JP2007064192A - Pumping type recirculation hydraulic power generation system and pumping machine - Google Patents

Pumping type recirculation hydraulic power generation system and pumping machine Download PDF

Info

Publication number
JP2007064192A
JP2007064192A JP2005282946A JP2005282946A JP2007064192A JP 2007064192 A JP2007064192 A JP 2007064192A JP 2005282946 A JP2005282946 A JP 2005282946A JP 2005282946 A JP2005282946 A JP 2005282946A JP 2007064192 A JP2007064192 A JP 2007064192A
Authority
JP
Japan
Prior art keywords
water
pumping
piston
power generation
water tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005282946A
Other languages
Japanese (ja)
Inventor
Nariyoshi Kuramoto
成義 藏本
Hideo Sasagawa
英男 笹川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2005282946A priority Critical patent/JP2007064192A/en
Publication of JP2007064192A publication Critical patent/JP2007064192A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/50Hydropower in dwellings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids

Landscapes

  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pumping machine and a system capable of performing hydraulic power generation anywhere by recirculating water without specifying an installation location. <P>SOLUTION: An upper water tank and a lower water tank are provided in a power generation system and height difference between the water tanks is defined as water head, potential energy of water is used for power generation. The upper water tank, a hydraulic turbine and a generator, the lower water tank are arranged in an order. Water passing through the hydraulic turbine is guided to the lower water tank, and is pumped up to the upper water tank by the pumping machine connected to the lower part water tank. The pumping machine has a cylinder structure and pumps up water by applying Pascal's principle. Water pressure, air pressure, oil pressure, solid movement, magnetic force or the like is used as a method of generating driving force of a piston in the cylinder to drive the piston. Power generation can be sustained by repeating a process in which water in the cylinder is pumped up to the upper water tank and is recirculated. Pumping height can be adjusted by changing piston drive force and power generation quantity can be easily adjusted. The system can be introduced at any place where the upper water tank and the lower water tank can be installed without specifying a place. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、水力発電のシステムと揚水方法に関するものである。本水力発電システムは水資源、地形落差等の立地的自然条件には殆ど関係なく何処にでも水力発電を可能とするために水の再循環使用可能なシステムにしたものである。水の落差を作り出すためにパスカルの原理を応用し揚水を行う方法である。初期起動時は外部動力源で起動し正常運転後は自家発電電力のみでシステム運転可能とし、かつ余剰電力発生せしめ外部への電力供給を可能とした発電システムである。本発電システムは高層ビル、市街地、個人住宅等の建物及び水資源に乏しい地域や平坦な地域にも設置可能であり設置場所は特に限定しない水力発電システムと揚水機である。The present invention relates to a hydroelectric power generation system and a pumping method. This hydroelectric power generation system is a system that can be used for water recirculation in order to enable hydroelectric power generation almost regardless of locational natural conditions such as water resources and topographical head. It is a method of pumping water by applying Pascal's principle to create a water drop. This is a power generation system that is activated by an external power source at the time of initial startup, can be operated only by private power after normal operation, and can generate surplus power and supply power to the outside. This power generation system can be installed in buildings such as high-rise buildings, urban areas, private houses, and in areas where water resources are scarce or flat, and the installation location is a hydroelectric power generation system and a pump that are not particularly limited.

現在の水力発電は一般的には水資源の豊富な場所で自然落差が大きな場所にダム等を設置し発電されているものが殆どである。最近では小水力発電として色々なシステムが開発されているが使用された水は殆ど再発電に使用される事なく使用後は下流に放水され発電目的では使用されないことが殆どである。大型水力発電設備等では夜間電力を使用し揚水発電を実施しているがこれはピーク時対策であり常時発電ではなく自家発電電力のみでは運転出来なく効率も悪い。In general, most of the current hydroelectric power is generated by installing dams in places where water resources are abundant and where there is a large natural head. Recently, various systems have been developed for small hydropower generation, but the used water is almost never used for re-generation, and is discharged to the downstream after use and is not used for power generation. Large hydroelectric power generation facilities, etc. are using pumped power at night, but this is a countermeasure at peak time, and it is not possible to operate with only self-generated power instead of constant power generation, and the efficiency is poor.

従来の水力発電は上記の様に立地的自然条件を基にした発電が殆どであり、本発明のシステムと揚水機は一定量の水を再循環使用する事と、設備の設置場所は特に限定せず、水力発電を行い起動時のみ外部動力源を使用し正常運転後は自家発電電力のみでシステムを運転し、かつ余剰電力を発生せしめ外部への電力供給を可能にすることを課題とした。Conventional hydroelectric power generation is mostly based on local natural conditions as described above, and the system and pump of the present invention recycle and use a certain amount of water, and the installation location of equipment is particularly limited. Instead, hydroelectric power generation is used and an external power source is used only at startup.After normal operation, the system is operated only with privately generated power, and surplus power is generated to enable external power supply. .

本発明は、上記課題を解決する為に発電システム内に上部水槽と下部水槽を設けて水槽間の高さの差を水の落差とし水の位置エネルギーを発電に利用する。配置は上部水槽、水車と発電機、下部水槽と配置し、水車を通過した水は下部水槽に導かれ、下部水槽に接続された揚水機で上部水槽に揚水する。揚水機はシリンダー構造でパスカルの原理を応用し水を揚水する。シリンダー内のピストン駆動力発生方法として水圧、空気圧、油圧、固体移動、磁力等を利用してピストンを駆動せしめ、シリンダー内の水を上部水槽に揚水し水の再循環を行う行程を繰り返す事で発電を持続的に行うことを可能とした。揚水高さはピストン駆動力を変化させる事で調整は可能であり発電量の調整を容易に行うことができ、上部水槽、下部水槽の設置が可能な場所ならば場所を特定する事無く解決する。In order to solve the above-mentioned problems, the present invention provides an upper water tank and a lower water tank in a power generation system, uses the difference in height between the water tanks as a water drop, and uses the potential energy of water for power generation. Arrangement is an upper water tank, a water turbine and a generator, and a lower water tank, and water passing through the water wheel is guided to the lower water tank and pumped to the upper water tank by a pump connected to the lower water tank. The pump is a cylinder structure that uses Pascal's principle to pump water. By driving the piston using water pressure, air pressure, hydraulic pressure, solid movement, magnetic force, etc. as a method of generating piston driving force in the cylinder, pumping the water in the cylinder to the upper water tank and repeating the process of recirculating the water It was possible to generate electricity continuously. The pumping height can be adjusted by changing the piston driving force, and the amount of power generation can be adjusted easily. If the place where the upper and lower tanks can be installed, it can be solved without specifying the location. .

本発明の水力発電システムと揚水機は自然の地形落差、水資源豊富等の自然的立地条件を必要とせず、市街地のビル、山間部、離島、住宅地等の場所で設置可能で自然的立地条件にあまり関係なく自家水力発電を可能とした。通常システム運転中は外部エネルギーを投入する事無く、また水を再循環使用する為初期充填の水以外は少量の補充程度の水で発電可能で、発電量に対して所内使用電力を賄っても余剰電力の発生を可能せしめ、外部への電力供給が可能となる。The hydroelectric power generation system and pump of the present invention do not require natural location conditions such as natural topography drop and abundant water resources, and can be installed in urban buildings, mountainous areas, remote islands, residential areas, etc. Independent hydropower generation is possible regardless of the conditions. During normal system operation, it is possible to generate electricity with a small amount of replenishment water other than the initial filling water without using external energy and recirculating water. It is possible to generate surplus power and supply power to the outside.

平地な場所で設置が可能なため、従来の水力発電設備建設コスト及びプラント建設コストより安く建設が可能、または地下に設備を設置可能で従来の技術で設置が可能である。コストは初期製造建設コストのみで発電コストはメンテナンスコスト以外必要とせず低コストで発電が可能。Since it can be installed on a flat place, it can be constructed at a lower cost than the conventional hydroelectric power generation equipment construction cost and plant construction cost, or the equipment can be installed underground and can be installed by conventional techniques. The cost is only the initial manufacturing and construction cost, and the power generation cost is not necessary except for the maintenance cost.

以下に本発明に係る揚水式再循環水力発電システムと揚水機の好適な実施形態を添付図参照にしながら詳述する。図1はシステムの基本系統を示す図で水力発電に必要な落差は上部水槽水位10と下部水槽の高水位9との高低差を落差として利用する為に上部水槽1と下部水槽2を設けその間を結ぶ降水管3の途中に水車を設置し水車に発電機を連結取付けし発電する。水車を回転させた水は下部水槽2に入り下部水槽に接続された揚水機内に導かれる、シリンダー構造の揚水機2a2bの図2の揚水室25a25bに入って水は揚水機のピストン図2の揚水室a、b加圧ピストン24a24b作動により排出され揚水機出口管7揚水管8を通り上部水槽1に揚水される。ピストンを往復運動させる事で連続的に揚水が可能となる。Hereinafter, preferred embodiments of a pumped recirculation hydroelectric power generation system and a pump according to the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a diagram showing a basic system of the system. The head required for hydroelectric power generation is provided with an upper water tank 1 and a lower water tank 2 in order to use the height difference between the upper water tank level 10 and the high water level 9 of the lower water tank as a head. A water turbine is installed in the middle of the downpipe 3 connecting the two, and a generator is connected to the water turbine for power generation. The water that has rotated the turbine enters the lower water tank 2 and is guided into the pump connected to the lower water tank, and enters the pumping chamber 25a25b in FIG. 2 of the cylinder-type water pump 2a2b. The chambers a and b are discharged by the operation of the pressurizing pistons 24a24b and are pumped to the upper water tank 1 through the pumping machine outlet pipe 7 and the pumping pipe 8. Pumping water continuously is possible by reciprocating the piston.

下部水槽2内の水車出口配管6下流の水車出口管Uシール6aをU字形状にする事で下部水槽の水位が異常低下しUシール先端より水位の低下が有っても降水管3水車出口配管6内に空気の流入を防ぎ配管内のサーフォン切れを防止出来る。Even if the water level of the lower water tank drops abnormally by making the water turbine outlet pipe U seal 6a downstream of the water turbine outlet pipe 6 in the lower water tank 2 U-shaped, and the water level drops from the tip of the U seal, It is possible to prevent the inflow of air into the pipe 6 and prevent the surphone from being cut off in the pipe.

揚水機2a、2bの作動説明は揚水機2aの作動で説明を行う。(揚水機2bは反対の動きをする為)揚水機2aからの揚水はパスカルの原理を応用し揚水される。揚水方法は空気圧縮機11で圧縮された空気を圧縮空気タンク13に蓄えピストン駆動用空気管14を通じて揚水機2aピストン加圧空気切替弁14aより揚水機2a図2揚水室a加圧ピストン加圧空気入口30aに空気が供給されると揚水機2a内のピストンは移動方向33のL方向に移動する。この移動により揚水室b25b内の水はピストンに押され揚水室b水出口29bを出て揚水機出口管7、揚水管8を経由し上部水槽1に揚水される。ピストンの往復運動の切り替えはピストンの位置を検出し行う。まず空気は図2の揚水室a加圧ピストン加圧空気入口30aに供給されピストンが移動方向33のL側に移動し揚水を行い、ピストンが移動限界点に達した位置を検出しピストン加圧空気切替弁14aが切替り揚水機2aの反対側の揚水室b加圧ピストン加圧空気入口30bに供給されると移動方向33はR側に変わり揚水室b25bには下部水槽から水が供給される。揚水室a25aに有った水は押し出され上部水槽1に揚水される。空気切り替え弁14aの切り替わりで揚水室a加圧ピストン用シリンダー31a内の空気は排気として排出される。この排気を纏めてピストン加圧空気排気管22を通じて揚水管8の途中に注入する。揚水管に注入された空気は汽水混合の状態となり揚水管8の中を上昇することで水柱の単位当たりの重量が軽くなりより高く揚水を容易にする。この排気を再利用する事でエネルギーの節約につながる。The operation of the pumps 2a and 2b will be described in the operation of the pump 2a. (Because the pump 2b moves in the opposite direction) The pump from the pump 2a is pumped by applying the Pascal principle. In the pumping method, the air compressed by the air compressor 11 is stored in the compressed air tank 13, and through the piston driving air pipe 14, the pumping machine 2a piston pressurizing air switching valve 14a is used to raise the pump 2a. FIG. When air is supplied to the air inlet 30a, the piston in the pump 2a moves in the L direction of the moving direction 33. By this movement, the water in the pumping chamber b25b is pushed by the piston, exits the pumping chamber b water outlet 29b, and is pumped to the upper water tank 1 through the pumping machine outlet pipe 7 and the pumping pipe 8. The reciprocation of the piston is switched by detecting the position of the piston. First, air is supplied to the pumping chamber a pressurizing piston pressurizing air inlet 30a in FIG. 2, the piston moves to the L side in the moving direction 33 and pumps water, detects the position where the piston reaches the moving limit point, and pressurizes the piston. When the air switching valve 14a is switched and supplied to the pumping chamber b pressurizing piston pressurizing air inlet 30b on the opposite side of the pump 2a, the moving direction 33 changes to the R side and water is supplied to the pumping chamber b25b from the lower tank. The The water in the pumping chamber a25a is pushed out and pumped into the upper water tank 1. By switching the air switching valve 14a, the air in the pumping chamber a pressurizing piston cylinder 31a is discharged as exhaust. The exhaust is collected and injected into the pumped water pipe 8 through the piston pressurized air exhaust pipe 22. The air injected into the pumping pipe is in a brackish water mixed state and ascends in the pumping pipe 8 so that the weight per unit of the water column is reduced and the pumping is made easier. Reusing this exhaust will save energy.

システム初期起動時は外部動力源17により空気圧縮機モータ12を駆動し空気圧縮機11により圧縮空気を造る。この圧縮空気によりシステムを起動し揚水を始める。その後降水管3より水車を通過し水車を回転稼動せしめることにより発電を開始する。システムが正常運転に達したら電力制御盤18により水車発電電力20を空気圧縮機モータ駆動電力19として切り替える。このとき水車発電電力20の電力は空気圧縮機モータ駆動電力19を使用しても余裕がある為余剰電力21としてシステム以外の外部電力として供給使用する。At the initial startup of the system, the air compressor motor 12 is driven by the external power source 17 and compressed air is produced by the air compressor 11. This compressed air activates the system and starts pumping. After that, power generation is started by passing the water wheel from the downcomer 3 and rotating the water wheel. When the system reaches normal operation, the power generation power 20 is switched to the air compressor motor drive power 19 by the power control panel 18. At this time, since the power of the turbine generated power 20 has a margin even when the air compressor motor drive power 19 is used, it is supplied and used as surplus power 21 as external power other than the system.

図2は揚水機の詳細を示す図であり構造の概略と作動について述べる。揚水機はシリンダー構造でありその中にピストンが2室一体で入っている。揚水機揚水加圧室26aと揚水機水導入加圧室26bがありその部屋は揚水機加圧室仕切り27で仕切られている。揚水室a加圧ピストン加圧空気入口30aに作動空気が注入されるとシリンダー内のピストンは移動方向33のL側に移動を始める。それに伴って揚水室b25b内の室内圧力が上昇し揚水室b水出口29bより水が押し出される。ピストンが移動方向33のL側に移動する事で揚水室a25aの室内は低圧となり下部水槽に接続されている揚水室a水入口28aより水が供給され揚水室a25aは水が充満する。ピストン加圧空気切替弁14aをあるサイクルで切替を行い往復動作を繰返す事で下部水槽2に入った水は揚水機により上部水槽1に容易に継続的に揚水が可能となる。FIG. 2 is a diagram showing details of the pump, and the outline and operation of the structure will be described. The pump is a cylinder structure and the piston is contained in two chambers. There is a pumping water pumping chamber 26 a and a pumping water introduction pressurizing chamber 26 b, which are partitioned by a pumping chamber partition 27. When working air is injected into the pumping chamber a pressurizing piston pressurized air inlet 30 a, the piston in the cylinder starts to move to the L side in the moving direction 33. Along with this, the indoor pressure in the pumping chamber b25b rises and water is pushed out from the pumping chamber b water outlet 29b. As the piston moves to the L side in the moving direction 33, the inside of the pumping chamber a25a becomes low pressure, water is supplied from the pumping chamber a water inlet 28a connected to the lower water tank, and the pumping chamber a25a is filled with water. By switching the piston pressurized air switching valve 14a in a certain cycle and repeating the reciprocating operation, water entering the lower water tank 2 can be easily and continuously pumped into the upper water tank 1 by the pump.

揚水式再循環水力発電システムの概要を示す系統図である。It is a distribution diagram showing the outline of a pumping-type recirculation hydroelectric power generation system. 揚水機の詳細を示す構造図である。It is a block diagram which shows the detail of a pumping machine. 揚水機の作動でL側が揚水完了の状態を示す図である。It is a figure which shows the state of the pumping completion on the L side by the action | operation of a pumping machine. 揚水機の作動でR側が揚水完了の状態を示す図である。It is a figure which shows the state of the pumping completion on the R side by the action | operation of a pumping machine.

符号の説明Explanation of symbols

1 上部水槽
2 下部水槽
2a 揚水機a
2b 揚水機b
3 降水管
4 発電用水車
5 発電機
6 水車出口管
6a 水車出口管Uシール
7 揚水機出口管
8 揚水管
9 下部水槽高水位
10 上部水槽低水位
11 空気圧縮機
12 空気圧縮機モータ
13 圧縮空気タンク
14 揚水機駆動用空気管
14a 揚水機aピストン加圧空気切替弁
14b 揚水機bピストン加圧空気切替弁
15a 揚水機a揚水室aピストン加圧空気
15b 揚水機a揚水室bピストン加圧空気
16a 揚水機b揚水室aピストン加圧空気
16b 揚水機b揚水室bピストン加圧空気
17 外部電力
18 電力制御盤
19 空気圧縮機モータ駆動電力
20 水車発電電力
21 余剰電力
22 ピストン加圧空気排気管
23 揚水機本体
24a 揚水室a加圧ピストン
24b 揚水室b加圧ピストン
25a 揚水室a
25b 揚水室b
26a 揚水室a加圧室
26b 揚水室b加圧室
27 揚水加圧室仕切り
28a 揚水室a水入口
28b 揚水室b水入口
29a 揚水室a水出口
29b 揚水室b水出口
30a 揚水室a加圧ピストン加圧空気入口
30b 揚水室b加圧ピストン加圧空気入口
31a 揚水室a加圧ピストン用シリンダー
31b 揚水室b加圧ピストン用シリンダー
32a 揚水室a加圧ピストンスライド部パッキン
32b 揚水室b加圧ピストンスライド部パッキン
33 移動方向
1 Upper water tank 2 Lower water tank 2a Pumping machine a
2b Pumping machine b
DESCRIPTION OF SYMBOLS 3 Precipitation pipe 4 Power generation turbine 5 Generator 6 Turbine outlet pipe 6a Turbine outlet pipe U seal 7 Pumping machine outlet pipe 8 Pumping pipe 9 Lower water tank high water level 10 Upper water tank low water level 11 Air compressor 12 Air compressor motor 13 Compressed air Tank 14 Pumping machine air tube 14a Pumping machine a piston pressurized air switching valve 14b Pumping machine b piston pressurized air switching valve 15a Pumping machine a pumping chamber a piston pressurized air 15b Pumping machine a pumping chamber b piston pressurized air 16a Pumping machine b Pumping chamber a Piston pressurized air 16b Pumping machine b Pumping chamber b Piston pressurized air 17 External power 18 Power control panel 19 Air compressor motor drive power 20 Turbine power generation power 21 Surplus power 22 Piston pressurized air exhaust pipe 23 Pumping machine main body 24a Pumping chamber a Pressurizing piston 24b Pumping chamber b Pressurizing piston 25a Pumping chamber a
25b Pumping room b
26a Pumping chamber a Pressurization chamber 26b Pumping chamber b Pressurization chamber 27 Pumping pressurization chamber partition 28a Pumping chamber a Water inlet 28b Pumping chamber b Water inlet 29a Pumping chamber a Water outlet 29b Pumping chamber b Water outlet 30a Pumping chamber a Pressurization Piston pressurized air inlet 30b Pumping chamber b Pressurizing piston pressurized air inlet 31a Pumping chamber a Pressurizing piston cylinder 31b Pumping chamber b Pressurizing piston cylinder 32a Pumping chamber a Pressurizing piston slide packing 32b Pumping chamber b pressurization Piston slide part packing 33 Movement direction

Claims (5)

揚水式再循環水力発電システムと揚水機で、水の落差を利用し、水車に直結した発電機を駆動するために系統内に上部水槽と下部水槽を設け、上部水槽を出た水が水車通過後下部水槽に導かれ、下部水槽に接続された揚水機はシリンダー構造で水車を通過した水は下部水槽よりシリンダー内部に導入され、シリンダー内部に導入された水はシリンダー内のピストンの圧力駆動によりパスカルの原理応用によって押し出され上部水槽へ揚水せしめ水の再循環を可能にすることを特徴とする揚水式再循環水力発電システムと揚水機。In the pumped recirculation hydroelectric power generation system and the pump, the upper water tank and the lower water tank are installed in the system to drive the generator directly connected to the water turbine using the head of water, and the water leaving the upper water tank passes through the water turbine. The pump that is led to the rear lower tank and connected to the lower tank has a cylinder structure and the water that has passed through the water turbine is introduced into the cylinder from the lower tank, and the water introduced into the cylinder is driven by the pressure of the piston in the cylinder. Pumped recirculation hydroelectric power generation system and pumping machine characterized by enabling recirculation of pumped water squeezed out to the upper tank by being applied by Pascal's principle application. 揚水機はシリンダー構造で断面形状は多角形円形等何れでも良く、シリンダー内のピストン駆動源は空気圧、水圧、油圧、磁力、固体移動等を利用しパスカルの原理応用によりピストンを加圧移動させることで下部水槽の水を上部水槽に揚水せしめ、ピストンの構造は内部を分割され2室を有し2室とも揚水と水吸い込み用に交互に加圧可能で、ピストンは揚水加圧部と駆動源注入部から成り口径を変え小口径側を駆動源注入部とし一方は揚水加圧用で小口径側加圧により揚水のためピストンを移動させ、ピストンの移動に支障の無いよう小口径側はスライド式の構造とすることで、シリンダー内を容易に往復運動せしめることが可能で、小さい加圧容積で大きな駆動力及び稼動力を発生させることを特徴とする請求項1の揚水式再循環水力発電システムと揚水機。The pumping machine may be any cylinder structure with a polygonal circular cross section, and the piston drive source in the cylinder uses air pressure, water pressure, hydraulic pressure, magnetic force, solid movement, etc. to move the piston under pressure by applying Pascal's principle. The water in the lower tank is pumped up into the upper tank, and the piston structure is divided into two chambers, and both chambers can be pressurized alternately for pumping and sucking water. It consists of an injection part and the diameter is changed and the small-diameter side is used as the drive source injection part, and one is for pumping pressurization and the piston is moved for pumping by pressurization on the small-diameter side. The pumped recirculation hydraulic power according to claim 1, characterized in that it can be easily reciprocated in the cylinder and generates a large driving force and operating force with a small pressurized volume. Power system and the pumping machine. 上部水槽の構造は大気開放式で水の落差のみの方式又は密閉圧力式で水の落差と内部圧力を利用した水車の出力増加方式の何れでも良く、また揚水機の設置方向は横置き、縦置き何れでも良く、揚水機の設置数は1個以上複数個設置する事で揚水する水の流れを平滑にせしめることを可能とし、複数個設置する事で揚水機1個当たりの揚水容積も小さくて済み加圧動力源も小さく出来る事を特徴とする請求項1、2の揚水式再循環水力発電システムと揚水機。The structure of the upper tank can be either an open-air type with a water drop only method or a sealed pressure type with a water wheel output increase method using the water drop and internal pressure, and the installation direction of the pump is horizontal and vertical. Any number of pumps can be installed. By installing one or more pumps, it is possible to smooth the flow of the pumped water, and by installing multiple pumps, the pumping capacity per pump is small. 3. The pumped recirculation hydroelectric power generation system and pump according to claim 1, wherein the pressurized power source can be made smaller. ピストン駆動用に空気圧を使用する場合の空気圧縮機の駆動を上部水槽からの水の位置エネルギーを利用する為に発電機と別な水車を設置駆動し、発電機で発電した電力を全て外部使用電力として使用可能とする事を特徴とする請求項1,2,3の揚水式再循環水力発電システムと揚水機。When using air pressure to drive the piston, the air compressor is driven by installing a water turbine separate from the generator to use the potential energy of the water from the upper water tank, and all the power generated by the generator is used externally The pumped recirculation hydroelectric power generation system and pump according to claim 1, 2, 3 which are usable as electric power. ピストン駆動源に空気圧を使用した場合、ピストン駆動後の排気空気圧を再利用しエネルギー節約のために、作動空気のピストンよりの排気を揚水管に注入し気水混合状態にする事で水柱の単位当りの重さが小さくなり揚水高を増加させることを可能としたことを特徴とした請求項1,2,3、4の揚水式再循環水力発電システムと揚水機。When air pressure is used for the piston drive source, the unit of water column is created by injecting the exhaust air from the piston of the working air into the pumping pipe to bring it into the air-water mixture state in order to reuse the exhaust air pressure after driving the piston and save energy. The pumped recirculation hydroelectric power generation system and pump according to claim 1, 2, 3, and 4, wherein the weight per hit is reduced and the pumping height can be increased.
JP2005282946A 2005-08-31 2005-08-31 Pumping type recirculation hydraulic power generation system and pumping machine Pending JP2007064192A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005282946A JP2007064192A (en) 2005-08-31 2005-08-31 Pumping type recirculation hydraulic power generation system and pumping machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005282946A JP2007064192A (en) 2005-08-31 2005-08-31 Pumping type recirculation hydraulic power generation system and pumping machine

Publications (1)

Publication Number Publication Date
JP2007064192A true JP2007064192A (en) 2007-03-15

Family

ID=37926658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005282946A Pending JP2007064192A (en) 2005-08-31 2005-08-31 Pumping type recirculation hydraulic power generation system and pumping machine

Country Status (1)

Country Link
JP (1) JP2007064192A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108691724A (en) * 2018-08-08 2018-10-23 浙江海洋大学 A kind of wave energy generating set
WO2018208048A1 (en) * 2017-05-12 2018-11-15 오의식 Pumped-storage hydroelectricity generator
CN108869147A (en) * 2018-05-28 2018-11-23 常州信息职业技术学院 Power generating type water flow conveying mechanism
CN115877879A (en) * 2022-11-28 2023-03-31 国网安徽省电力有限公司经济技术研究院 Pumped storage power station operation intelligence management and control governing system based on coordinated development
JP7488933B1 (en) 2023-04-03 2024-05-22 加賀谷 達 Compressed air pressure to water pressure converter

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018208048A1 (en) * 2017-05-12 2018-11-15 오의식 Pumped-storage hydroelectricity generator
CN108869147A (en) * 2018-05-28 2018-11-23 常州信息职业技术学院 Power generating type water flow conveying mechanism
CN108869147B (en) * 2018-05-28 2020-02-04 常州信息职业技术学院 Power generation type water flow conveying mechanism
CN108691724A (en) * 2018-08-08 2018-10-23 浙江海洋大学 A kind of wave energy generating set
CN108691724B (en) * 2018-08-08 2019-10-01 浙江海洋大学 A kind of wave energy generating set
CN115877879A (en) * 2022-11-28 2023-03-31 国网安徽省电力有限公司经济技术研究院 Pumped storage power station operation intelligence management and control governing system based on coordinated development
JP7488933B1 (en) 2023-04-03 2024-05-22 加賀谷 達 Compressed air pressure to water pressure converter

Similar Documents

Publication Publication Date Title
US7194861B2 (en) Two stroke steam-to-vacuum engine
CN102046970A (en) Electrical energy/pressurized air conversion techniques
JP2007064192A (en) Pumping type recirculation hydraulic power generation system and pumping machine
TWI518242B (en) Power generation system
CN102748273A (en) Air-bag type high-pressure water pumping device and manufacturing method thereof
CN111396288B (en) Power generation system based on constant pressure
CN107917074B (en) Special air compressor system for supplying air to constant-pressure air storage source
CN101440784A (en) Downhole geothermal energy steam drive apparatus and power generation or liquid pumping method
WO2008141587A1 (en) Air pressure difference type energy saving water pumping device
CN203374440U (en) High-efficiency and energy-saving water supply device
CN203188973U (en) Pumping well energy-saving environment-friendly well repairing operating equipment
KR100622663B1 (en) Wind power generator for a family
KR20100123028A (en) Electric generator using wave
CN109707586B (en) Device and method for realizing auxiliary agent filling by utilizing pressure difference of oil jacket of natural gas well
JP3629266B1 (en) Drive device and pressure liquid supply system to the drive device
CN203476840U (en) Pneumatic circulation type pump and wind power valley electricity energy storage pneumatic circulation type water pumping system
CN102995639B (en) Environmental friendliness and energy conversation type water pressure driving pile driver
KR100943630B1 (en) With the raising pressure pump the wheel washing system which uses raising pressure pump
CN102562723B (en) Automatic differential pressure pump
CN1924199A (en) Tower pool circulated water type natural flow station
CN201401267Y (en) Siphon-type fluid propulsion plant
CN216043934U (en) Natural gas pressure energy utilization system
JP6421366B1 (en) Unit type small hydroelectric generator.
US9611872B2 (en) Reciprocal hydraulic cylinder and power generation system
JP2020528349A (en) New energy efficient seawater desalination system