本発明の請求項5に係るレジスト塗布装置によれば、ガス吹き出しノズルに用いるガスは、不活性ガスである窒素ガスを用いることによる、特定の領域毎にレジストの塗布膜厚を調整する膜厚制御が可能となる。   According to the resist coating apparatus according to claim 5 of the present invention, the gas used for the gas blowing nozzle is a film thickness for adjusting the coating thickness of the resist for each specific region by using nitrogen gas which is an inert gas. Control becomes possible.

本発明のレジスト塗布装置およびレジスト塗布方法を一実施形態に基づいて以下に説明する。   A resist coating apparatus and a resist coating method of the present invention will be described below based on an embodiment.

図1は、本発明のレジスト塗布装置を説明する部分拡大図であり、(a)は、全体の側面図であり、(b)は、部分拡大の平面図である。   FIG. 1 is a partially enlarged view for explaining a resist coating apparatus of the present invention, (a) is a side view of the whole, and (b) is a partially enlarged plan view.

図1(a)の本発明のレジスト塗布装置では、装置下部に基板21を載置する基板載置部20が配置されている。前記基板載置部20の上面側に基板表面と平行で向き合う位置に、ノズル滴下部10が配置されている。装置近傍に付帯設備を含む装置全体を管理する装置制御部30が配置され、レジスト塗布装置の機能、又は動作及びその順序等を制御している。前記ノズル滴下部では、前記の数1式(2n+1)×(2n+1)による複数個のノズルの集合体で構成されている。ノズル集合体は、縦横同数で、奇数からなる列数で形成されている。   In the resist coating apparatus of the present invention shown in FIG. 1A, a substrate mounting portion 20 for mounting a substrate 21 is disposed at the lower part of the apparatus. The nozzle dropping unit 10 is disposed on the upper surface side of the substrate mounting unit 20 at a position facing the substrate surface in parallel. An apparatus control unit 30 for managing the entire apparatus including incidental facilities is disposed in the vicinity of the apparatus, and controls the function or operation of the resist coating apparatus and the order thereof. The nozzle dropping unit is constituted by an aggregate of a plurality of nozzles according to the above equation 1 (2n + 1) × (2n + 1). The nozzle assemblies are formed in the same number of rows and columns, and the number of rows consisting of odd numbers.

本発明のレジスト塗布装置では、最初に、装置制御部30の指示命令により、装置外の基板の供給部から基板21を受け取り、基板載置部20へ載置する。次いで、予め登録した製造条件に従って、レジスト溶液吐出口3を開放し、所定量のレジスト溶液を基板上へ滴下する。同時に、中心部から外周部へ、順番にガス吐出口4を開放して、中心部から外周部の方向にガスの流れを発生させ、該ガスの流れによりレジスト溶液を基板の中心部から基板の周辺部へ押し広げ、基板表面に均一な量のレジスト溶液を分散させる。   In the resist coating apparatus of the present invention, first, the substrate 21 is received from the substrate supply unit outside the apparatus and placed on the substrate platform 20 in accordance with an instruction command from the apparatus controller 30. Next, the resist solution discharge port 3 is opened according to manufacturing conditions registered in advance, and a predetermined amount of resist solution is dropped onto the substrate. At the same time, the gas discharge ports 4 are opened in order from the central portion to the outer peripheral portion to generate a gas flow in the direction from the central portion to the outer peripheral portion, and the resist solution is transferred from the central portion of the substrate to the substrate by the gas flow. Spread to the periphery and disperse a uniform amount of resist solution on the substrate surface.

図1(b)の本発明のノズル滴下部10では、その集合体の中心の1個のノズルは、レジスト滴下ノズル1である。前記レジスト滴下ノズル1には、1個、又は複数のレジスト溶液吐出口3を備えている。それ以外の複数個のノズルは、ガス吹き出しノズル2である
。前記各々のガス吹き出しノズル2には、1個、又は複数のガス吐出口4を備えている。前記集合体は、(2n+1)×(2n+1)で、nが3の整数の場合であり、すなわち7×
7=49個のばあいである。ノズルは、1mm四方の区画に1個を配置された49個の集合体であり、すなわち7mm四方に49個のノズルが配置され、中心のノズルは、1個のレジスト溶液吐出口3を備えたレジスト滴下ノズル1である。それ以外の48個のノズルは、1個のガス吐出口4を備えたガス吹き出しノズル2である。各々のノズルには、吐出口の開/閉と、吐出時間と、吐出口の内部圧力の数値指示及び動作開始/その終了等の命令に従って、逐次に動作を実行する機能がある。
In the nozzle dropping unit 10 of the present invention shown in FIG. 1B, one nozzle at the center of the assembly is the resist dropping nozzle 1. The resist dropping nozzle 1 includes one or a plurality of resist solution discharge ports 3. The other nozzles are the gas blowing nozzles 2. Each of the gas blowing nozzles 2 is provided with one or a plurality of gas discharge ports 4. The aggregate is (2n + 1) × (2n + 1) where n is an integer of 3, ie 7 ×
7 = 49 cases. The nozzle is a group of 49 arranged in a 1 mm square section, that is, 49 nozzles are arranged in a 7 mm square, and the central nozzle has one resist solution discharge port 3. This is a resist dropping nozzle 1. The other 48 nozzles are gas blowing nozzles 2 having one gas discharge port 4. Each nozzle has a function of sequentially executing operations in accordance with commands such as opening / closing of the discharge port, discharge time, numerical indication of the internal pressure of the discharge port, and operation start / end.

