JP2007059335A - Electrical insulation material and cast molding - Google Patents

Electrical insulation material and cast molding Download PDF

Info

Publication number
JP2007059335A
JP2007059335A JP2005246327A JP2005246327A JP2007059335A JP 2007059335 A JP2007059335 A JP 2007059335A JP 2005246327 A JP2005246327 A JP 2005246327A JP 2005246327 A JP2005246327 A JP 2005246327A JP 2007059335 A JP2007059335 A JP 2007059335A
Authority
JP
Japan
Prior art keywords
particle size
insulating material
silica
resin
elliptical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005246327A
Other languages
Japanese (ja)
Other versions
JP4996080B2 (en
Inventor
Susumu Kinoshita
晋 木下
Toshio Shimizu
敏夫 清水
Takahiro Imai
隆浩 今井
Gen Komiya
玄 小宮
Junichi Sato
純一 佐藤
Osamu Sakaguchi
修 阪口
Nobutaka Kubota
信孝 久保田
Masaru Miyagawa
勝 宮川
Masamichi Ono
正道 大野
Toshihisa Saito
敏久 齋藤
Satoru Shioiri
哲 塩入
Satoshi Makishima
聡 槙島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2005246327A priority Critical patent/JP4996080B2/en
Publication of JP2007059335A publication Critical patent/JP2007059335A/en
Application granted granted Critical
Publication of JP4996080B2 publication Critical patent/JP4996080B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Inorganic Insulating Materials (AREA)
  • Organic Insulating Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electric insulating material capable of improving electric characteristics such as breakdown voltage characteristics, and a cast molding molded by using the material. <P>SOLUTION: The electric insulating material comprises a thermoset matrix resin 1 constituted of a thermoset resin and a hardening agent, inorganic filling materials 2, 3 of an oval shape having particle size distributions of two kinds or more, and rubber particles 4 having a core shell structure. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電気的特性を向上し得る電気絶縁材料およびその材料を用いて注型された注型品に関する。   The present invention relates to an electrical insulating material capable of improving electrical characteristics and a cast product cast using the material.

エポキシ樹脂は、優れた機械的特性、電気的特性、化学的特性、熱的特性などを持つことから、重電分野、半導体分野などの電気絶縁材料として用いられている。その一例としては、スイッチギヤのような電気機器に用いるブッシングなどの注型品を製造するエポキシ樹脂注型材料や、電気部品を封止するエポキシ樹脂封止材料などが挙げられる。   Epoxy resins have excellent mechanical properties, electrical properties, chemical properties, thermal properties, and the like, and are therefore used as electrical insulating materials in heavy electrical fields, semiconductor fields, and the like. Examples thereof include an epoxy resin casting material for producing a casting such as a bushing used for an electrical device such as a switch gear, an epoxy resin sealing material for sealing an electrical component, and the like.

従来、この種のエポキシ樹脂材料を用いた電気絶縁材料は、エポキシ樹脂中に、直径10μm程度と直径数μmの真球状シリカ、およびコアシェル構造を有するゴム粒子を最適量充填し混合することにより、各特性にバランスのとれた材料となっていることが知られている。このなかでも、二種類以上の粒径分布を有する真球状シリカを充填した材料では、エポキシ樹脂中に高充填率で混合しても増粘し難く、注型品の製造を容易とすることができる。また、ゴム粒子を充填することにより、靭性が向上するものの曲げ強度などの機械的強度が低下する傾向にあるが、二種類以上の粒径分布を有する真球状シリカの充填により、この機械的強度の低下を抑制することができている(例えば、特許文献1参照。)。
特開2002−15621号公報 (第3〜6ページ、図1)
Conventionally, an electrical insulating material using this kind of epoxy resin material is filled with an optimal amount of spherical particles having a diameter of about 10 μm and a diameter of several μm and rubber particles having a core-shell structure in an epoxy resin. It is known that the material has a balanced property. Of these, materials filled with spherical silica having two or more types of particle size distributions are less likely to increase in viscosity even when mixed at a high filling rate in an epoxy resin, facilitating the manufacture of cast products. it can. In addition, filling rubber particles tends to improve toughness, but tends to reduce mechanical strength such as bending strength. However, filling with spherical silica having two or more particle size distributions increases this mechanical strength. (See, for example, Patent Document 1).
JP 2002-15621 A (pages 3 to 6, FIG. 1)

