JP2007065554A - Optical scanner - Google Patents

Optical scanner Download PDF

Info

Publication number
JP2007065554A
JP2007065554A JP2005254604A JP2005254604A JP2007065554A JP 2007065554 A JP2007065554 A JP 2007065554A JP 2005254604 A JP2005254604 A JP 2005254604A JP 2005254604 A JP2005254604 A JP 2005254604A JP 2007065554 A JP2007065554 A JP 2007065554A
Authority
JP
Japan
Prior art keywords
deflecting
light beam
optical
angle
deflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005254604A
Other languages
Japanese (ja)
Inventor
Yoshihiro Yamamoto
喜博 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP2005254604A priority Critical patent/JP2007065554A/en
Publication of JP2007065554A publication Critical patent/JP2007065554A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laser Beam Printer (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Facsimile Scanning Arrangements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical scanner which has a wide effective scanning angle, suppresses uneven light quantity distribution on a face to be scanned and gives an excellent picture quality. <P>SOLUTION: The optical scanner of the present invention suppresses an EOS/SOS light quantity ratio within 0.90 by limiting the angle α between the center of effective scanning viewing angle and the central axis of a luminous flux which is made incident to a deflecting and reflecting face to 30° to 75°, and thus an excellent picture having small uneven density is available. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は光走査装置に関し、特に光源から出射した光束を往復運動する偏向素子で偏向反射させ、被走査面上を光走査して画像情報を記録する光走査装置に関する。   The present invention relates to an optical scanning device, and more particularly to an optical scanning device that records image information by optically scanning a surface to be scanned by deflecting and reflecting a light beam emitted from a light source by a reciprocating deflection element.

従来よりレーザービームプリンター等に用いられる光走査装置においては、画像信号に応じてレーザー光源手段から光変調され出射した光束を偏向素子により偏向させ、感光性の記録媒体面上にスポット状に集束させ光走査をして画像記録を行っている。この種の光走査装置に用いられる光偏向装置では複数の反射面を有するポリゴンミラーをモータにより回転させることにより偏向反射を行うタイプが一般的である。   Conventionally, in an optical scanning device used for a laser beam printer or the like, a light beam modulated and emitted from a laser light source means in accordance with an image signal is deflected by a deflecting element and focused on a photosensitive recording medium surface in a spot shape. Image recording is performed by optical scanning. An optical deflecting device used in this type of optical scanning device is generally of a type that deflects and reflects by rotating a polygon mirror having a plurality of reflecting surfaces by a motor.

一方、高速化、コンパクト化、及び静音化を実現し得る光偏向装置として半導体プロセスによるマイクロマシニング技術を利用したガルバノミラータイプの反射ミラーを備えた光偏向装置が注目されている。図2にこのような光偏向装置の代表例を示す。   On the other hand, an optical deflecting device including a galvanometer mirror type reflecting mirror using a micromachining technique based on a semiconductor process has attracted attention as an optical deflecting device capable of realizing high speed, compactness, and quietness. FIG. 2 shows a typical example of such an optical deflecting device.

このような光偏向装置は偏向反射面を有する偏向反射ミラーを主走査方向に直交する副走査方向に延びた上下2本の梁により支持体に軸支し、偏向反射ミラーの偏向反射面の裏面に対向して設けられた駆動部(図示せず)から偏向反射ミラーと支持体間に電磁気力もしくは静電気力等を発生させて、梁にねじり振動を与え偏向反射ミラーを揺動させるものであり、図3に示すように時間に対して偏向角が正弦波状に変化するように往復揺動する。   Such an optical deflecting device pivotally supports a deflecting / reflecting mirror having a deflecting / reflecting surface on a support by two upper and lower beams extending in a sub-scanning direction orthogonal to the main scanning direction, and the back surface of the deflecting / reflecting surface of the deflecting / reflecting mirror. Electromagnetic force or electrostatic force is generated between the deflecting / reflecting mirror and the support from a drive unit (not shown) provided opposite to the substrate, torsionally vibrate the beam and swing the deflecting / reflecting mirror. As shown in FIG. 3, it reciprocally swings so that the deflection angle changes sinusoidally with respect to time.

このような光偏向装置では、偏向反射ミラーは偏向反射ミラーと梁からなる構造体の共振周波数で往復揺動するように駆動されている。この構造体の機械特性によって偏向反射ミラーの偏向速度が定められることになる。   In such an optical deflecting device, the deflecting / reflecting mirror is driven so as to reciprocally swing at the resonance frequency of the structure composed of the deflecting / reflecting mirror and the beam. The deflection speed of the deflecting / reflecting mirror is determined by the mechanical characteristics of the structure.

走査の高速化を実現しようとする場合、この構造体の形状をその速度に合わせて構成することになるが、一般的に高速化に伴って偏向反射ミラーの大きさは小型化されることが要求される。   When it is intended to increase the scanning speed, the shape of the structure is configured according to the speed. In general, the size of the deflecting / reflecting mirror may be reduced as the speed increases. Required.

