JP2007061894A - Method for ironing metal tube - Google Patents

Method for ironing metal tube Download PDF

Info

Publication number
JP2007061894A
JP2007061894A JP2005254875A JP2005254875A JP2007061894A JP 2007061894 A JP2007061894 A JP 2007061894A JP 2005254875 A JP2005254875 A JP 2005254875A JP 2005254875 A JP2005254875 A JP 2005254875A JP 2007061894 A JP2007061894 A JP 2007061894A
Authority
JP
Japan
Prior art keywords
ironing
die
gap
tube
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005254875A
Other languages
Japanese (ja)
Other versions
JP5028770B2 (en
Inventor
Yuji Hashimoto
裕二 橋本
Koji Suzuki
孝司 鈴木
Osamu Sonobe
治 園部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005254875A priority Critical patent/JP5028770B2/en
Publication of JP2007061894A publication Critical patent/JP2007061894A/en
Application granted granted Critical
Publication of JP5028770B2 publication Critical patent/JP5028770B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for ironing a metal tube where, even in the case a metal tube in which thickness deviation in the circumferential direction of the tube is relatively large is used as a tube stock, the roundness of the metal tube after one process ironing with one die is not reduced. <P>SOLUTION: In the method for ironing a metal tube where a metal tube 3 is pushed through a die 1 by a punch 2 with a columnar shape inserted into the inner face side of the tube, so as to be subjected to ironing, using a die provided with two step ironing faces, the second step ironing ratio (=(gap A-gap B)/gap A×100(%)) is controlled to ≥0.5%; wherein, the gap A and the gap B are spacing distances between the first and second step ironing faces respectively from the inlet side of the die and the outer circumferential face of the punch coaxially arranged with the die. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、金属管のしごき加工方法に関する。   The present invention relates to a method for ironing a metal pipe.

例えばパワーステアリングモータカバー等、高精度の真円度が要求される機械構造用部品は、金属管(例えば鋼管)をしごき加工することにより製造される。金属管のしごき加工は、先端にポンチ係止部を設けた金属管にその管の後端からポンチを挿入し、ポンチ係止部をポンチ先端で押して金属管をダイスに通し、管内面に接触するポンチと管外面に接触するダイス孔内面の間で管をしごくものである。通常、ポンチは円柱形状であり、ダイスの孔は入側の口が広く奥が狭いテーパ孔部とこれに連なる内径一定の円筒孔部とを有し、この円筒孔部の内面が、ポンチ外周面と協働して管をしごく面、即ちしごき面になる。通常のダイスではダイス1個のしごき面はダイス軸方向に1段のみである。   For example, mechanical structural parts such as a power steering motor cover that require high-precision roundness are manufactured by ironing a metal pipe (for example, a steel pipe). For ironing a metal tube, a punch is inserted from the rear end of the tube into a metal tube with a punch locking part at the tip, the punch locking part is pushed by the punch tip, the metal tube is passed through a die, and the inner surface of the tube is contacted. The tube is squeezed between the punch and the inner surface of the die hole contacting the outer surface of the tube. Normally, the punch has a cylindrical shape, and the die hole has a tapered hole portion with a wide entrance opening and a narrow back portion, and a cylindrical hole portion with a constant inner diameter connected to this, and the inner surface of this cylindrical hole portion is the outer periphery of the punch. In cooperation with the surface, the tube becomes a squeezed surface, ie a squeezed surface. In a normal die, the ironing surface of one die is only one step in the die axis direction.

尚、厚肉短管を薄肉長尺管に成形するために、複数のダイスを同心直列に配置して順次しごき加工を施せるように構成された管用しごき加工装置において、ポンチ及びダイススリーブの交換作業を芯出し精度よく且つ簡単に行えるように、支持枠へのポンチ或いは更にダイススリーブの固定形態をテーパ嵌合形態とした装置が、特許文献1に記載されている。特許文献1では、個々のダイスの孔形状について特段の記述はないことから、又、同文献に図示されたダイス断面形状からみても、ダイス1個のしごき面は通常と同様、ダイス軸方向に1段のみであると推定される。
特開平9−174168号公報
In addition, in order to form a thick short tube into a thin long tube, a punch and die sleeve replacement work is performed in a pipe ironing device that is configured so that a plurality of dies are arranged concentrically in series and can be sequentially ironed. Patent Document 1 discloses an apparatus in which a punch is fixed to a support frame or a die sleeve is fixed in a taper fitting form so that centering accuracy can be easily performed. In Patent Document 1, there is no particular description about the hole shape of each die, and also from the die cross-sectional shape illustrated in the document, the ironing surface of one die is in the direction of the die axis as usual. It is estimated that there is only one stage.
JP-A-9-174168

従来の、しごき面が1段のみのダイス1個とポンチとを用いたしごき加工では、継目無鋼管等、管円周方向の偏肉が比較的大きい金属管を素管としたとき、しごき加工後の金属管の真円度が低下することがあって、加工製品歩留りが悪いという問題があった。孔型の異なる複数のダイスを用意し、複数工程回数でしごき加工することにより、金属管の真円度を向上させることは可能であるが、設備が大がかりとなり、加工サイクルタイムが長くなる。本発明の課題は、前記問題を解決するために、管円周方向の偏肉が比較的大きい金属管を素管としたときでも、ダイス1個で1工程でしごき加工後の金属管の真円度が低下しない金属管のしごき加工方法を提供することにある。   In the conventional ironing process using one die with only one ironing surface and a punch, when using a metal pipe with a relatively large thickness deviation in the pipe circumferential direction, such as a seamless steel pipe, There is a problem that the roundness of the metal tube after processing may decrease, and the yield of processed products is poor. Although it is possible to improve the roundness of the metal tube by preparing a plurality of dies having different hole types and performing ironing in a plurality of processes, the equipment becomes large and the processing cycle time becomes long. An object of the present invention is to solve the above problems, even when a metal pipe having a relatively large thickness deviation in the circumferential direction of the pipe is used as a base pipe, the trueness of the metal pipe after the ironing process is performed in one step with one die. An object of the present invention is to provide a method for ironing a metal pipe in which the circularity does not decrease.

本発明は、金属管をその管内面側に挿入した円柱形状のポンチでダイスに押し通してしごき加工する金属管のしごき加工方法において、しごき面を2段設けたダイスを用い、下記式で定義される2段目しごき率を0.5%以上とすることにより、前記課題を解決したものである。

2段目しごき率=(ギャップA−ギャップB)/ギャップA×100(%)
但し、ギャップA、ギャップBは夫々ダイス入側から1段目、2段目のしごき面と、当該ダイスと同軸に配置されたポンチの外周面との面間隔距離である。
The present invention is a method of ironing a metal tube in which a metal tube is pushed through a die with a cylindrical punch inserted on the inner surface side of the tube, and is defined by the following formula using a die having two stages of ironing surfaces. This problem is solved by setting the second stage ironing rate to 0.5% or more.
2nd stage ironing rate = (Gap A−Gap B) / Gap A × 100 (%)
However, the gap A and the gap B are distances between the first and second ironing surfaces from the die entry side and the outer peripheral surface of the punch arranged coaxially with the die.

本発明によれば、素管の管円周方向の偏肉が比較的大きくても、ダイス1個とポンチとの協働によるしごき加工後の真円度が高位に安定し、加工製品歩留りが向上する。   According to the present invention, even if the uneven thickness of the pipe in the pipe circumferential direction is relatively large, the roundness after ironing by the cooperation of one die and the punch is stabilized at a high level, and the processed product yield is improved. improves.

まず、本発明をなすに至った経緯を述べる。本発明者らは、1段のしごき面をもつダイス1個とポンチとの協働によるしごき加工方法(従来法:図6参照)でしごき加工した鋼管に生じた加工形状不良についてその発生原因を考究した。
図3は、従来法でしごき加工した鋼管について管円周方向の素管肉厚分布、しごき加工後内径分布、及びしごき加工後の残留応力を調べた結果の1例を示す分布図である。尚、素管肉厚分布及びしごき加工後内径分布は、夫々目標値からのずれの分布を示している。又、しごき加工後の残留応力は、σo−σi(σo:外面残留応力(引張),σi:内面残留応力(圧縮))の分布を示している。図示のように、素管肉厚、しごき加工後内径、及びしごき加工後の残留応力は、分布のパターンが互いに似通っており、素管肉厚が大きい部位では、しごき加工後の内径が大きく、且つしごき加工後の残留応力が大きい。この現象は、図2に示すような機構で生じるものと考えられる。
First, the background to the present invention will be described. The inventors of the present invention have found out the cause of the processing shape defect that occurred in the steel pipe that was ironed by the ironing method (conventional method: see FIG. 6) by the cooperation of one die having a one-step ironing surface and a punch. I studied.
FIG. 3 is a distribution diagram showing an example of the result of examining the pipe wall thickness distribution in the pipe circumferential direction, the inner diameter distribution after ironing, and the residual stress after ironing for a steel pipe ironed by the conventional method. Note that the raw pipe wall thickness distribution and the inner diameter distribution after ironing indicate the deviations from the target values. The residual stress after ironing shows a distribution of σo−σi (σo: outer surface residual stress (tensile), σi: inner surface residual stress (compressed)). As shown in the figure, the pipe wall thickness, the inner diameter after ironing, and the residual stress after ironing are similar to each other in the distribution pattern. And the residual stress after ironing is large. This phenomenon is considered to occur by a mechanism as shown in FIG.