次に、図2は、本発明のノズル滴下部の状態を説明する部分拡大のモデル図であり、(a)は、平面図であり、(b)は、側断面図であり、(c)は、その部分拡大図である。以下に具体的な実施例に従ってノズル滴下部の状態を説明する。   Next, FIG. 2 is a partially enlarged model diagram for explaining the state of the nozzle dropping portion of the present invention, (a) is a plan view, (b) is a side sectional view, and (c). Is an enlarged view of a part thereof. The state of the nozzle dropping part will be described below according to a specific embodiment.

ノズル滴下部の状態、すなわちレジスト溶液を基板上に塗布する状態を説明する。図2(a)の実施例のノズル滴下部10では、中心にレジスト滴下ノズル1を配置し、その外側には、ガス吹き出しノズル2を配置した。レジスト溶液をレジスト滴下ノズル1から基板上へ放出した。次いで、n1群のガス吹き出しノズル2から基板側へガスを噴射した。次いで、n2群のガス吹き出しノズル2から基板側へガスを噴射した。次いで、n3群のガス吹き出しノズル2から基板側へガスを噴射した。前記ガスの噴射の開始時間は、n1群〜n2群〜n3群と順次開始時間を遅らせて、その時間差は、基板上のレジスト溶液の流れ、すなわちレジスト溶液の拡大に追従するように最適化した。   The state of the nozzle dropping part, that is, the state of applying the resist solution on the substrate will be described. In the nozzle dropping unit 10 of the embodiment of FIG. 2A, the resist dropping nozzle 1 is disposed at the center, and the gas blowing nozzle 2 is disposed outside thereof. The resist solution was discharged from the resist dropping nozzle 1 onto the substrate. Next, gas was injected from the gas blowing nozzle 2 of the n1 group to the substrate side. Next, gas was injected from the n2 group gas blowing nozzle 2 to the substrate side. Next, gas was injected from the gas blowing nozzle 2 of the n3 group to the substrate side. The gas injection start time is sequentially delayed from the n1 group to the n2 group to the n3 group, and the time difference is optimized to follow the flow of the resist solution on the substrate, that is, the expansion of the resist solution. .

図2(b)の実施例のレジスト溶液を基板上に塗布する状態では、レジスト溶液をレジスト滴下ノズル1から基板上へ放出した。次いで、n1群のガス吹き出しノズル2から基板側へガスを噴射した。n1群のガスの噴射では、中心部近傍のガスの噴射量が急増し、該ガス群は、基板表面のレジスト溶液の表面に衝突し、方向を変えレジスト溶液の表面に沿って、より低い溶液面へ層流するガス流を起こし、より低い溶液面、すなわち基板周辺部へと高速度で流される。前記ガス群のレジスト溶液の表面への衝突では、その衝突力がレジスト溶液の表面を押さえつけて、レジスト溶液の厚さを制御する。すなわち、衝突力が強い場合は、薄くなり、弱い場合はやや厚くなり、衝突力を最適化して、最適なレジスト膜厚に制御する。同様に、n2群〜n3群と順次ガス噴射を行い、該ガス流の作用によりレジスト溶液の高い液面より低い液面側へ拡散しながら基板周辺部まで流され、基板上に均一のレジスト溶液を形成する。また、排気口31は、噴射ガスを装置外に排気する役割であり、所定排気量を排気処理するため、中心部近傍から排気口近傍までガスの圧力傾斜が発生し、より安定した、中心部近傍から排気口近傍へのガスの層流を発生する。   In the state where the resist solution of the example of FIG. 2B is applied on the substrate, the resist solution was discharged from the resist dropping nozzle 1 onto the substrate. Next, gas was injected from the gas blowing nozzle 2 of the n1 group to the substrate side. In the n1 group gas injection, the gas injection amount in the vicinity of the central portion rapidly increases, the gas group collides with the resist solution surface on the substrate surface, changes direction, and lowers the solution along the resist solution surface. A laminar gas flow is caused to flow to the surface and flowed at a higher speed to a lower solution surface, i.e. the periphery of the substrate. When the gas group collides with the surface of the resist solution, the collision force suppresses the surface of the resist solution to control the thickness of the resist solution. That is, when the collision force is strong, the thickness is reduced, and when the collision force is weak, the thickness is increased. The collision force is optimized to control the resist film thickness to an optimum value. Similarly, gas injection is sequentially performed with the n2 group to the n3 group, and the gas flow causes the gas to flow to the lower liquid surface side while being diffused to the lower liquid surface side of the resist solution. Form. Further, the exhaust port 31 serves to exhaust the injection gas to the outside of the apparatus, and in order to exhaust a predetermined exhaust amount, a gas pressure gradient is generated from the vicinity of the central part to the vicinity of the exhaust port, and the central part is more stable. A laminar flow of gas from the vicinity to the vicinity of the exhaust port is generated.

図2(c)の実施例のレジスト溶液を基板上に塗布する状態では、レジスト溶液がn4群のガス吹き出しノズル2まで順次ガス噴射を開始し、レジスト溶液のその先端流がn4群にある。この状態でのガス圧力量では、中心部のガス圧は、Pcとし、ガス噴射ゾーン部(n0〜n4群)のガス圧は、Pinとし、未噴射ゾーン部(n5〜n8群)のガス圧は、Pouとし、排気口のガス圧は、Pgとしたとき、そのガス圧の高低では、常時、Pc>Pin>Pou>Pgの関係のガス圧に最適化することが重要となる。また、ガス圧の調整では、基板表面とノズル滴下部10の表面の距離を近接させ、調整することができる。当然レジスト溶液の粘度による影響も重要な要素であり、粘度を上下させ、調整することができる。 In the state in which the resist solution of the embodiment of FIG. 2C is applied on the substrate, the resist solution starts gas injection sequentially to the gas blowing nozzles 2 of the n4 group, and the tip flow of the resist solution is in the n4 group. The gas pressure amount in this state, the gas pressure in the center, and P c, the gas pressure of the gas injection zone section (N0-N4 group), and P in, non-injection zone of (N5~n8 group) When the gas pressure is P ou and the gas pressure at the exhaust port is P g , the gas pressure is always optimized to the gas pressure in the relationship of P c > P in > P ou > P g if the gas pressure is high or low. It becomes important. In the adjustment of the gas pressure, the distance between the substrate surface and the surface of the nozzle dropping unit 10 can be adjusted to be close. Of course, the influence of the viscosity of the resist solution is also an important factor, and the viscosity can be raised and lowered to be adjusted.

また、基板外周部での排気量を均一な量とするため、排気口31を回転させ、排気口境界での排気量を均一に最適化することにより、全ての基板表面では、ガス流の方向が中心から放射方向になり、そのガス流量も同量となる層流となり、レジスト膜厚も面内均一と
なる。排気口31を回転させる場合、ノズル滴下部10と基板載置部20は、1つのチャンバで囲い、該チャンバの外周部に沿って排気口31を配置する方法がある。基板の外周部に、載置した基板表面と同じ高さを持つ治具を挿入し、その治具の外形は、円形とし、該治具により基板外周域での基板表面の層流を乱さない工夫をする。前記チャンバは、外部と遮断し、その室温及び湿度、又は圧力を制御し、最適なレジスト塗布環境と、又はレジスト乾燥環境を提供する。
Further, in order to make the exhaust amount at the outer peripheral portion of the substrate uniform, by rotating the exhaust port 31 and uniformly optimizing the exhaust amount at the boundary of the exhaust port, the gas flow direction on all substrate surfaces Becomes the radial direction from the center, the gas flow rate becomes the same amount, and the laminar flow becomes the same amount, and the resist film thickness becomes uniform in the surface. When the exhaust port 31 is rotated, there is a method in which the nozzle dropping unit 10 and the substrate mounting unit 20 are surrounded by one chamber, and the exhaust port 31 is disposed along the outer peripheral portion of the chamber. A jig having the same height as the mounted substrate surface is inserted into the outer periphery of the substrate, and the outer shape of the jig is circular, so that the laminar flow on the substrate surface in the outer periphery of the substrate is not disturbed by the jig. Devise. The chamber is shielded from the outside, and its room temperature and humidity or pressure are controlled to provide an optimum resist coating environment or resist drying environment.

本レジスト塗布装置では、レジスト溶液を塗布した後、その乾燥方法は、本装置特有の乾燥方法を備え、該方法で乾燥処理した後、公知の方法によりプレベークの処理を行い、本発明の方法によるマスクブランクを作製した。   In this resist coating apparatus, after the resist solution is applied, the drying method includes a drying method specific to this apparatus. After drying by this method, pre-baking is performed by a known method, and the method of the present invention is applied. A mask blank was prepared.

本発明のレジスト塗布装置の装置制御部が、被塗布基板を基板載置部に載置する動作から基板の片側表面にレジストを塗布する動作までの逐次に動作を実行する手順のうち、レジスト滴下から、均一の膜厚に処理するために逐次実行する動作手順のフロー図を説明する。図3は、本発明のレジスト塗布装置の動作手順のフロー図である。最初に、図3のフロー図の(a)は、予め塗布条件を登録する手順である。塗布条件は、グループ分けした種類毎に分類し、当該分類毎に、レジスト名及びその粘度と、滴下するレジスト溶液量と、塗布膜厚と、滴下ノズル及びガス吹き出しノズルのノズル開始の順番及びその時間差と、ノズル閉終の順番及びその時間差を登録する。吹き出しノズルのガス流量及びガス圧を登録する。前記塗布条件の登録は、分類毎には基本型の条件であり、登録以降では、コード番号化され、データベースより引き出し、使用する。次いで図3のフロー図の(b)に移動する。追加の塗布条件がない場合は、フロー図(e)へ移動して、実行する。また、追加の塗布条件が必要な場合は、図3のフロー図の(c)へ移動する。   Of the procedures in which the apparatus control unit of the resist coating apparatus according to the present invention sequentially executes the operation from the operation of placing the substrate to be coated on the substrate mounting unit to the operation of applying the resist to one surface of the substrate, the resist dropping unit A flow chart of operation procedures executed sequentially for processing to a uniform film thickness will be described. FIG. 3 is a flowchart of the operation procedure of the resist coating apparatus of the present invention. First, (a) in the flowchart of FIG. 3 is a procedure for registering application conditions in advance. The coating conditions are classified for each grouped type, and for each classification, the resist name and its viscosity, the amount of resist solution to be dropped, the coating film thickness, the order of the nozzle start of the dropping nozzle and gas blowing nozzle, and its The time difference, the order of nozzle closing and the time difference are registered. Register the gas flow rate and gas pressure of the blowing nozzle. The application condition registration is a basic condition for each classification, and after registration, it is converted into a code number and is extracted from the database and used. Next, the process moves to (b) of the flowchart of FIG. If there is no additional application condition, the process moves to the flowchart (e) and is executed. If additional application conditions are required, the process moves to (c) of the flowchart of FIG.

図3のフロー図の(c)では、最初にノズルの配置区域を設定する。前記区域内では、塗布条件は同一とし、1条件とする。次いで、図3のフロー図の(c1)では、ノズル毎の開/閉の時間、所定の時間を登録する。分類毎のデータベースより算出した所定の時間と、前記登録した所定の時間とを比較し、その増減時間を加算して新規塗布条件とする。   In (c) of the flowchart of FIG. 3, first, the nozzle arrangement area is set. Within the area, the application conditions are the same and one condition. Next, in (c1) of the flowchart in FIG. 3, the opening / closing time and a predetermined time for each nozzle are registered. The predetermined time calculated from the database for each classification is compared with the registered predetermined time, and the increase / decrease time is added to obtain a new application condition.

次いで、図3のフロー図の(c2)では、ガス流量(単位cc/sec)を登録する。分類毎のデータベースより算出した単位当たりのガス流量と、前記登録した単位当たりのガス流量とを比較し、その増減するガス流量を加算して新規塗布条件とする。次いで図3のフロー図の(c3)では、ガス圧力(単位Pa)を登録する。分類毎のデータベースより算出したガス圧力と、前記登録したガス圧力とを比較し、その増減するガス圧力を加算して新規塗布条件とする。次いで図3のフロー図の(c4)では、ガス吹き出しノズルの開/閉間の所定の時間を変更せず、データベースのガス吹き出しノズルの開/閉間の所定の時間をn回繰り返す方法を登録する。従って、n=1の場合がデータベースの登録値であり、例えばn=2と登録の場合は、所定の時間の2倍の時間となる。   Next, in (c2) of the flow chart of FIG. 3, the gas flow rate (unit: cc / sec) is registered. The gas flow rate per unit calculated from the database for each classification is compared with the registered gas flow rate per unit, and the increased or decreased gas flow rate is added to obtain a new application condition. Next, in (c3) of the flowchart of FIG. 3, the gas pressure (unit Pa) is registered. The gas pressure calculated from the database for each classification is compared with the registered gas pressure, and the increased or decreased gas pressure is added to obtain a new application condition. Next, in (c4) of the flow chart of FIG. 3, a method of repeating the predetermined time between opening / closing of the gas blowing nozzle in the database n times without changing the predetermined time between opening / closing of the gas blowing nozzle is registered. To do. Therefore, when n = 1, the registration value of the database is used. For example, when n = 2 is registered, the time is twice the predetermined time.

次いで、図3のフロー図の(d)では、ノズルの区域の残の有無であり、追加がある場合は、フロー図の(c)へ戻る。また、追加がない場合は、図3のフロー図の(e)へ移動する。この段階では、基本型及び追加変更型ともに、塗布条件は全て設定された状態である。   Next, in (d) of the flowchart of FIG. 3, it is the presence or absence of the remaining area of the nozzle. If there is an addition, the flow returns to (c) of the flowchart. If there is no addition, the process moves to (e) in the flowchart of FIG. At this stage, all the application conditions are set for both the basic mold and the additional modification mold.

図3のフロー図の(e)では、基板表面の中心にレジスト滴下ノズルよりレジスト溶液を滴下する。滴下するレジスト溶液量は、最小限の必要量とし、塗布ロスを最小にした。次いで、図3のフロー図の(f)では、滴下ノズルの直近にあるガス吹き出しノズルよりガスを所定時間まで噴出する。次いで、図3のフロー図の(g)では、前記ガス噴出後、直ちに前記ガス吹き出しノズルの直近にある次のガス吹き出しノズルよりガスを所定時間噴出する。次いで、図3のフロー図の(h)では、前記(f)の手順を順次繰り返し、最
外周のガス吹き出しノズルよりガスを所定時間噴出する。
In FIG. 3 (e), a resist solution is dropped from the resist dropping nozzle onto the center of the substrate surface. The amount of resist solution to be dropped was set to the minimum necessary amount, and the coating loss was minimized. Subsequently, in (f) of the flowchart of FIG. 3, gas is ejected from the gas blowing nozzle immediately adjacent to the dropping nozzle to a predetermined time. Next, in (g) of the flow chart of FIG. 3, immediately after the gas ejection, gas is ejected from the next gas blowing nozzle immediately adjacent to the gas blowing nozzle for a predetermined time. Next, in (h) of the flowchart of FIG. 3, the procedure of (f) is sequentially repeated, and gas is ejected from the outermost gas blowing nozzle for a predetermined time.

請求項3に係る本発明のレジスト塗布装置において、装置制御部が、レジスト滴下から、均一の膜厚に処理するために逐次実行する動作手順のうち、当該領域のレジスト膜厚をそれ以外の領域のレジスト膜厚より薄くするために処理する逐次実行する動作手順フロー図を説明する。塗布方法は、塗布条件の追加変更型であり、塗布方法(a)では、図3のフロー図の(c)の区域設定と、図3のフロー図の(c4)の噴出回数、nを2以上で設定した後、図3のフロー図の(e)〜(h)の手順を順次繰り返しレジストを塗布する方法である。また、塗布方法(b)では、図3のフロー図の(c)の区域設定と、図3のフロー図の(c1)の所定の時間を変更し設定した後、図3のフロー図の(e)〜(h)の手順を順次繰り返しレジストを塗布する方法である。   In the resist coating apparatus of the present invention according to claim 3, in the operation procedure that the apparatus control unit sequentially executes in order to process the resist from dropping to a uniform film thickness, the resist film thickness of the area is set to the other area. An operation procedure flowchart for sequentially executing processing to make the resist film thickness thinner than that will be described. The coating method is an additional change type of coating conditions. In the coating method (a), the area setting in (c) of the flowchart of FIG. 3 and the number of ejections in (c4) of the flowchart of FIG. After setting as described above, the resist coating is performed by sequentially repeating the steps (e) to (h) in the flowchart of FIG. Further, in the coating method (b), after setting and changing the area setting in (c) of the flowchart of FIG. 3 and the predetermined time of (c1) in the flowchart of FIG. 3, ((1) in the flowchart of FIG. 3) This is a method of applying a resist by repeating the steps e) to (h) sequentially.

請求項4に係る本発明のレジスト塗布装置において、装置制御部が、レジスト滴下から、均一の膜厚に処理するために逐次実行する動作手順のうち、当該領域のレジスト膜厚をそれ以外の領域のレジスト膜厚より薄くするために処理する逐次実行する動作手順フロー図を説明する。塗布方法(a)〜(c)では、図3のフロー図の(c)の区域設定と、図3のフロー図の(c2)のガス流量の変更及び(c3)のガス圧力を変更し設定した後、図3のフロー図の(e)〜(h)の手順を順次繰り返しレジストを塗布する方法である。   In the resist coating apparatus according to the present invention according to claim 4, the operation control unit sequentially performs the processing from the resist dropping to the uniform film thickness so as to change the resist film thickness of the region to the other region. An operation procedure flowchart for sequentially executing processing to make the resist film thickness thinner than that will be described. In the application methods (a) to (c), the setting of the area shown in (c) of the flowchart of FIG. 3, the change of the gas flow rate of (c2) of the flowchart of FIG. 3, and the gas pressure of (c3) are changed and set. Then, the procedure of (e) to (h) in the flowchart of FIG. 3 is sequentially repeated to apply a resist.

ガスノズルより吹き出すガスは、窒素ガスが最適であり、他の不活性ガスでもよい。   The gas blown out from the gas nozzle is optimally nitrogen gas, and may be other inert gas.

本発明のレジスト塗布装置を説明する部分拡大図であり、(a)は、全体の側面図であり、(b)は、平面図である。It is the elements on larger scale explaining the resist coating apparatus of this invention, (a) is a whole side view, (b) is a top view. 本発明のノズル滴下部の状態を説明する部分拡大のモデル図であり、(a)は、平面図であり、(b)は、側断面図であり、(c)は、その部分拡大図である。It is a model figure of the partial expansion explaining the state of the nozzle dripping part of the present invention, (a) is a top view, (b) is a sectional side view, (c) is the partial enlarged view. is there. 本発明のレジスト塗布装置の動作手順のフロー図である。It is a flowchart of the operation | movement procedure of the resist coating apparatus of this invention.

符号の説明Explanation of symbols

1…滴下ノズル
2…ガス吹き出しノズル
3…レジスト溶液吐出口
4…ガス吐出口
10…ノズル滴下部
20…基板載置部
21…基板
30…装置制御部
31…排気口
DESCRIPTION OF SYMBOLS 1 ... Dripping nozzle 2 ... Gas blowing nozzle 3 ... Resist solution discharge port 4 ... Gas discharge port 10 ... Nozzle dropping part 20 ... Substrate mounting part 21 ... Substrate 30 ... Apparatus control part 31 ... Exhaust port

Claims (6)

レジスト塗布装置において、基板を載置する基板載置部と、該基板載置部の上面側に基板表面と平行で向き合うよう位置にノズル滴下部と、装置近傍の位置に付帯設備を含む装置全体を管理する装置制御部からなるレジスト塗布装置であって、前記ノズル滴下部は、下記の数1式
K = (2n+1)×(2n+1) ――――数1
なお、Kは、ノズル滴下部のノズルの総数
nは、1以上の整数
の複数個のノズルよりなる集合体で、
中心の1個のノズルは、
レジスト滴下ノズルであり、
それ以外の複数個のノズルは、
ガス吹き出しノズルであることを特徴とするレジスト塗布装置。
In the resist coating apparatus, the entire apparatus including a substrate mounting portion for mounting a substrate, a nozzle dropping portion at a position facing the substrate surface in parallel with the upper surface side of the substrate mounting portion, and incidental equipment at a position near the device Is a resist coating apparatus comprising a device control unit that manages the nozzle dropping unit, and the nozzle dropping unit is represented by the following equation (1): K = (2n + 1) × (2n + 1)
K is the total number of nozzles in the nozzle dropping section.
n is an aggregate composed of a plurality of integers of 1 or more,
The central nozzle is
A resist dripping nozzle,
The other nozzles are
A resist coating apparatus, which is a gas blowing nozzle.
前記装置制御部には、被塗布基板を基板載置部に載置する動作から基板の片側表面にレジストを塗布する動作までの逐次に動作を実行する手順のうち、少なくとも下記の手順を含むことを特徴とする請求項1記載のレジスト塗布装置。
(a)レジスト滴下ノズルより、基板の表面の中心近傍にレジスト溶液を滴下する手順。(b)前記レジスト滴下ノズルの直近にあるガス吹き出しノズルから、ガスを吹き出し、所定時間までガスの吹き出しを維持する手順。
(c)前記ガスの吹き出し後、直ちに前記ガス吹き出しノズルの直近にある次のガス吹き出しノズルから、ガスを吹き出し、所定時間までガスの吹き出しを維持する手順。
(d)前記(c)の手順を繰り返し、最外周のガス吹き出しノズルから、ガスを吹き出し、所定時間までガスの吹き出しを維持する手順。
The apparatus control unit includes at least the following procedure among the procedures for sequentially performing the operation from the operation of placing the substrate to be coated on the substrate mounting unit to the operation of applying the resist to one surface of the substrate. The resist coating apparatus according to claim 1.
(A) A procedure of dropping a resist solution near the center of the surface of the substrate from a resist dropping nozzle. (B) A procedure in which gas is blown out from a gas blowing nozzle in the immediate vicinity of the resist dropping nozzle, and the blowing of gas is maintained until a predetermined time.
(C) A procedure in which gas is blown out from the next gas blowing nozzle immediately adjacent to the gas blowing nozzle immediately after the gas is blown out, and the gas blowing is maintained until a predetermined time.
(D) A procedure in which the procedure of (c) is repeated, gas is blown out from the outermost gas blowing nozzle, and the gas blowing is maintained until a predetermined time.
前記装置制御部には、被塗布基板を基板載置部に載置する動作から基板の片側表面にレジストを塗布する動作までの逐次に動作を実行する手順のうち、当該領域のレジスト膜厚をそれ以外の領域のレジスト膜厚より薄くするため、少なくとも下記の手順を含むことを特徴とする請求項1、又は2記載のレジスト塗布装置。
(a)特定領域の直近にあるガス吹き出しノズルから、ガスを吹き出し、所定時間までガスの吹き出しを維持する手順において、再度手順を実行する、又は前記所定時間を延長する手順。
(b)前記ガスの吹き出し後、直ちに前記ガス吹き出しノズルの直近にある次のガス吹き出しノズルから、ガスを吹き出し、所定時間までガスの吹き出しを維持する手順において、再度(b)手順を実行する、又は前記所定時間を延長する手順。
(c)前記の手順を繰り返し、特定領域の最外周のガス吹き出しノズルから、ガスを吹き出し、所定時間までガスの吹き出しを維持する手順において、再度(c)手順を実行する、又は前記所定時間を延長する手順。
In the apparatus control unit, the resist film thickness of the region is selected from the sequence of operations from the operation of placing the substrate to be coated on the substrate platform to the operation of applying the resist to one surface of the substrate. 3. The resist coating apparatus according to claim 1, wherein the resist coating apparatus includes at least the following procedure in order to make it thinner than a resist film thickness in other regions.
(A) In a procedure for blowing out gas from a gas blowing nozzle located in the immediate vicinity of a specific region and maintaining the blowing of gas until a predetermined time, a procedure for executing the procedure again or extending the predetermined time.
(B) Immediately after blowing out the gas, in the procedure of blowing out gas from the next gas blowing nozzle immediately adjacent to the gas blowing nozzle and maintaining the blowing of gas until a predetermined time, the step (b) is executed again. Or a procedure for extending the predetermined time.
(C) The above procedure is repeated, and in the procedure of blowing out gas from the outermost gas blowing nozzle in the specific region and maintaining the blowing of gas until a predetermined time, the procedure (c) is executed again, or the predetermined time is increased. Procedure to extend.
前記装置制御部には、被塗布基板を基板載置部に載置する動作から基板の片側表面にレジストを塗布する動作までの逐次に動作を実行する手順のうち、当該領域のレジスト膜厚をそれ以外の領域のレジスト膜厚より薄くするため、少なくとも下記の手順を含むことを特徴とする請求項1乃至3のいずれか1項記載のレジスト塗布装置。
(a)特定領域の直近にあるガス吹き出しノズルから、ガスを吹き出し、所定時間までガスの吹き出しを維持する手順において、ガスの流量及び/又はガスの圧力をより大きくする手順。
(b)前記ガスの吹き出し後、直ちに前記ガス吹き出しノズルの直近にあるガス吹き出しノズルから、ガスを吹き出し、所定時間までガスの吹き出しを維持する手順において、ガスの流量及び/又はガスの圧力をより大きくする手順。
(c)前記の手順を繰り返し、特定領域の最外周のガス吹き出しノズルから、ガスを吹き出し、所定時間までガスの吹き出しを維持する手順において、ガスの流量及び/又はガスの圧力をより大きくする手順。
In the apparatus control unit, the resist film thickness of the region is selected from the sequence of operations from the operation of placing the substrate to be coated on the substrate platform to the operation of applying the resist to one surface of the substrate. 4. The resist coating apparatus according to claim 1, wherein the resist coating apparatus includes at least the following procedure in order to make it thinner than the resist film thickness in other regions. 5.
(A) A procedure of increasing the gas flow rate and / or the gas pressure in a procedure of blowing out gas from a gas blowing nozzle in the immediate vicinity of the specific region and maintaining the blowing of gas until a predetermined time.
(B) Immediately after blowing out the gas, in the procedure of blowing out gas from the gas blowing nozzle immediately adjacent to the gas blowing nozzle and maintaining the blowing of gas until a predetermined time, the gas flow rate and / or the gas pressure is further increased. Steps to enlarge.
(C) The above procedure is repeated, and in the procedure in which gas is blown out from the outermost gas blowing nozzle in the specific region and the gas blowing is maintained until a predetermined time, the gas flow rate and / or the gas pressure is increased. .
前記ガスは、窒素ガスであることを特徴とする請求項1乃至4のいずれか1項記載のレジスト塗布装置。   The resist coating apparatus according to claim 1, wherein the gas is nitrogen gas. 基板片側の表面上にレジストを塗布するレジスト塗布方法において、請求項1乃至4のいずれか1項記載のレジスト塗布装置を用いたことを特徴とするレジスト塗布方法。   A resist coating method for coating a resist on a surface on one side of a substrate, wherein the resist coating apparatus according to any one of claims 1 to 4 is used.
JP2005247335A 2005-08-29 2005-08-29 Resist coating device Expired - Fee Related JP4816892B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005247335A JP4816892B2 (en) 2005-08-29 2005-08-29 Resist coating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005247335A JP4816892B2 (en) 2005-08-29 2005-08-29 Resist coating device

Publications (2)

Publication Number Publication Date
JP2007066954A true JP2007066954A (en) 2007-03-15
JP4816892B2 JP4816892B2 (en) 2011-11-16

Family

ID=37928836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005247335A Expired - Fee Related JP4816892B2 (en) 2005-08-29 2005-08-29 Resist coating device

Country Status (1)

Country Link
JP (1) JP4816892B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03238061A (en) * 1990-02-15 1991-10-23 Nordson Kk Method and apparatus for deflecting and distributing liquid or molten material flowing out of nozzle orifice by air jet stream from periphery thereof
JP2001148338A (en) * 1999-11-18 2001-05-29 Tokyo Electron Ltd Method and apparatus for forming film
JP2002353091A (en) * 2001-05-22 2002-12-06 Tokyo Electron Ltd Apparatus for coating substrate
JP2003164791A (en) * 2001-12-03 2003-06-10 Seiko Epson Corp Coating method and coating device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03238061A (en) * 1990-02-15 1991-10-23 Nordson Kk Method and apparatus for deflecting and distributing liquid or molten material flowing out of nozzle orifice by air jet stream from periphery thereof
JP2001148338A (en) * 1999-11-18 2001-05-29 Tokyo Electron Ltd Method and apparatus for forming film
JP2002353091A (en) * 2001-05-22 2002-12-06 Tokyo Electron Ltd Apparatus for coating substrate
JP2003164791A (en) * 2001-12-03 2003-06-10 Seiko Epson Corp Coating method and coating device

Also Published As

Publication number Publication date
JP4816892B2 (en) 2011-11-16

Similar Documents

Publication Publication Date Title
KR100861046B1 (en) Substrate processing method and substrate processing apparatus
WO2004109779A1 (en) Method for improving surface roughness of processed film of substrate and apparatus for processing substrate
KR20060047974A (en) Lithographic apparatus and device manufacturing method
TW201512789A (en) Lithographic apparatus and device manufacturing method
US7907250B2 (en) Immersion lithography method
JP2017139257A (en) Imprint device, control method and method of manufacturing article
US7238454B2 (en) Method and apparatus for producing a photomask blank, and apparatus for removing an unnecessary portion of a film
US5952149A (en) Resist solution for photolithography including a base resin and an oxygen-free or low-oxygen solvent
US20060134559A1 (en) Method for forming patterns on a semiconductor device
JP4816892B2 (en) Resist coating device
KR100549953B1 (en) Bake device of spinner device
US20150309414A1 (en) Method and tool of lithography
KR100904600B1 (en) Correction method of critical dimension variation caused by flare phenomenon by using optical proximity correction
KR20080102370A (en) Substrate treating method, and computer-readable storage medium
JPH1055951A (en) Baking device and method
TWI645265B (en) Baking apparatus and baking method
US7052810B2 (en) Method of correcting optical proximity effect of contact holes
KR100291331B1 (en) Apparatus for fabricating semiconductor device and method for forming pattern of semiconductor device
JPH11194506A (en) Pattern forming method
US8048592B2 (en) Photomask
KR100366615B1 (en) Spinner Apparatus With Chemical Supply Nozzle, Method Of Forming Pattern And Method Of Etching Using The Same
KR100815959B1 (en) Optical Proximity Correction Method
KR100604041B1 (en) Method for fabricating mask
JP2014041182A (en) Method of calculating the number of electron beam irradiation and drawing time
US20070264599A1 (en) Method for manufacturing semiconductor device using immersion lithography process with filtered air

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110816

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees