JP3643663B2 - Combined power plant - Google Patents

Combined power plant Download PDF

Info

Publication number
JP3643663B2
JP3643663B2 JP33179196A JP33179196A JP3643663B2 JP 3643663 B2 JP3643663 B2 JP 3643663B2 JP 33179196 A JP33179196 A JP 33179196A JP 33179196 A JP33179196 A JP 33179196A JP 3643663 B2 JP3643663 B2 JP 3643663B2
Authority
JP
Japan
Prior art keywords
gas
fuel
gas turbine
laser
generated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP33179196A
Other languages
Japanese (ja)
Other versions
JPH10169413A (en
Inventor
治 品田
博久 吉田
祥啓 出口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP33179196A priority Critical patent/JP3643663B2/en
Publication of JPH10169413A publication Critical patent/JPH10169413A/en
Application granted granted Critical
Publication of JP3643663B2 publication Critical patent/JP3643663B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]

Abstract

PROBLEM TO BE SOLVED: To measure a small quantity of corrosive gas component on online with laser in the gas turbine device of a composite power generating plant and monitor high temperature parts such as the cascade of the gas turbine. SOLUTION: This composite power generating plant has a gas turbine device for generating power by expanding oil fuel such as gas oil, gas fuel such as LNG, coal gas fuel obtained by dust-removing and desulfurizing gasified coal, gas fuel generated from an iron manufacturing device such as a blast furnace, gas fuel generated from an oil refining plant or high temperature and high pressure combustion gas generated from a pressurized fluid bed boiler, an exhaust heat recovery boiler 9 for generating steam by using the exhaust gas of the gas turbine device as a heat source ad a steam turbine power generating device 18 for generating power by the steam generated from the exhaust heat recovery boiler 9. Measurement devices 20 and 21 for measuring gas component with laser through measuring windows are disposed at the inlet air duct part 2 of the air compressor of the gas turbine device and a fuel pipeline part 4 at the inlet of the gas turbine device, so that a small quantity of corrosive gas component in air and the fuel is measured on online with laser and high temperature parts such as the cascade of a gas turbine are monitored.

Description

【0001】
【発明の属する技術分野】
本発明は複合発電プラントに関する。詳しくは、複合発電設備の主要設備であるガスタービン設備の翼列等高温部品の寿命監視をオンラインで行い同プラントの運転性、信頼性の向上に寄与するものである。
【0002】
【従来の技術】
複合発電プラントでは、燃料及び空気の清浄度を高めれば、その燃焼生成物の清浄度も十分高いはずであるとの考えから、排気ガス中のNa,K,V等のアルカリ金属成分、Cl,F等ハロゲン成分、Zn,Hg等の金属成分などの腐触性微量ガス成分について特別な監視装置は設置していない。
【0003】
燃料の清浄度を高めるためには、従来では、ガスタービン設備に使用する燃料の性状条件にアルカリ金属含有率、ハロゲン含有率、金属成分含有率に厳しい条件を設定することで対処している。また、空気圧縮機については吸気フィルタを設置し清浄度をあげて対処している。
【0004】
また、図4に示す様なサンプリング装置で微量ガス成分を吸引し分析する方法では、微量なガスの計測であるため、吸引時間が長く必要で、かつ、精度の高い計測・分析を行うには、サンプリング管内付着物等まで洗浄し分析する必要があり、計測結果が得られるまで数日を要する。またそれに必要な計測員も数人必要で、常時監視するのは経済的ではない。
【0005】
図4は従来用いられている微量ガス成分の計測法を示したものである。燃料配管4の被計測場29に、ガスサンプリングプローブ38を挿入し、ガスを吸引し、サンプリング管39、減圧弁40を通して、吸収液ビン41に導かれる。そこで被計測ガス成分が吸収液に吸収される。その後ガスメータ42で流量を計測後放出される。サンプリング管39は被計測ガス成分に応じ電気ヒータ等で加温する必要がある。
【0006】
吸収液に吸収された量を分析し、またガスメータ42で計測した吸引ガス量からガス中の微量ガス成分を計測する。またより高い計測精度が要求される場合は、サンプリング管39内壁への付着物まで洗浄液で洗い流して、その洗浄液に含まれる微量ガス成分を計測する必要がある。
【0007】
【発明が解決しようとする課題】
上述したように、複合発電プラントでは、ガスタービン設備の燃料条件にアルカリ金属含有率、ハロゲン含有率、金属成分含有率に厳しい条件を設定することで燃料清浄化に対処し、また、空気圧縮機については吸気フィルタを設置することで空気清浄化に対処している。
そのため、ガスタービンの翼列を通過する燃焼ガスの腐触性ガス成分は、基本的にガスタービンの許容値以下となることを想定している。
【0008】
しかしながら、実際には大気の過度な汚濁や、ガスタービン設備空気圧縮機の吸気フィルタの部分的損傷や、燃料性状の変動等があり、常時清浄度が保証されている訳ではない。
ガスタービンの翼列は千数百℃〜500℃の高温下で3000rpm以上の高速で回転し、温度、応力ともに厳しい環境下におかれる。その様な環境下で、翼列を通過する燃焼ガス中に、例えば許容値以上のNaが存在すれば、Na2SO4等の溶融塩が形成され、翼金属の表面に付着して、翼金属の腐触を招き、また翼表面にある冷却孔の閉塞を招く虞がある。
【0009】
本発明は、複合発電プラントのガスタービン設備での腐触性微量ガス成分をオンラインでレーザにて計測し、ガスタービンの翼列等高温部品の監視を行うことを目的とする。
【0010】
【課題を解決するための手段】
斯かる目的を達成する本発明の請求項1に係る複合発電プラントは、軽油等の油系燃料、LNG等のガス系燃料、石炭をガス化し脱塵・脱硫をした石炭ガス燃料、高炉等製鉄設備から発生するガス燃料、石油精製プラントから発生するガス燃料、または、加圧流動床ボイラから発生する高温・高圧の燃焼ガスを膨張させ発電を行うガスタービン設備を有し、ガスタービンの排気ガスを熱源として蒸気を発生する排熱回収ボイラ、排熱回収ボイラから発生する蒸気により発電を行う蒸気タービン発電設備を有する複合発電プラントにおいて、ガスタービン設備の空気圧縮機入口空気ダクト部及び、ガスタービン設備入口の燃料配管部、または加圧流動床ボイラでは高温燃焼ガス配管部に、計測窓を介してレーザ法によるガス成分の計測装置を設置し、空気中及び、燃料中、または加圧流動床ボイラでは高温燃焼ガス中の腐触性微量ガス成分をオンラインでレーザにて計測し、ガスタービンの翼列等高温部品の監視を行うことを特徴とする。
【0011】
上記目的を達成する本発明の請求項2に係る複合発電プラントは、軽油等の油系燃料、LNG等のガス系燃料、石炭をガス化し脱塵・脱硫をした石炭ガス燃料、高炉等製鉄設備から発生するガス燃料、石油精製プラントから発生するガス燃料、または、加圧流動床ボイラから発生する高温・高圧の燃焼ガスを膨張させ発電を行うガスタービン設備を有し、ガスタービンの排気ガスを熱源として蒸気を発生する排熱回収ボイラ、排熱回収ボイラから発生する蒸気により発電を行う蒸気タービン発電設備を有する複合発電プラントにおいて、ガスタービン設備出口の排気ダクト部または、排熱回収ボイラ中間部又は出口部に計測窓を介して、レーザ法によるガス成分の計測装置を設置し、ガスタービン排気ガス中の腐触性微量ガス成分をオンラインでレーザにて計測し、ガスタービン設備の翼列等高温部品の監視を行うことを特徴とする。
【0012】
上記目的を達成する本発明の請求項3に係る複合発電プラントは、請求項1及び請求項2に記載の複合発電プラントにおいて、レーザ法によるガス成分の計測装置は、レーザ誘起ブレークダウン法とレーザ誘起蛍光法を組み合わせた計測装置であることを特徴とする。
【0013】
上記目的を達成する本発明の請求項4に係る複合発電プラントは、請求項1、2又は3記載の複合発電プラントにおいて、レーザ法によるガス成分の計測装置の計測時間を変化させること或いは、レーザ法によるガス成分の計測装置の計測部焦点位置を変化させることで、前記ダクトや燃料配管、加圧流動床ボイラでは高温・高圧燃焼ガス配管の奥行き方向に前記腐触性微量ガス成分分布を計測し、ガスタービン設備の翼列等高温部品の監視を行うことを特徴とする。
【0014】
〔作用〕
本発明では、レーザ法によるガス成分の計測装置を燃焼用空気の吸気ダクト及び燃料配管に設けることにより、ガスタービン燃焼器へ入る金属翼の腐食の原因となるガス成分の総量を監視し、経済的な方法で、ガスタービン設備の監視が可能となる。
これにより、経済的な方法で、ガスタービン設備の監視が可能となり、複合発電プラント全体の運転性、信頼性の向上が図れる。
また、レーザ法によるガス成分の計測装置を、ガスタービン燃焼器以後の各部に設けることで、金属翼の腐食の原因となるガス成分の総量を監視できると共に、計測窓のパージ等が容易となり、計測部での温度が低下することから、断熱構造の容易性及び計測の難易度も楽になる。
【0015】
【発明の実施の形態】
〔実施例1〕
図1は本発明を適用した実施例の一つである。空気は吸気フィルタ1、吸気ダクト2を通り、空気圧縮機3で約15ataまで圧縮された後、ガスタービン燃焼器6に入る。
【0016】
一方、燃料配管4には、軽油等の油系燃料、LNG等のガス系燃料、石炭をガス化し脱塵・脱硫をした石炭ガス燃料、高炉等製鉄設備から発生するガス燃料、石油精製プラントから発生するガス燃料、または加圧流動床ボイラからの高温燃焼ガスが供給され、制御弁5を通り、ガスタービン燃焼器6に入り、前記圧縮空気と燃焼し高温・高圧(約1300℃、14ata)のガスとなる。
【0017】
高温高圧のガスはガスタービンエキスパンダ7で膨張し、発電機17で発電を行う。膨張後のガスタービン排気ガス(約600℃、600mmAq)は、排気ガスダクト8を経て、排熱回収ボイラ9に送られ、蒸気10を発生し、排熱回収ボイラ出口ダクト16を通じて、煙突19から排出される。
【0018】
蒸気10は蒸気制御弁11を通して、蒸気タービン12で膨張し、発電機18で発電を行う。蒸気タービン12出口の蒸気13は復水器14で復水となり、排熱回収ボイラへの給水15となる。
吸気フィルタ1を通過した空気中のNa,K,V等のアルカリ金属成分、Cl,F等ハロゲン成分、Zn,Hg等の金属成分などの腐触性微量ガス成分は吸気ダクト2に設置されたレーザ法によるガス成分の計測装置20にて計測される。
【0019】
また燃料中に含まれるNa,K,V等のアルカリ金属成分、Cl,F等ハロゲン成分、Zn,Hg等の金属成分などの腐触性微量ガス成分は燃料配管4に設置されたレーザ法によるガス成分の計測装置21にて計測される。
このレーザ法によるガス成分の計測装置20、21で計測された量の合計がガスタービン燃焼器6をへてガスタービンエキスパンダ7に入り、金属翼の腐触の原因となる総量であるから、これらの総量をオンラインで計測し、許容値と比較することで点検時期を決定したり、経験を積み重ねることで寿命監視が可能となる。
【0020】
〔実施例2〕
図2は本発明を適用したその他の実施例である。基本的なプラント構成は図1の実施例と同じである。
但し、本実施例では、レーザ法によるガス成分の計測装置を設置する場所として選択可能な三箇所を示すものである。
即ち、ガスタービン燃焼器以後の排気ガスダクト8、排熱回収ボイラ9の中間部又は排熱回収ボイラ出口ダクト16のいずれかにレーザ法によるガス成分の計測装置22,23又は24を設置することができる。
【0021】
本実施例では計測部がほぼ大気圧に近く、図1の燃料配管中計測に比べ、計測窓のパージ等が容易となる利点がある。
また、レーザ法によるガス成分の計測装置22,23,24は、その順で温度が低下する(約600℃→100℃)ことから、断熱構造等、計測の難易度もその順で楽になるという特徴がある。
【0022】
〔実施例3〕
図3は本発明の実施例の一つで、ガス中の微量成分を計測するのに好適なレーザガス成分の計測装置として、レーザ誘起ブレークダウン法(Laser Induced Breakdown Spectroscopy=LIBS法)とレーザ誘起蛍光法(Laser Induced Fluorescence=LIF法)を組合わせて使用するものである。
【0023】
即ち、プラズマ用レーザ25(被計測部にレーザで誘起されたプラズマを生成させるためのレーザ)をレンズ26を用いて、パージ27付き光学窓28を通して、燃料配管4の中の被計測場29に集光し、そこに存在する気体、液体、固体をプラズマ化させる。
【0024】
プラズマ用レーザ25と同期させて、成分励起用レーザ30(物質中の被測定成分の励起波長に対応する波長を発振するレーザ)の出力をミラー31及びレンズ26を介してレーザ誘起されたプラズマ中に入射する。
プラズマ発光、並びに成分励起用レーザ光により励起された被測定成分が発する蛍光は、ミラー32を介してレンズ33で集光され、分光器34へ入射され、CCDカメラ35にてそれぞれ検出される。
【0025】
それぞれの信号はコンピュータ36に転送され、プラズマ発光の信号より、被測定場29の成分組成並びに、プラズマ温度を求め、その情報より蛍光強度の補正を行い、被測定場29に存在する微量成分の濃度を算出する。37はプラズマ用レーザ25及び成分励起用レーザ30の発振とCCDカメラ35を同期させるラインである。
このように本実施例では、LIBS法とLIF法を組合わせて使用することで、微量なガス成分の計測精度の向上を図ることができる。
【0026】
更に、レーザガス成分の計測装置の計測時間を変化させることにより、前記ダクトや燃料配管、加圧流動床ボイラでは高温・高圧燃焼ガス配管を奥行き方向に前記腐触性微量ガス成分分布を計測することが可能である(LIF法に有効)。
【0027】
即ち、パルスレ−ザ光及び蛍光伝搬と検出器での蛍光強度検出時間の関係を図5に示す。レーザ光の速度は3×108(m/s)であるため、レーザ入射側に近い部分で発生する蛍光と遠い部分で発生する蛍光ではレーザ光及び蛍光の伝搬距離に差(2L)が生じる。
【0028】
そのため、レ−ザからパルスレーザ光が出力され、計測場を伝搬し、計測場で発生した蛍光が蛍光検出器で検出されるまでの時間に計測点Aと計測点Bでは2L/C(C:光速)の差が生じる。そのため、光倹出器の計測時間を変化させることにより各散乱点の距離精報が入手できる。
【0029】
また、レーザガス成分の計測装置の計測部焦点位置を変化させることで、前記ダクトや燃料配管、加圧流動床ボイラでは高温・高圧燃焼ガス配管を奥行き方向に前記腐触性微量ガス成分分布を計測することが可能である(LIBS法に有効)。
【0030】
即ち、パルスレーザ光及び蛍光伝搬と焦点位置の関係を図6に示すように、レーザ光を集光し、プラズマを発生させる方法(LIBS法)においては、レ−ザ光を集光するとその焦点でレーザ光のエネルギー密度が上昇し、プラズマが発生する。
【0031】
焦点以外の地点では、レーザ光のエネルギー密度が低下するためプラズマ光は発生しない。信号光はプラズマ生成部のみから発生するため、この性質を利用し、レーザ光の焦点位置を変化させることにより、計測位置を特定し、奥行き方向の成分計測を行う。
【0032】
【発明の効果】
以上、実施例に基づいて具体的に説明したように、本発明では、レーザ法によるガス成分の計測装置を燃焼用空気の吸気ダクトと燃料配管に設けることにより、ガスタービン燃焼器へ入る金属翼の腐食の原因となるガス成分の総量を監視し、許容値と比較することにより、経済的な方法で、ガスタービン設備の監視が可能となり、複合発電プラント全体の運転性、信頼性の向上が図れる。また、レーザ法によるガス成分の計測装置を、ガスタービン燃焼器以後の各部に設けることで、前述したと同様に、金属翼の腐食の原因となるガス成分の総量を監視できると共に、計測窓のパージ等が容易となる。更に、温度が低下することから、断熱構造の容易性及び計測の難易度も楽になる。
【図面の簡単な説明】
【図1】本発明の実施例の一つに係る複合発電プラントの説明図である。
【図2】本発明の他の実施例に係る複合発電プラントの説明図である。
【図3】本発明の実施例の一つに係るレーザ法によるガス成分の計測装置の説明図である。
【図4】従来技術に係る微量ガス成分の計測法の説明図である。
【図5】LIF法に有効なレーザ法によるガス成分の計測装置の計測時間を変化させる方法の説明図である。
【図6】LIBS法に有効なレーザ法によるガス成分の計測装置の計測部焦点位置を変化させる方法の説明図である。
【符号の説明】
1 吸気フィルタ
2 吸気ダクト
3 空気圧縮機
4 燃料配管
5 制御弁
6 ガスタービン燃焼器
7 ガスタービンエキスパンダ
8 排気ガスダクト
9 排熱回収ボイラ
10,13 蒸気
11 蒸気制御弁
12 蒸気タービン
14 復水器
15 給水
16 排熱回収ボイラ出口ダクト
17,18 発電機
19 煙突
20,21,22,23,24 レーザ法によるガス成分の計測装置
25 プラズマ用レーザ
26,33 レンズ
27 パージ
28 光学窓
29 被計測部
30 成分励起用レーザ
31,32 ミラー
34 分光器
35 CCD
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a combined power plant. In detail, the life monitoring of high-temperature parts such as cascades of the gas turbine equipment, which is the main equipment of the combined power generation equipment, is performed online, which contributes to improving the operability and reliability of the plant.
[0002]
[Prior art]
In the combined power plant, if the cleanliness of the fuel and air is increased, the cleanliness of the combustion products should be sufficiently high. Therefore, alkali metal components such as Na, K, and V in the exhaust gas, Cl, No special monitoring device is installed for corrosive trace gas components such as halogen components such as F and metal components such as Zn and Hg.
[0003]
In order to increase the cleanliness of the fuel, conventionally, measures have been taken by setting severe conditions for the alkali metal content, the halogen content, and the metal component content in the property conditions of the fuel used in the gas turbine equipment. For air compressors, air intake filters are installed to increase cleanliness.
[0004]
In addition, the method of sucking and analyzing a trace gas component with a sampling device as shown in FIG. 4 is a measurement of a trace amount of gas, so that a long suction time is required and highly accurate measurement / analysis is performed. In addition, it is necessary to wash and analyze even the deposits in the sampling tube, and it takes several days until the measurement result is obtained. It also requires several measurers, and it is not economical to constantly monitor.
[0005]
FIG. 4 shows a conventional method for measuring trace gas components. A gas sampling probe 38 is inserted into the measurement field 29 of the fuel pipe 4 to suck the gas, and is guided to the absorption liquid bottle 41 through the sampling pipe 39 and the pressure reducing valve 40. Therefore, the gas component to be measured is absorbed by the absorption liquid. Thereafter, after the flow rate is measured by the gas meter 42, it is discharged. The sampling tube 39 needs to be heated with an electric heater or the like according to the gas component to be measured.
[0006]
The amount absorbed in the absorption liquid is analyzed, and the trace gas component in the gas is measured from the amount of suction gas measured by the gas meter 42. When higher measurement accuracy is required, it is necessary to wash away even the deposits on the inner wall of the sampling tube 39 with the cleaning liquid and measure the trace gas components contained in the cleaning liquid.
[0007]
[Problems to be solved by the invention]
As described above, in a combined power plant, fuel cleaning is addressed by setting strict conditions for the alkali metal content rate, the halogen content rate, and the metal component content rate in the fuel conditions of the gas turbine equipment, and the air compressor Is addressing air purification by installing an intake filter.
Therefore, it is assumed that the corrosive gas component of the combustion gas passing through the cascade of the gas turbine is basically equal to or lower than the allowable value of the gas turbine.
[0008]
However, in reality, there are excessive pollution of the atmosphere, partial damage of the intake filter of the gas turbine equipment air compressor, fluctuations in fuel properties, etc., and the cleanliness is not always guaranteed.
The cascade of a gas turbine rotates at a high speed of 3000 rpm or higher at a high temperature of several hundreds of degrees Celsius to 500 degrees Celsius, and is placed in a severe environment in terms of both temperature and stress. Under such an environment, if Na exceeding the allowable value is present in the combustion gas passing through the blade row, a molten salt such as Na 2 SO 4 is formed and adheres to the surface of the blade metal. There is a risk of causing metal corrosion and blocking of cooling holes on the blade surface.
[0009]
An object of the present invention is to measure on-line laser traces of corrosive trace gas components in a gas turbine facility of a combined power plant, and to monitor high-temperature components such as gas turbine blade rows.
[0010]
[Means for Solving the Problems]
The combined power plant according to claim 1 of the present invention that achieves such an object includes an oil-based fuel such as light oil, a gas-based fuel such as LNG, a coal gas fuel obtained by gasifying and dedusting / desulfurizing coal, and iron making such as a blast furnace. Exhaust gas from gas turbines with gas turbine equipment that generates power by expanding gas fuel generated from equipment, gas fuel generated from oil refining plants, or high-temperature, high-pressure combustion gas generated from pressurized fluidized bed boilers In a combined power plant having an exhaust heat recovery boiler that generates steam using heat as a heat source, and a steam turbine power generation facility that generates power using steam generated from the exhaust heat recovery boiler, an air compressor inlet air duct part of the gas turbine equipment, and a gas turbine In the fuel piping section at the entrance of the facility, or in the pressurized fluidized bed boiler, a gas component measuring device by the laser method is installed through the measuring window in the high-temperature combustion gas piping section. However, in air, fuel, or pressurized fluidized bed boilers, it is possible to measure on-line laser traces of corrosive trace gas components in high-temperature combustion gases and to monitor high-temperature parts such as gas turbine blade rows. Features.
[0011]
The combined power plant according to claim 2 of the present invention that achieves the above object includes oil-based fuels such as light oil, gas-based fuels such as LNG, coal gas fuel obtained by degassing and desulfurizing coal, and steelmaking facilities such as blast furnaces. Gas turbine equipment that generates power by expanding gas fuel generated from oil, gas fuel generated from oil refining plants, or high-temperature and high-pressure combustion gas generated from a pressurized fluidized bed boiler. In a combined power plant having an exhaust heat recovery boiler that generates steam as a heat source, and a steam turbine power generation facility that generates power using the steam generated from the exhaust heat recovery boiler, an exhaust duct section at the outlet of the gas turbine equipment or an intermediate section of the exhaust heat recovery boiler Alternatively, a gas component measurement device using a laser method is installed at the outlet through a measurement window, and the corrosive trace gas components in the gas turbine exhaust gas are online. In was measured by a laser, and performs monitoring of blade rows such high temperature components of gas turbine equipment.
[0012]
The combined power plant according to claim 3 of the present invention that achieves the above object is the combined power plant according to claim 1 or 2, wherein the gas component measuring device by the laser method includes a laser-induced breakdown method and a laser. It is a measuring device combined with an induced fluorescence method.
[0013]
The combined power plant according to claim 4 of the present invention that achieves the above object is the combined power plant according to claim 1, 2, or 3, wherein the measurement time of the gas component measuring device by the laser method is changed, or the laser By measuring the focal position of the measurement part of the gas component measurement device by the method, the corrosive trace gas component distribution is measured in the depth direction of the high-temperature and high-pressure combustion gas piping in the duct, fuel piping, and pressurized fluidized bed boiler. And high temperature components such as cascades of gas turbine equipment are monitored.
[0014]
[Action]
In the present invention, a gas component measuring device by a laser method is provided in a combustion air intake duct and a fuel pipe to monitor the total amount of gas components that cause corrosion of metal blades entering the gas turbine combustor. It is possible to monitor gas turbine equipment in a typical manner.
As a result, the gas turbine facility can be monitored in an economical manner, and the operability and reliability of the entire combined power plant can be improved.
In addition, by providing a gas component measuring device by the laser method in each part after the gas turbine combustor, the total amount of gas components that cause corrosion of the metal blades can be monitored, and the measurement window can be easily purged, etc. Since the temperature at the measurement unit is lowered, the ease of the heat insulation structure and the difficulty of measurement are also facilitated.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
[Example 1]
FIG. 1 shows one embodiment to which the present invention is applied. The air passes through the intake filter 1 and the intake duct 2, is compressed to about 15 ata by the air compressor 3, and then enters the gas turbine combustor 6.
[0016]
On the other hand, the fuel pipe 4 includes oil-based fuels such as light oil, gas-based fuels such as LNG, coal gas fuel obtained by gasification and dedusting / desulfurization of coal, gas fuel generated from steelmaking facilities such as blast furnaces, and oil refinery plants Gas fuel generated or high-temperature combustion gas from a pressurized fluidized bed boiler is supplied, passes through a control valve 5, enters a gas turbine combustor 6, and burns with the compressed air to generate high-temperature and high-pressure (about 1300 ° C., 14 data). Gas.
[0017]
The high-temperature and high-pressure gas expands in the gas turbine expander 7 and generates power in the generator 17. The expanded gas turbine exhaust gas (about 600 ° C., 600 mmAq) is sent to the exhaust heat recovery boiler 9 through the exhaust gas duct 8, generates steam 10, and is discharged from the chimney 19 through the exhaust heat recovery boiler outlet duct 16. Is done.
[0018]
The steam 10 is expanded by the steam turbine 12 through the steam control valve 11 and is generated by the generator 18. The steam 13 at the outlet of the steam turbine 12 becomes condensate in the condenser 14 and becomes water supply 15 to the exhaust heat recovery boiler.
Corrosive trace gas components such as alkali metal components such as Na, K, and V, halogen components such as Cl and F, and metal components such as Zn and Hg in the air that has passed through the intake filter 1 are installed in the intake duct 2. It is measured by a gas component measuring device 20 by a laser method.
[0019]
Corrosive trace gas components such as alkali metal components such as Na, K and V, halogen components such as Cl and F, and metal components such as Zn and Hg contained in the fuel are obtained by a laser method installed in the fuel pipe 4. It is measured by the gas component measuring device 21.
Since the total amount measured by the gas component measuring devices 20 and 21 by this laser method is the total amount that enters the gas turbine expander 7 through the gas turbine combustor 6 and causes corrosion of the metal blades, By measuring these total amounts online and comparing them with the permissible values, it is possible to determine the inspection time and to accumulate the experience to monitor the life.
[0020]
[Example 2]
FIG. 2 shows another embodiment to which the present invention is applied. The basic plant configuration is the same as the embodiment of FIG.
However, in this embodiment, three places that can be selected as places where the gas component measuring device by the laser method is installed are shown.
That is, the gas component measuring device 22, 23 or 24 by the laser method may be installed in any of the exhaust gas duct 8, the intermediate portion of the exhaust heat recovery boiler 9 or the exhaust heat recovery boiler outlet duct 16 after the gas turbine combustor. it can.
[0021]
In this embodiment, there is an advantage that the measurement window is almost close to atmospheric pressure, and that the measurement window can be easily purged as compared with the measurement in the fuel pipe of FIG.
In addition, since the gas component measuring devices 22, 23, and 24 by the laser method decrease in order (about 600 ° C. → 100 ° C.), the difficulty of measurement such as a heat insulation structure becomes easier in that order. There are features.
[0022]
Example 3
FIG. 3 shows an embodiment of the present invention. As a laser gas component measuring apparatus suitable for measuring a trace component in a gas, a laser induced breakdown method (LaBS method) and laser induced fluorescence are shown. The method (Laser Induced Fluorescence = LIF method) is used in combination.
[0023]
That is, a plasma laser 25 (laser for generating plasma induced by a laser in a measurement target) is passed through an optical window 28 with a purge 27 to a measurement field 29 in the fuel pipe 4 using a lens 26. The light is collected and gas, liquid, and solid present in it are turned into plasma.
[0024]
In synchronism with the plasma laser 25, the output of the component excitation laser 30 (laser oscillating at a wavelength corresponding to the excitation wavelength of the component to be measured in the substance) is generated in the laser-induced plasma through the mirror 31 and the lens 26. Is incident on.
Plasma emission and fluorescence emitted from the component to be measured excited by the component excitation laser light are collected by the lens 33 through the mirror 32, are incident on the spectroscope 34, and are detected by the CCD camera 35, respectively.
[0025]
Each signal is transferred to the computer 36, and the component composition of the measurement field 29 and the plasma temperature are obtained from the signal of the plasma emission, the fluorescence intensity is corrected based on the information, and the trace component present in the measurement field 29 is detected. Calculate the concentration. Reference numeral 37 denotes a line for synchronizing the oscillation of the plasma laser 25 and the component excitation laser 30 with the CCD camera 35.
As described above, in this embodiment, by using a combination of the LIBS method and the LIF method, it is possible to improve the measurement accuracy of a very small amount of gas components.
[0026]
Furthermore, by measuring the measurement time of the laser gas component measuring device, the corrosive trace gas component distribution is measured in the depth direction of the high-temperature / high-pressure combustion gas piping in the duct, fuel piping, and pressurized fluidized bed boiler. Is possible (effective for LIF method).
[0027]
That is, FIG. 5 shows the relationship between the pulse laser beam and fluorescence propagation and the fluorescence intensity detection time at the detector. Since the speed of the laser beam is 3 × 10 8 (m / s), there is a difference (2L) in the propagation distance of the laser beam and the fluorescence between the fluorescence generated in the portion near the laser incident side and the fluorescence generated in the far portion. .
[0028]
Therefore, the pulse laser beam is output from the laser, propagates through the measurement field, and 2 L / C (C at the measurement point A and the measurement point B until the fluorescence generated in the measurement field is detected by the fluorescence detector. : Speed of light) occurs. Therefore, accurate distance information for each scattering point can be obtained by changing the measurement time of the light extractor.
[0029]
In addition, by changing the focus position of the measurement part of the laser gas component measurement device, the corrosive trace gas component distribution is measured in the depth direction of the high-temperature and high-pressure combustion gas piping in the duct, fuel piping, and pressurized fluidized bed boiler. (Effective for LIBS method).
[0030]
That is, as shown in FIG. 6, the relationship between the pulse laser beam and fluorescence propagation and the focal position is such that the laser beam is collected and plasma is generated (LIBS method). As a result, the energy density of the laser beam increases and plasma is generated.
[0031]
At a point other than the focal point, the plasma beam is not generated because the energy density of the laser beam decreases. Since the signal light is generated only from the plasma generator, the measurement position is specified by changing the focal position of the laser light by utilizing this property, and the component measurement in the depth direction is performed.
[0032]
【The invention's effect】
As described above in detail based on the embodiments, in the present invention, the metal blades entering the gas turbine combustor are provided in the present invention by providing the gas component measuring device by the laser method in the intake duct and the fuel pipe of the combustion air. By monitoring the total amount of gas components that cause corrosion of the gas and comparing it with the permissible value, it becomes possible to monitor the gas turbine equipment in an economical manner, improving the operability and reliability of the entire combined power plant. I can plan. In addition, by providing a gas component measuring device by a laser method in each part after the gas turbine combustor, the total amount of gas components that cause corrosion of the metal blades can be monitored and the measurement window Purge or the like becomes easy. Furthermore, since temperature falls, the ease of a heat insulation structure and the difficulty of a measurement also become easy.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a combined power plant according to one embodiment of the present invention.
FIG. 2 is an explanatory diagram of a combined power plant according to another embodiment of the present invention.
FIG. 3 is an explanatory diagram of an apparatus for measuring a gas component by a laser method according to one embodiment of the present invention.
FIG. 4 is an explanatory diagram of a trace gas component measurement method according to the prior art.
FIG. 5 is an explanatory diagram of a method of changing a measurement time of a gas component measurement device by a laser method effective for the LIF method.
FIG. 6 is an explanatory diagram of a method of changing the focus position of a measurement unit of a gas component measurement device by a laser method effective for the LIBS method.
[Explanation of symbols]
1 Intake Filter 2 Intake Duct 3 Air Compressor 4 Fuel Pipe 5 Control Valve 6 Gas Turbine Combustor 7 Gas Turbine Expander 8 Exhaust Gas Duct 9 Exhaust Heat Recovery Boiler 10, 13 Steam 11 Steam Control Valve 12 Steam Turbine 14 Condenser 15 Water supply 16 Exhaust heat recovery boiler outlet ducts 17, 18 Generator 19 Chimney 20, 21, 22, 23, 24 Gas component measuring device 25 by laser method Plasma 26, 33 Lens 27 Purge 28 Optical window 29 Target part 30 Component excitation laser 31, 32 Mirror 34 Spectrometer 35 CCD

Claims (4)

軽油等の油系燃料、LNG等のガス系燃料、石炭をガス化し脱塵・脱硫をした石炭ガス燃料、高炉等製鉄設備から発生するガス燃料、石油精製プラントから発生するガス燃料、または、加圧流動床ボイラから発生する高温・高圧の燃焼ガスを膨張させ発電を行うガスタービン設備を有し、ガスタービン設備の排気ガスを熱源として蒸気を発生する排熱回収ボイラ、排熱回収ボイラから発生する蒸気により発電を行う蒸気タービン発電設備を有する複合発電プラントにおいて、ガスタービン設備の空気圧縮機入口空気ダクト部及び、ガスタービン設備入口の燃料配管部、または加圧流動床ボイラでは高温燃焼ガス配管部に、計測窓を介してレーザ法によるガス成分の計測装置を設置し、空気中及び、燃料中、または加圧流動床ボイラでは高温燃焼ガス中の腐触性微量ガス成分をオンラインでレーザにて計測し、ガスタービンの翼列等高温部品の監視を行うことを特徴とする複合発電プラント。Oil fuel such as light oil, gas fuel such as LNG, coal gas fuel obtained by degassing and desulfurizing coal, gas fuel generated from steelmaking facilities such as blast furnaces, gas fuel generated from oil refining plants, or It has gas turbine equipment that generates power by expanding high-temperature and high-pressure combustion gas generated from a pressure fluidized bed boiler, and it is generated from an exhaust heat recovery boiler that generates steam using the exhaust gas of the gas turbine equipment as a heat source, and generated from an exhaust heat recovery boiler In a combined power plant having a steam turbine power generation facility that generates power using the generated steam, an air compressor inlet air duct portion of the gas turbine facility and a fuel piping portion of the gas turbine facility inlet, or a high-temperature combustion gas piping in a pressurized fluidized bed boiler A gas component measuring device using a laser method is installed in the section through a measurement window, and high-temperature combustion is performed in air, in fuel, or in a pressurized fluidized bed boiler. The corrosion tactile properties trace gases in the gas was measured online by laser, combined cycle power plant, characterized in that for monitoring the cascade such high temperature components of a gas turbine. 軽油等の油系燃料、LNG等のガス系燃料、石炭をガス化し脱塵・脱硫をした石炭ガス燃料、高炉等製鉄設備から発生するガス燃料、石油精製プラントから発生するガス燃料、または、加圧流動床ボイラから発生する高温・高圧の燃焼ガスを膨張させ発電を行うガスタービン設備を有し、ガスタービンの排気ガスを熱源として蒸気を発生する排熱回収ボイラ、排熱回収ボイラから発生する蒸気により発電を行う蒸気タービン発電設備を有する複合発電プラントにおいて、ガスタービン設備出口の排気ダクト部または、排熱回収ボイラ中間部又は出口部に計測窓を介して、レーザ法によるガス成分の計測装置を設置し、ガスタービン排気ガス中の腐触性微量ガス成分をオンラインでレーザにて計測し、ガスタービン設備の翼列等高温部品の監視を行うことを特徴とする複合発電プラント。Oil fuel such as light oil, gas fuel such as LNG, coal gas fuel obtained by degassing and desulfurizing coal, gas fuel generated from steelmaking facilities such as blast furnaces, gas fuel generated from oil refining plants, or It has gas turbine equipment that generates power by expanding high-temperature and high-pressure combustion gas generated from a pressure fluidized bed boiler, and generates heat from an exhaust heat recovery boiler that generates steam using the exhaust gas of the gas turbine as a heat source. In a combined power plant having a steam turbine power generation facility that generates power using steam, a gas component measuring device by a laser method is provided through a measurement window at an exhaust duct portion at the outlet of the gas turbine facility or an intermediate portion or outlet portion of an exhaust heat recovery boiler. , And measure the trace amount of corrosive gas components in the gas turbine exhaust gas with a laser on-line, and monitor high-temperature parts such as blade rows of gas turbine equipment Combined cycle power plant, which comprises carrying out. 請求項1又は2に記載の複合発電プラントにおいて、レーザ法によるガス成分の計測装置は、レーザ誘起ブレークダウン法とレーザ誘起蛍光法を組み合わせた計測装置であることを特徴とする複合発電プラント。3. The combined power plant according to claim 1, wherein the gas component measuring device using a laser method is a measuring device combining a laser-induced breakdown method and a laser-induced fluorescence method. 4. 請求項1、2又は3記載の複合発電プラントにおいて、レーザ法によるガス成分の計測装置の計測時間を変化させること或いは、レーザ法によるガス成分の計測装置の計測部焦点位置を変化させることで、前記ダクトや燃料配管、加圧流動床ボイラでは高温・高圧燃焼ガス配管の奥行き方向に前記腐触性微量ガス成分分布を計測し、ガスタービン設備の翼列等高温部品の監視を行うことを特徴とする複合発電プラント。In the combined power plant according to claim 1, 2 or 3, by changing the measurement time of the gas component measurement device by the laser method, or by changing the focal position of the measurement unit of the gas component measurement device by the laser method, In the duct, fuel pipe, and pressurized fluidized bed boiler, the corrosion trace gas component distribution is measured in the depth direction of the high-temperature / high-pressure combustion gas pipe, and high-temperature parts such as blade rows of gas turbine equipment are monitored. And a combined power plant.
JP33179196A 1996-12-12 1996-12-12 Combined power plant Expired - Lifetime JP3643663B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33179196A JP3643663B2 (en) 1996-12-12 1996-12-12 Combined power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33179196A JP3643663B2 (en) 1996-12-12 1996-12-12 Combined power plant

Publications (2)

Publication Number Publication Date
JPH10169413A JPH10169413A (en) 1998-06-23
JP3643663B2 true JP3643663B2 (en) 2005-04-27

Family

ID=18247688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33179196A Expired - Lifetime JP3643663B2 (en) 1996-12-12 1996-12-12 Combined power plant

Country Status (1)

Country Link
JP (1) JP3643663B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102472170A (en) * 2009-07-07 2012-05-23 株式会社日立制作所 Operation control method for gas turbine and operation controller for gas turbine

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4909929B2 (en) * 2007-04-18 2012-04-04 パナソニック株式会社 Partial pressure measurement method and partial pressure measurement device
US7985284B2 (en) * 2008-08-12 2011-07-26 General Electric Company Inlet air conditioning system for a turbomachine
NO331154B1 (en) * 2008-11-04 2011-10-24 Hamworthy Gas Systems As System for combined cycle mechanical operation in cryogenic condensation processes.
JP5574996B2 (en) * 2011-01-19 2014-08-20 三菱重工業株式会社 Engine system and operation control method for engine system
CN107630723B (en) * 2017-08-21 2019-05-24 哈尔滨汽轮机厂有限责任公司 Turbine rotor thermal stress real-time monitoring system
JP7025310B2 (en) * 2018-09-14 2022-02-24 一般財団法人電力中央研究所 Gas turbine combined cycle power generation system, gas turbine combined cycle power generation method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102472170A (en) * 2009-07-07 2012-05-23 株式会社日立制作所 Operation control method for gas turbine and operation controller for gas turbine
CN102472170B (en) * 2009-07-07 2014-08-06 株式会社日立制作所 Operation control method for gas turbine and operation controller for gas turbine

Also Published As

Publication number Publication date
JPH10169413A (en) 1998-06-23

Similar Documents

Publication Publication Date Title
KR101789364B1 (en) Fluid composition analysis mechanism, heat generation amount measurement device and power plant, and liquid composition analysis method
JP4131682B2 (en) Gasifier monitoring system
US20180027190A1 (en) Infrared non-destructive evaluation of cooling holes using evaporative membrane
JPH0663855B2 (en) Optical pyrometer fluoroscope assembly for controlling a gas turbine
JP3643663B2 (en) Combined power plant
JP2009098148A (en) System and method for sensing fuel humidification
CN108645571A (en) The device and method of coal-powder boiler or circulating fluidized bed boiler tiny leakage for identification
JP5415579B2 (en) Tube leak inspection apparatus and tube leak inspection method
Nau et al. Wall temperature measurements in a full-scale gas turbine combustor test rig with fiber coupled phosphor thermometry
US10451573B2 (en) Method and system for gas temperature measurement
JP2021011992A (en) Boiler tube leakage early detection system and method thereof
De Michelis et al. Condition monitoring and assessment of power plant components
JP2001289783A (en) Method and device for measuring so3 concentration in exhaust gas
KR102113028B1 (en) Gas Spectroscopy
Mekhrengin et al. Development of sensor for spectral monitoring of combustion processes in gas-turbine engines
Xueqin et al. The development of the boiler water wall tube inspection
Pritchard Biomass fuelled indirect fired micro turbine
JPH08166127A (en) Method and apparatus for jodging burning condition and boiler furnace combustion unit
JP2011191125A (en) Device of measuring amount of heat generation and gas-fired power generation plant including the same
Butcher Performance control strategies for oil-fired residential heating systems
JP2852179B2 (en) Fluidized bed boiler abnormality detection method and apparatus
JP3529161B2 (en) Furnace combustion vibration monitoring device
Abdullah et al. A temperature measuring of combustion machinery systems using light absorbing of gas
Baukal Jr et al. Flare Testing
JP7000255B2 (en) Boiler equipment and power generation equipment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050131

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090204

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100204

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100204

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110204

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110204

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120204

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120204

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130204

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term