ところが、偏向反射ミラーのサイズが小さくなると、偏向反射面上の光束を小さくせざるを得ず、被走査面上でのスポット径を所望のサイズにすることが出来ないという課題があった。   However, when the size of the deflecting / reflecting mirror is reduced, there is a problem that the light beam on the deflecting / reflecting surface has to be reduced, and the spot diameter on the surface to be scanned cannot be set to a desired size.

これに対して、偏向素子の偏向反射面へ入射する主走査方向の光束の寸法を該偏向反射面の主走査方向の寸法より長くする、いわゆるオーバーフィルド入射させることにより、偏向反射面を有効に利用することで被走査面上での小スポット径化を実現する構成が提案されている(例えば、特許文献1参照)。   In contrast, by making the size of the light beam in the main scanning direction incident on the deflection reflection surface of the deflection element longer than the size of the deflection reflection surface in the main scanning direction, so-called overfilled incidence, the deflection reflection surface is effectively made effective. There has been proposed a configuration that realizes a reduction in spot diameter on the surface to be scanned by using (see, for example, Patent Document 1).

ところが上記文献に記載の光走査装置では以下に示すような問題があった。すなわち、光走査装置においては主走査方向において入射光束を有効走査角度の外側から角度を付けて光偏向器の偏向反射面に入射させる場合が多い。このように構成することにより光偏向器への入射光束を副走査方向に角度をつけずに構成することが出来るため、副走査方向に角度をつけて入射させる場合と比較し構成が容易であり、また被走査面上において走査線湾曲を生じない等のメリットを有する。    However, the optical scanning device described in the above document has the following problems. That is, in an optical scanning device, an incident light beam is often incident on the deflecting reflection surface of the optical deflector at an angle from the outside of the effective scanning angle in the main scanning direction. With this configuration, it is possible to configure the incident light beam to the optical deflector without making an angle in the sub-scanning direction. Therefore, the configuration is easier than in the case where the incident light is incident at an angle in the sub-scanning direction. In addition, there is an advantage that the scanning line is not curved on the surface to be scanned.

ところが、上記のような構成において特許文献1に記載のごとくオーバーフィルド入射を適用した場合、以下に示すような問題が生じる。   However, when overfilled incidence is applied as described in Patent Document 1 in the configuration as described above, the following problems occur.

すなわち、図4、5のようにレーザー光源から出射されて偏向反射面Dに至る入射光束Wは有効走査角度θの外側から走査角度中心軸Lcに対して角度αをつけて偏向反射面Dに入射する。偏向反射面Dは軸Oを中心として揺動し、その偏向角度に応じて入射光束Wに対する偏向反射面Dの射影幅に相当する部分のみを偏向反射する。代表的に被走査面上の走査開始端(SOS)、中心(COS)、終了端(EOS)に向かう光束Bs、Bc、Beについて図示する。   That is, as shown in FIGS. 4 and 5, the incident light beam W that is emitted from the laser light source and reaches the deflecting / reflecting surface D is applied to the deflecting / reflecting surface D with an angle α with respect to the scanning angle central axis Lc from the outside of the effective scanning angle θ. Incident. The deflecting / reflecting surface D swings about the axis O, and deflects and reflects only a portion corresponding to the projection width of the deflecting / reflecting surface D with respect to the incident light beam W according to the deflection angle. Typically, the light beams Bs, Bc, and Be toward the scanning start end (SOS), center (COS), and end end (EOS) on the surface to be scanned are illustrated.

図5に示すように各偏向角度に応じて偏向反射面Dの入射光束Wに対する射影幅が変化する。したがって偏向反射面Dで反射されて、走査される光束の光量がBs>Bc>Beとなって、被走査面上での光量分布が不均一になり、レーザービームプリンター等の画像形成装置では主走査方向両端で光量の差が生じ、画像濃度ムラの原因となる。   As shown in FIG. 5, the projection width of the deflecting / reflecting surface D with respect to the incident light beam W changes according to each deflection angle. Therefore, the light amount of the light beam reflected and scanned by the deflecting reflection surface D becomes Bs> Bc> Be, and the light amount distribution on the surface to be scanned becomes non-uniform, which is mainly used in an image forming apparatus such as a laser beam printer. A difference in the amount of light occurs at both ends in the scanning direction, causing image density unevenness.

一方、複数の偏向反射面を有する回転多面鏡(ポリゴンミラー)を回転させて光束を偏向させるオーバーフィルド型の光走査装置においては以下に示す被走査面上で光量分布不均一が生じるという課題を解決する技術が従来より知られている。   On the other hand, in the overfilled optical scanning device that deflects a light beam by rotating a rotary polygon mirror (polygon mirror) having a plurality of deflecting reflecting surfaces, there is a problem that the light amount distribution non-uniformity occurs on the surface to be scanned as described below. The technique to solve is conventionally known.

すなわち偏向反射面の入射光束側に主走査方向に不均一な透過率分布のフィルタを配置し、偏向反射面により反射される光量の不均一を補正する構成が提案されている(例えば、特許文献2参照)。   In other words, a configuration has been proposed in which a filter having a non-uniform transmittance distribution in the main scanning direction is arranged on the incident light beam side of the deflecting reflecting surface to correct the unevenness in the amount of light reflected by the deflecting reflecting surface (for example, Patent Documents). 2).

また、被走査面上の光量分布が一様となるように入射光束の光量分布中心軸をずらすよう調整する構成が提案されている(例えば、特許文献3参照)。   In addition, a configuration has been proposed in which the central axis of the light quantity distribution of the incident light beam is shifted so that the light quantity distribution on the scanned surface is uniform (see, for example, Patent Document 3).

ところが、これらの例では偏向反射面と回転軸が一定距離(ここでは内接円半径)ずれており、偏向反射面が偏向反射角に応じて入射光の幅内で位置を変える場合に適用できる技術であり、偏向反射面が回転軸近傍にあり偏向反射面に移動が伴わない場合、つまり偏向反射面と回転軸が略同一面上にある構成は回転軸の位置が入射光軸中心と常に略一致するので上記の方法は適用できない。   However, in these examples, the deflection reflection surface and the rotation axis are deviated from each other by a certain distance (here, the inscribed circle radius), and the deflection reflection surface can be applied to change the position within the width of the incident light according to the deflection reflection angle. This is a technology where the deflecting / reflecting surface is in the vicinity of the rotation axis and the deflecting / reflecting surface does not move, that is, the configuration in which the deflecting / reflecting surface and the rotating shaft are substantially on the same plane always places the rotating axis at the center of the incident optical axis. The above method cannot be applied because they are almost identical.

そこで本発明では偏向反射面と回転軸が略同一面上にあっても被走査面上での光量分布がほぼ均一であり、良好な画質を実現しうる光走査装置を提供することを目的とする。
特開2002−182147号公報 特開平8−160338号公報 特開平9−96769号公報
Accordingly, an object of the present invention is to provide an optical scanning device capable of realizing a good image quality because the light quantity distribution on the scanned surface is substantially uniform even when the deflection reflection surface and the rotation axis are substantially on the same surface. To do.
JP 2002-182147 A JP-A-8-160338 JP 9-96769 A

本発明は上記事実を考慮し、有効走査角度が広く、被走査面上での光量分布不均一を抑え良好な画質の光走査装置を提供することを目的とする。   In consideration of the above-described facts, an object of the present invention is to provide an optical scanning device that has a wide effective scanning angle, and suppresses unevenness in light amount distribution on the surface to be scanned, and has a good image quality.

請求項1に記載の光走査装置は、画像データに基づいて変調される光束を射出するレーザ光源と、光偏向軸を中心に回動可能に支持された偏向反射面にて前記光束を偏向する光偏向器と、前記光偏向器によって偏向された前記光束を被走査面上に走査結像する結像光学系とを備えた光走査装置であって、前記光偏向軸は前記偏向反射面近傍に配置され、前記光束の幅は前記偏向反射面の主走査方向幅より広く、前記有効走査角度中央と前記光束中心のなす角度αが30°以上、かつ75°以下であることを特徴とする。   The optical scanning device according to claim 1 deflects the light beam by a laser light source that emits a light beam that is modulated based on image data, and a deflection reflection surface that is rotatably supported around an optical deflection axis. An optical scanning device comprising: an optical deflector; and an imaging optical system that scans and images the light beam deflected by the optical deflector on a surface to be scanned, wherein the optical deflection axis is in the vicinity of the deflecting reflection surface The width of the light beam is wider than the width of the deflecting reflection surface in the main scanning direction, and an angle α formed by the center of the effective scanning angle and the light beam center is 30 ° or more and 75 ° or less. .

上記構成の発明では、有効走査角度中央と光束中心のなす角度αが30°以上とすることで入射光束と干渉しない範囲で有効走査角度を広くとることができ、装置の小型化、光偏向器のコンパクト化を可能にするとともに、角度αが75°以下とすることで被走査面上での光量分布不均一を抑えることができる。   In the invention with the above configuration, the angle α formed between the center of the effective scanning angle and the center of the light beam is 30 ° or more, so that the effective scanning angle can be widened in a range not interfering with the incident light beam. Can be made compact, and by making the angle α 75 ° or less, it is possible to suppress unevenness in the light amount distribution on the surface to be scanned.

請求項2に記載の光走査装置は、前記偏向反射面に入射する前記光束と前記偏向反射面により偏向された光束とが同一平面上にあることを特徴とする。   The optical scanning device according to claim 2 is characterized in that the light beam incident on the deflection reflection surface and the light beam deflected by the deflection reflection surface are on the same plane.

上記構成の発明では、構成が簡単になり、機械的精度を得やすくすることができる。   In the invention with the above configuration, the configuration is simplified, and mechanical accuracy can be easily obtained.

本発明は上記構成としたので、有効走査角度が広く、被走査面上での光量分布不均一を抑え良好な画質の光走査装置とすることができた。   Since the present invention has the above-described configuration, it is possible to provide an optical scanning device having a wide effective scanning angle, suppressing unevenness in the light amount distribution on the surface to be scanned, and having good image quality.

<基本構成>
図1には本発明の第1実施形態に係る光走査装置が示されている。
<Basic configuration>
FIG. 1 shows an optical scanning device according to a first embodiment of the present invention.

図1に示すようにレーザー光源12から出射された光束はカップリングレンズ14により平行光束とされ、光偏向器10に入射する。このとき光束の幅は後述する偏向反射面の主走査方向幅よりも幅の広い、いわゆるオーバーフィルドタイプの光学系とする。   As shown in FIG. 1, the light beam emitted from the laser light source 12 is converted into a parallel light beam by the coupling lens 14 and enters the optical deflector 10. At this time, a so-called overfilled optical system is used in which the width of the light beam is wider than the width in the main scanning direction of the deflecting reflecting surface described later.

光偏向器10の偏向反射面に入射した光束は、偏向反射面の揺動により、偏向反射され、走査結像レンズ16により、被走査面18上にスポット状に結像するように走査される。走査結像レンズ16を光偏向器10よりも光軸上の下流方向に設けたことで、反射光束を被走査面18上にて結像させる光学系と主走査方向の線速度を一定に、すなわち等速走査可能とする光学系を兼ねることができ、光学エレメントの個数を減らし単純で部品点数の少ない光学系とすることができる。   The light beam incident on the deflecting / reflecting surface of the optical deflector 10 is deflected and reflected by the swinging of the deflecting / reflecting surface, and scanned by the scanning imaging lens 16 so as to form an image on the scanned surface 18 in a spot shape. . By providing the scanning imaging lens 16 in the downstream direction on the optical axis with respect to the optical deflector 10, the optical system for imaging the reflected light beam on the scanned surface 18 and the linear velocity in the main scanning direction are made constant. That is, it can also serve as an optical system capable of scanning at a constant speed, reducing the number of optical elements and providing an optical system that is simple and has a small number of parts.

上記のように入射光束は有効走査角度の外側に配置したレーザー光源12からカップリングレンズ14によりコリメートされて偏向反射面に入射されるように構成することにより、入射光束と走査光束が干渉すること無く、同一平面上それぞれの要素を配置できるため、構成が簡単になり、入射光束と走査光束が副走査方向に角度をもって配置される際に発生する、走査線が弓形に湾曲してしまう所謂走査線湾曲が生じることも無い。
<光偏向器>
図2には本発明の第1実施形態に係る光偏向器が示されている。
As described above, the incident beam is collimated by the coupling lens 14 from the laser light source 12 arranged outside the effective scanning angle and is incident on the deflecting reflection surface, so that the incident beam and the scanning beam interfere with each other. Since each element can be arranged on the same plane, the configuration is simplified, and so-called scanning that occurs when the incident light beam and the scanning light beam are arranged at an angle in the sub-scanning direction and the scanning line is curved in an arcuate shape. There is no line bending.
<Optical deflector>
FIG. 2 shows an optical deflector according to the first embodiment of the present invention.

図2に示すように、光偏向器10は支持体28に梁部材20で偏向反射ミラー24が主走査方向に揺動可能に支持されている。偏向反射ミラー24は偏向反射面26を備え、偏向反射面26は偏向反射ミラー24の揺動に応じて入射光束を主走査方向に振り、被走査面18を走査する。   As shown in FIG. 2, the optical deflector 10 is supported on a support 28 by a beam member 20 so that the deflecting / reflecting mirror 24 can swing in the main scanning direction. The deflecting / reflecting mirror 24 includes a deflecting / reflecting surface 26, and the deflecting / reflecting surface 26 scans the scanned surface 18 by swinging the incident light beam in the main scanning direction in accordance with the swinging of the deflecting / reflecting mirror 24.

光偏向器10は偏向反射ミラー24を主走査方向と直交する方向すなわち副走査方向(図中上下方向)に延びた上下2本の梁部材20により支持体28に軸支し、偏向反射ミラー24に対向して設けられた駆動部(図示せず)から偏向反射ミラー24と支持体28間に電磁気力もしくは静電気力等を発生させて偏向反射ミラー24を主走査方向に駆動する。   The optical deflector 10 pivotally supports the deflecting / reflecting mirror 24 on the support 28 by two upper and lower beam members 20 extending in the direction perpendicular to the main scanning direction, that is, the sub-scanning direction (up and down in the figure). The deflecting / reflecting mirror 24 is driven in the main scanning direction by generating an electromagnetic force or an electrostatic force between the deflecting / reflecting mirror 24 and the support 28 from a driving unit (not shown) provided opposite to the head.

梁部材20はそれ自体がトーションバースプリングであり、梁部材20にねじり振動を与え偏向反射ミラー24を揺動させるものであり、時間に対して偏向角φが正弦波状に変化するように往復揺動する。すなわち図3に示すように偏向反射ミラー24の振動角φは時間に対して正弦波状に変動する。   The beam member 20 itself is a torsion bar spring, torsionally vibrates the beam member 20, and swings the deflection reflection mirror 24. The beam member 20 reciprocally swings so that the deflection angle φ changes sinusoidally with time. Move. That is, as shown in FIG. 3, the vibration angle φ of the deflecting / reflecting mirror 24 varies sinusoidally with respect to time.

このとき偏向反射ミラー24は偏向反射面26を有する偏向反射ミラー24と梁部材20からなる構造体の共振周波数で往復揺動するように駆動される、いわゆるレゾナントスキャナである。この構造体の機械特性によって偏向反射ミラー24の偏向速度が定められることになる。この構成により安定した偏向速度が得られ、また共振を利用するため偏向反射ミラー24の駆動に必要な電力を低く抑え省エネルギー化が可能となる。   At this time, the deflecting / reflecting mirror 24 is a so-called resonant scanner that is driven so as to reciprocate and swing at the resonance frequency of the structure including the deflecting / reflecting mirror 24 having the deflecting / reflecting surface 26 and the beam member 20. The deflection speed of the deflecting / reflecting mirror 24 is determined by the mechanical characteristics of the structure. With this configuration, a stable deflection speed can be obtained, and since the resonance is used, the power required for driving the deflecting / reflecting mirror 24 can be reduced to save energy.

偏向反射面26には、図6に示すように主走査方向に偏向反射面26の主走査方向幅Dよりも幅の大きい光束が入射し、偏向角度φに応じて偏向反射面26の射影幅分の光束を偏向反射する。
<光学系>
走査結像レンズ16は時間に対して偏向角φが正弦波状に変化する偏向反射ミラー24で偏向された光束を、被走査面18上では等速走査に変換するためarc−sinレンズが用いられる。すなわち、
偏向反射ミラー24の偏向角度φ(t)は最大振幅をφ0、共振周波数をfとして、
φ(t)= φ0・sin(2πft)
で表されるため、
走査結像レンズ16に
y = k・2・φ0・arc−sin(φ(t)/φ0) (kは定数)
なる走査特性をもたせることにより、
被走査面18上の走査速度vは
v = (dy/dt) = k・2・φ0・(2πf)
となり、被走査面18上を一定速度で走査することを可能にするものである。
As shown in FIG. 6, a light beam having a width larger than the main scanning direction width D of the deflection reflection surface 26 is incident on the deflection reflection surface 26 and the projection width of the deflection reflection surface 26 according to the deflection angle φ. The reflected light is deflected and reflected.
<Optical system>
The scanning imaging lens 16 is an arc-sin lens for converting the light beam deflected by the deflecting / reflecting mirror 24 whose deflection angle φ changes in a sine wave shape with respect to time into constant speed scanning on the scanned surface 18. . That is,
The deflection angle φ (t) of the deflection reflection mirror 24 is set such that the maximum amplitude is φ0 and the resonance frequency is f.
φ (t) = φ0 · sin (2πft)
Is represented by
In the scanning imaging lens 16, y = k · 2 · φ0 · arc-sin (φ (t) / φ0) (k is a constant)
By giving the following scanning characteristics
The scanning speed v on the scanned surface 18 is v = (dy / dt) = k · 2 · φ0 · (2πf)
Thus, the surface to be scanned 18 can be scanned at a constant speed.

なお、本構成では、光偏向器10の偏向反射面26は1面のみであるため、複数の偏向反射面を有する回転多面鏡(ポリゴンミラー)を用いた場合のように、副走査方向に反射面の角度が不揃いとなり発生する、所謂面倒れが起こらない。このため倒れ補正光学系を構成しておらず、走査結像レンズ16は共軸光学系で構成されている。
<光量分布>
前述のように偏向反射ミラー24の主走査方向幅Dが入射光束の幅Wよりも狭い場合、走査開始端(SOS)、中心(COS)、終了端(EOS)と走査するに連れて光量が変動する。
In this configuration, since there is only one deflecting / reflecting surface 26 of the optical deflector 10, it is reflected in the sub-scanning direction as in the case of using a rotating polygon mirror (polygon mirror) having a plurality of deflecting / reflecting surfaces. There is no so-called surface tilt that occurs when the angles of the surfaces are uneven. Therefore, the tilt correction optical system is not configured, and the scanning imaging lens 16 is configured by a coaxial optical system.
<Light intensity distribution>
As described above, when the main scanning direction width D of the deflecting / reflecting mirror 24 is narrower than the width W of the incident light beam, the amount of light is increased as scanning is performed with the scanning start end (SOS), center (COS), and end end (EOS). fluctuate.

すなわち、図4のようにレーザー光源12から出射されて偏向反射面26(幅D)に至る入射光束(幅W)は有効走査角度θの外側から走査角度中心軸Lcに対して角度αをつけて偏向反射面26に入射する。偏向反射面26は軸Oを中心として揺動し、その偏向角度φに応じて入射光束に対する偏向反射面26の射影幅に相当する部分のみを偏向反射するようになる。   That is, as shown in FIG. 4, the incident light beam (width W) emitted from the laser light source 12 and reaching the deflecting / reflecting surface 26 (width D) forms an angle α with respect to the scanning angle central axis Lc from the outside of the effective scanning angle θ. Then, the light enters the deflecting reflection surface 26. The deflecting / reflecting surface 26 swings about the axis O, and only the portion corresponding to the projection width of the deflecting / reflecting surface 26 with respect to the incident light beam is deflected and reflected according to the deflection angle φ.

つまり入射光束の光量分布が図4、図5に示すように略ガウス分布であった場合、図5に示すように各偏向角度に応じて偏向反射面26の入射光束に対する射影幅が変化するのでSOSでは入射光束の幅を大きく使い、ガウス分布の裾野まで使用しているのに対して(図5のBs)、EOSでは入射光束の中心部分しか使用しないため(図5のBe)、相対的に光量が低下することになる。   That is, when the light quantity distribution of the incident light beam is a substantially Gaussian distribution as shown in FIGS. 4 and 5, the projection width of the deflecting / reflecting surface 26 with respect to the incident light beam changes according to each deflection angle as shown in FIG. In SOS, the width of the incident light beam is greatly used and the base of the Gaussian distribution is used (Bs in FIG. 5), whereas in EOS, only the central portion of the incident light beam is used (Be in FIG. 5). As a result, the amount of light decreases.

従って偏向反射面26で反射されて、走査される光束の光量がBs>Bc>Beとなって被走査面18上での光量分布が不均一になり、レーザービームプリンター等の画像形成装置では主走査方向両端(SOS/EOS)で光量の差が生じ、画像濃度ムラの原因となっている。   Accordingly, the light amount of the light beam reflected and deflected by the deflecting reflection surface 26 becomes Bs> Bc> Be, and the light amount distribution on the surface to be scanned 18 becomes non-uniform, which is mainly used in an image forming apparatus such as a laser beam printer. A difference in the amount of light occurs at both ends in the scanning direction (SOS / EOS), causing image density unevenness.

図7には本発明の第1実施形態に係る光走査装置の被走査面上における光量分布が示されている。   FIG. 7 shows a light amount distribution on the surface to be scanned of the optical scanning device according to the first embodiment of the present invention.

上記構成により、被走査面18上が走査された場合の被走査面18上の光量分布の不均一を図7(a)〜(e)に示す。   7A to 7E show the nonuniformity of the light amount distribution on the scanned surface 18 when the scanned surface 18 is scanned with the above configuration.

それぞれ、ピーク値の13.5%の位置で規定した入射光束の主走査方向幅Wに対する偏向反射面26の幅Dの比D/Wで示し(a)1.0、(b)0.8、(c)0.6、(d)0.4、(e)0.2の場合をグラフ化したものであり、横軸に有効走査中央Lcと偏向反射面に入射する光束中心軸のなす角度α、縦軸にEOSとSOSの光量比をとり、有効走査角度θを10°〜30°までパラメータとして示してある。   These are indicated by the ratio D / W of the width D of the deflecting reflecting surface 26 to the width W in the main scanning direction of the incident light beam defined at the position of 13.5% of the peak value, respectively (a) 1.0, (b) 0.8. , (C) 0.6, (d) 0.4, and (e) 0.2 are graphed, with the horizontal axis representing the effective scanning center Lc and the central axis of the light beam incident on the deflecting / reflecting surface. The angle α, the vertical axis represents the light quantity ratio of EOS and SOS, and the effective scanning angle θ is shown as a parameter from 10 ° to 30 °.

図7(a)〜(e)からEOS/SOS光量比は有効走査角度θが大きくなるほど、また有効走査画角中央と偏向反射面26に入射する光束中心軸のなす角度αが大きくなるほど低下していくことがわかる。   7A to 7E, the EOS / SOS light quantity ratio decreases as the effective scanning angle θ increases, and as the angle α formed by the center of the effective scanning angle of view and the central axis of the light beam incident on the deflecting reflecting surface 26 increases. You can see that

また、各図7(a)〜(e)の比較より、D/Wが小さくなるほどEOS/SOS光量比は相対的に低下する、すなわち入射光束の幅Wが偏向反射面26の幅Dに比較して大きいほど光量分布の不均一が大きいことがわかる。要求される画質は用途により異なるもののEOS/SOS比が0.90を下回ると濃度ムラとしては許容できる範囲を逸脱してしまう。   7A to 7E, the EOS / SOS light quantity ratio relatively decreases as D / W decreases. That is, the width W of the incident light beam is compared with the width D of the deflecting reflecting surface 26. It can be seen that the larger the value, the greater the non-uniformity of the light amount distribution. Although the required image quality varies depending on the application, if the EOS / SOS ratio is less than 0.90, the density unevenness deviates from an allowable range.

さらに、角度αが30°を下回ると有効走査角度はせいぜい20°程度しかとることが出来ないため装置全体が光軸方向に大きくなり、結像光学系の焦点距離も大きくなるので装置の大型化を招いてしまう。具体的には結像光学系の焦点距離が300mmを越える構成はスペース効率の点から望ましくない。   Further, when the angle α is less than 30 °, the effective scanning angle can be only about 20 ° at most, so the entire apparatus becomes larger in the optical axis direction, and the focal length of the imaging optical system becomes larger, so that the apparatus becomes larger. Will be invited. Specifically, a configuration in which the focal length of the imaging optical system exceeds 300 mm is not desirable from the viewpoint of space efficiency.

そこで本実施形態では各設計パラメータを
有効走査画角中央と
偏向反射面に入射する光束中心軸のなす角度α: 45°
有効走査角度θ : 28°
偏向反射面の主走査方向幅 : 4mm
ピーク値の13.5%の位置で規定した
入射光束の主走査方向幅W : 5mm
と設定した。
Therefore, in this embodiment, each design parameter is an angle α between the center of the effective scanning field angle and the central axis of the light beam incident on the deflecting reflecting surface: 45 °
Effective scanning angle θ: 28 °
Main scanning direction width of deflecting reflecting surface: 4 mm
Main scanning direction width W of the incident light beam defined at a position of 13.5% of the peak value: 5 mm
Was set.

上記のように諸数値を設定することでEOS/SOS光量比を0.90とすることが出来、濃度ムラの無い良好な画像を提供することができる。   By setting various values as described above, the EOS / SOS light quantity ratio can be set to 0.90, and a good image without density unevenness can be provided.

なお、本実施例では偏向反射面26の偏向角度φが正弦波状に変化するように往復揺動するタイプの光偏向器を用いた光走査装置について述べたが、1面もしくは表裏2面の偏向反射面を有する偏向ミラー24が偏向反射面近傍の回転軸を中心に回転偏向するタイプの光偏向器を用いた光走査装置についても本発明が適用できる。   In the present embodiment, the optical scanning device using the optical deflector that reciprocally swings so that the deflection angle φ of the deflecting reflecting surface 26 changes in a sine wave shape has been described. The present invention can also be applied to an optical scanning device using an optical deflector of a type in which a deflecting mirror 24 having a reflecting surface rotates and deflects around a rotation axis near the deflecting reflecting surface.

また、本実施例では倒れ補正を有しない光学系について述べたが、偏向反射面の動的な変形、面精度の光学特性への影響を緩和するために光偏向器の偏向反射面と被走査面を光学的に共役関係とする、いわゆる倒れ補正光学系とすることで光学特性への影響を緩和することが出来る。このような場合にも本発明が適用できる。
<その他>
以上、本発明の実施例について記述したが、本発明は上記の実施例に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲において種々なる態様で実施し得ることは言うまでもない。
In this embodiment, an optical system that does not have tilt correction has been described. However, in order to mitigate the influence of the dynamic deformation of the deflecting reflecting surface and the optical characteristics on the surface accuracy, the deflecting reflecting surface of the optical deflector and the scanned surface are used. By using a so-called tilt correction optical system in which the surfaces are optically conjugate, the influence on the optical characteristics can be mitigated. The present invention can also be applied to such a case.
<Others>
As mentioned above, although the Example of this invention was described, it cannot be overemphasized that this invention is not limited to said Example at all, and can implement in a various aspect in the range which does not deviate from the summary of this invention.

例えば共振周波数にてミラーが駆動されるレゾナントスキャナ以外でも所謂ガルバノミラー等に応用できることは言うまでもなく、また有効走査角度中心と入射光軸中心のなす角度の関係は光走査装置に限定されず、回転軸と反射面とが接近した反射光学系を用いた構成であれば他にも本発明を応用することが可能である。   For example, it is needless to say that the present invention can be applied to a so-called galvanometer mirror other than a resonant scanner in which a mirror is driven at a resonance frequency, and the relationship between the effective scanning angle center and the incident optical axis center is not limited to the optical scanning device, and the rotation The present invention can be applied to other configurations as long as the configuration uses a reflection optical system in which the axis and the reflection surface are close to each other.

本発明に係る光走査装置の構成を示す図である。It is a figure which shows the structure of the optical scanning device based on this invention. 本発明に係る光偏向器の構成を示す図である。It is a figure which shows the structure of the optical deflector which concerns on this invention. 本発明に係る光偏向器のミラー振動特性を示す図である。It is a figure which shows the mirror vibration characteristic of the optical deflector which concerns on this invention. 本発明に係る光偏向器の構成を示す拡大図である。It is an enlarged view which shows the structure of the optical deflector which concerns on this invention. 本発明に係る光偏向器の構成を示す拡大図である。It is an enlarged view which shows the structure of the optical deflector which concerns on this invention. 本発明に係る光偏向器のミラー幅と入射光束幅を示す図である。It is a figure which shows the mirror width and incident light beam width of the optical deflector which concerns on this invention. 本発明に係る光走査装置の被走査面における光量分布を示す図である。It is a figure which shows light quantity distribution in the to-be-scanned surface of the optical scanning device which concerns on this invention. 本発明に係る光走査装置の被走査面における光量分布を示す図である。It is a figure which shows light quantity distribution in the to-be-scanned surface of the optical scanning device which concerns on this invention.

符号の説明Explanation of symbols

10 光偏向器
12 レーザ光源
14 カップリングレンズ
16 走査結像レンズ
18 被走査面
20 梁部材
24 偏向反射ミラー
26 偏向反射面
28 支持体
DESCRIPTION OF SYMBOLS 10 Optical deflector 12 Laser light source 14 Coupling lens 16 Scanning imaging lens 18 Scanned surface 20 Beam member 24 Deflection reflection mirror 26 Deflection reflection surface 28 Support body

Claims (2)

画像データに基づいて変調される光束を射出するレーザ光源と、
光偏向軸を中心に回動可能に支持された偏向反射面にて前記光束を偏向する光偏向器と、
前記光偏向器によって偏向された前記光束を被走査面上に走査結像する結像光学系とを備えた光走査装置であって、
前記光偏向軸は前記偏向反射面近傍に配置され、
前記光束の幅は前記偏向反射面の主走査方向幅より広く、
前記有効走査角度中央と前記偏向反射面に入射する前記光束中心のなす角度αが30°以上、かつ75°以下であることを特徴とする光走査装置。
A laser light source that emits a light beam that is modulated based on image data;
An optical deflector for deflecting the light beam by a deflection reflecting surface supported rotatably about an optical deflection axis;
An optical scanning apparatus comprising: an imaging optical system configured to scan and image the light beam deflected by the optical deflector on a scanned surface;
The light deflection axis is disposed in the vicinity of the deflection reflection surface;
The width of the luminous flux is wider than the width of the deflecting / reflecting surface in the main scanning direction,
An optical scanning device characterized in that an angle α formed by the center of the effective scanning angle and the center of the light beam incident on the deflecting reflecting surface is 30 ° or more and 75 ° or less.
前記偏向反射面に入射する前記光束と前記偏向反射面により偏向された光束とが同一平面上にあることを特徴とする請求項1に記載の光走査装置。 The optical scanning device according to claim 1, wherein the light beam incident on the deflection reflection surface and the light beam deflected by the deflection reflection surface are on the same plane.
JP2005254604A 2005-09-02 2005-09-02 Optical scanner Pending JP2007065554A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005254604A JP2007065554A (en) 2005-09-02 2005-09-02 Optical scanner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005254604A JP2007065554A (en) 2005-09-02 2005-09-02 Optical scanner

Publications (1)

Publication Number Publication Date
JP2007065554A true JP2007065554A (en) 2007-03-15

Family

ID=37927794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005254604A Pending JP2007065554A (en) 2005-09-02 2005-09-02 Optical scanner

Country Status (1)

Country Link
JP (1) JP2007065554A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08160338A (en) * 1994-12-12 1996-06-21 Fuji Xerox Co Ltd Optical scanner
JPH08211706A (en) * 1994-11-21 1996-08-20 Xerox Corp Multispot optical scanning system
JP2003241123A (en) * 2002-02-20 2003-08-27 Canon Inc Optical scanner, image forming apparatus, and color image forming apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08211706A (en) * 1994-11-21 1996-08-20 Xerox Corp Multispot optical scanning system
JPH08160338A (en) * 1994-12-12 1996-06-21 Fuji Xerox Co Ltd Optical scanner
JP2003241123A (en) * 2002-02-20 2003-08-27 Canon Inc Optical scanner, image forming apparatus, and color image forming apparatus

Similar Documents

Publication Publication Date Title
JP4505134B2 (en) Raster output scanning (ROS) image forming system
JP3836174B2 (en) Multi-spot optical scanning system
JPH10114106A (en) Laser scanning unit
US7154652B2 (en) Light scanning optical system, image projection apparatus, and image display system
JPH10170850A (en) Pre-objective type scanner
JP2007065554A (en) Optical scanner
JPH10239615A (en) Dual-format/resolution type scanner
JP2007079002A (en) Optical scanner
JPH08248345A (en) Optical scanner
KR20060016545A (en) Optical system for scanning light beam
JP3950265B2 (en) Optical adjustment method for optical scanning device
JP2003131154A (en) Optical scanner and image forming device using the same
JPH01200221A (en) Light beam scanning optical system
JP2008065045A5 (en)
JP3896085B2 (en) Bar code reader and light condensing method to light receiving sensor
JP4409869B2 (en) Deflection element, optical scanning device, and image forming apparatus
KR100717040B1 (en) Light scanning system and image forming apparatus employing the same
JPH0772402A (en) Optical scanner
JP2002023088A (en) Scanning optical system
JPS6363016A (en) Light beam scanner
JPH01200220A (en) Light beam scanning optical system
JPS6269224A (en) Optical scanning device
JP2010032827A (en) Vibration mirror and image recorder
JPH0354513A (en) Light beam scanning optical system
JP2005326466A (en) Optical scanner and image forming apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110125