図2は、従来法による加工形状不良の発生機構を示す概念図である。素管の偏肉が大きい場合、しごき加工中の管3aでは、素管厚肉部相当側の減面率が素管薄肉部相当側のそれよりも高くなる結果、素管厚肉部相当側での外面残留応力σo(引張)と内面残留応力σi(圧縮)の差(σo−σi)が、素管薄肉部相当側でのそれよりも大きくなる。このような管円周方向部位による内外面残留応力差の違いにより、しごき加工後の管3bでは、高減面率側である素管厚肉部相当側は、相対的に大きな曲げモーメントMを受けて拡径方向に変位し、これと釣り合う形で素管薄肉部相当側は縮径方向に変位し、その結果、断面形状が略楕円形状に変化する。   FIG. 2 is a conceptual diagram showing a mechanism for generating a machining shape defect according to a conventional method. If the uneven thickness of the blank tube is large, the pipe 3a being ironed has a reduction in area on the equivalent side of the blank tube thicker than that on the equivalent side of the blank tube. The difference (σo−σi) between the outer surface residual stress σo (tensile) and the inner surface residual stress σi (compression) is larger than that on the side corresponding to the thin tube portion. Due to the difference in the inner and outer surface residual stress differences depending on the pipe circumferential direction part, in the pipe 3b after the ironing, a relatively large bending moment M is applied to the side corresponding to the high-thickness portion, which corresponds to the raw pipe thick portion. In response to this, it is displaced in the diameter expansion direction, and the side corresponding to the thin tube portion is displaced in the diameter reduction direction in balance with this, and as a result, the cross-sectional shape changes to a substantially elliptical shape.

そこで、上記のような変形を防止する手段について鋭意検討し、その結果、1段のしごき面をもつダイスに代えて、2段のしごき面をもつダイスを用いることに想到し、本発明をなすに至ったのである。
図1は、本発明の実施形態を示す概略断面図である。ダイス1は固定され、ポンチ2がポンチ移動方向2Aに移動することで、管3がダイス1に押込まれ、ポンチ2とダイス1が協働してしごき加工が進行する。本発明に用いるダイス1は、ポンチ2との協働面として、2段のしごき面1A,1Bを設けたものである。1段目,2段目のしごき面1A,1Bをなす2つのダイス軸方向部分は、これらよりもダイス孔径が大きい(管外面と接触しない)部分により隔てられている。ポンチ2と同軸配置状態のダイス1の1段目,2段目のしごき面1A,1Bと、ポンチ2外面との面間隔距離をギャップA,ギャップBと呼ぶことにすると、しごき加工が進むためには、これら及び素管肉厚t0の間には、t0>ギャップA>ギャップB、が成り立つ必要がある。このような2段のしごき面をもつダイスを用いたしごき加工を2段しごき加工という。尚、しごき面が1段のみである通常のダイスを用いて、ギャップAのみで行うしごき加工を1段しごき加工という。
In view of this, the present inventors have intensively studied the means for preventing the deformation as described above, and as a result, have come up with the idea of using a die having a two-step ironing surface instead of a die having a one-step ironing surface. It came to.
FIG. 1 is a schematic sectional view showing an embodiment of the present invention. The die 1 is fixed, and the punch 2 moves in the punch movement direction 2A, whereby the tube 3 is pushed into the die 1 and the punching 2 and the die 1 cooperate to perform ironing. The die 1 used in the present invention is provided with two stages of ironing surfaces 1A and 1B as cooperating surfaces with the punch 2. The two die axial portions forming the first and second squeezing surfaces 1A and 1B are separated by a portion having a larger die hole diameter (not in contact with the outer surface of the pipe). If the distance between the first and second squeezing surfaces 1A and 1B of the die 1 coaxially arranged with the punch 2 and the outer surface of the punch 2 are referred to as gap A and gap B, the squeezing process proceeds. Therefore, t0> Gap A> Gap B needs to be established between these and the tube thickness t0. Such ironing using a die having a two-step ironing surface is called two-step ironing. In addition, using a normal die having only one stage of the ironing surface, ironing performed only with the gap A is called one-stage ironing.

2段のしごき面をもつダイスを用いることにより、1段目のしごき加工で管円周方向の肉厚分布を均一化し、2段目のしごき加工で管円周方向の残留応力分布を均一化して、真円度を向上させることができる。2段目のしごき加工では、管材料が降伏する程度の小さい歪が付加されればよい。図4は、その1例として、図3の場合と同一仕様で製造され、類似の素管肉厚分布をもつ素管に対し、2段しごき加工(1段目,2段目の加工目標寸法は図示の通り)を施して図3の場合と同一の最終目標寸法に仕上げた鋼管について、同様の調査を行った結果を示しており、図3の1段しごき加工の場合と比較して、管円周方向のしごき加工後内径分布及びしごき加工後の残留応力分布のパターンが真円形状パターンに非常に近いものとなっていることが明らかである。   By using a die with a two-stage ironing surface, the thickness distribution in the pipe circumferential direction is made uniform by the first stage ironing process, and the residual stress distribution in the pipe circumferential direction is made uniform by the second stage ironing process. Thus, the roundness can be improved. In the second stage ironing process, it is only necessary to add a strain that is small enough to yield the pipe material. As an example, Fig. 4 shows a two-stage ironing process (first and second stage target dimensions) for a pipe manufactured with the same specifications as in Fig. 3 and having a similar pipe wall thickness distribution. Shows the results of a similar investigation on a steel pipe finished to the same final target dimensions as in FIG. 3, compared with the one-stage ironing process in FIG. It is clear that the inner diameter distribution after ironing in the pipe circumferential direction and the pattern of residual stress distribution after ironing are very close to the perfect circular pattern.

更に、図3の場合と同一仕様で製造され、次式(1)で定義される素管偏肉量が0.15〜0.24mmの範囲内にある素管に対し、次式(2)で定義される2段目しごき率を種々変えて、2段しごき加工を施し、しごき加工後の鋼管について、次式(3)で定義される内径誤差を調べた。その結果を整理して図5に示す。尚、図3の従来法(1段しごき加工)による結果も同様に整理し、図5に併示した。   Furthermore, for a pipe that is manufactured with the same specifications as in FIG. 3 and has a thickness deviation of 0.15 to 0.24 mm as defined by the following formula (1), it is defined by the following formula (2). The second-stage ironing ratio was varied, and the second-stage ironing was performed. The inner diameter error defined by the following equation (3) was examined for the steel pipe after ironing. The results are organized and shown in FIG. In addition, the result by the conventional method (one-step ironing process) of FIG. 3 was arranged similarly, and was shown together in FIG.

素管偏肉量=管円周方向最大肉厚−管円周方向最小肉厚(mm) …(1)
2段目しごき率=(ギャップA−ギャップB)/ギャップA×100(%) …(2)
内径誤差=管円周方向最大内径−管円周方向最小内径(mm) …(3)
図5は、しごき加工後の内径誤差と2段目しごき率の関係を示すグラフである。図5より、2段目しごき率を0.5%以上とすることで、2段しごき加工後の鋼管の内径誤差を顕著に低減させることが可能である。従って、本発明では2段目しごき率を0.5%以上として2段しごき加工を行うものとした。尚、図5より、内径誤差をより小さくするには、2段目しごき率は1.0%以上とするのが好ましく、より好ましくは6%以上である。又、2段目しごき率の上限については、特に限定しないが、20%以下で十分と考えている。
Uneven tube thickness = Maximum pipe circumferential thickness-Minimum pipe circumferential thickness (mm) (1)
Second stage ironing rate = (Gap A-Gap B) / Gap A x 100 (%) (2)
Inner diameter error = Maximum inner diameter in the pipe circumferential direction-Minimum inner diameter in the pipe circumferential direction (mm) (3)
FIG. 5 is a graph showing the relationship between the inner diameter error after ironing and the second stage ironing rate. From FIG. 5, it is possible to significantly reduce the inner diameter error of the steel pipe after the second stage ironing by setting the second stage ironing ratio to 0.5% or more. Therefore, in the present invention, the second stage ironing process is performed with the second stage ironing ratio set to 0.5% or more. From FIG. 5, in order to further reduce the inner diameter error, the second stage ironing rate is preferably 1.0% or more, more preferably 6% or more. The upper limit of the second stage ironing rate is not particularly limited, but 20% or less is considered sufficient.

表1に示す素管を対象に、表1に示すしごき加工条件でしごき加工を施し、しごき加工後の鋼管について内径誤差を調査した結果を表1に示す。表1からわかるように、従来法では、素管偏肉量が0.1mm未満と小さい場合、しごき加工後の内径誤差は0.1mm未満に抑えられているが、素管偏肉量が大きい場合、しごき加工後の内径誤差が0.1mm以上となっているのに対し、本発明例では、素管偏肉量の大小に拘らず、しごき加工後の内径誤差は0.1mm未満に抑えられている。   Table 1 shows the results of ironing the steel pipe shown in Table 1 under the ironing conditions shown in Table 1 and investigating the inner diameter error of the steel pipe after ironing. As can be seen from Table 1, in the conventional method, when the blank thickness is less than 0.1 mm, the inner diameter error after ironing is suppressed to less than 0.1 mm, but when the blank thickness is large, Whereas the inner diameter error after ironing is 0.1 mm or more, in the example of the present invention, the inner diameter error after ironing is suppressed to less than 0.1 mm regardless of the thickness of the unbalanced tube.

Figure 2007061894
Figure 2007061894

本発明の実施形態を示す概略断面図である。It is a schematic sectional drawing which shows embodiment of this invention. 従来法による加工形状不良の発生機構を示す概念図である。It is a conceptual diagram which shows the generation mechanism of the process shape defect by a conventional method. 従来法でしごき加工した鋼管について管円周方向の素管肉厚分布、しごき加工後内径分布、及びしごき加工後の残留応力を調べた結果の1例を示す分布図である。It is a distribution map which shows an example of the result of having investigated the pipe wall thickness distribution of the pipe circumference direction, the inner diameter distribution after ironing, and the residual stress after ironing about the steel pipe ironed by the conventional method. 本発明の方法でしごき加工した鋼管について管円周方向の素管肉厚分布、しごき加工後内径分布、及びしごき加工後の残留応力を調べた結果の1例を示す分布図である。It is a distribution map which shows an example of the result of having investigated the pipe wall thickness distribution of the pipe circumference direction, the inner diameter distribution after ironing, and the residual stress after ironing about the steel pipe ironed by the method of this invention. しごき加工後の鋼管の内径誤差と2段目しごき率の関係を示すグラフである。It is a graph which shows the relationship between the internal diameter error of the steel pipe after ironing, and the second stage ironing rate. 従来法の実施形態を示す概略断面図である。It is a schematic sectional drawing which shows embodiment of the conventional method.

符号の説明Explanation of symbols

1 ダイス(しごき面は2段)
1A、1B しごき面(1段目,2段目)
2 ポンチ
2A ポンチ移動方向
3、3a、3b 管(金属管例えば鋼管)
M 曲げモーメント
1 Dice (two steps on the ironing surface)
1A, 1B Ironing surface (first step, second step)
2 punches
2A Punch moving direction 3, 3a, 3b pipe (metal pipe, eg steel pipe)
M bending moment

Claims (1)

金属管をその管内面側に挿入した円柱形状のポンチでダイスに押し通してしごき加工する金属管のしごき加工方法において、しごき面を2段設けたダイスを用い、下記式で定義される2段目しごき率を0.5%以上とすることを特徴とする金属管のしごき加工方法。

2段目しごき率=(ギャップA−ギャップB)/ギャップA×100(%)
但し、ギャップA、ギャップBは夫々ダイス入側から1段目、2段目のしごき面と、当該ダイスと同軸に配置されたポンチの外周面との面間隔距離である。
In the ironing method of a metal tube, which is pushed through a die with a cylindrical punch inserted on the inner surface of the metal tube, the second step defined by the following formula using a die with two stages of ironing A method of ironing a metal tube, characterized by setting the ironing rate to 0.5% or more.
2nd stage ironing rate = (Gap A−Gap B) / Gap A × 100 (%)
However, the gap A and the gap B are distances between the first and second ironing surfaces from the die entry side and the outer peripheral surface of the punch arranged coaxially with the die.
JP2005254875A 2005-09-02 2005-09-02 How to iron a metal pipe Active JP5028770B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005254875A JP5028770B2 (en) 2005-09-02 2005-09-02 How to iron a metal pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005254875A JP5028770B2 (en) 2005-09-02 2005-09-02 How to iron a metal pipe

Publications (2)

Publication Number Publication Date
JP2007061894A true JP2007061894A (en) 2007-03-15
JP5028770B2 JP5028770B2 (en) 2012-09-19

Family

ID=37924705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005254875A Active JP5028770B2 (en) 2005-09-02 2005-09-02 How to iron a metal pipe

Country Status (1)

Country Link
JP (1) JP5028770B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50125961A (en) * 1974-03-22 1975-10-03
JPS5236565A (en) * 1975-09-18 1977-03-19 Shin Nippon Koki Co Ltd Method of cold squeezing of cylindrical body
JPS5265173A (en) * 1975-11-25 1977-05-30 Shin Nippon Koki Co Ltd Method of cold reedrawing and squeezing of cylindrical body
JPH09174168A (en) * 1995-12-26 1997-07-08 Mitsubishi Chem Corp Ironing device for pipe
JP2001137964A (en) * 1999-11-09 2001-05-22 Ueno Hiroshi Manufacturing method of thin cylindrical body

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50125961A (en) * 1974-03-22 1975-10-03
JPS5236565A (en) * 1975-09-18 1977-03-19 Shin Nippon Koki Co Ltd Method of cold squeezing of cylindrical body
JPS5265173A (en) * 1975-11-25 1977-05-30 Shin Nippon Koki Co Ltd Method of cold reedrawing and squeezing of cylindrical body
JPH09174168A (en) * 1995-12-26 1997-07-08 Mitsubishi Chem Corp Ironing device for pipe
JP2001137964A (en) * 1999-11-09 2001-05-22 Ueno Hiroshi Manufacturing method of thin cylindrical body

Also Published As

Publication number Publication date
JP5028770B2 (en) 2012-09-19

Similar Documents

Publication Publication Date Title
JP5309690B2 (en) Manufacturing method of inner and outer rings of rolling bearing
US5894752A (en) Method and system for warm or hot high-velocity die forging
JPWO2006025369A1 (en) Die, manufacturing method of stepped metal tube and stepped metal tube
JP2007203342A (en) Method for manufacturing cylindrical shaft
JP2014104495A (en) Shell body manufacturing device and shell body manufacturing method
JP2003285117A (en) Method for manufacturing mother pipe for bulging, bulged article and method for manufacturing the same
JP2018530432A (en) Manufacturing method and manufacturing equipment for ring-shaped molded product
RU2486985C2 (en) Method of forging hollow parts and forging complex to this end
JP5028770B2 (en) How to iron a metal pipe
CN103974788A (en) Method for manufacturing seamless pipe
JPWO2016104706A1 (en) Manufacturing method of widened metal tube
JPH07116770A (en) Manufacture of deformed ring
JPWO2015122186A1 (en) Manufacturing method of annular member
JPH09103819A (en) Production for tube excellent in shape precision by using drawing and drawing tool
EP0565406A1 (en) Method of making a metallic ring-shaped body
JP2009226422A (en) Method of working tubular member made of metal, with high accuracy
CN105382162A (en) Upsetting stretching method of annular billet preformed through hollow ingot
JP2009045634A (en) Forging apparatus and forging method
JP2010023112A (en) Method for producing yoke for universal joint
JP2020122569A (en) Cylindrical rotary component
JP6616027B1 (en) Manufacturing method of cylindrical rotating parts
JP5608537B2 (en) Manufacturing method of pipe with flange
JPH1133668A (en) Forging device of large diameter ring
JP2019089078A (en) Method for forging gear
WO2023105883A1 (en) Method for molding cylindrical body having tapered part

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120611

R150 Certificate of patent or registration of utility model

Ref document number: 5028770

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250