JP2007063637A - Method for producing organic thin film, and optical cvd system - Google Patents

Method for producing organic thin film, and optical cvd system Download PDF

Info

Publication number
JP2007063637A
JP2007063637A JP2005253084A JP2005253084A JP2007063637A JP 2007063637 A JP2007063637 A JP 2007063637A JP 2005253084 A JP2005253084 A JP 2005253084A JP 2005253084 A JP2005253084 A JP 2005253084A JP 2007063637 A JP2007063637 A JP 2007063637A
Authority
JP
Japan
Prior art keywords
photosensitizer
substrate
thin film
light source
organic thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005253084A
Other languages
Japanese (ja)
Other versions
JP4690148B2 (en
Inventor
Seiichi Takahashi
誠一 高橋
Tetsuji Kiyota
清田  哲司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2005253084A priority Critical patent/JP4690148B2/en
Publication of JP2007063637A publication Critical patent/JP2007063637A/en
Application granted granted Critical
Publication of JP4690148B2 publication Critical patent/JP4690148B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for depositing an organic thin film capable of depositing an organic thin film of high quality without causing unintended side reaction, and to provide an optical CVD (Chemical Vapor Deposition) system. <P>SOLUTION: A raw material monomer 21 and a photosensitizer 22 are fed to a film deposition chamber 11 whose pressure is reduced to a prescribed vacuum degree, and the polymerization reaction of the raw material monomer 21 is caused via the photosensitizer 22 excited by the light of a light source 15, thus the polymerized film is deposited on a substrate W. Since the light source 15 is arranged so as to face only to an introduction flow passage 26 for the photosensitizer 22, the light of the light source 15 is not emitted to the raw material monomer 21 and the substrate W in the film deposition chamber. In this way, the generation of unintended side reaction (cutting reaction and cross-linking reaction) by the light irradiation of the light source 15 on the raw material monomer 21 or the high polymer film on the substrate W can be effectively prevented, and an organic thin film, e.g., with a three-dimensional structure can be deposited at high quality and high precision. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、光CVD(Chemical Vapor Deposition)法を用いて基板上に有機重合膜を高精度に形成することができる有機薄膜製造方法および光CVD装置に関する。   The present invention relates to an organic thin film manufacturing method and a photo CVD apparatus capable of forming an organic polymer film on a substrate with high accuracy using a photo CVD (Chemical Vapor Deposition) method.

近年、非常に高感度な放射線飛跡検出用プラスチックとして、アリルジグリコールカーボネート(あるいはジエチレングリコールジアリルカーボネート)が知られている。アリルジグリコールカーボネートは、3次元構造を有する高分子材料である。この材料を精度よく薄膜化することで、高感度な荷電粒子用レジストになると期待されている。   In recent years, allyl diglycol carbonate (or diethylene glycol diallyl carbonate) is known as a very sensitive plastic for detecting radiation tracks. Allyl diglycol carbonate is a polymer material having a three-dimensional structure. It is expected that a highly sensitive resist for charged particles can be obtained by thinning this material with high accuracy.

従来より、半導体ウェーハやガラス基板上に有機薄膜を塗布形成する場合、スピンコート法や噴霧法などが広く用いられている。しかしながら、アリルジグリコールカーボネート等の3次元構造を有する高分子材料は、溶媒に不溶であるため、液状化して基板上に塗布する手法を用いて薄膜化することは非常に困難である。   Conventionally, when an organic thin film is applied and formed on a semiconductor wafer or a glass substrate, a spin coat method, a spray method or the like has been widely used. However, since a polymer material having a three-dimensional structure such as allyl diglycol carbonate is insoluble in a solvent, it is very difficult to form a thin film by using a method of liquefying and coating on a substrate.

一方、光CVD法によって基板上に無機や有機の薄膜を形成する技術が知られている(例えば下記特許文献1,2参照)。光CVD法は、光のエネルギーにより気体分子を分解し、基板上に低温で薄膜を形成するプロセス技術である。この光CVD法によれば、気相から直接成膜ができるので、溶媒に不溶な3次元化構造の高分子材料の薄膜形成が可能となる。   On the other hand, a technique for forming an inorganic or organic thin film on a substrate by a photo-CVD method is known (see, for example, Patent Documents 1 and 2 below). The photo-CVD method is a process technology that decomposes gas molecules with light energy and forms a thin film on a substrate at a low temperature. According to this photo-CVD method, since a film can be formed directly from a gas phase, a thin film of a polymer material having a three-dimensional structure insoluble in a solvent can be formed.

特開平5−175135号公報JP-A-5-175135 特開平6−279991号公報Japanese Patent Laid-Open No. 6-279991

しかしながら、従来の光CVD法においては、基板に堆積された高分子材料にも光源からの光が照射されるため、その光エネルギーを原因として重合反応とは別の副反応(意図しない切断反応や架橋反応)が生じるという問題がある。従って、従来の光CVD法においては、3次元構造の高分子膜は形成できても、膜質のバラツキや特性の劣化が避けられない。   However, in the conventional photo-CVD method, the polymer material deposited on the substrate is also irradiated with light from the light source. Therefore, a side reaction (unintentional cutting reaction or There is a problem that a crosslinking reaction occurs. Therefore, in the conventional photo-CVD method, even if a polymer film having a three-dimensional structure can be formed, variations in film quality and deterioration of characteristics cannot be avoided.

本発明は上述の問題に鑑みてなされ、意図しない副反応を生じさせずに、良質の有機薄膜を精度よく形成することができる有機薄膜形成方法および光CVD装置を提供することを課題とする。   This invention is made | formed in view of the above-mentioned problem, and makes it a subject to provide the organic thin film formation method and photo-CVD apparatus which can form a good-quality organic thin film accurately, without producing unintended side reaction.

以上の課題を解決するに当たり、本発明の有機薄膜形成方法は、真空チャンバ内に設置された基板上に有機薄膜を形成する有機薄膜製造方法であって、真空チャンバ内に原料有機分子および光増感剤を導入する工程と、光増感剤を光照射によって活性化する工程と、活性化した光増感剤を介して原料有機分子を重合させて基板上に高分子膜を堆積させる工程とを有することを特徴とする。   In solving the above problems, an organic thin film forming method of the present invention is an organic thin film manufacturing method in which an organic thin film is formed on a substrate placed in a vacuum chamber. A step of introducing a sensitizer, a step of activating the photosensitizer by light irradiation, a step of polymerizing raw organic molecules through the activated photosensitizer and depositing a polymer film on the substrate, It is characterized by having.

本発明では、光照射で活性化し励起された光増感剤で原料有機分子の重合反応を引き起こし、その原料有機分子の重合膜を基板上に形成する。光増感剤の励起光として原料有機分子に反応を生じさせない波長領域の光を選択したり、光増感剤の導入経路途上などの有機原料分子が影響を受けない部位に光源を設置することで、基板上に形成された有機薄膜の励起光による副反応を防止でき、良質な高分子膜を高精度に形成することが可能となる。   In the present invention, a polymerization reaction of raw organic molecules is caused by a photosensitizer activated and excited by light irradiation, and a polymer film of the raw organic molecules is formed on a substrate. Select light in the wavelength region that does not cause reaction to the raw organic molecules as excitation light for the photosensitizer, or install a light source at a site where the organic raw material molecules are not affected, such as on the route of introduction of the photosensitizer. Thus, side reactions due to excitation light of the organic thin film formed on the substrate can be prevented, and a high-quality polymer film can be formed with high accuracy.

光増感剤は、励起光の吸収作用で原料有機分子の重合反応を引き起こすことができるものであれば特に限定されない。励起光が紫外線である場合、光増感剤として水銀を用いることができるが、ベンゾフェノンやベンゾインイソブチルエーテル等の有機材料を好適に用いることができる。また、励起光源には紫外線ランプや紫外線レーザー等が用いられる。   The photosensitizer is not particularly limited as long as it can cause the polymerization reaction of the raw organic molecules by the absorption of excitation light. When the excitation light is ultraviolet light, mercury can be used as a photosensitizer, but organic materials such as benzophenone and benzoin isobutyl ether can be preferably used. Moreover, an ultraviolet lamp, an ultraviolet laser, etc. are used for an excitation light source.

原料有機分子は、1分子中に1個又は2個以上の重合性の反応基をもつモノマーまたはオリゴマーである。1分子中に重合性の反応基を1個だけもつ有機分子(例えばスチレンやメタクリル酸メチル、アクリル酸エチル等)の場合には、基板上に直鎖構造の重合膜が形成される。一方、1分子中に重合性の反応基を2個以上もつ有機分子(例えばアリルジグリコールカーボネート等)の場合には、基板上に3次元構造の重合膜が形成される。   The starting organic molecule is a monomer or oligomer having one or two or more polymerizable reactive groups in one molecule. In the case of an organic molecule having only one polymerizable reactive group in one molecule (for example, styrene, methyl methacrylate, ethyl acrylate, etc.), a linear polymer film is formed on the substrate. On the other hand, in the case of an organic molecule having two or more polymerizable reactive groups in one molecule (for example, allyl diglycol carbonate), a polymer film having a three-dimensional structure is formed on the substrate.

光増感剤を活性化する光が照射されることで直接反応が生じない原料有機分子が用いられる場合には、真空チャンバ内の成膜室に光増感剤の励起光源が設置されても構わない。これに対し、励起光源からの光の照射で反応が生じやすい原料有機分子が用いられる場合には、励起光源は、原料有機分子と隔絶された部位に設ければよい。   When raw organic molecules that do not directly react when irradiated with light that activates the photosensitizer are used, even if an excitation light source for the photosensitizer is installed in the film forming chamber in the vacuum chamber I do not care. On the other hand, when raw material organic molecules that are likely to cause a reaction upon irradiation with light from the excitation light source are used, the excitation light source may be provided at a site isolated from the raw material organic molecules.

本発明に係る光CVD装置は、後者の例において好適に実施される。すなわち、本発明の光CVD装置は、真空チャンバと、真空チャンバ内で基板を支持するステージと、真空チャンバ内へ原料有機分子を導入する原料有機分子導入系と、真空チャンバ内へ光増感剤を導入する光増感剤導入系と、光増感剤を活性化させる光を照射する光源とを備え、前記光源は、光増感剤導入系に臨んで設置されていることを特徴とする。   The photo-CVD apparatus according to the present invention is preferably implemented in the latter example. That is, the photo-CVD apparatus of the present invention includes a vacuum chamber, a stage for supporting a substrate in the vacuum chamber, a raw organic molecule introduction system for introducing raw organic molecules into the vacuum chamber, and a photosensitizer into the vacuum chamber. A photosensitizer introduction system for introducing a photosensitizer and a light source for irradiating light that activates the photosensitizer, the light source being installed facing the photosensitizer introduction system, .

この構成により、光増感剤は、真空チャンバへの導入途上において励起光源からの光の照射を受け活性化される。この場合、成膜室内に励起光源が存在しないので、成膜室に導入された原料有機分子が励起光源からの照射光で反応することはない。これにより、例えば3次元構造の高分子膜を副反応が生じることなく、良質かつ高精度に形成することが可能となる。   With this configuration, the photosensitizer is activated by being irradiated with light from the excitation light source while being introduced into the vacuum chamber. In this case, since the excitation light source does not exist in the film formation chamber, the raw material organic molecules introduced into the film formation chamber do not react with the irradiation light from the excitation light source. Thereby, for example, a polymer film having a three-dimensional structure can be formed with good quality and high accuracy without causing side reactions.

以上述べたように、本発明によれば、直鎖構造あるいは3次元構造の良質な有機薄膜を基板上に高精度に形成することができる。   As described above, according to the present invention, a high-quality organic thin film having a linear structure or a three-dimensional structure can be formed on a substrate with high accuracy.

以下、本発明の各実施の形態について図面を参照して説明する。なお、本発明はこれらに限定されることなく、本発明の技術的思想に基づいて種々の変形が可能である。   Embodiments of the present invention will be described below with reference to the drawings. In addition, this invention is not limited to these, A various deformation | transformation is possible based on the technical idea of this invention.

(第1の実施の形態)
図1は本発明に係る有機薄膜製造方法を説明するための有機薄膜製造装置(光CVD装置)1の概略構成図である。図示する有機薄膜製造装置1は、成膜室11が内部に形成された真空チャンバ12を備えている。成膜室11の底部には、基板Wを支持するステージ13が設置されている。ステージ13の内部には冷却水等の冷媒が循環する流路14が形成されており、これによりステージ13を所定の低温度に保持可能となっている。
(First embodiment)
FIG. 1 is a schematic configuration diagram of an organic thin film manufacturing apparatus (photo CVD apparatus) 1 for explaining an organic thin film manufacturing method according to the present invention. The illustrated organic thin film manufacturing apparatus 1 includes a vacuum chamber 12 in which a film forming chamber 11 is formed. A stage 13 that supports the substrate W is installed at the bottom of the film forming chamber 11. A flow path 14 through which a coolant such as cooling water circulates is formed inside the stage 13, thereby enabling the stage 13 to be maintained at a predetermined low temperature.

真空チャンバ12の上部には、光源15として低圧水銀ランプが設置されている。光源15からは、主として波長253.7nmの紫外線が発光される。光源15は、成膜室11の上部を覆う窓部材16を介して、ステージ13上に設置された基板Wを照射するように配置されている。窓部材16は石英等の透明ガラス材料で作製されている。   A low-pressure mercury lamp is installed as a light source 15 on the upper portion of the vacuum chamber 12. The light source 15 mainly emits ultraviolet light having a wavelength of 253.7 nm. The light source 15 is disposed so as to irradiate the substrate W placed on the stage 13 through the window member 16 that covers the upper part of the film forming chamber 11. The window member 16 is made of a transparent glass material such as quartz.

なお、光源15は、真空チャンバ12の外方に設置され雰囲気圧は大気圧とされているが、酸素による光強度の減衰を防止する目的で、雰囲気が窒素ガスで置換されている。   The light source 15 is installed outside the vacuum chamber 12 and has an atmospheric pressure of atmospheric pressure, but the atmosphere is replaced with nitrogen gas for the purpose of preventing attenuation of light intensity due to oxygen.

成膜室11は、排気管17を介して所定圧力に減圧される。排気管17は、図示しない真空ポンプ等の真空排気手段に連絡している。   The film forming chamber 11 is depressurized to a predetermined pressure via the exhaust pipe 17. The exhaust pipe 17 communicates with a vacuum exhaust means such as a vacuum pump (not shown).

一方、成膜室11には、ガス供給管20およびノズル20’を介して原料モノマー21および光増感剤22の混合ガスが導入される。ガス供給管20には、原料有機分子導入ライン18と光増感剤導入ライン19とが接続されている。原料モノマー21および光増感剤22は、液化状態でタンク21A,22A内に貯蔵されており、ヒーター21B,22Bで所定温度に加熱され、アルゴンガス(キャリアガス)によるバブリング作用で気化される。   On the other hand, a mixed gas of the raw material monomer 21 and the photosensitizer 22 is introduced into the film forming chamber 11 through the gas supply pipe 20 and the nozzle 20 ′. A raw material organic molecule introduction line 18 and a photosensitizer introduction line 19 are connected to the gas supply pipe 20. The raw material monomer 21 and the photosensitizer 22 are stored in the tanks 21A and 22A in a liquefied state, heated to a predetermined temperature by the heaters 21B and 22B, and vaporized by a bubbling action using argon gas (carrier gas).

原料モノマー21は、基板W上に形成する有機薄膜の原料であり、成膜室11内において光増感剤22の励起作用で重合反応が発生し基板Wの上に堆積される。原料モノマー21は、1分子中に1個又は2個以上の重合性の反応基(例えばビニル基)をもつ有機分子である。本実施の形態では、1分子中に2個の重合性の反応基をもつ有機分子が適用され、具体的には、重合反応により分子構造が3次元化するアリルジグリコールカーボネートのモノマー材料が用いられている。なお、アリルジグリコールカーボネートは、光源15からの光によっては直接反応が起きにくい材料である。   The raw material monomer 21 is a raw material of an organic thin film formed on the substrate W, and a polymerization reaction occurs in the film forming chamber 11 by the excitation action of the photosensitizer 22 and is deposited on the substrate W. The raw material monomer 21 is an organic molecule having one or two or more polymerizable reactive groups (for example, a vinyl group) in one molecule. In this embodiment, an organic molecule having two polymerizable reactive groups in one molecule is applied, and specifically, an allyl diglycol carbonate monomer material whose molecular structure is three-dimensional by a polymerization reaction is used. It has been. Allyl diglycol carbonate is a material that does not easily react directly with light from the light source 15.

光増感剤22は、光源15からの光を吸収して活性化され、その励起作用で原料モノマー21の重合反応を引き起こす材料で構成されている。本実施の形態では、光源15に波長253.7nmの紫外光源が用いられているので、その波長領域に吸光度のピークをもつ有機材料、例えば図2に示すようにベンゾフェノン(Benzophenone)あるいはベンゾインイソブチルエーテル(Benzoin Isobuthyl Ether)が好適である。   The photosensitizer 22 is made of a material that is activated by absorbing light from the light source 15 and causes a polymerization reaction of the raw material monomer 21 by its excitation action. In this embodiment, since an ultraviolet light source having a wavelength of 253.7 nm is used as the light source 15, an organic material having an absorbance peak in the wavelength region, for example, benzophenone or benzoin isobutyl ether as shown in FIG. (Benzoin Isobuthyl Ether) is preferred.

なお、光増感剤22として水銀も適用可能であるが、形成膜の金属汚染の問題や環境負荷低減の観点からは、上記した有機材料が最も好ましい。また、上記した有機系の光増感剤は、化学的安定性や成膜室11への導入のし易さ(融点や沸点)の点においても優れている。   In addition, although mercury can also be applied as the photosensitizer 22, the above-described organic materials are most preferable from the viewpoint of metal contamination of the formed film and reduction of environmental burden. The organic photosensitizer described above is also excellent in terms of chemical stability and ease of introduction into the film forming chamber 11 (melting point and boiling point).

以上のように構成される有機薄膜製造装置1においては、成膜室11が排気管17を介して真空排気され、所定の真空度に維持される。また、原料有機分子導入ライン18および光増感剤導入ライン19において、それぞれ原料モノマー21および光増感剤22のガスが生成される。生成された原料モノマーガスおよび光増感剤ガスは、ガス供給管20で混合された後、ノズル20’を介して成膜室11へ導入される。   In the organic thin film manufacturing apparatus 1 configured as described above, the film forming chamber 11 is evacuated through the exhaust pipe 17 and maintained at a predetermined degree of vacuum. Moreover, in the raw material organic molecule introduction line 18 and the photosensitizer introduction line 19, gases of the raw material monomer 21 and the photosensitizer 22 are generated, respectively. The generated raw material monomer gas and photosensitizer gas are mixed in the gas supply pipe 20 and then introduced into the film forming chamber 11 through the nozzle 20 ′.

成膜室11には、光源15からの光が照射されている。従って、成膜室11へ導入された光増感剤22は、光源15からの光を吸収し活性化(励起)される。この活性化された光増感剤22を介して、原料モノマー21の重合が開始され、その重合分子が基板W上に堆積される。これにより、基板W上に3次元構造のアリルジグリコールカーボネート膜が形成される。   The film forming chamber 11 is irradiated with light from the light source 15. Accordingly, the photosensitizer 22 introduced into the film forming chamber 11 absorbs light from the light source 15 and is activated (excited). Polymerization of the raw material monomer 21 is started via the activated photosensitizer 22, and the polymerized molecules are deposited on the substrate W. Thereby, an allyl diglycol carbonate film having a three-dimensional structure is formed on the substrate W.

本実施の形態においては、原料モノマー21の重合反応が、光源15からの直接照射ではなく、この光源15からの照射光を吸収する光増感剤22の励起作用で引き起こされるようにしているので、基板W上に形成された高分子重合膜が光源15からの光で副反応(意図しない反応)が生じるのを防止することができる。これにより、重合性の反応基を基点とする3次元構造の良質の重合膜を高精度に形成することが可能となる。   In the present embodiment, the polymerization reaction of the raw material monomer 21 is caused not by direct irradiation from the light source 15 but by the excitation action of the photosensitizer 22 that absorbs the irradiation light from the light source 15. In the polymer polymer film formed on the substrate W, side reactions (unintentional reactions) can be prevented from occurring due to light from the light source 15. Thereby, it is possible to form a high-quality polymer film having a three-dimensional structure with a polymerizable reactive group as a base point with high accuracy.

基板W上への高分子膜の成膜速度は、基板Wを支持するステージ13の温度で制御することができる。図3は、真空度1.0Torrにおけるステージ温度と成膜速度との関係を示している。   The deposition rate of the polymer film on the substrate W can be controlled by the temperature of the stage 13 that supports the substrate W. FIG. 3 shows the relationship between the stage temperature and the film formation rate when the degree of vacuum is 1.0 Torr.

図3に示すように、ステージ温度の上昇に伴って成膜速度が急激に低下することがわかる。これは、基板表面において、物理的に吸着されるモノマー量が温度の上昇とともに急激に減少するためと考えられる。従って、気相中で発生した活性種が、まず基板に吸着し開始点となり、次いで気相よりモノマーの供給を受けて重合反応が促進するように成膜が進むと考えることができる。なお、重合の停止反応は、気相で形成されたラジカルが基板上の成長末端とカップリングする場合と、基板上で成長末端どうしがカップリングする場合とが考えられる。   As shown in FIG. 3, it can be seen that the film formation rate rapidly decreases as the stage temperature increases. This is presumably because the amount of monomer physically adsorbed on the substrate surface decreases rapidly with increasing temperature. Therefore, it can be considered that the active species generated in the gas phase are first adsorbed on the substrate to become a starting point, and then the film formation proceeds so that the polymerization reaction is promoted by receiving the monomer supply from the gas phase. The polymerization termination reaction can be considered when radicals formed in the gas phase are coupled with growth ends on the substrate and when growth ends are coupled on the substrate.

また、成膜速度は、光源の強さ、原料モノマーの分子量や成膜室の雰囲気圧力でも大きく変化する。図4は、所定圧力下における各種原料モノマーの成膜速度を測定した実験結果を示している。光増感剤はベンゾフェノン(70℃、キャリアアルゴン流量は438sccm)を用い、成膜室圧力は0.5〜3.0Torr、ステージ温度は20℃、モノマーの温度およびキャリアアルゴン流量はそれぞれ室温〜60℃、100sccm、成膜時間は20分とした。この時の光源は低圧水銀ランプを用い、ランプ強度は15〜20mW/cm2であった。 In addition, the film formation rate varies greatly depending on the intensity of the light source, the molecular weight of the raw material monomer, and the atmospheric pressure in the film formation chamber. FIG. 4 shows the experimental results of measuring the film formation rate of various raw material monomers under a predetermined pressure. The photosensitizer is benzophenone (70 ° C., carrier argon flow rate is 438 sccm), the film forming chamber pressure is 0.5 to 3.0 Torr, the stage temperature is 20 ° C., the monomer temperature and the carrier argon flow rate are each room temperature to 60 C., 100 sccm, and the film formation time was 20 minutes. At this time, a low-pressure mercury lamp was used as the light source, and the lamp intensity was 15 to 20 mW / cm 2 .

図4に示したように、分子量の大きいものほど大きな成膜速度が得られる傾向にあることがわかる。また、図4に示した圧力より成膜圧力を高くすると、非常に軟らかいオイル状の膜が成膜されることがわかった。この実験系で得られた最大の成膜速度は、ジエチレングリコールジメタクリレートを用いたときで約1270Å/min.であった。   As shown in FIG. 4, it can be seen that the higher the molecular weight, the higher the deposition rate. Further, it was found that when the film forming pressure was made higher than the pressure shown in FIG. 4, a very soft oily film was formed. The maximum film formation rate obtained in this experimental system was about 1270 K / min when diethylene glycol dimethacrylate was used.

(第2の実施の形態)
図5は本発明の第2の実施の形態を示している。なお、図において上述の第1の実施の形態と対応する部分には同一の符号を付し、その詳細な説明は省略するものとする。
(Second Embodiment)
FIG. 5 shows a second embodiment of the present invention. In the figure, parts corresponding to those of the first embodiment described above are denoted by the same reference numerals, and detailed description thereof is omitted.

本実施の形態の有機薄膜形成装置(光CVD装置)2は、原料モノマー21と光増感剤22との混合ガスを供給するガス供給管20の出口端が真空チャンバ12の上壁部に接続されており、ステージ13と窓部材16との間に配置された多孔板23を介して、混合ガスが成膜室11内へ導入されるように構成されている。多孔板23は光透過性に優れた石英板から形成されている。   In the organic thin film forming apparatus (photo CVD apparatus) 2 of the present embodiment, the outlet end of the gas supply pipe 20 that supplies the mixed gas of the raw material monomer 21 and the photosensitizer 22 is connected to the upper wall portion of the vacuum chamber 12. The mixed gas is introduced into the film forming chamber 11 through a perforated plate 23 disposed between the stage 13 and the window member 16. The perforated plate 23 is formed of a quartz plate having excellent light transmittance.

この構成により、原料モノマー21と光増感剤22の混合ガスが成膜室11にダウンフロー状態で導入されて基板W上に均一に供給されるので、基板Wの表面に形成される有機薄膜の膜厚等の面内均一性向上を図ることが可能となる。   With this configuration, the mixed gas of the raw material monomer 21 and the photosensitizer 22 is introduced into the film forming chamber 11 in a downflow state and is uniformly supplied onto the substrate W. Therefore, the organic thin film formed on the surface of the substrate W It is possible to improve the in-plane uniformity of the film thickness.

(第3の実施の形態)
図6A,Bは本発明の第3の実施の形態を示している。なお、図において上述の第1の実施の形態と対応する部分については同一の符号を付し、その詳細な説明は省略するものとする。
(Third embodiment)
6A and 6B show a third embodiment of the present invention. In the figure, portions corresponding to those of the first embodiment described above are denoted by the same reference numerals, and detailed description thereof is omitted.

図6Aに示す有機薄膜形成装置(光CVD装置)は、真空チャンバ12の一側壁部に、ガス供給ブロック24が取り付けられている。ガス供給ブロック24には、原料モノマー21が流れる流路(原料有機分子導入系)25と、光増感剤22が流れる流路(光増感剤導入系)26とが各々形成されており、原料モノマー21と光増感剤22とを成膜室11へ各々独立して供給する。   In the organic thin film forming apparatus (photo CVD apparatus) shown in FIG. 6A, a gas supply block 24 is attached to one side wall portion of the vacuum chamber 12. In the gas supply block 24, a flow path (raw material organic molecule introduction system) 25 through which the raw material monomer 21 flows and a flow path (photo sensitizer introduction system) 26 through which the photosensitizer 22 flows are formed, respectively. The raw material monomer 21 and the photosensitizer 22 are independently supplied to the film forming chamber 11.

光増感剤22の励起用の光源15は、ガス供給ブロック24に設けられている。ガス供給ブロック24はアルミニウムやステンレス等の非透光性の材料で形成されている。この光源15は、光増感剤22が流れる流路26に臨んで石英製の窓部材16を介して設置されており、光源15からの光が原料モノマー21の流路25および成膜室11へ到達せず、光増感剤22にのみ照射されるように構成されている。   The light source 15 for exciting the photosensitizer 22 is provided in the gas supply block 24. The gas supply block 24 is made of a non-translucent material such as aluminum or stainless steel. The light source 15 faces the flow path 26 through which the photosensitizer 22 flows, and is installed through a quartz window member 16, and light from the light source 15 flows through the flow path 25 of the raw material monomer 21 and the film forming chamber 11. It is configured so that only the photosensitizer 22 is irradiated.

以上のように構成される本実施の形態の光CVD装置においては、光増感剤22は成膜室11へ導入される導入経路途上で光源15からの光の照射を受けて活性化される。この活性化された光増感剤22は成膜室11内において原料有機分子21と混合され、原料モノマー21の重合を引き起こす。これにより、原料モノマー21の重合膜が基板W上に形成される。   In the photo-CVD apparatus of the present embodiment configured as described above, the photosensitizer 22 is activated by being irradiated with light from the light source 15 along the introduction path introduced into the film forming chamber 11. . The activated photosensitizer 22 is mixed with the raw material organic molecules 21 in the film forming chamber 11 to cause polymerization of the raw material monomer 21. Thereby, a polymer film of the raw material monomer 21 is formed on the substrate W.

本実施の形態によれば、光増感剤22の励起用光源15をガス供給ブロック24に設置し、光増感剤22に対し成膜室11への導入経路上で励起光の照射を行うようにしているので、原料モノマー21およびステージ13上の基板は、光源15からの光を受けることはない。従って、成膜室11において、原料モノマー21および基板W上に形成された有機薄膜が、励起光源の光で意図しない副反応を生じることがなくなり、良質な有機薄膜を精度よく形成することが可能となる。   According to the present embodiment, the excitation light source 15 for the photosensitizer 22 is installed in the gas supply block 24 and the photosensitizer 22 is irradiated with excitation light on the introduction path to the film forming chamber 11. Therefore, the raw material monomer 21 and the substrate on the stage 13 do not receive light from the light source 15. Therefore, in the film forming chamber 11, the organic thin film formed on the raw material monomer 21 and the substrate W does not cause an unintended side reaction by the light of the excitation light source, and a high-quality organic thin film can be formed with high accuracy. It becomes.

特に本実施の形態によれば、光増感剤なしで光源15の光を受けて直接反応が生じるような原料モノマーを用いる場合に好適である。勿論、このような原料モノマーでなくとも基板上に意図しない副反応の生成を回避できるので、良質な有機薄膜を高精度に形成することが可能となる。   In particular, according to the present embodiment, it is suitable when using a raw material monomer that undergoes a direct reaction upon receiving light from the light source 15 without a photosensitizer. Of course, even if it is not such a raw material monomer, the generation of unintended side reactions on the substrate can be avoided, so that a high-quality organic thin film can be formed with high accuracy.

なお、図6Aに示した装置構成例では、成膜室11内における原料モノマー21の流入経路が光増感剤22の流入経路よりも基板寄りとなるように、ガス供給ブロック24の各流路25,26が構成されている。これに代えて、ガス供給ブロック24の構成を図6Bに示すように、光増感剤22の流入経路が原料モノマー21の流入経路よりも基板寄りとなるように、光増感剤22の導入流路26を原料モノマー21の導入流路25よりも低い位置に設けてもよい。   In the apparatus configuration example shown in FIG. 6A, each flow path of the gas supply block 24 is arranged so that the inflow path of the raw material monomer 21 in the film forming chamber 11 is closer to the substrate than the inflow path of the photosensitizer 22. 25 and 26 are configured. Instead of introducing the photosensitizer 22 so that the inflow path of the photosensitizer 22 is closer to the substrate than the inflow path of the raw material monomer 21, as shown in FIG. The flow path 26 may be provided at a position lower than the introduction flow path 25 of the raw material monomer 21.

図6Bに示した装置構成により、光増感剤22を基板Wの近傍に供給することができるようになるので、原料モノマー21の気相中における重合反応と同時に、基板W上の高分子膜の重合反応を促進することが可能となり、大きな成膜速度を得ることができる。   6B enables the photosensitizer 22 to be supplied in the vicinity of the substrate W, so that the polymer film on the substrate W is simultaneously formed with the polymerization reaction of the raw material monomer 21 in the gas phase. It is possible to accelerate the polymerization reaction, and a high film formation rate can be obtained.

本発明の第1の実施の形態を説明する有機薄膜形成装置の概略構成図である。It is a schematic block diagram of the organic thin film forming apparatus explaining the 1st Embodiment of this invention. 光増感剤として使用されるベンゾフェノンおよびベンゾインイソブチルエーテルの吸光スペクトル図である。It is an absorption spectrum figure of the benzophenone and benzoin isobutyl ether used as a photosensitizer. ステージ温度と成膜速度との関係を示す図である。It is a figure which shows the relationship between stage temperature and the film-forming speed | rate. 原料モノマーの種類の一例とその成膜速度の実験結果を示す図である。It is a figure which shows an example of the kind of raw material monomer, and the experimental result of the film-forming speed | rate. 本発明の第2の実施の形態を説明する有機薄膜形成装置の概略構成図である。It is a schematic block diagram of the organic thin film forming apparatus explaining the 2nd Embodiment of this invention. A,Bともに、本発明の第3の実施の形態を説明する有機薄膜形成装置の概略構成図である。Both A and B are schematic block diagrams of an organic thin film forming apparatus for explaining a third embodiment of the present invention.

符号の説明Explanation of symbols

1,2,3 有機薄膜形成装置(光CVD装置)
11 成膜室
12 真空チャンバ
13 ステージ
15 光源
16 窓部材
17 排気管
18 原料有機分子導入ライン
19 光増感剤導入ライン
20 ガス供給管
21 原料モノマー
22 光増感剤
23 多孔板
W 基板
1,2,3 Organic thin film forming equipment (photo CVD equipment)
DESCRIPTION OF SYMBOLS 11 Deposition chamber 12 Vacuum chamber 13 Stage 15 Light source 16 Window member 17 Exhaust pipe 18 Raw material organic molecule introduction line 19 Photosensitizer introduction line 20 Gas supply pipe 21 Raw material monomer 22 Photosensitizer 23 Perforated plate W substrate

Claims (6)

真空チャンバ内に設置された基板上に有機薄膜を形成する有機薄膜製造方法であって、
前記真空チャンバ内に原料有機分子および光増感剤を導入する工程と、
前記光増感剤を光照射によって活性化する工程と、
前記活性化した光増感剤を介して前記原料有機分子を重合させて前記基板上に高分子膜を堆積させる工程とを有することを特徴とする有機薄膜製造方法。
An organic thin film manufacturing method for forming an organic thin film on a substrate installed in a vacuum chamber,
Introducing raw organic molecules and a photosensitizer into the vacuum chamber;
Activating the photosensitizer by light irradiation;
And a step of polymerizing the raw organic molecules through the activated photosensitizer to deposit a polymer film on the substrate.
前記光増感剤は、前記真空チャンバへ導入される導入経路において光の照射を受け活性化されることを特徴とする請求項1に記載の有機薄膜製造方法。   2. The method for producing an organic thin film according to claim 1, wherein the photosensitizer is activated by being irradiated with light in an introduction path introduced into the vacuum chamber. 前記原料有機分子は、1分子中に1個又は2個以上の重合性の反応基をもつ有機分子であることを特徴とする請求項1に記載の有機薄膜製造方法。   2. The organic thin film manufacturing method according to claim 1, wherein the raw organic molecules are organic molecules having one or more polymerizable reactive groups in one molecule. 前記光増感剤は、紫外線領域に光吸収性がある有機材料であることを特徴とする請求項1に記載の有機薄膜製造方法。   2. The organic thin film manufacturing method according to claim 1, wherein the photosensitizer is an organic material having a light absorption property in an ultraviolet region. 真空チャンバと、真空チャンバ内で基板を支持するステージと、前記真空チャンバ内へ原料有機分子を導入する原料有機分子導入系と、前記真空チャンバ内へ光増感剤を導入する光増感剤導入系と、前記光増感剤を活性化させる光を照射する光源とを備え、
前記光源は、前記光増感剤導入系に臨んで設置されていることを特徴とする光CVD装置。
A vacuum chamber, a stage for supporting a substrate in the vacuum chamber, a raw organic molecule introduction system for introducing raw organic molecules into the vacuum chamber, and a photosensitizer introduction for introducing a photosensitizer into the vacuum chamber A system and a light source that emits light that activates the photosensitizer,
The photo-CVD apparatus, wherein the light source is installed facing the photosensitizer introduction system.
前記ステージは、前記基板を冷却する基板冷却機構を備えていることを特徴とする請求項5に記載の光CVD装置。



The photo-CVD apparatus according to claim 5, wherein the stage includes a substrate cooling mechanism that cools the substrate.



JP2005253084A 2005-09-01 2005-09-01 Organic thin film manufacturing method and photo-CVD apparatus Active JP4690148B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005253084A JP4690148B2 (en) 2005-09-01 2005-09-01 Organic thin film manufacturing method and photo-CVD apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005253084A JP4690148B2 (en) 2005-09-01 2005-09-01 Organic thin film manufacturing method and photo-CVD apparatus

Publications (2)

Publication Number Publication Date
JP2007063637A true JP2007063637A (en) 2007-03-15
JP4690148B2 JP4690148B2 (en) 2011-06-01

Family

ID=37926165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005253084A Active JP4690148B2 (en) 2005-09-01 2005-09-01 Organic thin film manufacturing method and photo-CVD apparatus

Country Status (1)

Country Link
JP (1) JP4690148B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013505354A (en) * 2009-09-17 2013-02-14 エシロール アンテルナショナル コムパニー ジェネラル ドプテイク Method and device for chemical vapor deposition of a polymer film on a substrate
JP2013064187A (en) * 2011-09-20 2013-04-11 Ulvac Japan Ltd Apparatus and method for forming film

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57136932A (en) * 1981-02-17 1982-08-24 Seiko Epson Corp Photochemical reaction device
JPH0931115A (en) * 1995-07-13 1997-02-04 Japan Atom Energy Res Inst Light-induced vapor deposition polymerization method
JPH11186096A (en) * 1997-12-25 1999-07-09 Matsushita Electric Ind Co Ltd Organic film capacitor
JP2001521293A (en) * 1997-10-24 2001-11-06 クエスター テクノロジー インコーポレイテッド New deposition systems and processes for transport polymerization and chemical vapor deposition.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57136932A (en) * 1981-02-17 1982-08-24 Seiko Epson Corp Photochemical reaction device
JPH0931115A (en) * 1995-07-13 1997-02-04 Japan Atom Energy Res Inst Light-induced vapor deposition polymerization method
JP2001521293A (en) * 1997-10-24 2001-11-06 クエスター テクノロジー インコーポレイテッド New deposition systems and processes for transport polymerization and chemical vapor deposition.
JPH11186096A (en) * 1997-12-25 1999-07-09 Matsushita Electric Ind Co Ltd Organic film capacitor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013505354A (en) * 2009-09-17 2013-02-14 エシロール アンテルナショナル コムパニー ジェネラル ドプテイク Method and device for chemical vapor deposition of a polymer film on a substrate
JP2013064187A (en) * 2011-09-20 2013-04-11 Ulvac Japan Ltd Apparatus and method for forming film

Also Published As

Publication number Publication date
JP4690148B2 (en) 2011-06-01

Similar Documents

Publication Publication Date Title
KR100459982B1 (en) Anti-reflective coating and how to deposit it
US4608117A (en) Maskless growth of patterned films
JP3411559B2 (en) Pyrolytic chemical vapor deposition of silicone films.
US20050239293A1 (en) Post treatment of low k dielectric films
JP2006203191A (en) Semiconductor manufacturing apparatus having ultraviolet light irradiation mechanism, and treatment method of semiconductor substrate by ultraviolet light irradiation
US20090197086A1 (en) Elimination of photoresist material collapse and poisoning in 45-nm feature size using dry or immersion lithography
JPS60258915A (en) Method and device for depositing laser chemical phase
US20110111604A1 (en) Plasma surface treatment to prevent pattern collapse in immersion lithography
EP0140240B1 (en) Process for forming an organic thin film
JP5628491B2 (en) Resin surface modification method and surface modified resin substrate
JP4690148B2 (en) Organic thin film manufacturing method and photo-CVD apparatus
JPS6189627A (en) Formation of deposited film
EP0054189A1 (en) Improved photochemical vapor deposition method
KR102469600B1 (en) Film formation device and film formation method
Pan et al. Plasma dissociation reaction kinetics. I. Methyl methacrylate
JPS63137174A (en) Device for forming functional deposited film by photochemical vapor growth method
WO2015025782A1 (en) Device for producing gas barrier film and method for producing gas barrier film
Comita et al. Pulsed ultraviolet laser deposition of SiO2 films at 248 nm
JP2006131938A (en) Method and device for producing super-water repellent film and product thereby
JPS61136669A (en) Method and apparatus for forming organic thin film
JPH08262251A (en) Film forming device for optical waveguide
JPH0736395B2 (en) Aluminum film growth method
JPS6328865A (en) Hard carbon film manufacturing device
JPS60236215A (en) Laser cvd method
JPS6118123A (en) Thin film forming apparatus

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20071110

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110217

R150 Certificate of patent or registration of utility model

Ref document number: 4690148

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250