JP2007064800A - Building diagnosis system - Google Patents

Building diagnosis system Download PDF

Info

Publication number
JP2007064800A
JP2007064800A JP2005251399A JP2005251399A JP2007064800A JP 2007064800 A JP2007064800 A JP 2007064800A JP 2005251399 A JP2005251399 A JP 2005251399A JP 2005251399 A JP2005251399 A JP 2005251399A JP 2007064800 A JP2007064800 A JP 2007064800A
Authority
JP
Japan
Prior art keywords
building
inclined surface
displacement
building structure
earthquake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005251399A
Other languages
Japanese (ja)
Other versions
JP2007064800A5 (en
Inventor
Naoki Okada
直喜 岡田
Shinichi Omori
伸一 大森
Noriko Kaibara
典子 開原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SXL Corp
Original Assignee
SXL Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SXL Corp filed Critical SXL Corp
Priority to JP2005251399A priority Critical patent/JP2007064800A/en
Publication of JP2007064800A publication Critical patent/JP2007064800A/en
Publication of JP2007064800A5 publication Critical patent/JP2007064800A5/ja
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a building diagnosis system acquiring damage degree within a structure and diagnosing earthquake-proof degradation without resort to judgment of experts, in ordinary use conditions without the removal of finishing material, furniture and the like. <P>SOLUTION: The building diagnosis system is characterized by diagnosing damage degree such that after a reference point A is set at any site of a building structure, a detection point B is prepared on an inclined plane facing interspatially to the reference point A along the vertical direction, and a distance from the reference point A to the detection point B is detected by a detecting means, the difference Y<SB>1</SB>is obtained between the detected value and a value of the distance between the reference point A and the detection point B detected to accumulate at the time of building construction and thus, based on the difference, one-dimensional horizontal displacement or the displacement X<SB>1</SB>in horizontal direction of the building structure, is determined. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、建物の損傷程度、例えば地震や風圧など外部負荷による建物の損傷程度を診断する建物診断システムに関する。   The present invention relates to a building diagnosis system for diagnosing a building damage level, for example, a building damage level due to an external load such as an earthquake or wind pressure.

一般に建物は金属製や木製の建材が使われており、これらの建材は経年劣化することが知られている。例えば、長年使用された釘、鎹等の建材が、雨水により腐食され又はさびを発生する等が挙げられる。そして、これら建材の経年劣化を起因として建物自体に劣化が生じる。建材の経年劣化により建物の建築時に具えていた基本的耐震性能が損なわれ、この損なわれた基本的耐震性能の程度を科学的に診断するため建物診断の劣化調査が行われる。   Generally, metal or wooden building materials are used for buildings, and these building materials are known to deteriorate over time. For example, building materials such as nails and fences that have been used for many years are corroded by rainwater or rusted. The building itself deteriorates due to the aging of these building materials. Due to the deterioration of building materials over time, the basic seismic performance provided at the time of building construction is impaired. In order to scientifically diagnose the degree of this impaired basic seismic performance, a deterioration survey of building diagnosis is conducted.

しかし、従来の劣化調査は、基本的耐震性能に係る建物データを分析するものと、実建物を観測するものがある。前者は、机上で行えるため簡易である反面、このデータ収集に労力が費やされ多大の時間を要するという問題がある。また、劣化程度を判断する際に用いられる建築図面からは設計情報が大部分で、実際に現場で加工組立された完成情報が不足しがちで劣化診断の正確性に乏しいという問題もある。   However, there are two types of conventional deterioration investigations: analysis of building data related to basic seismic performance and observation of actual buildings. The former is simple because it can be performed on a desk, but there is a problem that much time is required for collecting the data. In addition, there is a problem that the design information is large from the architectural drawing used to judge the degree of deterioration, and the completion information actually processed and assembled at the site tends to be insufficient, and the accuracy of deterioration diagnosis is poor.

一方、後者は、建材の表面に現れる亀裂や腐食の状態を目視観測により評価するいわゆる間接的方法が一般的である。したがって、建物の構造体内部の損傷程度は目視で確認できないため、わからないまま診断情報が行われることがある。それゆえ、この診断結果は正確性に乏しいという問題がある。また、建物の構造体内部の損傷程度を把握するため、たとえ仕上げ材料をすべて取り外して調査したとしても、建物の構造体が持っていた初期の耐震性能を検出するには、調査項目が多く完全に調査できないという問題がある。   On the other hand, the latter is generally a so-called indirect method for evaluating the state of cracks and corrosion appearing on the surface of the building material by visual observation. Therefore, since the degree of damage inside the building structure cannot be visually confirmed, diagnosis information may be performed without understanding. Therefore, there is a problem that this diagnosis result is inaccurate. Also, in order to grasp the degree of damage inside the building structure, there are many survey items to detect the initial seismic performance of the building structure, even if all the finishing materials are removed and investigated. There is a problem that cannot be investigated.

そこで、従来の建物診断の問題点を解消すべく、超感度暗視カメラ、レーザ垂直器、金属探知機などの監視装置により屋根裏、床下等を連続的に監視、すなわちモニタリングして、インターネット通信網を介して現場であるユーザ側と共に工事請負業者に監視情報を送信し、補強工事を依頼する耐震診断システムが知られている(例えば、特許文献1参照)。   Therefore, in order to solve the problems of conventional building diagnosis, the attic, underfloor, etc. are continuously monitored by monitoring devices such as a super-sensitive night vision camera, laser vertical device, metal detector, etc. A seismic diagnosis system is known in which monitoring information is transmitted to a construction contractor together with a user who is a site via the site, and reinforcement work is requested (see, for example, Patent Document 1).

特開2002―89052号公報Japanese Patent Laid-Open No. 2002-89052

しかしながら、この耐震診断システムは、監視できる部位に限りがあるため、得られる情報の内容が局所的で損傷程度の診断の精度が低い。例えば、床下の変形を確認し補強工事を施工したのにも拘らず、建物の構造体全体は何ら支障がないため不要な補強工事を行いユーザに不測の不利益を与えるという問題がある。また、床下の変形を確認できず補強工事不要と判断されたのにも拘らず、監視できない他の部位の変形を起因として構造体全体が崩壊するという問題がある。   However, since this seismic diagnosis system has a limited number of parts that can be monitored, the content of the obtained information is local and the accuracy of diagnosis of the degree of damage is low. For example, although the underfloor deformation is confirmed and reinforcement work is performed, the entire structure of the building has no problem, and thus there is a problem that unnecessary reinforcement work is performed and an unexpected disadvantage is given to the user. In addition, there is a problem that the entire structure collapses due to deformation of other parts that cannot be monitored despite the fact that deformation under the floor cannot be confirmed and it is determined that the reinforcement work is unnecessary.

また、厳密な建物診断を行う場合、例えば一級建築士等の専門家に、建物構造体から仕上げ材料をすべて取り外す調査を依頼する。この場合、調査できない部位があり、構造体が有していた初期の耐震性能の劣化の程度を判断するには充分とは言えないという問題がある。それに加え、仕上げ材の除去費用、専門家の調査現場への移動費用、専門家の宿泊費用、データ収集、及び診断書の作成等劣化調査に多くの費用と労力が費やされるという問題もある。   Moreover, when performing a strict building diagnosis, for example, a specialist such as a first-class architect is requested to investigate to remove all finishing materials from the building structure. In this case, there is a part that cannot be investigated, and there is a problem that it cannot be said to be sufficient for judging the degree of deterioration of the initial seismic performance that the structure had. In addition, there is a problem that a lot of costs and labor are spent on degradation investigations such as finishing material removal costs, specialist travel costs, specialist accommodation costs, data collection, and medical certificate creation.

そこでこの発明は、従来の耐震診断システムの問題点を解決し、構造体全体の劣化程度を診断すると共に、専門家に調査依頼する必要がなく、さらに仕上げ材、家具等を除去せずに建物構造体が通常に使用されている状態で構造体内部の損傷程度を診断する建物診断システムを提供することを目的とする。   Therefore, the present invention solves the problems of the conventional seismic diagnosis system, diagnoses the degree of deterioration of the entire structure, does not require an expert to investigate, and further eliminates the need for finishing materials, furniture, etc. An object of the present invention is to provide a building diagnosis system that diagnoses the degree of damage inside a structure in a state in which the structure is normally used.

前記目的を達成するため、請求項1記載の発明は、建物構造体の任意の部位に基準点を設け、この基準点と空間を隔てて垂直方向で対向した傾斜面に検出点を設け、地震や風圧など外部負荷の発生時の前記基準点から検出点までの距離を検出して蓄積し、外部負荷が発生する前の同じ2点間距離との差から建物構造体の水平方向の変位量である一次元水平変位量を求めて損傷の程度を診断することを特徴とする。   In order to achieve the above object, according to the first aspect of the present invention, a reference point is provided at an arbitrary part of a building structure, and a detection point is provided on an inclined surface opposed to the reference point in the vertical direction across the space. The distance from the reference point to the detection point when an external load such as wind pressure is generated is detected and accumulated, and the amount of horizontal displacement of the building structure from the difference between the same two points before the external load occurs The degree of damage is diagnosed by obtaining the one-dimensional horizontal displacement amount.

請求項2記載の発明は、請求項1記載の発明において、基準点にレーザ変位計を設置し、検出点が配設された傾斜面を建物構造体の横架材、又はそれに接して一体の挙動を示す部材の下面に形成された凹溝の底面に形成し、前記レーザ変位計の光源から照射されるレーザ光を前記凹溝の底面に形成し、レーザ変位計からのレーザ光を凹溝の底面で反射させこの光源に照射させることにより基準点から検出点までの距離を検出する。   The invention according to claim 2 is the invention according to claim 1, wherein a laser displacement meter is installed at the reference point, and the inclined surface on which the detection point is disposed is integrated with the horizontal member of the building structure or in contact with the horizontal member. Formed on the bottom surface of the concave groove formed on the lower surface of the member exhibiting behavior, forming the laser beam emitted from the light source of the laser displacement meter on the bottom surface of the concave groove, and transmitting the laser beam from the laser displacement meter to the concave groove The distance from the reference point to the detection point is detected by irradiating the light source with the light reflected from the bottom surface.

請求項3記載の発明は、請求項1又は2に記載の発明において、傾斜面の上方にその一側から他側に向けて直交する第2の傾斜面が傾斜面と連接して形成され、この第2の傾斜面に第2の検出点を設け、基準点から第2の検出点までの距離を検出することにより、第2の傾斜面における建物構造体の二次元水平変位量を求める。   The invention according to claim 3 is the invention according to claim 1 or 2, wherein a second inclined surface orthogonal to the other side from the one side is formed above the inclined surface and connected to the inclined surface. By providing a second detection point on the second inclined surface and detecting the distance from the reference point to the second detection point, the two-dimensional horizontal displacement amount of the building structure on the second inclined surface is obtained.

請求項4記載の発明は、請求項3記載の発明において、一次元水平変位量又は二次元水平変位量のいずれか一方を継続的にモニタリングしながら記録し、建物構造体の地震時変位特性値との比較により、建物構造体の地震による損傷の有無を診断する。   The invention according to claim 4 is the invention according to claim 3, wherein either one-dimensional horizontal displacement amount or two-dimensional horizontal displacement amount is recorded while being continuously monitored, and the displacement characteristic value during earthquake of the building structure is recorded. By comparing with, we diagnose the damage of building structures due to earthquakes.

請求項5記載の発明は、請求項3に記載の発明において、一次元水平変位量又は二次元水平変位量のいずれか一方を継続的にモニタリングしながら記録し、建物構造体の建設地での観測データとの比較により、建物構造体の地震による損傷の有無を診断する。   The invention according to claim 5 is the invention according to claim 3, wherein either one of the one-dimensional horizontal displacement amount or two-dimensional horizontal displacement amount is recorded while being continuously monitored, and at the construction site of the building structure. Diagnose the damage of building structures by earthquakes by comparing with observation data.

請求項6記載の発明は、請求項4又は5に記載の発明において、建物の損傷程度を診断する診断手段と該診断結果を表示するパーソナルコンピュータを具えた。   The invention according to claim 6 is the invention according to claim 4 or 5, further comprising a diagnostic means for diagnosing the degree of damage to the building and a personal computer for displaying the diagnostic result.

この発明は、前記のようであって、建物構造体の任意の部位に基準点を設け、この基準点と空間を隔てて垂直方向で対向した傾斜面に検出点を設け、地震や風圧など外部負荷の発生時の前記基準点から検出点までの距離を検出して蓄積し、外部負荷が発生する前の同じ2点間距離との差から建物構造体の水平方向の変位量である一次元水平変位量を求めて損傷の程度を診断するので、仕上げ材、家具等を除去せず建物構造体が通常に使用されている状態で、また専門家の判断に頼ることなく構造体内部の損傷程度を把握して劣化の程度を精度よく診断することができるという優れた効果がある。   The present invention is as described above, wherein a reference point is provided at an arbitrary part of a building structure, and a detection point is provided on an inclined surface facing the reference point in a vertical direction across the space from the outside, such as an earthquake or wind pressure. One-dimensional that is the amount of horizontal displacement of the building structure from the difference between the same two-point distance before the external load is generated by detecting and accumulating the distance from the reference point to the detection point when the load is generated Since the degree of damage is diagnosed by determining the amount of horizontal displacement, damage to the interior of the structure can be done in a state where the building structure is normally used without removing finishing materials, furniture, etc., and without relying on expert judgment There is an excellent effect that the degree can be grasped and the degree of deterioration can be accurately diagnosed.

この発明の実施の形態を添付図面を参照して説明する。実施の形態の建物診断システムは、建物構造体が地震や風圧など外部負荷を受けた損傷程度の診断を行う。外部負荷は、地震や風圧などにより発生するが、以下、地震による場合を例に説明する。   Embodiments of the present invention will be described with reference to the accompanying drawings. The building diagnosis system according to the embodiment diagnoses the degree of damage to a building structure that has received an external load such as an earthquake or wind pressure. The external load is generated by an earthquake, wind pressure, or the like. Hereinafter, the case of an earthquake will be described as an example.

図1は、第1の実施の形態を示す建物診断システムが設置された建物構造体の概略を示す正面図、図2は、便宜上柱を省略した地震の前後を示す概略正面図、図3は、ユーザの建物構造体内のLAN回線と住宅メーカのクライアントパソコンとで構築されたインターネット通信網を示す概略図、図4は、地震属性と建物属性の相関関係を示すグラフである。   FIG. 1 is a front view showing an outline of a building structure in which the building diagnosis system showing the first embodiment is installed, FIG. 2 is a schematic front view showing before and after an earthquake with columns omitted for convenience, and FIG. FIG. 4 is a schematic diagram showing an Internet communication network constructed by a LAN line in a user's building structure and a client PC of a house maker, and FIG. 4 is a graph showing a correlation between earthquake attributes and building attributes.

建物構造体1は、図1に示すように、地盤の中に埋設された基礎2の上に土台3が敷設され、その土台3の左右に柱4a、4bが立設される。そして、左右の柱4a、4bに横架材5が接合されて骨組みが造られ、この骨組みの右柱4aと左柱4bの間に工場で生産された不図示のパネルが組み込まれる。レーザ変位計7が、土台3上の任意の部位に配設された基準点上に設置され、レーザ変位計7の照射口と空間を隔てて垂直方向で対向した横架材5の下面に凹溝の底面6が傾斜形成され、この凹溝の底面はレーザ光を反射するように構成されている。レーザ変位計7による観測値を記録する記録器8が、レーザ変位計7に接続され、この記録器8が、クライアントパソコン(PC)11aに接続される。クライアントパソコン11aは、観測データが保存されたデータベース12に通信網を介して接続される。データベース12はサーバ13に接続され、クライアントパソコン11a、データベース12、及びサーバ13等はネットワークを構築している。尚、凹溝の底面6は横架材5の下面でなく、ほかに横架材5に接して一体の挙動を示す部材の下面に形成してもよい。   As shown in FIG. 1, the building structure 1 has a base 3 laid on a foundation 2 embedded in the ground, and columns 4 a and 4 b erected on the left and right sides of the base 3. The horizontal member 5 is joined to the left and right columns 4a and 4b to form a framework, and a panel (not shown) produced at the factory is assembled between the right column 4a and the left column 4b of the framework. The laser displacement meter 7 is installed on a reference point disposed at an arbitrary position on the base 3 and is recessed on the lower surface of the horizontal member 5 facing the irradiation port of the laser displacement meter 7 in the vertical direction across the space. The bottom surface 6 of the groove is formed to be inclined, and the bottom surface of the concave groove is configured to reflect the laser beam. A recorder 8 for recording the observation value by the laser displacement meter 7 is connected to the laser displacement meter 7, and this recorder 8 is connected to a client personal computer (PC) 11a. The client personal computer 11a is connected to a database 12 in which observation data is stored via a communication network. The database 12 is connected to a server 13, and the client personal computer 11a, the database 12, the server 13 and the like construct a network. In addition, you may form the bottom face 6 of a ditch | groove not on the lower surface of the horizontal member 5, but on the lower surface of the member which touches the horizontal member 5 and shows an integral behavior.

建物構造体1は、図2に示すように、横架材5の底面から横架材5の長手方向に等幅な傾斜面6が具えられる。横架材5は、地震時に予想される最大水平変位量(図2中矢印で示す)とレーザ変位計7の分解能に応じた傾斜角度を備える。横架材5の下方には横架材14が配設されており、横架材14には、レーザ光が通過する部位に貫通孔14aが横架材14の長手方向と直交する方向に穿設されている。なお、図2中地震による変位前の傾斜面6は実線を用いて示されており、変位後のものは破線を用いて示されている。また、変位前後の傾斜面6の変位量は「水平変位X及び垂直変位Y」で示されている。 As shown in FIG. 2, the building structure 1 includes an inclined surface 6 having a uniform width from the bottom surface of the horizontal member 5 to the longitudinal direction of the horizontal member 5. The horizontal member 5 has an inclination angle corresponding to the maximum horizontal displacement amount (indicated by an arrow in FIG. 2) expected at the time of the earthquake and the resolution of the laser displacement meter 7. A horizontal member 14 is disposed below the horizontal member 5, and a through hole 14 a is drilled in the horizontal member 14 in a direction orthogonal to the longitudinal direction of the horizontal member 14 at a site through which the laser beam passes. It is installed. In FIG. 2, the inclined surface 6 before the displacement due to the earthquake is shown using a solid line, and the one after the displacement is shown using a broken line. The displacement amount of the inclined surface 6 before and after the displacement is indicated by “horizontal displacement X 1 and vertical displacement Y 1 ”.

つぎに、一次元水平変位量Xの算出について説明する。レーザ変位計7から放射されたレーザ光を、傾斜面6の検出点Bにおいてレーザ変位計7に反射させることにより、放射開始から受光までの時間tを計測する。計測された時間tとレーザ光の速度vにより、基準点Aから検出点Bまでの距離lがl=(v×t)/2により算出される。そして、建物構造体1の建築時に算出した基準点Aから検出点Bまでの距離の値lと今回の算出値lとの差、すなわち算出距離の増減Y=|l−l|を求める。その差に基づき、一次元水平変位量Xを求める。 Next, describing calculation of the one-dimensional horizontal displacement X 1. By reflecting the laser light emitted from the laser displacement meter 7 to the laser displacement meter 7 at the detection point B of the inclined surface 6, the time t from the start of radiation to the reception of light is measured. Based on the measured time t and the velocity v of the laser beam, the distance l from the reference point A to the detection point B is calculated by l = (v × t) / 2. Then, the difference between the value 10 of the distance from the reference point A to the detection point B calculated during construction of the building structure 1 and the current calculated value l, that is, the increase / decrease in the calculated distance Y 1 = | l 0 −l | Ask. Based on the difference, obtaining a one-dimensional horizontal displacement X 1.

水平変位量X具体的には以下に示す式1により算出される。 Horizontal displacement X 1 is specifically calculated by the equation 1 shown below.

=Y/tanθ(式1)
ここで、X:傾斜面6の一次元水平方向変位量、θ:傾斜面6の傾斜角度、Y:傾斜面6の垂直方向変位量、を表わす。
X 1 = Y 1 / tan θ 1 (Formula 1)
Here, X 1 represents the one-dimensional horizontal displacement amount of the inclined surface 6, θ 1 represents the inclination angle of the inclined surface 6, and Y 1 represents the vertical displacement amount of the inclined surface 6.

前述したように、傾斜面6にレーザ変位計7からレーザ光を放射した場合、レーザ光が反射面の角度で反射されレーザ変位計7に戻らないのではないかと危惧されるが、レーザ光を反射する反射板を貼付した傾斜面6にレーザ光を当てて2点間の距離を計測する発明者らの実験により、傾斜面の角度を0度から約90度まで変化させても実用の範囲内であることが確認された。しかし、実験では、計測距離が短い青色の反射板は、反射板の傾斜角度が水平に近い場合に測定有効範囲外だったことから、レーザ変位計7を用いた変位量は、レーザ光の強さや反射板の色に影響されることが判明した。   As described above, when laser light is emitted from the laser displacement meter 7 to the inclined surface 6, there is a concern that the laser light may be reflected at the angle of the reflection surface and not return to the laser displacement meter 7, but the laser light is reflected. According to the inventors' experiment of measuring the distance between two points by applying a laser beam to the inclined surface 6 with the reflecting plate attached, it is within the practical range even if the angle of the inclined surface is changed from 0 degrees to about 90 degrees. It was confirmed that. However, in the experiment, the blue reflector with a short measurement distance was outside the effective measurement range when the tilt angle of the reflector was nearly horizontal. It was found that it was affected by the color of the sheath.

レーザ変位計7により計測された変位情報が記録器8に記録され、クライアントパソコン11aは、記録器8に記録された変位情報を演算処理して建物構造体1を診断する。また、レーザ変位計7は、地震の測定を行うため記録器8と共に24時間通電され常時稼動されており、記録器8は、レーザ変位計等検知装置からの変位情報を常時受信して記録できるように待機している。   The displacement information measured by the laser displacement meter 7 is recorded in the recorder 8, and the client personal computer 11 a diagnoses the building structure 1 by calculating the displacement information recorded in the recorder 8. Further, the laser displacement meter 7 is energized for 24 hours together with the recorder 8 to measure earthquakes and is always in operation. The recorder 8 can always receive and record displacement information from a detection device such as a laser displacement meter. To wait.

つぎに、この建物構造体の変位情報を住宅メーカが処理する様子を、図3を参照して説明する。建物構造体1内の記録器8は、不揮発性メモリ16及びCPU17を具え、LAN回線を介してクライアントパソコン11aに接続される。クライアントパソコン11aは、不図示のディスプレイを具え、インターネット回線を介し住宅メーカのサーバ13に接続される。また、サーバ13はクライアントパソコン11bに接続されており、クライアントパソコン11aとクライアントパソコン11bとは、双方向の通信が可能である。   Next, the manner in which the housing manufacturer processes the displacement information of the building structure will be described with reference to FIG. The recorder 8 in the building structure 1 includes a nonvolatile memory 16 and a CPU 17 and is connected to the client personal computer 11a via a LAN line. The client personal computer 11a has a display (not shown) and is connected to the server 13 of the house maker via the Internet line. The server 13 is connected to the client personal computer 11b, and the client personal computer 11a and the client personal computer 11b are capable of bidirectional communication.

レーザ変位計1等検知装置からのデータ受信を記録器8で行う際には、メモリ16に、先に書き込んだ変位情報から先に読み出すいわゆる先入れ先出し方式で記録していく。そして、変位情報の量が変位情報記録用のメモリ16の容量限度を超えた場合は、一番古くなった変位情報から順に削除され、新しいものの順に記録されていく。   When the recording device 8 receives data from the detection device such as the laser displacement meter 1, the recording is performed in the memory 16 by a so-called first-in first-out method in which the displacement information written first is read first. When the amount of displacement information exceeds the capacity limit of the displacement information recording memory 16, the displacement information is deleted in order from the oldest and recorded in order of newest information.

クライアントパソコン11aが、地震発生による観測データの存在をクライアントパソコン11bから受信した場合、クライアントパソコン11aは、観測された日時をキーとして、記録器8に記録されている変位情報を受信し、該変位情報を検索し、検索した変位情報と予めクライアントパソコン11a内に記録されている特性データとを比較して損傷の程度が診断される。そして、診断レベルに応じて危険・要注意・問題なしに区分けされ、その診断結果がクライアントパソコン11aの不図示のディスプレイに表示される。   When the client personal computer 11a receives from the client personal computer 11b the presence of observation data due to the occurrence of an earthquake, the client personal computer 11a receives the displacement information recorded in the recorder 8 using the observed date and time as a key. Information is searched, and the degree of damage is diagnosed by comparing the searched displacement information with the characteristic data previously recorded in the client personal computer 11a. Then, it is classified according to the diagnosis level without danger, caution, or problem, and the diagnosis result is displayed on a display (not shown) of the client personal computer 11a.

特性データ、診断結果及び変位情報がメモリ16に記録されると同時に通信機能でインターネット通信網を介して住宅メーカのサーバ13にも記録される。そして、住宅メーカは、サーバ13に記録された観測データにより、地震による損傷の有無や劣化診断結果を住宅メーカのクライアントパソコン11bを用いて表示するとともに、ユーザへの建物構造体1の状態の連絡、地震後の補修作業の計画・実施への活用、アフターサービスヘの使用及び今後のシミュレーション等を行うことができる。なお、建物構造体1の建設地における特性データである変位特性値Xeと建設地での変位データとを対比して、建物構造体の地震による損傷程度を診断してもよい。   Characteristic data, diagnosis results, and displacement information are recorded in the memory 16 and at the same time on the server 13 of the house maker via the Internet communication network by the communication function. Then, the house maker displays the presence / absence of damage due to the earthquake and the deterioration diagnosis result using the client PC 11b of the house maker based on the observation data recorded in the server 13, and informs the user of the state of the building structure 1 Can be used for planning and implementation of post-earthquake repair work, use for after-sales service, and future simulations. The degree of damage of the building structure due to the earthquake may be diagnosed by comparing the displacement characteristic value Xe, which is characteristic data of the building structure 1 at the construction site, with the displacement data at the construction site.

つぎに、図4を参照し、変位特性値Xeについて説明する。図4中、横軸方向は、建物属性を表し、縦軸方向は地震属性を表す。建物属性は右に行くほど強くなり、左に行くほど弱くなる。また、地震属性は、上に行くほど強くなり、下に行くほど弱くなる。変位特性値Xeは、診断対象の建物構造物1が該当する地震属性と建物属性の交差したマトリックスから決定される。地震属性として、最大加速度、最大速度、卓越周期、継続時間等が挙げられ、建物属性として、耐力壁種別、壁長/所要壁長、偏心率等が挙げられる。図4中、破線で区分けされている損傷程度に該当するマトリックスが、建物構造物1の損傷程度となる。例示してある損傷程度は、相対的に強い建物属性と弱い地震属性により決定され、「付属物の損傷=なし」に該当する。変位特性値Xeは、前記した属性を多く取込むほど信頼性は高くなるが、要求される変位検出精度や事前の実験の条件数にも限界があるため、考えられる実用的な最低限の組合せから水平変位(単位mm)を決めて、建物診断の根拠となるマトリックスが作成される。この場合、水平変位の大小は、構造体としての損傷を診断する以外にも、建物の仕上げ材や設備機器等の付属物の損傷にも直接影響されるため、特性値との対応を落とすこともできる。また、変位特性値Xeは「層間変位」であり高さとの比で表される。建物構造体1に応じて高さが変わる建物診断システムを想定する場合は、変位特性値Xeは高さに対する比として、例えば「n/1000」と表記される。   Next, the displacement characteristic value Xe will be described with reference to FIG. In FIG. 4, the horizontal axis direction represents building attributes, and the vertical axis direction represents earthquake attributes. Building attributes become stronger as you go to the right and weaker as you go to the left. Moreover, the earthquake attribute becomes stronger as it goes up and becomes weaker as it goes down. The displacement characteristic value Xe is determined from a matrix in which the earthquake attribute and the building attribute corresponding to the building structure 1 to be diagnosed intersect. The earthquake attributes include maximum acceleration, maximum speed, dominant period, duration, and the like, and the building attributes include bearing wall type, wall length / required wall length, eccentricity, and the like. In FIG. 4, the matrix corresponding to the degree of damage divided by broken lines is the degree of damage to the building structure 1. The degree of damage illustrated is determined by a relatively strong building attribute and a weak earthquake attribute, and corresponds to “accessory damage = none”. The displacement characteristic value Xe becomes more reliable as more of the above-mentioned attributes are incorporated. However, there are limits to the required displacement detection accuracy and the number of conditions for prior experiments. The horizontal displacement (unit: mm) is determined from the above, and a matrix that is the basis for building diagnosis is created. In this case, the magnitude of the horizontal displacement is directly affected by damage to the building finishing materials and accessories such as equipment, as well as diagnosing damage as a structure. You can also. Further, the displacement characteristic value Xe is “interlayer displacement” and is represented by a ratio to the height. When assuming a building diagnostic system whose height changes according to the building structure 1, the displacement characteristic value Xe is expressed as, for example, “n / 1000” as a ratio to the height.

観測データに含まれる地震属性は、インターネット上で公開されている地震観測網(例えば、K−net、Hi−net等)により入手することができる。一方、建物属性は、壁の量及び壁の種類のみに依存しない。図4に記載されている属性の数は例示であって、実際のマトリックスの数は、これよりも増加する場合がある。不足する場合は、不足部分を所定の式で計算して補填する。   The seismic attributes included in the observation data can be obtained from an earthquake observation network (for example, K-net, Hi-net, etc.) published on the Internet. On the other hand, building attributes do not depend only on the amount of walls and the type of walls. The number of attributes described in FIG. 4 is an example, and the actual number of matrices may increase more than this. If it is insufficient, the shortage is calculated by a predetermined formula and compensated.

図5に示すように、変位データである変位情報及び角度情報を同一のグラフに併記すると、変位はゼロから徐々に揺れて、任意のピーク値に達すると反対方向に揺れ始める。すなわち、地震の揺れは、一点を中心として双方向に揺れるので所定の振幅揺れると反対方向に揺れる。次に任意のピーク値に達すると反対方向に揺れて、減衰しながら振動を繰り返す。ピーク値は正逆方向とも一定ではないが、角度情報の黒点で示すように同一の角度を通過する。   As shown in FIG. 5, when displacement information and angle information, which are displacement data, are written together in the same graph, the displacement gradually oscillates from zero and begins to oscillate in the opposite direction when reaching an arbitrary peak value. In other words, the earthquake shakes in both directions around a single point, so that it shakes in the opposite direction when a predetermined amplitude shakes. Next, when it reaches an arbitrary peak value, it shakes in the opposite direction and repeats the vibration while being attenuated. The peak value is not constant in both the forward and reverse directions, but passes through the same angle as indicated by the black dot in the angle information.

地震の揺れ方向が、傾斜面6の傾斜方向に対して直交する方向と完全に一致する場合、建物構造体1の損傷の程度を診断することはできないのではないかと危惧されるが、実際の地震動であるS波(横波)は、地震観測において水平2成分(概ね南北方向及び東西方向)の加速度を有することが過去の観測データから知られている。従って、前記水平2成分を避けて傾斜面6の傾斜方向と直交方向を設ければ、計測不能になることはない。   If the direction of the earthquake shake completely coincides with the direction perpendicular to the inclination direction of the inclined surface 6, it is feared that the degree of damage to the building structure 1 cannot be diagnosed. It is known from past observation data that the S wave (lateral wave) has acceleration of two horizontal components (generally in the north-south direction and the east-west direction) in earthquake observation. Therefore, if a direction orthogonal to the inclination direction of the inclined surface 6 is provided while avoiding the two horizontal components, measurement is not disabled.

このように一次元水平方向変位Xは、垂直方向の検出距離の増減Yに基づいて求められた水平方向の検出距離の増減を指す。一次元水平方向変位Xは、地震による変位を一方向にしか分解できないため、変位データを厳密に解析するには不正確である。 Thus the one-dimensional horizontal displacement X 1 refers to the increase or decrease of the horizontal direction of the detection distances determined on the basis of the increase or decrease Y 1 in the vertical direction of the detection distance. One-dimensional horizontal displacement X 1 is can not be decomposed in only one direction displacement due to an earthquake, it is incorrect to exactly analyze the displacement data.

この点を解消すべく、地震によって建物構造体1に加えられる力を、水平力及び水平力と直交する方向の力との2軸の成分に分解するべく案出されたのが第2の実施の形態であり、以下にこの第2の実施の形態を説明する。図6は、第2の実施の形態の地震の前後における傾斜面と基準点の状態を示す、図2と対応する概略正面図で、傾斜面の移動前は実線、移動後は破線で示されている。図7(a)は、建物が移動して相対的にレーザ光が斜面及び第2傾斜面上を移動する詳細を示す斜視図で、図7(b)は、レーザ光が移動する第2傾斜面の詳細を示す拡大斜視図である。   In order to eliminate this point, the second implementation was devised to break down the force applied to the building structure 1 by the earthquake into two axial components, a horizontal force and a force perpendicular to the horizontal force. This second embodiment will be described below. FIG. 6 is a schematic front view corresponding to FIG. 2 showing the state of the inclined surface and the reference point before and after the earthquake according to the second embodiment, which is indicated by a solid line before the movement of the inclined surface and a broken line after the movement. ing. FIG. 7A is a perspective view showing details of the movement of the building and the relative movement of the laser light on the slope and the second inclined surface, and FIG. 7B is the second inclination where the laser light moves. It is an expansion perspective view which shows the detail of a surface.

この第2の実施形態において、第1の実施の形態と同一な構成部材には同一符号を付し、説明を省略する。第6図において、傾斜面6の上方にその一側から他側に向けて傾斜面6の傾斜方向と直交する第2の傾斜面15が傾斜面6と連接して形成されており、この第2の傾斜面15に第2の検出点Cが配設されている。   In the second embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted. In FIG. 6, a second inclined surface 15 perpendicular to the inclined direction of the inclined surface 6 is formed on the inclined surface 6 from the one side to the other side so as to be connected to the inclined surface 6. A second detection point C is disposed on the two inclined surfaces 15.

水平変位量Xの求め方は、第1の実施の形態と同様であるので説明を省略する。図7(b)に示すように、傾斜面6の傾斜方向と直交して傾斜面6の一側から他側に向けて傾斜角度θの第2の傾斜面15を配設する。 Determination of horizontal displacement X 1 is omitted because it is similar to the first embodiment. As shown in FIG. 7B, a second inclined surface 15 having an inclination angle θ 2 is disposed from one side of the inclined surface 6 to the other side perpendicular to the inclination direction of the inclined surface 6.

つぎに、作用について説明する。図8(a)は、横架材の下面に形成された凹溝の下方から眺めた平面図である。図8(b)は、横架材に形成された傾斜面の正面図であり、図8(c)は、図8(b)におけるX−X断面図である。図8(a)(b)(c)において、地震で揺れる横架材の様子は、最初の揺れを実線で示し(検出点B)、反対側の揺れを破線で示す(検出点B´)。基準点Aに設置されたレーザ変位計7から放射されるレーザ光は、図7(a)(b)に示すように、まず傾斜面6上の検出点Bに照射される。検出点Bが、傾斜面6上に照射され、第2の傾斜面15を越えて再び傾斜面6上を照射する場合、第1の実施形態同様、第2の傾斜面15の傾斜方向の水平変位量Xが算出できる。また、地震により建物構造体が移動されるので、図8(a)に示すように、最初の揺れで検出点Bは検出点B´に移動する。レーザ変位計7のレーザ光は傾斜面6を傾斜角度θで走査する。図8(b)、図8(c)に示すように、レーザ光が傾斜面6上に照射されたのち第2の傾斜面15上に照射される場合、傾斜面6上のレーザ光の軌道を主として全体波形を検出させ、第2の傾斜面15上のレーザ光の軌道を従として主軸からの直交距離を検出させることで結果的に建物構造体1の水平変位量Xと水平変位量Xである二次元水平変位量を検出できる。なお、第2の傾斜面15は原点から所定の距離に配設されるため、小規模地震の場合は変位が小さくレーザ光の軌道が第2の傾斜面15を横切らない。しかし、建物診断上影響を与えないため何ら問題がない。 Next, the operation will be described. Fig.8 (a) is the top view seen from the downward direction of the ditch | groove formed in the lower surface of a horizontal member. FIG.8 (b) is a front view of the inclined surface formed in the horizontal member, and FIG.8 (c) is XX sectional drawing in FIG.8 (b). 8A, 8B, and 8C, the state of the horizontal member that is shaken by the earthquake is indicated by a solid line for the first shake (detection point B), and a shake on the opposite side is indicated by a broken line (detection point B ′). . The laser light emitted from the laser displacement meter 7 installed at the reference point A is first irradiated to the detection point B on the inclined surface 6 as shown in FIGS. When the detection point B is irradiated on the inclined surface 6 and irradiates the inclined surface 6 again after passing through the second inclined surface 15, the horizontal direction in the inclination direction of the second inclined surface 15 is the same as in the first embodiment. displacement X 1 can be calculated. Further, since the building structure is moved by the earthquake, the detection point B moves to the detection point B ′ by the first shake as shown in FIG. Laser light of the laser displacement gauge 7 scans the inclined surface 6 at an inclination angle theta 3. As shown in FIGS. 8B and 8C, when the laser beam is irradiated onto the inclined surface 6 and then irradiated onto the second inclined surface 15, the orbit of the laser light on the inclined surface 6 is obtained. was detected mainly entire waveform, the horizontal displacement of the horizontal displacement amount X 1 of by causing the detection result to the building structure 1 the orthogonal distance from the main axis the trajectory of the laser beam as a slave on the second inclined surface 15 A two-dimensional horizontal displacement amount that is X 2 can be detected. Since the second inclined surface 15 is disposed at a predetermined distance from the origin, in the case of a small-scale earthquake, the displacement is small and the trajectory of the laser beam does not cross the second inclined surface 15. However, there is no problem because it does not affect the building diagnosis.

ついで、一次元水平変位量又は二次元水平変位量に基づき、建物構造体1が受けた損傷程度の診断処理を行う。建物構造体1内のクライアントパソコン11aは、一次元水平変位量又は二次元水平変位量のいずれかを継続的にモニタリングしながら、一定のインターバル(例えば10分間)で地震発生データの有無をサーバ13に照会し、観測データがあった場合は、そのデータを取得した後に建物構造体1内のクライアントパソコン11aに記録すると共に記録器8にも接続して記録器8のメモリ16に記録してある変位データを受信する。   Next, based on the one-dimensional horizontal displacement amount or the two-dimensional horizontal displacement amount, a diagnosis process for the degree of damage received by the building structure 1 is performed. The client personal computer 11a in the building structure 1 continuously monitors either the one-dimensional horizontal displacement amount or the two-dimensional horizontal displacement amount, while checking whether there is earthquake occurrence data at a certain interval (for example, 10 minutes). When the observation data is obtained, the data is acquired and then recorded in the client personal computer 11a in the building structure 1 and also connected to the recorder 8 and recorded in the memory 16 of the recorder 8. Receive displacement data.

水平変位量X具体的には以下に示す式2により算出される。 Horizontal displacement X 2 is specifically calculated by the equation 2 below.

=Y/tanθ(式2)
ここで、X:第2の傾斜面15の水平方向変位量、θ:第2の傾斜面15の傾斜角度、Y:第2の傾斜面15の垂直方向変位量、を表わす。
X 2 = Y 2 / tan θ 2 (Formula 2)
Here, X 2 represents the horizontal displacement amount of the second inclined surface 15, θ 2 represents the inclination angle of the second inclined surface 15, and Y 2 represents the vertical displacement amount of the second inclined surface 15.

建物構造体1の平面視における重心と剛心のズレによって捩れが生じるため、建物全体は均一に揺れず捩れ現象が発生する。こうした捩れ現象が大きく働く場合、すなわち重心と剛心のズレが大きい場合、外壁側で変位が大きくなり損傷の危険性が増大する。このため、中心付近と外壁付近、複数箇所において損傷程度の診断が必要になる。実際には、建物設計時にこうした個別建物の性質を評価して、変位が大きくなると予測される場所一箇所に建物診断システムを設置するか、建物診断システムを複数箇所に設置するかを選択する。   Since the twist is caused by the deviation of the center of gravity and the rigid center in the plan view of the building structure 1, the entire building does not shake uniformly and a twist phenomenon occurs. When such a torsion phenomenon works greatly, that is, when the deviation between the center of gravity and the rigid center is large, the displacement increases on the outer wall side and the risk of damage increases. For this reason, it is necessary to diagnose the degree of damage near the center and near the outer wall, at a plurality of locations. Actually, the property of each individual building is evaluated at the time of building design, and it is selected whether to install the building diagnosis system in one place where the displacement is predicted to increase or to install the building diagnosis system in a plurality of places.

横からの外力により損傷される建物構造体1の変位を過不足なく検出するには、2箇所以上の直交する位置に傾斜面6の傾斜方向を直交させて複数の変位計測システムを設置することが好適である。このように設置することにより、レーザ光の検出軌道を直交する2方向に分解することができ、各々のレーザ光の垂直方向の変位量Y1、から、傾斜面6の傾斜角度θ、θに基づき横架材の長手方向の変位量X、Xを検出することで、水平方向の変位量を求めることができる。費用は嵩むが、このように複数の建物診断システムを設置することで、一台の建物診断システムを設置した場合と比較して厳密な建物診断が可能になる。 In order to detect the displacement of the building structure 1 damaged by the external force from the side without excess or deficiency, install a plurality of displacement measurement systems with the inclination directions of the inclined surfaces 6 orthogonal to two or more orthogonal positions. Is preferred. By installing in this way, the detection trajectory of the laser beam can be decomposed into two orthogonal directions, and the inclination angle θ 1 of the inclined surface 6 is determined from the displacement amounts Y 1 and Y 2 of each laser beam in the vertical direction. , Θ 2 , the horizontal displacement amount can be obtained by detecting the displacement amounts X 1 and X 2 in the longitudinal direction of the horizontal member. Although the cost is high, installing a plurality of building diagnosis systems in this way makes it possible to perform strict building diagnosis as compared with the case where one building diagnosis system is installed.

建物構造体1の複数箇所に建物診断システムを設置する場合、レーザ変位計7は、建物構造体1の個々の壁配置、建物構造体1の重心位置、建物構造体1の剛心位置等から揺れ方や捩れを考慮した上、平面的な設置位置が決定される。ただし、こうした変位のバラツキは、計測された観測変位データXと変位特性値Xeが、近接している時に初めて問題になる。震度6程度の地震であれば、建物構造体1の中心付近一箇所の代表値で診断に支障がない。 When building diagnostic systems are installed at a plurality of locations on the building structure 1, the laser displacement meter 7 determines the individual wall layout of the building structure 1, the center of gravity of the building structure 1, the rigid position of the building structure 1, etc. A planar installation position is determined in consideration of shaking and twisting. However, the variation of such displacement, measured observed displacement data X 0 and displacement characteristic value Xe is the first time problems when in close proximity. If the earthquake has a seismic intensity of about 6, there is no problem in diagnosis with a representative value at one location near the center of the building structure 1.

次にクライアントパソコン11aは、上記のように一次元水平変位量又は二次元水平変位量のいずれか一方を継続的にモニタリングしながら、建物構造体1の変位データとの比較により、建物構造体の地震による損傷程度を診断する。具体的には、あらかじめ作成した変位特性値Xeと実際の地震時の変位Dを比較して、Xe≧Dなら損傷なし、Xe<Dなら損傷ありと判定する。この判定は、建物の維持管理が適切であり、かつ繰返し発生する地震の規模が小さければ、建物の耐震性は時間が経っても変化しないという考え方に基づく。例えば、一度の地震で上記の判定式の正負が逆転する場合は、その地震のみが原因で建物に損傷が生じたものと判定される。一方、複数回地震が繰り返されて徐々にXeとDの関係が逆転する場合は、経時的な劣化が原因で潜在的な耐震性が低下したものと判定される。   Next, the client personal computer 11a continuously monitors either the one-dimensional horizontal displacement amount or the two-dimensional horizontal displacement amount as described above, and compares the displacement data of the building structure 1 with the building structure 1 Diagnose the extent of damage caused by earthquakes. Specifically, the displacement characteristic value Xe prepared in advance is compared with the displacement D at the time of the actual earthquake, and it is determined that there is no damage if Xe ≧ D and that there is damage if Xe <D. This determination is based on the idea that if building maintenance is appropriate and the magnitude of repeated earthquakes is small, the earthquake resistance of the building will not change over time. For example, if the sign of the above judgment formula is reversed in a single earthquake, it is determined that the building is damaged only by the earthquake. On the other hand, when the earthquake is repeated a plurality of times and the relationship between Xe and D is gradually reversed, it is determined that the potential earthquake resistance has been lowered due to deterioration over time.

また、第2の傾斜面15にレーザ光が照射されることは稀なのではないかと危惧されるが、検出点Bと第2の傾斜面15の水平距離を地震の振幅に対して充分に小さく設定すれば、ほとんどの地震でレーザ光の検出軌道が第2の傾斜面15を横切り、第2の傾斜面15の検出点Cを照射することになる。また、溝幅が狭すぎて検出できないのではないかと危惧されるが、地震の周期(0.5〜1.0秒)に対してレーザ変位計のサンプリング周期(0.02〜0.04秒)が短いため、レーザ変位計のサンプリング周期の溝幅を設定すれば検出できる。   Further, although it is feared that it is rare that the second inclined surface 15 is irradiated with laser light, the horizontal distance between the detection point B and the second inclined surface 15 is set sufficiently small with respect to the amplitude of the earthquake. Then, in most earthquakes, the detection trajectory of laser light crosses the second inclined surface 15 and irradiates the detection point C of the second inclined surface 15. In addition, it is feared that the groove width is too narrow to be detected, but the laser displacement meter sampling period (0.02-0.04 seconds) relative to the earthquake period (0.5-1.0 seconds) Therefore, it can be detected by setting the groove width of the sampling period of the laser displacement meter.

なお、以上の説明は、地震による外部負荷により生じる変位について説明したが、風圧による外部負荷の場合も同様に求めることができる。また、所定の日数が経過したとき、具体的には、クライアントパソコン11aに定期診断の周期を不図示の入力手段から入力することによって、レーザ変位計7が記録器8と共に起動され、地震時のみならず入力された周期で定期的に劣化診断が行われる。あるいは、ユーザが建物構造体1の状態を任意に知りたいとき等も同様に求めることができる。ただし、地震による外部付加でない場合は、地震の観測データは不要である。   In the above description, the displacement caused by the external load due to the earthquake has been described. However, the same can be obtained for the external load due to the wind pressure. Further, when a predetermined number of days have passed, specifically, the laser displacement meter 7 is started together with the recorder 8 by inputting a periodic diagnosis period to the client personal computer 11a from an input means (not shown), and only during an earthquake. Instead, the deterioration diagnosis is performed periodically at the input cycle. Or when a user wants to know the state of the building structure 1 arbitrarily, it can obtain | require similarly. However, if it is not externally added by an earthquake, earthquake observation data is not required.

実施の形態で示した建物診断システムの構成部品であるレーザ変位計7、傾斜面6、第2の傾斜面15等は、好ましい一例を示したにすぎず、実施に際してはこれら部品を特許請求の範囲に記載した範囲内で適宜に変更、修正等をすることができることは言うまでもない。図9は、第2傾斜面の変形例である短冊状板材18を示す斜視図を示す。この変形例の第2の傾斜面15は傾斜面6の傾斜方向の略中間部で長さの異なる2本の紐又は棒部材により吊り下げられた短冊状板材18の底面によって形成される。2本の紐又は棒部材の長さは、短冊状板材18が所定角度で傾斜する長さが選択される。   The laser displacement meter 7, the inclined surface 6, the second inclined surface 15, etc., which are the components of the building diagnostic system shown in the embodiment, are merely preferred examples, and in implementation, these components are claimed. It goes without saying that changes, modifications, etc. can be made as appropriate within the range described in the range. FIG. 9 is a perspective view showing a strip-shaped plate material 18 which is a modified example of the second inclined surface. The second inclined surface 15 of this modified example is formed by the bottom surface of the strip-shaped plate material 18 suspended by two strings or rod members having different lengths at a substantially intermediate portion in the inclination direction of the inclined surface 6. As the lengths of the two strings or rod members, the length by which the strip-shaped plate material 18 is inclined at a predetermined angle is selected.

この発明の第1の実施の形態に係る建物診断システムが設置された建物構造体の全体構成を示す正面図である。It is a front view which shows the whole structure of the building structure in which the building diagnostic system which concerns on 1st Embodiment of this invention was installed. 同上の建物構造体の地震の前後を示す正面図である。It is a front view which shows before and after the earthquake of a building structure same as the above. 建物構造体の変位情報を住宅メーカが処理する様子を示す概略図である。It is the schematic which shows a mode that a housing maker processes the displacement information of a building structure. 地震属性と建物属性の相関関係を示すグラフである。It is a graph which shows the correlation of an earthquake attribute and a building attribute. 横軸に時間、縦軸に角度情報と変位情報とを併設したグラフである。It is a graph in which time is plotted on the horizontal axis and angle information and displacement information are plotted on the vertical axis. この発明の第2の実施の形態に係る建物構造体の地震の前後を示す正面図である。It is a front view which shows before and after the earthquake of the building structure which concerns on 2nd Embodiment of this invention. レーザ光が照射されている傾斜面及び第2傾斜面の詳細を示す斜視図である。It is a perspective view which shows the detail of the inclined surface and the 2nd inclined surface where the laser beam is irradiated. レーザ光が照射されている第2傾斜面の詳細を示す斜視図である。It is a perspective view which shows the detail of the 2nd inclined surface where the laser beam is irradiated. 図8(a)は凹溝の下方からの平面図、図8(b)は横架材に形成された傾斜面の地震の前後を示す正面図、図8(c)は図8(b)におけるX−X断面図である。8A is a plan view from the bottom of the groove, FIG. 8B is a front view showing before and after the earthquake of the inclined surface formed on the horizontal member, and FIG. 8C is FIG. 8B. It is XX sectional drawing in. この発明の第2の実施の形態に係る第2傾斜面の変形例を示す斜視図である。It is a perspective view which shows the modification of the 2nd inclined surface which concerns on 2nd Embodiment of this invention.

符号の説明Explanation of symbols

1 建物構造体 2 基礎
3 土台 4 柱
5 横架材 6 傾斜面
7 レーザ変位計 8 記録器
11a,11b クライアントパソコン
12 データベース 13 サーバ
14 下方の横架材 15 第2の傾斜面
16 メモリ 17 CPU
18 短冊状板材 A 基準点
B,B´ 検出点 C,C´ 第2検出点
観測変位データ t レーザ光放射開始から受光までの時間
v レーザ光の速度 l 基準点Aから検出点Bまでの距離
Xe 変位特性値 X,X 水平変位量
,Y 垂直変位量 θ,θ 傾斜角度
DESCRIPTION OF SYMBOLS 1 Building structure 2 Foundation 3 Base 4 Column 5 Horizontal member 6 Inclined surface 7 Laser displacement meter 8 Recorder 11a, 11b Client personal computer 12 Database 13 Server 14 Lower horizontal member 15 Second inclined surface 16 Memory 17 CPU
18 Strip-shaped plate A A Reference point B, B 'Detection point C, C' Second detection point X 0 Observation displacement data t Time from laser beam emission start to light reception v Laser beam speed l From reference point A to detection point B distance Xe displacement characteristic values X 1, X 2 horizontal displacement Y 1, Y 2 vertical displacement θ 1, θ 2 tilt angle

Claims (6)

建物構造体の任意の部位に基準点を設け、この基準点と空間を隔てて垂直方向で対向した傾斜面に検出点を設け、地震や風圧など外部負荷の発生時の前記基準点から検出点までの距離を検出して蓄積し、外部負荷が発生する前の同じ2点間距離との差から建物構造体の水平方向の変位量である一次元水平変位量を求めて損傷の程度を診断することを特徴とする建物診断システム。   A reference point is provided at any part of the building structure, and a detection point is provided on an inclined surface facing this reference point in the vertical direction across the space. The detection point is detected from the reference point when an external load such as an earthquake or wind pressure occurs. Detecting and accumulating the distance up to and diagnosing the degree of damage by obtaining the one-dimensional horizontal displacement amount, which is the horizontal displacement amount of the building structure, from the difference between the same two-point distance before the external load occurs A building diagnostic system characterized by 基準点にレーザ変位計を設置し、検出点が配設された傾斜面を建物構造体の横架材、又はそれに接して一体の挙動を示す部材の下面に形成された凹溝の底面に形成し、前記レーザ変位計の光源から照射されるレーザ光を前記凹溝の底面に形成し、レーザ変位計からのレーザ光を凹溝の底面で反射させこの光源に照射させることにより基準点から検出点までの距離を検出する請求項1に記載の建物診断システム。   A laser displacement meter is installed at the reference point, and the inclined surface on which the detection point is arranged is formed on the bottom surface of the horizontal groove of the building structure or on the bottom surface of the groove formed on the bottom surface of the member that exhibits integral behavior The laser light emitted from the light source of the laser displacement meter is formed on the bottom surface of the concave groove, and the laser light from the laser displacement meter is reflected from the bottom surface of the concave groove and irradiated to the light source to detect from the reference point. The building diagnosis system according to claim 1, wherein a distance to the point is detected. 傾斜面の上方にその一側から他側に向けて直交する第2の傾斜面が傾斜面と連接して形成され、この第2の傾斜面に第2の検出点を設け、基準点から第2の検出点までの距離を検出することにより、第2の傾斜面における建物構造体の二次元水平変位量を求める請求項1又は2に記載の建物診断システム。   A second inclined surface orthogonal to the other side from the one side to the other side is formed above the inclined surface, and a second detection point is provided on the second inclined surface. The building diagnostic system according to claim 1 or 2, wherein a two-dimensional horizontal displacement amount of the building structure on the second inclined surface is obtained by detecting a distance to the two detection points. 一次元水平変位量又は二次元水平変位量のいずれか一方を継続的にモニタリングしながら記録し、建物構造体の地震時変位特性値との比較により、建物構造体の地震による損傷の有無を診断する請求項3に記載の建物診断システム。   Either one-dimensional horizontal displacement or two-dimensional horizontal displacement is recorded while continuously monitored, and the building structure is diagnosed for earthquake damage by comparison with the displacement characteristic value during earthquake. The building diagnostic system according to claim 3. 一次元水平変位量又は二次元水平変位量のいずれか一方を継続的にモニタリングしながら記録し、建物構造体の建設地での観測データとの比較により、建物構造体の地震による損傷の有無を診断する請求項3に記載の建物診断システム。   Either one-dimensional horizontal displacement or two-dimensional horizontal displacement is recorded while continuously monitored and compared with the observation data of the building structure at the construction site to determine whether the building structure is damaged by an earthquake. The building diagnostic system according to claim 3 to be diagnosed. 建物の損傷程度を診断する診断手段と該診断結果を表示するパーソナルコンピュータを具えた請求項4又は5に記載の建物診断システム。   6. The building diagnosis system according to claim 4 or 5, comprising diagnostic means for diagnosing the degree of damage to the building and a personal computer for displaying the diagnosis result.
JP2005251399A 2005-08-31 2005-08-31 Building diagnosis system Pending JP2007064800A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005251399A JP2007064800A (en) 2005-08-31 2005-08-31 Building diagnosis system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005251399A JP2007064800A (en) 2005-08-31 2005-08-31 Building diagnosis system

Publications (2)

Publication Number Publication Date
JP2007064800A true JP2007064800A (en) 2007-03-15
JP2007064800A5 JP2007064800A5 (en) 2008-10-02

Family

ID=37927169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005251399A Pending JP2007064800A (en) 2005-08-31 2005-08-31 Building diagnosis system

Country Status (1)

Country Link
JP (1) JP2007064800A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009186385A (en) * 2008-02-08 2009-08-20 Railway Technical Res Inst Real-time earthquake damage estimation method by shaking mode of elevated bridge and its apparatus
JP2009192373A (en) * 2008-02-14 2009-08-27 Shimizu Corp Integrity determination system of structure
JP2009214986A (en) * 2008-03-10 2009-09-24 Daifuku Co Ltd Article conveying device
JP2009258036A (en) * 2008-04-21 2009-11-05 Sumitomo Mitsui Construction Co Ltd Building interlayer displacement measuring apparatus and structure having the apparatus
JP2010197282A (en) * 2009-02-26 2010-09-09 Waseda Univ Displacement measuring device and displacement measuring system
JP2013092488A (en) * 2011-10-27 2013-05-16 Biikku Kk Seismograph and acceleration detection method using the same
KR101635904B1 (en) * 2015-02-03 2016-07-04 이노스기술 주식회사 Vibration isolating apparatus equipped with improved displacement-measuring system and smart maintenance and management system of vibration isolation apparatus using near field communication module
KR20160116892A (en) * 2015-03-31 2016-10-10 황성현 Concrete mold collapse alarm system using laser transmitter and laser receiver
JP6869416B1 (en) * 2020-11-05 2021-05-12 東京パワーテクノロジー株式会社 Reflectors, ranging devices, ranging methods, displacement observation systems, and programs
JP7050208B1 (en) * 2021-10-06 2022-04-07 東京パワーテクノロジー株式会社 Reflector, ranging device, displacement observation system, ranging method, and program
CN114705469A (en) * 2022-06-06 2022-07-05 中国飞机强度研究所 Airplane damage test simulation system and method for airplane strength test

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5850404A (en) * 1981-09-21 1983-03-24 Toshiba Corp Device for measuring minute displacement
JPS62129705A (en) * 1985-12-02 1987-06-12 Hitachi Ltd Apparatus for detecting shaft moving quantity
JPH01134201A (en) * 1987-11-19 1989-05-26 Yuken Kogyo Kk Linear stroke detecting device and continuously variable transmission utilizing same
JPH0599648A (en) * 1991-10-08 1993-04-23 Ohbayashi Corp Automatic measuring method for use in maintenance and management of base isolation building
JP2001066135A (en) * 1999-06-24 2001-03-16 Masaki Motomura Inspecting method of house and reflector used for it
JP2002365021A (en) * 2001-06-07 2002-12-18 Yazaki Corp Strain detection system and strain detector
JP2003090722A (en) * 2001-09-20 2003-03-28 Nagano Keiki Co Ltd Displacement gauge and displacement adjuster
JP2003214829A (en) * 2002-01-21 2003-07-30 Js Corp Apparatus and method for inspecting outer wall and outer wall inspecting and diagnosing system
JP2004212052A (en) * 2002-12-26 2004-07-29 Mitsubishi Fuso Truck & Bus Corp Non-contact three-dimensional relative displacement measuring apparatus

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5850404A (en) * 1981-09-21 1983-03-24 Toshiba Corp Device for measuring minute displacement
JPS62129705A (en) * 1985-12-02 1987-06-12 Hitachi Ltd Apparatus for detecting shaft moving quantity
JPH01134201A (en) * 1987-11-19 1989-05-26 Yuken Kogyo Kk Linear stroke detecting device and continuously variable transmission utilizing same
JPH0599648A (en) * 1991-10-08 1993-04-23 Ohbayashi Corp Automatic measuring method for use in maintenance and management of base isolation building
JP2001066135A (en) * 1999-06-24 2001-03-16 Masaki Motomura Inspecting method of house and reflector used for it
JP2002365021A (en) * 2001-06-07 2002-12-18 Yazaki Corp Strain detection system and strain detector
JP2003090722A (en) * 2001-09-20 2003-03-28 Nagano Keiki Co Ltd Displacement gauge and displacement adjuster
JP2003214829A (en) * 2002-01-21 2003-07-30 Js Corp Apparatus and method for inspecting outer wall and outer wall inspecting and diagnosing system
JP2004212052A (en) * 2002-12-26 2004-07-29 Mitsubishi Fuso Truck & Bus Corp Non-contact three-dimensional relative displacement measuring apparatus

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009186385A (en) * 2008-02-08 2009-08-20 Railway Technical Res Inst Real-time earthquake damage estimation method by shaking mode of elevated bridge and its apparatus
JP2009192373A (en) * 2008-02-14 2009-08-27 Shimizu Corp Integrity determination system of structure
JP2009214986A (en) * 2008-03-10 2009-09-24 Daifuku Co Ltd Article conveying device
JP2009258036A (en) * 2008-04-21 2009-11-05 Sumitomo Mitsui Construction Co Ltd Building interlayer displacement measuring apparatus and structure having the apparatus
JP2010197282A (en) * 2009-02-26 2010-09-09 Waseda Univ Displacement measuring device and displacement measuring system
JP2013092488A (en) * 2011-10-27 2013-05-16 Biikku Kk Seismograph and acceleration detection method using the same
KR101635904B1 (en) * 2015-02-03 2016-07-04 이노스기술 주식회사 Vibration isolating apparatus equipped with improved displacement-measuring system and smart maintenance and management system of vibration isolation apparatus using near field communication module
KR20160116892A (en) * 2015-03-31 2016-10-10 황성현 Concrete mold collapse alarm system using laser transmitter and laser receiver
KR101689268B1 (en) * 2015-03-31 2016-12-23 황성현 Concrete mold collapse alarm system using laser transmitter and laser receiver
JP6869416B1 (en) * 2020-11-05 2021-05-12 東京パワーテクノロジー株式会社 Reflectors, ranging devices, ranging methods, displacement observation systems, and programs
JP7050208B1 (en) * 2021-10-06 2022-04-07 東京パワーテクノロジー株式会社 Reflector, ranging device, displacement observation system, ranging method, and program
CN114705469A (en) * 2022-06-06 2022-07-05 中国飞机强度研究所 Airplane damage test simulation system and method for airplane strength test
CN114705469B (en) * 2022-06-06 2022-08-26 中国飞机强度研究所 Airplane damage test simulation system and method for airplane strength test

Similar Documents

Publication Publication Date Title
JP2007064800A (en) Building diagnosis system
EP3479239B1 (en) System and method for determining the risk of failure of a structure
Palma et al. Structural health monitoring of timber structures–Review of available methods and case studies
JP4859557B2 (en) Method for judging the soundness of concrete buildings
JP5586890B2 (en) Method for adjusting damping device
Gastineau et al. Bridge health monitoring and inspections–a survey of methods
Zinno et al. Structural health monitoring (SHM)
Demirlioglu et al. In-plane seismic response analyses of a historical brick masonry building using equivalent frame and 3D FEM modeling approaches
Schoefs et al. Optimal embedded sensor placement for spatial variability assessment of stationary random fields
JP5372479B2 (en) Method and apparatus for measuring earthquake resistance or wind pressure strength of wooden houses
Gordon et al. Technology and process assessment of using LADAR and embedded sensing for construction quality control
Ierimonti et al. ROC analysis-based optimal design of a spatio-temporal online seismic monitoring system for precast industrial buildings
Delatte et al. Application of nondestructive evaluation to subway tunnel systems
JP2007183166A (en) Utility pole stress evaluator, utility pole stress evaluation system, utility pole stress evaluation method, and utility pole
NZ538649A (en) Estimating strengths of wooden supports using gamma rays
KR20020021548A (en) Remote Structure Measuring and Managing System Using Internet and Method Thereof
Del Grosso Structural health monitoring: Research and practice
JP6948241B2 (en) Evaluation method of incidental support status
RU2467318C1 (en) Method of multi-parameter control of building structures (transport tunnels, buildings, structures)
JP2004170397A (en) Ae sensor, abnormality detecting system of structure using ae sensor and safety evaluating system
Mohammadi et al. Nondestructive evaluation and monitoring methods for facade inspection and conditions assessment
Applied Technology Council et al. Evaluation of Earthquake Damaged Concrete and Masonry Wall Buildings: Basic Procedures Manual
Schumacher et al. AE monitoring of real structures: applications, strengths, and limitations
Liu et al. Effect of temperature on modal variability for a curved concrete bridge
You et al. Multi‐level breakage‐triggered radio frequency identification‐based deformation sensor for rapid post‐earthquake loss assessment of buildings: Concept, development, and application

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080811

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101119

A131 Notification of reasons for refusal

Effective date: 20110118

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20110712

Free format text: JAPANESE INTERMEDIATE CODE: A02