JP2007064856A - Sampling device, sampling method and thermoelectric power plant provided with sampling device - Google Patents

Sampling device, sampling method and thermoelectric power plant provided with sampling device Download PDF

Info

Publication number
JP2007064856A
JP2007064856A JP2005252913A JP2005252913A JP2007064856A JP 2007064856 A JP2007064856 A JP 2007064856A JP 2005252913 A JP2005252913 A JP 2005252913A JP 2005252913 A JP2005252913 A JP 2005252913A JP 2007064856 A JP2007064856 A JP 2007064856A
Authority
JP
Japan
Prior art keywords
sample
sampling
water
analyzer
bypass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005252913A
Other languages
Japanese (ja)
Inventor
Noboru Morohoshi
昇 諸星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2005252913A priority Critical patent/JP2007064856A/en
Publication of JP2007064856A publication Critical patent/JP2007064856A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sampling device for more rapidly analyzing the cleanness of sampling water in cooling of a turbine blade or the like by steam to certainly ensure the integrity of the turbine blade or the like. <P>SOLUTION: In the sampling device composed of a sample analyzing system equipped with supplying systems 37 and 38 for sampling and an analyzer for analyzing the properties of the sample supplied from sample analyzing systems 50-53, bypass systems 42 and 43 branched from the sampling system to divide a part of the sample are provided. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、火力発電プラント等で採用される試料採取装置に係り、特に蒸気または水等の試料に異常の兆候が検出されたとき、より早く的確な水質分析を行うことができるように図った試料採取装置および試料採取方法並びに試料採取装置を備えた発電プラントに関する。   The present invention relates to a sampling device employed in a thermal power plant or the like, and in particular, when an abnormality sign is detected in a sample such as steam or water, an accurate water quality analysis can be performed more quickly. The present invention relates to a sampling device, a sampling method, and a power plant including the sampling device.

従来、火力発電プラントでは、プラントを構成する水−蒸気系統の機器の腐食を防止するため、復水・給水系統に腐食防止薬品としてアンモニアやヒドラジン等を注入し、水質を適正値に維持させる管理を行っている。   Conventionally, in a thermal power plant, in order to prevent corrosion of the water-steam system equipment that composes the plant, ammonia or hydrazine is injected into the condensate / water supply system as a corrosion-preventing chemical to maintain the water quality at an appropriate value. It is carried out.

この水質調整、水質管理には、水−蒸気系統から水を常時サンプリングし、電導率、PH、溶存酸素、ヒドラジン、鉄分、シリカ等を常時、分析、監視する試料採取系が設けられているが、その構成として特許文献1に開示されたものがある。   For this water quality adjustment and water quality management, there is a sampling system that constantly samples water from the water-steam system and constantly analyzes and monitors conductivity, pH, dissolved oxygen, hydrazine, iron, silica, etc. As the configuration, there is one disclosed in Patent Document 1.

特許文献1に開示された試料採取系は、図5に示すように、並列配置の第1試料採取系1と第2試料採取系2とを備えるとともに、各試料採取系1,2のそれぞれに接続するダミー水供給系3を設けている。   As shown in FIG. 5, the sampling system disclosed in Patent Document 1 includes a first sampling system 1 and a second sampling system 2 arranged in parallel, and each of the sampling systems 1 and 2 is provided. A dummy water supply system 3 to be connected is provided.

第1試料採取系1および第2試料採取系2は、ともに、水または蒸気の供給源としての母管(図示せず)に取合管4a,4bを接続させ、これら取合管4a,4bから下流側に向って順に、電磁弁5a,5bの駆動力で開閉する試料採取用元弁6a,6b、高温の蒸気または水等の試料(以下サンプリング水という)を常温に冷却させる冷却器7a,7b、高圧のサンプリング水を大気圧に減圧させる減圧器8a,8b、止め弁9a,9b,9b、流量計10a,10b,10b、サンプリング水の温度を一定値に維持させる恒温器11、温度計12a,12b,12bおよび分析計13a,13b,13bを備え、分析計13a,13b,13bで電導度、PH、溶存酸素濃度等の水質の分析、監視を行っている。 In both the first sampling system 1 and the second sampling system 2, the coupling pipes 4a and 4b are connected to a mother pipe (not shown) as a supply source of water or steam, and these coupling pipes 4a and 4b. In order from the downstream side to the downstream side, sampling source valves 6a and 6b that open and close by the driving force of the electromagnetic valves 5a and 5b, and a cooler 7a that cools a sample such as high-temperature steam or water (hereinafter referred to as sampling water) to room temperature. 7b, decompressors 8a and 8b for depressurizing high-pressure sampling water to atmospheric pressure, stop valves 9a, 9b 1 and 9b 2 , flow meters 10a, 10b 1 and 10b 2 , constant temperature for maintaining the temperature of the sampling water at a constant value vessel 11, a thermometer 12a, 12b 1, 12b 2 and analyzer 13a, with the 13b 1, 13b 2, conductivity at spectrometer 13a, 13b 1, 13b 2, PH, analysis of water, such as dissolved oxygen concentration, monitoring The line To have.

また、第1試料採取系1および第2試料採取系2は、試料採取用元弁6a,6bの入口側から分岐し、電磁弁14a,14bの駆動力で開閉するフラッシング弁15a,15bを介装させてフラッシング系16a,16bを備え、プラント運転停止中に溜ったドレン水を系外ブローさせている。   The first sampling system 1 and the second sampling system 2 branch from the inlet side of the sampling valves 6a and 6b and are flushed through flushing valves 15a and 15b that are opened and closed by the driving force of the electromagnetic valves 14a and 14b. It is equipped with flushing systems 16a and 16b, and drain water accumulated during the plant operation stop is blown out of the system.

そして、前述の水供給系3は、電磁弁17a,17b等の弁類を介挿させた分岐管18a,18bをそれぞれ止め弁9a,9b,9bの入口側に接続し、プラント運転停止時のサンプリング水が採取できない時に、ダミー水を分析計13a,13b,13bに流し、ダミー水中に分析計のセルを浸漬するように構成されている。この結果、分析計のセルは常時動作可能な状態に維持され、プラントの再起動時に、早期に水質の分析を行えるようになっている。
特公平3−87058号公報
And the above-mentioned water supply system 3 connects the branch pipes 18a and 18b inserted with valves such as the electromagnetic valves 17a and 17b to the inlet sides of the stop valves 9a, 9b 1 and 9b 2 , respectively, thereby stopping the plant operation. When sampling water at the time cannot be collected, the dummy water is caused to flow into the analyzers 13a, 13b 1 and 13b 2 and the analyzer cell is immersed in the dummy water. As a result, the analyzer cell is maintained in an always operable state, and water quality can be analyzed at an early stage when the plant is restarted.
Japanese Examined Patent Publication No. 3-87058

ところで、最近の火力発電プラントでは、プラント熱効率の向上、起動時間の短縮化の利点から、ガスタービンプラントに排熱回収ボイラと蒸気タービンプラントとを組合せたコンバインドサイクル発電プラントが運用されている。   By the way, in recent thermal power plants, a combined cycle power plant in which an exhaust heat recovery boiler and a steam turbine plant are combined with a gas turbine plant is operated from the advantages of improving the plant thermal efficiency and shortening the startup time.

このコンバインドサイクル発電プラントは、ガスタービンプラントの燃焼ガス(作動流体)が、例えば1300℃以上の高温になっており、この高温化にガスタービン部品を対処させるために、タービン翼等を冷却している。   In this combined cycle power plant, the combustion gas (working fluid) of the gas turbine plant is at a high temperature of, for example, 1300 ° C. or more. In order to cope with this high temperature, the turbine blades and the like are cooled. Yes.

タービン翼等の冷却は、狭く、薄い翼内に蛇行状の流路を形成し、蛇行状の流路に比熱が高い蒸気を流す、いわゆる蒸気冷却を行っている。このため、蒸気の水質分析、監視を充分に行っていないと、翼内の流路で目詰りを起し、破損、破断を誘起させるおそれがある。   Cooling of turbine blades or the like is performed by so-called steam cooling in which a serpentine flow path is formed in a narrow, thin blade and steam having a high specific heat flows through the serpentine flow path. For this reason, if the water quality analysis and monitoring of the steam are not sufficiently performed, the flow path in the blade may be clogged, which may cause breakage or breakage.

このような事象を考慮して、最近では、蒸気の水質管理を強化している。   In consideration of such an event, steam water quality management has recently been strengthened.

しかし、図5で示した試料採取系を、蒸気冷却用の水質管理に適用する場合、いくつかの問題を抱えており、その一つに分析計へのサンプリング水のより早い供給である。   However, when the sampling system shown in FIG. 5 is applied to water quality management for steam cooling, it has several problems, one of which is faster supply of sampling water to the analyzer.

すなわち、図5に示した従来の試料採取系に設けた分析計13a,13b,13bは、構造上、流量に制限があって、多量のサンプリング水を扱うことができず、サンプリング水が分析計13a,13b,13bに至るまでの時間遅れに伴うサンプリング水の清浄度分析が遅れる。このため、試料分析値にプラント運転制限に至る以前の兆候が現われた場合、詳細分析を早急に行うことができず、蒸気冷却を行うタービン翼等への保全性に少なからず影響を与えていた。 That is, the analyzers 13a, 13b 1 and 13b 2 provided in the conventional sampling system shown in FIG. 5 are structurally limited in flow rate and cannot handle a large amount of sampling water. The cleanliness analysis of the sampling water is delayed due to the time delay until the analyzers 13a, 13b 1 and 13b 2 are reached. For this reason, if the sample analysis value shows signs before the plant operation was restricted, detailed analysis could not be performed immediately, which had a significant impact on the maintenance of turbine blades that perform steam cooling. .

一般に、流量と流速とは、比例関係にあることがよく知られている。このため、サンプリング水の清浄度をより早く分析するには、サンプリング水をより早い流速下で流すことを必要としていた。   In general, it is well known that the flow rate and the flow velocity are in a proportional relationship. For this reason, in order to analyze the cleanliness of the sampling water earlier, it is necessary to flow the sampling water at a higher flow rate.

しかし、上述したように、従来の分析計13a,13b,13bでは流量の過量に制限を受けるので、速応性を求める計測対象には適しておらず、何らかの新たな改善が求められていた。 However, as described above, the conventional analyzers 13a, 13b 1 , 13b 2 are limited by the excessive amount of the flow rate, and thus are not suitable for measurement objects for which quick response is required, and some new improvement has been demanded. .

本発明は、このような事情に基づいてなされたもので、サンプリング水に異常の兆候が現われた場合、そのサンプリング水の詳細分析をより早く行い、タービン翼等の健全性を確実に確保させる試料採取装置および試料採取方法並びに試料採取装置を備えた火力発電プラントを提供することを目的とする。   The present invention has been made on the basis of such circumstances, and when a sign of abnormality appears in the sampling water, a detailed analysis of the sampling water is performed earlier to ensure the soundness of the turbine blades and the like. It is an object of the present invention to provide a thermal power plant including a sampling device, a sampling method, and a sampling device.

本発明に係る試料採取装置は、上述の目的を達成するため、請求項1に記載したように、試料を採取する試料供給系と、この試料採取系から供給される試料の性状を分析する分析器を備えた試料分析系とからなる試料採取装置において、前記試料採取系から分岐して試料の一部を分流させるバイパス系を備えたものである。   In order to achieve the above-mentioned object, the sampling apparatus according to the present invention, as described in claim 1, analyzes a sample supply system for collecting a sample and analyzes the properties of the sample supplied from the sampling system. A sample collection device comprising a sample analysis system equipped with a vessel is provided with a bypass system that branches from the sample collection system and diverts a part of the sample.

また、本発明に係る試料分析方法は、上述の目的を達成するため、請求項5に記載したように、試料採取系で採取された試料を下流に設けた試料分析系に流し、この試料分析系に備えられた分析器で試料を分析するようにした試料分析方法において、前記分析器により試料の異常兆候を検出したとき、試料の一部を試料採取系からバイパス系に分流させることにより、試料の流速を早めて前記分析器に流すようにし、当該分析器による試料の詳細分析を早期に行う方法である。   Further, in order to achieve the above object, the sample analysis method according to the present invention flows a sample collected by the sample collection system to a sample analysis system provided downstream, as described in claim 5, and performs this sample analysis. In a sample analysis method in which a sample is analyzed by an analyzer provided in the system, when an abnormal sign of the sample is detected by the analyzer, a part of the sample is diverted from the sampling system to the bypass system, In this method, the flow rate of the sample is increased to flow through the analyzer, and the detailed analysis of the sample by the analyzer is performed at an early stage.

本発明に係る試料採取装置および試料採取方法によれば、試料採取系にバイパス系を設け、ここを流れるサンプリング水の流量を多くして、サンプリング水流量増加に伴う流速を早め、早めた流速のサンプリング水の一部を分析計に流す構成にしたので、サンプリング水の性状に異常値が認められたとき、高速流のサンプリング水の下、分析結果を早めてその措置を適正に対処させ、プラントの健全性を素早く維持させることができる。   According to the sampling apparatus and sampling method of the present invention, a bypass system is provided in the sampling system, the flow rate of the sampling water flowing therethrough is increased, the flow rate accompanying the increase in the sampling water flow rate is increased, Since a part of the sampling water is made to flow into the analyzer, when an abnormal value is observed in the properties of the sampling water, the analysis result is advanced and the measures are properly dealt with under the high-speed sampling water. You can quickly maintain the health of your.

本発明に係る試料採取装置の実施形態を図面および図面に付した符号を引用して説明する。   An embodiment of a sampling device according to the present invention will be described with reference to the drawings and reference numerals attached to the drawings.

図1は、本発明に係る試料採取装置を適用するプラントの例示として、コンバインドサイクル発電プラントの概略系統図である。   FIG. 1 is a schematic system diagram of a combined cycle power plant as an example of a plant to which a sampling apparatus according to the present invention is applied.

コンバインドサイクル発電プラントは、ガスタービンプラント20に排熱回収ボイラ21および蒸気タービンプラント22を組み合せたもので、ガスタービンプラント20の排ガス(排熱)を利用して蒸気を発生させ、発生させた蒸気を蒸気タービンプラント22に供給し、膨張仕事をさせ、排ガスの有効活用を図っている。   The combined cycle power plant is a combination of a gas turbine plant 20 with an exhaust heat recovery boiler 21 and a steam turbine plant 22, and generates steam by using exhaust gas (exhaust heat) of the gas turbine plant 20 to generate steam. Is supplied to the steam turbine plant 22 to perform expansion work and to effectively use the exhaust gas.

ガスタービンプラント20は、発電機23、空気圧縮機24、ガスタービン燃焼器25、ガスタービン26を備え、空気圧縮機24で吸込んだ空気(大気)を高圧化し、高圧空気を燃料とともにガスタービン燃焼器25に供給し、ここで燃焼ガスを生成し、生成した燃焼ガスをガスタービン26で膨張仕事をさせ、その際に発生する動力で発電機23を駆動するとともに、膨張仕事を終えた排ガスを排熱回収ボイラ21に供給する。   The gas turbine plant 20 includes a generator 23, an air compressor 24, a gas turbine combustor 25, and a gas turbine 26. The gas (atmosphere) sucked by the air compressor 24 is increased in pressure, and the high-pressure air is combusted with the fuel in the gas turbine. The combustion gas is generated, and the generated combustion gas is expanded by the gas turbine 26, and the generator 23 is driven by the power generated at that time. The exhaust heat recovery boiler 21 is supplied.

排熱回収ボイラ21は、過熱器、蒸発器等数多くの熱交換器を備え、ガスタービンプラント20からの排ガスを熱源とし、蒸気タービンプラント22から供給される給水を熱交換して蒸気を発生させ、発生させた蒸気を主蒸気管27を介して蒸気タービンプラント22に供給する。   The exhaust heat recovery boiler 21 includes a number of heat exchangers such as a superheater and an evaporator. The exhaust gas from the gas turbine plant 20 is used as a heat source, and heat is supplied to the feed water supplied from the steam turbine plant 22 to generate steam. The generated steam is supplied to the steam turbine plant 22 via the main steam pipe 27.

また、蒸気タービンプラント22は、蒸気タービン28、発電機29、復水器30、補助蒸気系31を備え、排熱回収ボイラ21から主蒸気管27を介して蒸気タービン28に供給する蒸気に膨張仕事をさせ、その際に発生する動力で発電機29を駆動するとともに、膨張仕事を終えたタービン排気を復水器30に供給し、ここで凝縮させて復水にし、この復水を給水として排熱回収ボイラ21に戻している。   The steam turbine plant 22 includes a steam turbine 28, a generator 29, a condenser 30, and an auxiliary steam system 31, and expands to steam supplied from the exhaust heat recovery boiler 21 to the steam turbine 28 via the main steam pipe 27. The generator 29 is driven by the power generated during the work, and the turbine exhaust that has finished the expansion work is supplied to the condenser 30, where it is condensed to condensate, and this condensate is used as feed water. The exhaust heat recovery boiler 21 is returned.

また、補助蒸気系31は、一端を主蒸気管27に接続し、他端を所内ボイラ33に接続する補助蒸気管34に湿分分離器35を備え、起動時、排熱回収ボイラ21からの蒸気の温度、圧力が所定値になっていないとき、所内ボイラ33から供給される飽和蒸気のうち、湿分を湿分分離器35で除去させた後、補助蒸気管34、主蒸気管27を介して蒸気タービン28に供給する。   Further, the auxiliary steam system 31 includes a moisture separator 35 in the auxiliary steam pipe 34 having one end connected to the main steam pipe 27 and the other end connected to the in-house boiler 33, and from the exhaust heat recovery boiler 21 at startup. When the temperature and pressure of the steam do not reach predetermined values, moisture is removed from the saturated steam supplied from the in-house boiler 33 by the moisture separator 35, and then the auxiliary steam pipe 34 and the main steam pipe 27 are connected. To the steam turbine 28.

このような構成を備えるコンバインドサイクル発電プラントの、例えば蒸気タービン28の入口側の主蒸気管27に、本発明に係る試料採取装置36が設けられる。   In the combined cycle power plant having such a configuration, for example, the main steam pipe 27 on the inlet side of the steam turbine 28 is provided with a sampling device 36 according to the present invention.

この試料採取装置36は、図2に示すように、並列配置の第1試料採取系37と第2試料採取系38と、各試料採取系37,38のそれぞれに接続する水供給系39とを備えるとともに、各試料採取系37,38から分岐する第1フラッシング系40および第2フラッシング系41と、第1バイパス系42および第2バイパス系43とを設けている。   As shown in FIG. 2, the sampling device 36 includes a first sampling system 37 and a second sampling system 38 arranged in parallel, and a water supply system 39 connected to each of the sampling systems 37 and 38. In addition, a first flushing system 40 and a second flushing system 41 branched from the respective sampling systems 37 and 38, and a first bypass system 42 and a second bypass system 43 are provided.

第1試料採取系37および第2試料採取系38は、ともに、蒸気の供給源である主蒸気管27に取合管44a,44bを接続させ、これら取合管44a,44bから下流側に向って順に、電磁弁45a,45bの駆動力で開閉するサンプリング水用元弁46a,46b、高温のサンプリング水を常温に冷却させる冷却器47a,47b、高圧のサンプリング水を大気圧に減圧させる減圧器48a,48b、止め弁49a,49b,49b、流量計50a,50b,50b、サンプリング水の温度を一定値に維持させる恒温器51、温度計52a,52b,52bおよび分析計53a,53b,53bを備え、分析計53a,53b,53bで電導度、PH、溶存酸素濃度等の水質の分析、監視を行っている。 In both the first sampling system 37 and the second sampling system 38, the coupling pipes 44a and 44b are connected to the main steam pipe 27, which is a supply source of steam, and the downstream of the coupling pipes 44a and 44b. The sampling water main valves 46a and 46b that are opened and closed by the driving force of the electromagnetic valves 45a and 45b, the coolers 47a and 47b that cool the high-temperature sampling water to room temperature, and the decompressors that depressurize the high-pressure sampling water to atmospheric pressure. 48a, 48b, stop valves 49a, 49b 1 , 49b 2 , flow meters 50a, 50b 1 , 50b 2 , a thermostat 51 for maintaining the temperature of the sampling water at a constant value, thermometers 52a, 52b 1 , 52b 2, and an analyzer 53a, includes a 53b 1, 53b 2, analyzer 53a, conductivity at 53b 1, 53b 2, PH, analysis of water, such as dissolved oxygen concentration, are monitoring

そして、前述の水供給系39は、電磁弁56a,56b等の弁類を介挿させた分岐管67a,57bをそれぞれ止め弁49a,49b,49bの入口側に接続し、プラント運転停止時のサンプリング水が採取できない時に、ダミー水を分析計53a,53b,53bに流し、ダミー水中に分析計のセルを浸漬するように構成されている。この結果、分析計のセルは常時動作可能な状態に維持され、プラントの再起動時に、早期に水質の分析を行えるようになっている。 And the above-mentioned water supply system 39 connects the branch pipes 67a and 57b inserted with valves such as the electromagnetic valves 56a and 56b to the inlet sides of the stop valves 49a, 49b 1 and 49b 2 , respectively, thereby stopping the plant operation. When sampling water cannot be collected, the dummy water is caused to flow into the analyzers 53a, 53b 1 and 53b 2 and the analyzer cell is immersed in the dummy water. As a result, the analyzer cell is maintained in an always operable state, and water quality can be analyzed at an early stage when the plant is restarted.

また、第1試料採取系37および第2試料採取系38は、サンプリング水用元弁46a,46bの入口側から分岐し、電磁弁58a,58bの駆動力で開閉するフラッシング弁55a,55bを介装させた第1フラッシング系40、および第2フラッシング系41を備え、プラント運転停止中に溜ったドレン水を系外に排出させている。   The first sample collection system 37 and the second sample collection system 38 branch from the inlet side of the sampling water main valves 46a and 46b, and are passed through flushing valves 55a and 55b that are opened and closed by the driving force of the electromagnetic valves 58a and 58b. A first flushing system 40 and a second flushing system 41 are provided, and drain water accumulated during the plant operation stop is discharged out of the system.

このような構成を備える試料採取装置36において、本実施形態は、第1試料採取系37のサンプリング水用元弁46aおよび第2試料採取系38のサンプリング水用元弁46bのそれぞれの入口側から分岐する第1バイパス系42および第2バイパス系43のそれぞれを設けたものである。   In the sample collection device 36 having such a configuration, the present embodiment is configured so that the sampling water main valve 46a of the first sample collection system 37 and the sampling water main valve 46b of the second sample collection system 38 are respectively input from the inlet side. Each of the first bypass system 42 and the second bypass system 43 that branch off is provided.

第1バイパス系42および第2バイパス系43のそれぞれには、空気駆動弁59a,59bと、空気駆動弁59a,59bを開閉駆動する電磁弁60a,60bが設けられる。   Each of the first bypass system 42 and the second bypass system 43 is provided with air driven valves 59a and 59b and electromagnetic valves 60a and 60b for driving the air driven valves 59a and 59b to open and close.

第1バイパス系42および第2バイパス系43のそれぞれに、空気駆動弁59a,59bを設けたのは、比較的大きな口径のものを製作することができ、これに伴ってより多くのサンプリング水を流すことができるようにするためである。   The air-driven valves 59a and 59b are provided in the first bypass system 42 and the second bypass system 43, respectively, so that a relatively large caliber can be manufactured. This is so that it can flow.

このような構成を備える試料採取装置36において、本実施形態は、サンプリング水の試料分析値に異常の兆候が現われていない場合、第1バイパス系42および第2バイパス系43のそれぞれの空気駆動弁59a,59bを閉弁させ、第1試料採取系37および第2試料採取系38またはサンプリング水供給系57a,57bから採取するサンプリング水を用い、分析計53a,53b,53bでその性状分析を行う。 In the sampling device 36 having such a configuration, in the present embodiment, the air-driven valves of the first bypass system 42 and the second bypass system 43 are used when there is no sign of abnormality in the sample analysis value of the sampling water. 59a and 59b are closed, and using the sampling water collected from the first sample collection system 37 and the second sample collection system 38 or the sampling water supply systems 57a and 57b, the analyzer 53a, 53b 1 and 53b 2 analyze the properties. I do.

一方、試料分析に、例えば、シリカ等が検出されて異常の兆候、すなわち、プラント運転制限に至る以前の兆候が現われた場合、サンプリング水をさらに詳細に分析する必要がある。本実施形態は、第1バイパス系42および第2バイパス系43のそれぞれに設けた空気駆動弁59a,59bを電磁弁60a,60bの駆動力で開弁させ、第1試料採取系37および第2試料採取系38のそれぞれが採取したサンプリング水のうち、一部が第1バイパス系42および第2バイパス系43に流れ、残りが分析計53a,53b,53bに流れる。 On the other hand, in the sample analysis, for example, when silica or the like is detected and there are signs of abnormality, that is, signs before the plant operation is restricted, it is necessary to analyze the sampling water in more detail. In the present embodiment, the air driven valves 59a and 59b provided in the first bypass system 42 and the second bypass system 43 are opened by the driving force of the electromagnetic valves 60a and 60b, and the first sampling system 37 and the second sampling system 37 Part of the sampling water collected by each of the sample collection systems 38 flows to the first bypass system 42 and the second bypass system 43, and the rest flows to the analyzers 53a, 53b 1 , 53b 2 .

このとき、第1バイパス系42および第2バイパス系43のそれぞれに設けた空気駆動弁59a,59bは、口径を大きくしてあるので、その流量が多くなり、多くなった流量に基づいて流速も早くなる。この流速の増加は、第1試料採取系37および第2試料採取系38のそれぞれに流れるサンプリング水にも影響を与え、分析計53a,53b,53bのそれぞれへの流れをより早くする。この結果、サンプリング水の詳細な性状の分析をより早く行うことができる。 At this time, since the air driven valves 59a and 59b provided in the first bypass system 42 and the second bypass system 43 have a large diameter, the flow rate increases, and the flow velocity also increases based on the increased flow rate. Get faster. This increase in flow velocity also affects the sampling water flowing in each of the first sampling system 37 and the second sampling system 38, and makes the flow to each of the analyzers 53a, 53b 1 , 53b 2 faster. As a result, the detailed properties of the sampling water can be analyzed more quickly.

なお、第1バイパス系42および第2バイパス系43のそれぞれの空気駆動弁59a,59bは、第1試料採取系37および第2試料採取系38のそれぞれの分析計53a,53b,53bが求めているサンプリング水の流量になるように、その口径を設定している。つまり、サンプリング水は第1バイパス系42および第2バイパス系43のそれぞれに流れる流速を早め、その早まった流速の一部のサンプリング水を第1試料採取系37および第2試料採取系38のそれぞれの分析計53a,53b,53bに供給し、試料分析を早めている。 It should be noted that the air drive valves 59a and 59b of the first bypass system 42 and the second bypass system 43 are respectively connected to the analyzers 53a, 53b 1 and 53b 2 of the first sampling system 37 and the second sampling system 38. The aperture is set so that the desired sampling water flow rate is obtained. In other words, the sampling water accelerates the flow velocity of each of the first bypass system 42 and the second bypass system 43, and a part of the sampling water with the accelerated flow velocity is supplied to each of the first sampling system 37 and the second sampling system 38. Are supplied to the analyzers 53a, 53b 1 and 53b 2 to accelerate sample analysis.

他方、図3に示すように、水または蒸気の供給源である母管61a,61bから試料採取装置36に供給されたサンプリング水のうち、第1試料採取系37、第2試料採取系38のそれぞれに供給されたサンプリング水は、その性状を分析後、排水ピット62に排出される。   On the other hand, as shown in FIG. 3, of the sampling water supplied to the sampling device 36 from the mother pipes 61a and 61b, which are water or steam supply sources, the first sampling system 37 and the second sampling system 38 The sampling water supplied to each is discharged into the drain pit 62 after analyzing its properties.

また、第1フラッシング系40および第2フラッシング系41のそれぞれに供給されたサンプリング水は、回収ピット63に排出され、ここから、例えば給水として再活用される。   Further, the sampling water supplied to each of the first flushing system 40 and the second flushing system 41 is discharged to the recovery pit 63 and is reused as, for example, water supply from here.

また、第1バイパス系42および第2バイパス系43のそれぞれに供給されたサンプリング水は、湿分分離器35で湿分を取り除いた後、所内ボイラからの蒸気とともに補助蒸気管34を解した蒸気タービンに供給し、再利用が図られる。   In addition, the sampling water supplied to each of the first bypass system 42 and the second bypass system 43 removes moisture by the moisture separator 35, and then steam that breaks the auxiliary steam pipe 34 together with the steam from the in-house boiler. The turbine is supplied and reused.

なお、第1バイパス系42および第2バイパス系43のそれぞれに供給されたサンプリング水は、図4に示すように、復水器32に回収させてもよい。   The sampling water supplied to each of the first bypass system 42 and the second bypass system 43 may be collected by the condenser 32 as shown in FIG.

このように、本実施形態は、試料採取装置36の第1試料採取系37および第2試料採取系38のそれぞれに第1バイパス系42、第2バイパス系43を設け、各バイパス系42,43に口径の大きい空気駆動弁59a,59bを備え、ここを流れるサンプリング水の流量を多くし、サンプリング水の流量増加に伴う流速をより早くし、より早くした流速のサンプリング水の一部を第1試料採取系37および第2試料採取系38のそれぞれに設けた分析計53a,53b,53bに流す構成にしたので、サンプリング水の性状に異常な兆候が検出された場合、分析計53a,53b,53bに流れるサンプリング水の流速を早くすることができるので、分析を早めることができ、プラントの健全性の管理により早く対処させることができる。 Thus, in the present embodiment, the first bypass system 42 and the second bypass system 43 are provided in each of the first sampling system 37 and the second sampling system 38 of the sampling apparatus 36, and the bypass systems 42, 43 are provided. Are provided with large-diameter air-driven valves 59a and 59b, the flow rate of the sampling water flowing therethrough is increased, the flow rate associated with the increase in the flow rate of the sampling water is increased, and a part of the sampling water having a faster flow rate is first. Since the analyzer 53a, 53b 1 , 53b 2 is provided in each of the sample collection system 37 and the second sample collection system 38, when an abnormal sign is detected in the properties of the sampling water, the analyzer 53a, it is possible to quickly flow rate of sampling water flowing in 53b 1, 53b 2, analysis can provide a faster, is addressed quickly by the management of the health of the plant this Can.

本発明に係る試料採取装置を適用するコンバインドサイクル発電プラントを示す概略系統図。1 is a schematic system diagram showing a combined cycle power plant to which a sampling apparatus according to the present invention is applied. 本発明に係る試料採取装置を示す概略系統図。1 is a schematic system diagram showing a sampling device according to the present invention. 本発明に係る試料採取装置におけるサンプリング水の排出系の第1実施形態を示す概略系統図。1 is a schematic system diagram showing a first embodiment of a sampling water discharge system in a sampling device according to the present invention. FIG. 本発明に係る試料採取装置におけるサンプリング水の排出系の第2実施形態を示す概略系統図。The schematic system diagram which shows 2nd Embodiment of the discharge system of the sampling water in the sampling device which concerns on this invention. 従来の試料採取装置を示す概略系統図。The schematic system diagram which shows the conventional sample-collecting apparatus.

符号の説明Explanation of symbols

1 第1試料採取系
2 第2試料採取系
3 水供給系
4a,4b 取合管
5a,5b 電磁弁
6a,6b 試料採取用元弁
7a,7b 冷却器
8a,8b 減圧器
9a,9b,9b 止め弁
10a,10b,10b 流量計
11 恒温器
12a,12b,12b 温度計
13a,13b,13b 分析計
14a,14b 電磁弁
15a,15b フラッシング弁
16a,16b フラッシング系
17a,17b 電磁弁
18a,18b ダミー水供給系
20 ガスタービンプラント
21 排熱回収ボイラ
22 蒸気タービンプラント
23 発電機
24 空気圧縮機
25 ガスタービン燃焼器
26 ガスタービン
27 主蒸気管
28 蒸気タービン
29 発電機
30 復水器
31 補助蒸気系
33 所内ボイラ
34 補助蒸気管
35 湿分分離器
36 試料採取装置
37 第1試料採取系
38 第2試料採取系
39 水供給系
40 第1フラッシング系
41 第2フラッシング系
42 第1バイパス系
43 第2バイパス系
44a,44b 取合管
45a,45b 電磁弁
46a,46b 試料採取用元弁
47a,47b 冷却器
48a,48b 減圧器
49a,49b,49b 止め弁
50a,50b,50b 流量計
51 恒温器
52a,52b,52b 温度計
53a,53b,53b 分析計
54a,54b 電磁弁
55a,55b フラッシング弁
56a,56b 電磁弁
57a,57b 分岐管
58a,58b 電磁弁
59a,59b 空気駆動弁
60a,60b 電磁弁
61a,61b 母管
62 排水ピット
63 回収ピット
1 first sampling system 2 second sampling system 3 water supply system 4a, 4b Togokan 5a, 5b solenoid valves 6a, 6b sampling for main valve 7a, 7b condenser 8a, 8b decompressor 9a, 9b 1, 9b 2 stop valves 10a, 10b 1 , 10b 2 flow meters 11 thermostats 12a, 12b 1 , 12b 2 thermometers 13a, 13b 1 , 13b 2 analyzers 14a, 14b electromagnetic valves 15a, 15b flushing valves 16a, 16b flushing system 17a , 17b Solenoid valves 18a, 18b Dummy water supply system 20 Gas turbine plant 21 Waste heat recovery boiler 22 Steam turbine plant 23 Generator 24 Air compressor 25 Gas turbine combustor 26 Gas turbine 27 Main steam pipe 28 Steam turbine 29 Generator 30 Condenser 31 Auxiliary steam system 33 In-house boiler 34 Auxiliary steam pipe 35 Moisture separator 36 Sampling device 37 First sampling system 38 Second sampling system 39 Water supply system 40 First flushing system 41 Second flushing system 42 First bypass system 43 Second bypass systems 44a, 44b Joint pipes 45a, 45b Electromagnetic valves 46a, 46b Sample harvesting stop valve 47a, 47b condenser 48a, 48b pressure reducer 49a, 49b 1, 49b 2 stop valves 50a, 50b 1, 50b 2 flow meter 51 incubator 52a, 52b 1, 52b 2 thermometers 53a, 53b 1, 53b 2 analyzers 54a and 54b Electromagnetic valves 55a and 55b Flushing valves 56a and 56b Electromagnetic valves 57a and 57b Branch pipes 58a and 58b Electromagnetic valves 59a and 59b Air-driven valves 60a and 60b Electromagnetic valves 61a and 61b Main pipe 62 Drain pit 63 Recovery pit

Claims (6)

試料を採取する試料供給系と、この試料採取系から供給される試料の性状を分析する分析器を備えた試料分析系とからなる試料採取装置において、
前記試料採取系から分岐して試料の一部を分流させるバイパス系を備えたことを特徴とする試料採取装置。
In a sample collection device comprising a sample supply system for collecting a sample and a sample analysis system equipped with an analyzer for analyzing the properties of the sample supplied from the sample collection system,
A sampling apparatus comprising a bypass system that branches off from the sampling system and diverts a part of the sample.
前記バイパス系は、通常運転時に閉弁し、試料分析値に異常兆候が認められたとき開弁する止め弁を備えたことを特徴とする請求項1記載の試料採取装置。 2. The sampling apparatus according to claim 1, wherein the bypass system includes a stop valve that closes during normal operation and opens when an abnormality sign is detected in the sample analysis value. バイパス系は、試料を試料補助蒸気系に設けた湿分分離器に回収させる構成にしたことを特徴とする請求項1記載の試料採取装置。 2. The sampling apparatus according to claim 1, wherein the bypass system is configured to collect the sample by a moisture separator provided in the sample auxiliary steam system. バイパス系は、試料を蒸気タービンプラントに設けた復水器に回収させる構成にしたことを特徴とする請求項1記載の試料採取装置。 2. The sampling apparatus according to claim 1, wherein the bypass system is configured to collect a sample in a condenser provided in the steam turbine plant. 試料採取系で採取された試料を下流に設けた試料分析系に流し、この試料分析系に備えられた分析器で試料を分析するようにした試料分析方法において、
前記分析器により試料の異常兆候を検出したとき、試料の一部を試料採取系からバイパス系に分流させることにより、試料の流速を早めて前記分析器に流すようにし、当該分析器による試料の詳細分析を早期に行うことを特徴とする試料分析方法。
In a sample analysis method in which a sample collected by a sample collection system is flowed to a sample analysis system provided downstream, and the sample is analyzed by an analyzer provided in the sample analysis system.
When an abnormal sign of the sample is detected by the analyzer, a part of the sample is diverted from the sampling system to the bypass system so that the flow rate of the sample is increased to flow to the analyzer. A sample analysis method characterized by conducting detailed analysis at an early stage.
請求項1ないし4のいずれかに記載の試料採取装置を備えた火力発電プラント。 A thermal power plant comprising the sampling device according to any one of claims 1 to 4.
JP2005252913A 2005-08-31 2005-08-31 Sampling device, sampling method and thermoelectric power plant provided with sampling device Pending JP2007064856A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005252913A JP2007064856A (en) 2005-08-31 2005-08-31 Sampling device, sampling method and thermoelectric power plant provided with sampling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005252913A JP2007064856A (en) 2005-08-31 2005-08-31 Sampling device, sampling method and thermoelectric power plant provided with sampling device

Publications (1)

Publication Number Publication Date
JP2007064856A true JP2007064856A (en) 2007-03-15

Family

ID=37927211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005252913A Pending JP2007064856A (en) 2005-08-31 2005-08-31 Sampling device, sampling method and thermoelectric power plant provided with sampling device

Country Status (1)

Country Link
JP (1) JP2007064856A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013060866A (en) * 2011-09-13 2013-04-04 Mitsubishi Heavy Ind Ltd Sample gas obtaining structure and gas turbine plant having the same
WO2016125649A1 (en) * 2015-02-04 2016-08-11 三菱重工環境・化学エンジニアリング株式会社 Exhaust heat recovery device, power generation system, and exhaust heat recovery method
US11624682B2 (en) 2020-08-24 2023-04-11 Mitsubishi Heavy Industries, Ltd. Sampling system and sampling method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013060866A (en) * 2011-09-13 2013-04-04 Mitsubishi Heavy Ind Ltd Sample gas obtaining structure and gas turbine plant having the same
WO2016125649A1 (en) * 2015-02-04 2016-08-11 三菱重工環境・化学エンジニアリング株式会社 Exhaust heat recovery device, power generation system, and exhaust heat recovery method
US11624682B2 (en) 2020-08-24 2023-04-11 Mitsubishi Heavy Industries, Ltd. Sampling system and sampling method

Similar Documents

Publication Publication Date Title
US7987675B2 (en) Provision for rapid warming of steam piping of a power plant
JP5138894B2 (en) Gas turbine engine assembly and intercooler system
Fu et al. Performance degradation diagnosis of thermal power plants: A method based on advanced exergy analysis
CN110320334B (en) Water quality monitoring system, steam turbine system provided with same, and water quality monitoring method
JP2007064856A (en) Sampling device, sampling method and thermoelectric power plant provided with sampling device
US4232546A (en) Method and apparatus for tube leakage testing
JP2002122005A (en) Thermal efficiency diagnostic method and device for thermal power plant
US5060600A (en) Condenser operation with isolated on-line test loop
US8341962B2 (en) Biasing working fluid flow
JP2004324548A (en) Anomaly monitoring device of equipment, anomaly monitoring device of gas turbine, gas turbine facility and combined power generating facility
JP5690161B2 (en) Hydrogen control system for generator
EP2640936B1 (en) Combined cycle plant for energy production and method for operating said plant
JP5125970B2 (en) Scale adhesion monitoring device for geothermal fluid utilization system
JP4738158B2 (en) Residual steam removal mechanism and residual steam removal method for steam cooling piping of gas turbine
US11346245B2 (en) Method for cooling down a steam turbine
JP2021011992A (en) Boiler tube leakage early detection system and method thereof
Aronson et al. Ejectors of power plants turbine units efficiency and reliability increasing
JP2006231197A (en) Water quality control method based on heater drain iron concentration
JP3643663B2 (en) Combined power plant
US20060010877A1 (en) Method for the prevention of deposits in steam systems
Tomarov et al. Extending the erosion-corrosion service life of the tube system of heat-recovery boilers used as part of combined-cycle plants
US9702376B2 (en) Apparatus for compressing a wet gas flow
RU2631960C1 (en) Steam turbine plant
US20140052426A1 (en) System and method to manage condensate formation
Murmanskii et al. Experience in multistage steam-driven ejectors