上記の従来の電気絶縁材料においては、機械的特性、電気的特性、化学的特性、熱的特性などの各特性にバランスのとれた材料となっているが、電気機器を小型化するためには、更に破壊電圧特性を向上させることが望まれていた。破壊電圧特性が向上すれば、特に高電圧電気機器に用いられる注型品にとっては、絶縁厚さを薄くでき、小型化に結びつくものとなる。   In the above-mentioned conventional electrical insulating material, it is a material that is well-balanced in each characteristic such as mechanical characteristics, electrical characteristics, chemical characteristics, and thermal characteristics. Further, it has been desired to further improve the breakdown voltage characteristics. If the breakdown voltage characteristics are improved, the insulation thickness can be reduced particularly for cast products used in high voltage electrical equipment, leading to miniaturization.

本発明は上記問題を解決するためになされたもので、破壊電圧特性などの電気的特性を向上し得る電気絶縁材料およびその材料を用いて注型された注型品を提供することを目的とする。   The present invention has been made to solve the above-described problem, and an object thereof is to provide an electrically insulating material capable of improving electrical characteristics such as breakdown voltage characteristics and a cast product cast using the material. To do.

上記目的を達成するために、本発明の電気絶縁材料は、熱硬化性樹脂と硬化剤とから構成される熱硬化性マトリックス樹脂と、二種類以上の粒径分布を有する楕円形状の無機物充填材と、コアシェル構造を有するゴム粒子とを備えたことを特徴とする。   In order to achieve the above object, the electrical insulating material of the present invention includes a thermosetting matrix resin composed of a thermosetting resin and a curing agent, and an elliptical inorganic filler having two or more types of particle size distributions. And rubber particles having a core-shell structure.

本発明によれば、熱硬化性マトリックス樹脂に二種類以上の粒径分布を有する楕円形状シリカを充填しているので、破壊電圧特性を向上させることができ、その電気絶縁材料を用いて製造した注型品の縮小化を図ることができる。   According to the present invention, since the thermosetting matrix resin is filled with the elliptical silica having two or more kinds of particle size distributions, the breakdown voltage characteristics can be improved and manufactured using the electrically insulating material. It is possible to reduce the size of cast products.

以下、図面を参照して本発明の実施例を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

本発明の実施例に係る電気絶縁材料を図1乃至図3を参照して説明する。図1は、本発明の実施例に係る電気絶縁材料の構成を示す概念図、図2は、本発明の実施例に係る加熱硬化させた電気絶縁材料の破壊電圧を求める電極配置図、図3は、図2で求めた破壊電圧の破壊経路を説明する図である。   An electrical insulating material according to an embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a conceptual diagram showing a configuration of an electrical insulating material according to an embodiment of the present invention. FIG. 2 is an electrode arrangement diagram for determining a breakdown voltage of the heat-cured electrical insulating material according to the embodiment of the present invention. These are the figures explaining the destruction path | route of the destruction voltage calculated | required in FIG.

図1に示すように、電気絶縁材料には、熱硬化性樹脂のエポキシ樹脂と、変性酸無水物やアミン系硬化剤のような硬化剤とから構成される熱硬化性マトリックス樹脂1中に、無機物充填材として二種類以上の粒径分布を有する楕円形状(鶏卵状)の大粒径シリカ2と小粒径シリカ3、外側に特殊な化学修飾を施したコアシェル構造を持つゴム粒子4が充填され混合されている。この電気絶縁材料の組成は、次のように調製した。   As shown in FIG. 1, the electrical insulating material includes a thermosetting matrix resin 1 composed of a thermosetting epoxy resin and a curing agent such as a modified acid anhydride or an amine curing agent. Filled with elliptical (egg-like) large-diameter silica 2 and small-diameter silica 3 having two or more types of particle size distribution as inorganic filler, and rubber particles 4 having a core-shell structure with special chemical modification on the outside Have been mixed. The composition of this electrically insulating material was prepared as follows.

(実施例)
(1)ビスフェノール系エポキシ樹脂(100重量部)
内訳:ビスフェノールAエポキシ樹脂(エポキシ当量180、50重量部)
ビスフェノールFエポキシ樹脂(エポキシ当量180、50重量部)
(2)メチルナジック酸無水物(硬化剤、95重量部)
(3)楕円形状シリカ(シランカップリング処理済み、380重量部)
内訳:大粒径シリカ(平均粒径15μm、長径/短径=1超過2以下、360重量部)
小粒径シリカ(平均粒径0.8μm、長径/短径=1超過2以下、20重量部)
(4)ゴム粒子(平均粒径0.3μmのスチレン−ブタジエン−メタクリル酸共重合体、10重量部)
ここで、大粒径シリカ2は、長径側の粒径が0.5〜30μm(この範囲を平均粒径15μmとする)であり、50〜80重量%充填することができる。また、小粒径シリカ3は、長径側の粒径が0.1〜3μm(この範囲を平均粒径0.8μmとする)であり、2〜20重量%充填することができる。大粒径シリカ2、小粒径シリカ3とも、図1に示すように、楕円形状(鶏卵状)の長いほうを長径、短いほうを短径とし、長径/短径=1超過としているので、真球状にはならない。なお、長径/短径=2以上では、エポキシ樹脂中に混合するとき、長径側が折損することがあり、折損部が鋭角状となるので好ましくない。このような楕円形状は、例えば、気相法で溶融シリカを製造するとき、高温で溶融させたシリカを冷却する速度(時間、温度)を変化させて行えば得ることができる。
(Example)
(1) Bisphenol epoxy resin (100 parts by weight)
Breakdown: Bisphenol A epoxy resin (epoxy equivalent 180, 50 parts by weight)
Bisphenol F epoxy resin (epoxy equivalent 180, 50 parts by weight)
(2) Methyl nadic acid anhydride (curing agent, 95 parts by weight)
(3) Elliptical silica (Silane coupling treatment completed, 380 parts by weight)
Breakdown: Large particle size silica (average particle size 15 μm, long diameter / short diameter = 1 over 2 or less, 360 parts by weight)
Small particle size silica (average particle size 0.8μm, major axis / minor axis = 1 over 2 and under 20 parts by weight)
(4) Rubber particles (styrene-butadiene-methacrylic acid copolymer having an average particle size of 0.3 μm, 10 parts by weight)
Here, the large particle diameter silica 2 has a particle diameter of 0.5 to 30 μm on the long diameter side (this range is defined as an average particle diameter of 15 μm) and can be filled in 50 to 80 wt%. The small particle size silica 3 has a long particle size of 0.1 to 3 μm (this range is defined as an average particle size of 0.8 μm) and can be filled in an amount of 2 to 20% by weight. As shown in FIG. 1, both the large particle size silica 2 and the small particle size silica 3 have the longer elliptical shape (egg-like) as the major axis, the shorter one as the minor axis, and the major axis / minor axis = 1 exceeding. It does not become a true sphere. In addition, when the major axis / minor axis = 2 or more, when mixed in the epoxy resin, the major axis side may break, and the broken part becomes an acute angle, which is not preferable. Such an elliptical shape can be obtained, for example, by changing the rate (time and temperature) of cooling silica melted at a high temperature when producing fused silica by a gas phase method.

ゴム粒子4は、粒径0.2〜1.2μm(この範囲を平均粒径0.3μmとする)であり、5〜20重量%充填することができる。   The rubber particles 4 have a particle size of 0.2 to 1.2 μm (this range is an average particle size of 0.3 μm) and can be filled at 5 to 20% by weight.

また、比較のため、以下の組成の電気絶縁材料を用いた。これは、従来の電気絶縁材料と同様なものである。   For comparison, an electrical insulating material having the following composition was used. This is similar to the conventional electrical insulating material.

(比較例)
(1)ビスフェノール系エポキシ樹脂(100重量部)
内訳:ビスフェノールAエポキシ樹脂(エポキシ当量180、50重量部)
ビスフェノールFエポキシ樹脂(エポキシ当量180、50重量部)
(2)メチルナジック酸無水物(95重量部)
(3)真球状シリカ(シランカップリング処理済み、380重量部)
内訳:大粒径シリカ(平均粒径15μm、360重量部)
小粒径シリカ(平均粒径0.8μm、20重量部)
(4)ゴム粒子(平均粒径0.3μmのスチレン−ブタジエン−メタクリル酸共重合体、10重量部)
上述した実施例、および比較例の破壊電圧特性を調べた。試料は、それぞれの電気絶縁材料に、一般のエポキシ樹脂注型材料に使われるアミン系硬化促進剤を加えて、金型に注入し、先ず温度80℃−時間15hrで一次硬化させ、次いで温度150℃−時間15hrで二次硬化させて製作した。
(Comparative example)
(1) Bisphenol epoxy resin (100 parts by weight)
Breakdown: Bisphenol A epoxy resin (epoxy equivalent 180, 50 parts by weight)
Bisphenol F epoxy resin (epoxy equivalent 180, 50 parts by weight)
(2) Methyl nadic acid anhydride (95 parts by weight)
(3) Spherical silica (Silane coupled, 380 parts by weight)
Breakdown: Large particle size silica (average particle size 15 μm, 360 parts by weight)
Small particle size silica (average particle size 0.8μm, 20 parts by weight)
(4) Rubber particles (styrene-butadiene-methacrylic acid copolymer having an average particle size of 0.3 μm, 10 parts by weight)
The breakdown voltage characteristics of the above-described examples and comparative examples were examined. Samples were added to each electrical insulating material with an amine-based curing accelerator used in general epoxy resin casting materials, injected into a mold, first cured at a temperature of 80 ° C. for 15 hours, and then heated to a temperature of 150 The secondary curing was performed at 15 ° C. for 15 hours.

破壊電圧の測定は、図2に示すように、直径φ1=25mmの球電極5と、直径φ2=35mmの円柱電極6(端部は曲率半径R=2mmに加工)間に、上述の方法で製作した絶縁厚さt=1mmの試験用絶縁板7を挟み、両電極5、6間にAC電圧を印加して求めた。昇圧速度は、600V/秒であり、また、試料数は、それぞれ10個である。   As shown in FIG. 2, the breakdown voltage is measured between the spherical electrode 5 having a diameter φ1 = 25 mm and the cylindrical electrode 6 having a diameter φ2 = 35 mm (the end is processed to have a radius of curvature R = 2 mm) by the method described above. The test insulation plate 7 having an insulation thickness t = 1 mm was sandwiched between the electrodes 5 and 6 and an AC voltage was applied between the electrodes. The pressure increase rate is 600 V / second, and the number of samples is 10 each.

結果を表1に示す。

Figure 2007059335
The results are shown in Table 1.
Figure 2007059335

表1より、実施例では、破壊電圧64kV/mmであり、比較例の破壊電圧61kV/mmよりも高い値が得られた。標準偏差は、実施例、比較例とも3〜4kV/mmとほぼ同様であった。   From Table 1, in the example, the breakdown voltage was 64 kV / mm, which was higher than the breakdown voltage 61 kV / mm of the comparative example. The standard deviation was almost the same as 3 to 4 kV / mm in both Examples and Comparative Examples.

楕円形状シリカを充填した試料の絶縁破壊面を観察すると、図3に示すように、破壊経路Aは、大粒径シリカ2、小粒径シリカ3と熱硬化性マトリックス樹脂1との界面を沿うように進展している。これは、楕円形状の大粒径シリカ2、小粒径シリカ3によって、破壊経路Aが伸び、破壊電圧を向上させたものと考えられる。   When the dielectric breakdown surface of the sample filled with elliptical silica is observed, as shown in FIG. 3, the breakdown path A follows the interface between the large particle size silica 2, the small particle size silica 3 and the thermosetting matrix resin 1. Is progressing as well. This is probably because the fracture path A is extended by the elliptical large particle size silica 2 and the small particle size silica 3 to improve the breakdown voltage.

このように楕円形状シリカを用いることにより、破壊電圧特性を向上させることができるので、この材料を用いて製造したブッシングなどの注型品においても破壊電圧特性を向上させることができる。そして、この注型品を用いた電気機器においては、全体形状の縮小化を図ることができる。   By using the elliptical silica as described above, the breakdown voltage characteristics can be improved. Therefore, the breakdown voltage characteristics can be improved even in cast products such as bushings manufactured using this material. And in the electrical equipment using this cast product, the overall shape can be reduced.

なお、楕円形状シリカを充填したものは、従来のもの(比較例)と比較して、引張特性や曲げ特性などの機械的特性、および耐熱性の指標となるガラス転移温度などの特性が同様であった。   In addition, those filled with elliptical silica have similar mechanical properties such as tensile properties and bending properties, and properties such as glass transition temperature, which is an index of heat resistance, compared to conventional ones (comparative examples). there were.

上記実施例の電気絶縁材料によれば、熱硬化性マトリックス樹脂1に充填する無機物充填材を楕円形状の二種類以上の粒径分布を有する大粒径シリカ2、小粒径シリカ3としているので、破壊電圧特性を向上させることができ、この材料を用いて製造した注型品の縮小化を図ることができる。   According to the electrical insulating material of the above embodiment, the inorganic filler to be filled in the thermosetting matrix resin 1 is the large particle size silica 2 and the small particle size silica 3 having two or more kinds of particle size distributions having an elliptical shape. The breakdown voltage characteristics can be improved, and the cast product manufactured using this material can be reduced.

なお、本発明は、上記実施例に限定されるものではなく、発明の要旨を逸脱しない範囲で、種々変形して実施することができる。上記実施例では、熱硬化性マトリックス樹脂1にエポキシ樹脂を用いて説明したが、フェノール樹脂、ウレタン樹脂、ポリアミド樹脂などの熱硬化性樹脂を用いても、楕円形状シリカを充填することにより、破壊電圧特性を向上させることができる。   In addition, this invention is not limited to the said Example, In the range which does not deviate from the summary of invention, it can implement in various deformation | transformation. In the above embodiment, the epoxy resin is used for the thermosetting matrix resin 1. However, even if a thermosetting resin such as a phenol resin, a urethane resin, or a polyamide resin is used, it is destroyed by filling with elliptical silica. The voltage characteristics can be improved.

本発明の実施例に係る電気絶縁材料の構成を示す概念図。The conceptual diagram which shows the structure of the electrically insulating material which concerns on the Example of this invention. 本発明の実施例に係る加熱硬化させた電気絶縁材料の破壊電圧を求める電極配置図。The electrode arrangement | positioning figure which calculates | requires the breakdown voltage of the heat-hardened electrically insulating material which concerns on the Example of this invention. 図2で求めた破壊電圧の破壊経路を説明する図。The figure explaining the destruction path | route of the destruction voltage calculated | required in FIG.

符号の説明Explanation of symbols

1 熱硬化性マトリックス樹脂
2 大粒径シリカ
3 小粒径シリカ
4 ゴム粒子
5 球電極
6 円柱電極
7 試験用絶縁板
DESCRIPTION OF SYMBOLS 1 Thermosetting matrix resin 2 Large particle size silica 3 Small particle size silica 4 Rubber particle 5 Spherical electrode 6 Cylindrical electrode 7 Test insulation board

Claims (5)

熱硬化性樹脂と硬化剤とから構成される熱硬化性マトリックス樹脂と、
二種類以上の粒径分布を有する楕円形状の無機物充填材と、
コアシェル構造を有するゴム粒子とを備えたことを特徴とする電気絶縁材料。
A thermosetting matrix resin composed of a thermosetting resin and a curing agent;
An elliptical inorganic filler having two or more particle size distributions;
An electrically insulating material comprising a rubber particle having a core-shell structure.
前記無機物充填材は、溶融シリカからなり、
楕円形状の長径/短径の比が、1超過2以下であることを特徴とする請求項1に記載の電気絶縁材料。
The inorganic filler is made of fused silica,
2. The electrical insulating material according to claim 1, wherein the ratio of the major axis / minor axis of the ellipse is more than 1 and 2 or less.
前記無機物充填材は、平均粒径15μm、および平均粒径0.8μmの粒径分布を有することを特徴とする請求項1または請求項2に記載の電気絶縁材料。   3. The electrical insulating material according to claim 1, wherein the inorganic filler has a particle size distribution with an average particle size of 15 μm and an average particle size of 0.8 μm. 前記熱硬化性樹脂は、ビスフェノール系エポキシ樹脂であることを特徴とする請求項1乃至請求項3のいずれか1項に記載の電気絶縁材料。   The electrically insulating material according to any one of claims 1 to 3, wherein the thermosetting resin is a bisphenol-based epoxy resin. 熱硬化性樹脂と硬化剤とから構成される熱硬化性マトリックス樹脂と、
二種類以上の粒径分布を有する楕円形状の無機物充填材と、
コアシェル構造を有するゴム粒子とを有する電気絶縁材料で注型されたことを特徴とする注型品。
A thermosetting matrix resin composed of a thermosetting resin and a curing agent;
An elliptical inorganic filler having two or more particle size distributions;
A cast product characterized by being cast with an electrically insulating material having a rubber particle having a core-shell structure.
JP2005246327A 2005-08-26 2005-08-26 Electrical insulation material Expired - Fee Related JP4996080B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005246327A JP4996080B2 (en) 2005-08-26 2005-08-26 Electrical insulation material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005246327A JP4996080B2 (en) 2005-08-26 2005-08-26 Electrical insulation material

Publications (2)

Publication Number Publication Date
JP2007059335A true JP2007059335A (en) 2007-03-08
JP4996080B2 JP4996080B2 (en) 2012-08-08

Family

ID=37922621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005246327A Expired - Fee Related JP4996080B2 (en) 2005-08-26 2005-08-26 Electrical insulation material

Country Status (1)

Country Link
JP (1) JP4996080B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009029904A (en) * 2007-07-26 2009-02-12 Kyocera Chemical Corp Resin composition for sealing semiconductor and resin-sealed semiconductor device
US20100319964A1 (en) * 2009-06-17 2010-12-23 Hitachi Industrial Equipment Systems Co., Ltd. Cast insulation resin for electric apparatus and high voltage electric apparatus using the same
JP2018160655A (en) * 2016-07-19 2018-10-11 パナソニックIpマネジメント株式会社 Molding material for light reflector and manufacturing method thereof, light reflector, base body and manufacturing method thereof, and light-emitting device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0834608A (en) * 1994-07-25 1996-02-06 Denki Kagaku Kogyo Kk Spherical silica powder and epoxy resin composition
JPH08283537A (en) * 1995-04-17 1996-10-29 Sumitomo Electric Ind Ltd Electrically insulating epoxy resin composition
JPH09124837A (en) * 1994-12-15 1997-05-13 Nitto Denko Corp Cast resin composition for electric insulation and prefabricated joint obtained by using the same
JP2002015621A (en) * 2000-06-29 2002-01-18 Toshiba Corp Electrical insulation material and its manufacturing method
JP2004103690A (en) * 2002-09-06 2004-04-02 Teijin Dupont Films Japan Ltd Polyester film for capacitor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0834608A (en) * 1994-07-25 1996-02-06 Denki Kagaku Kogyo Kk Spherical silica powder and epoxy resin composition
JPH09124837A (en) * 1994-12-15 1997-05-13 Nitto Denko Corp Cast resin composition for electric insulation and prefabricated joint obtained by using the same
JPH08283537A (en) * 1995-04-17 1996-10-29 Sumitomo Electric Ind Ltd Electrically insulating epoxy resin composition
JP2002015621A (en) * 2000-06-29 2002-01-18 Toshiba Corp Electrical insulation material and its manufacturing method
JP2004103690A (en) * 2002-09-06 2004-04-02 Teijin Dupont Films Japan Ltd Polyester film for capacitor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009029904A (en) * 2007-07-26 2009-02-12 Kyocera Chemical Corp Resin composition for sealing semiconductor and resin-sealed semiconductor device
US20100319964A1 (en) * 2009-06-17 2010-12-23 Hitachi Industrial Equipment Systems Co., Ltd. Cast insulation resin for electric apparatus and high voltage electric apparatus using the same
JP2018160655A (en) * 2016-07-19 2018-10-11 パナソニックIpマネジメント株式会社 Molding material for light reflector and manufacturing method thereof, light reflector, base body and manufacturing method thereof, and light-emitting device
JP2018160654A (en) * 2016-07-19 2018-10-11 パナソニックIpマネジメント株式会社 Light reflector, base body, light-emitting device, and method for manufacturing base body
JP7065381B2 (en) 2016-07-19 2022-05-12 パナソニックIpマネジメント株式会社 Manufacturing method of light reflector, base body, light emitting device and base body
JP7065382B2 (en) 2016-07-19 2022-05-12 パナソニックIpマネジメント株式会社 Molding material for light reflector and its manufacturing method, light reflector, base body and its manufacturing method, and light emitting device

Also Published As

Publication number Publication date
JP4996080B2 (en) 2012-08-08

Similar Documents

Publication Publication Date Title
JP5587248B2 (en) Electrical insulating material and high voltage equipment using the same
TWI468461B (en) Insulating mold resins for electrical machines and high voltage electrical machines using them
JP5269064B2 (en) Non-linear resistance material
JP2009073933A (en) Epoxy resin composition having thermal degradation resistance
WO2013121571A1 (en) Resin composition for electric insulation, cured product thereof, methods for manufacturing same, and high-voltage devices and electric power transmission and distribution devices using same
US20200299455A1 (en) Organofluorine modified epoxy resins for increasing surface flashover voltage, and preparation methods and applications thereof
JP5129612B2 (en) Casting epoxy resin composition and high thermal conductive coil
JP4996080B2 (en) Electrical insulation material
JP2007227426A (en) Magnetic admixture and inductor employing it
JP2018024734A (en) Epoxy resin composition and ignition coil
JP7021255B2 (en) Insulation spacer
EP0676448B1 (en) Epoxy resin composition and resin molding using the same
KR101072139B1 (en) Method for preparing epoxy/silica multicomposite for high voltage insulation and product thereby
JP4165326B2 (en) Ignition coil
JP5615475B2 (en) Manufacturing method of insulation material for all-solid-state transformer
JP4476646B2 (en) Insulating resin composition for high voltage equipment, insulating material and method for producing the same, and insulating structure
JP5994023B2 (en) Composite insulating resin material for high voltage equipment and high voltage equipment using the same
JP2020002346A (en) Epoxy resin composition for casting, electronic component and method for manufacturing electronic component
JP2007169638A (en) Electronic component having casting material
Park et al. Mechanical and electrical properties of cycloaliphatic epoxy/silica systems for electrical insulators for outdoor applications
Park Effects of reactive diluents on the electrical insulation breakdown strength and mechanical properties in an epoxy system
JP2019011404A (en) Insulation resin composition and coil product
JP3859426B2 (en) Casting epoxy resin composition
JPH09296073A (en) Casting resin composition for electrical insulation
TW201941224A (en) Anisotropic conductive film and method of manufacturing for anisotropic conductive film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080418

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111125

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120417

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120511

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4996080

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees