JP2007059069A - Operation preparation method of solid polymer electrolyte fuel cell - Google Patents

Operation preparation method of solid polymer electrolyte fuel cell Download PDF

Info

Publication number
JP2007059069A
JP2007059069A JP2005239534A JP2005239534A JP2007059069A JP 2007059069 A JP2007059069 A JP 2007059069A JP 2005239534 A JP2005239534 A JP 2005239534A JP 2005239534 A JP2005239534 A JP 2005239534A JP 2007059069 A JP2007059069 A JP 2007059069A
Authority
JP
Japan
Prior art keywords
polymer electrolyte
solid polymer
fuel cell
electrolyte fuel
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005239534A
Other languages
Japanese (ja)
Inventor
Atsuko Nosaka
篤子 野坂
Yoshio Nosaka
芳雄 野坂
Satoru Watanabe
渡邊  悟
Ichiro Toyoda
一郎 豊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Nagaoka University of Technology NUC
Original Assignee
Mitsubishi Heavy Industries Ltd
Nagaoka University of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Nagaoka University of Technology NUC filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2005239534A priority Critical patent/JP2007059069A/en
Publication of JP2007059069A publication Critical patent/JP2007059069A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rapid and simple operation preparation method of a solid polymer electrolyte fuel cell. <P>SOLUTION: The operation preparation method supplies a nitrogen gas 1 from a nitrogen gas cylinder 11 by adjusting flow regulating valves 13 to 15, then heats the nitrogen gas 1 to 70°C or more by means of a thermostat/humidistat 12 while humidifying the nitrogen gas 1 so that it may be placed into almost saturated state containing a steam of a water 2. Afterwards, the resultant nitrogen gas 1 is supplied to a fuel gas supply inlet 101 and oxidation gas supply inlet 102 on a solid polymer electrolyte fuel cell 100. Subsequently, a solid polymer electrolyte film of the solid polymer electrolyte fuel cell 100 is heated to 70°C or more by supplying the water 2 to the solid polymer electrolyte film. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、固体高分子電解質形燃料電池の実運転使用前の慣らし運転(エージング)や固体高分子電解質形燃料電池の長期間運転停止後の実運転再開前の準備運転等のような固体高分子電解質形燃料電池の運転準備方法に関する。   The present invention relates to solid operation such as break-in operation (aging) before actual use of a solid polymer electrolyte fuel cell and preparatory operation before resumption of actual operation after long-term operation stop of the solid polymer electrolyte fuel cell. The present invention relates to a method for preparing operation of a molecular electrolyte fuel cell.

作製された固体高分子電解質形燃料電池は、発電特性を十分に発現できるようにするため、実運転使用前に慣らし運転(エージング)が行われている。   The manufactured solid polymer electrolyte fuel cell is subjected to a running-in operation (aging) before use in actual operation so that the power generation characteristics can be sufficiently expressed.

この固体高分子電解質形燃料電池の従来のエージング方法としては、例えば、製作後、酸化ガス(空気)に代えて窒素ガスを用いて、発電運転と同一の条件でしばらく作動させてから、窒素ガスを酸化ガス(空気)に戻して、目的とする発電性能を発現できるまで運転するようにしている。   As a conventional aging method of this solid polymer electrolyte fuel cell, for example, after production, nitrogen gas is used instead of oxidizing gas (air), and it is operated for a while under the same conditions as the power generation operation. Is returned to the oxidizing gas (air) until the desired power generation performance can be achieved.

特開2004−349050号公報JP 2004-349050 A

しかしながら、前述したような従来のエージング方法では、エージングを終えるのに約一週間前後要してしまい、時間及び手間がかかって、コストアップの一因となっていた。   However, in the conventional aging method as described above, it takes about one week to complete the aging, which takes time and labor, and contributes to an increase in cost.

このような問題は、上述したような実運転使用前の慣らし運転(エージング)の場合だけに限らず、長期間運転停止後の実運転再開前の準備運転等の場合であっても、上述した場合と同様に生じていた。   Such a problem is not limited to the case of running-in (aging) before using the actual operation as described above, but is also described above even in the case of a preparation operation before resuming the actual operation after a long-term operation stop. It happened as well.

このようなことから、本発明は、短時間で簡単に実施することができる固体高分子電解質形燃料電池の運転準備方法を提供することを目的とする。   In view of the above, an object of the present invention is to provide an operation preparation method for a solid polymer electrolyte fuel cell that can be easily implemented in a short time.

前述した課題を解決するための、第一番目の発明は、固体高分子電解質形燃料電池の運転準備方法であって、前記固体高分子電解質形燃料電池の固体高分子電解質膜に水を供給して当該固体高分子電解質膜を70℃以上に加温することを特徴とする。   A first invention for solving the above-described problem is a method for preparing an operation of a solid polymer electrolyte fuel cell, wherein water is supplied to the solid polymer electrolyte membrane of the solid polymer electrolyte fuel cell. The solid polymer electrolyte membrane is heated to 70 ° C. or higher.

第二番目の発明は、第一番目の発明に係る固体高分子電解質形燃料電池の運転準備方法において、前記固体高分子電解質形燃料電池の燃料ガス供給口及び酸化ガス供給口の少なくとも一方に70℃以上の加湿ガスを供給することを特徴とする。   According to a second aspect of the present invention, there is provided an operation preparation method for a solid polymer electrolyte fuel cell according to the first aspect, wherein at least one of a fuel gas supply port and an oxidizing gas supply port of the solid polymer electrolyte fuel cell is 70. It is characterized by supplying a humidified gas at a temperature not lower than ° C.

第三番目の発明は、第二番目の発明に係る固体高分子電解質形燃料電池の運転準備方法において、前記固体高分子電解質形燃料電池の前記燃料ガス供給口に供給する前記加湿ガスが、窒素ガス及び二酸化炭素ガスの少なくとも一種からなるキャリアガスに水分を含有させたものであることを特徴とする。   According to a third aspect of the present invention, in the method for preparing an operation of a solid polymer electrolyte fuel cell according to the second invention, the humidified gas supplied to the fuel gas supply port of the solid polymer electrolyte fuel cell is nitrogen. A carrier gas comprising at least one of gas and carbon dioxide gas contains water.

第四番目の発明は、第二番目の発明に係る固体高分子電解質形燃料電池の運転準備方法において、前記固体高分子電解質形燃料電池の前記酸化ガス供給口に供給する前記加湿ガスが、窒素ガス、二酸化炭素ガス、空気のうちの少なくとも一種からなるキャリアガスに水分を含有させたものであることを特徴とする。   According to a fourth aspect of the present invention, in the method for preparing a solid polymer electrolyte fuel cell according to the second aspect of the invention, the humidified gas supplied to the oxidizing gas supply port of the solid polymer electrolyte fuel cell is nitrogen. It is characterized by containing water in a carrier gas composed of at least one of gas, carbon dioxide gas, and air.

第五番目の発明は、第一番目から第四番目の発明のいずれかに係る固体高分子電解質形燃料電池の運転準備方法において、前記固体高分子電解質形燃料電池の実運転使用前の慣らし運転、又は、前記固体高分子電解質形燃料電池の長期間運転停止後の実運転再開前の準備運転であることを特徴とする。   According to a fifth aspect of the present invention, there is provided a method for preparing an operation of a solid polymer electrolyte fuel cell according to any one of the first to fourth aspects of the present invention. Alternatively, the solid polymer electrolyte fuel cell is a preparatory operation before resuming actual operation after a long-term operation stop.

本発明に係る固体高分子電解質形燃料電池の運転準備方法によれば、運転準備を短時間で簡単に実施することができるので、時間及び手間を大幅に削減することができ、コストの削減を図ることができる。   According to the operation preparation method for a solid polymer electrolyte fuel cell according to the present invention, since the operation preparation can be easily performed in a short time, the time and labor can be greatly reduced, and the cost can be reduced. Can be planned.

本発明に係る固体高分子電解質形燃料電池の運転準備方法の実施形態を図1に基づいて説明する。図1は、固体高分子電解質形燃料電池の運転準備方法の説明図である。   An embodiment of an operation preparation method for a solid polymer electrolyte fuel cell according to the present invention will be described with reference to FIG. FIG. 1 is an explanatory diagram of an operation preparation method for a solid polymer electrolyte fuel cell.

図1に示すように、固体高分子電解質形燃料電池100の燃料ガス供給口101及び酸化ガス供給口102には、キャリアガスである窒素ガス1を供給する窒素ガスボンベ11のガス送出口が連絡している。この窒素ガスボンベ11のガス送出口と固体高分子電解質形燃料電池100の前記燃料ガス供給口101及び前記酸化ガス供給口102との間には、上記窒素ガスボンベ11からの窒素ガス1を加温及び加湿する加湿温器12が配設されている。   As shown in FIG. 1, a gas delivery port of a nitrogen gas cylinder 11 for supplying a nitrogen gas 1 as a carrier gas communicates with a fuel gas supply port 101 and an oxidizing gas supply port 102 of a solid polymer electrolyte fuel cell 100. ing. Between the gas delivery port of the nitrogen gas cylinder 11 and the fuel gas supply port 101 and the oxidizing gas supply port 102 of the solid polymer electrolyte fuel cell 100, the nitrogen gas 1 from the nitrogen gas cylinder 11 is heated and A humidifying warmer 12 for humidifying is provided.

前記窒素ガスボンベ11と加湿温器12との間には、流量調整弁13が配設されている。加湿温器12と固体高分子電解質形燃料電池100の燃料ガス供給口101との間には、流量調整弁14が配設されている。加湿温器12と固体高分子電解質形燃料電池100の酸化ガス供給口102との間には、流量調整弁15がそれぞれ配設されている。なお、図1中、103は燃料ガス排出口、104は酸化ガス排出口である。   Between the nitrogen gas cylinder 11 and the humidifier / heater 12, a flow rate adjusting valve 13 is disposed. Between the humidifier warmer 12 and the fuel gas supply port 101 of the solid polymer electrolyte fuel cell 100, a flow rate adjusting valve 14 is disposed. Between the humidifier warmer 12 and the oxidizing gas supply port 102 of the solid polymer electrolyte fuel cell 100, a flow rate adjustment valve 15 is disposed. In FIG. 1, 103 is a fuel gas outlet, and 104 is an oxidizing gas outlet.

次に、本実施形態に係る運転準備方法を説明する。   Next, an operation preparation method according to this embodiment will be described.

前記流量調整弁13〜15を調整して、窒素ガスボンベ11から窒素ガス1を送給すると、窒素ガス1は、加湿温器12により、70℃以上(好ましくは80〜90℃)に加温されると共に水2の蒸気を含むように略飽和状態にまで加湿された後、固体高分子電解質形燃料電池100の燃料ガス供給口101及び酸化ガス供給口102に供給され、当該固体高分子電解質形燃料電池100の内部に形成された燃料ガス流路及び酸化ガス流路をそれぞれ流通し、当該固体高分子電解質形燃料電池の内部に配設されているセルの固体高分子電解質膜と接触して、当該固体高分子電解質膜を加温加湿した後に上記燃料ガス流路及び酸化ガス流路を再び流通し、当該固体高分子電解質形燃料電池100の燃料ガス排出口103及び酸化ガス排出口104から外部に排出される。   When the nitrogen gas 1 is supplied from the nitrogen gas cylinder 11 by adjusting the flow rate adjusting valves 13 to 15, the nitrogen gas 1 is heated to 70 ° C. or higher (preferably 80 to 90 ° C.) by the humidifier 12. And is humidified to a substantially saturated state so as to contain water 2 vapor, and then supplied to the fuel gas supply port 101 and the oxidizing gas supply port 102 of the solid polymer electrolyte fuel cell 100, and the solid polymer electrolyte type The fuel gas channel and the oxidizing gas channel formed inside the fuel cell 100 are respectively circulated and contacted with the solid polymer electrolyte membrane of a cell disposed inside the solid polymer electrolyte fuel cell. Then, after heating and humidifying the solid polymer electrolyte membrane, the fuel gas passage and the oxidizing gas passage are circulated again, and the fuel gas outlet 103 and the oxidizing gas outlet 10 of the solid polymer electrolyte fuel cell 100 are supplied. It is discharged to the outside from.

つまり、従来は、酸化ガス(空気)に代えて窒素ガスを用いて、発電運転と同一の条件(約60℃前後)でしばらく作動させてから、窒素ガスを酸化ガス(空気)に戻して、目的とする発電性能を発現できるまで運転するようにしていたが、本実施形態では、水2の蒸気を含んで70℃以上(好ましくは80〜90℃)に加温された窒素ガス1を固体高分子電解質形燃料電池100の燃料ガス供給口101及び酸化ガス供給口102に供給することにより、固体高分子電解質形燃料電池100の固体高分子電解質膜に水2を供給して当該固体高分子電解質膜を70℃以上(好ましくは80〜90℃)に加温するようにしたのである。   In other words, conventionally, using nitrogen gas instead of oxidizing gas (air) and operating for a while under the same conditions as power generation operation (about 60 ° C.), the nitrogen gas is returned to oxidizing gas (air), Although it was made to drive | operate until the target electric power generation performance was expressed, in this embodiment, the nitrogen gas 1 containing the vapor | steam of water 2 and heated to 70 degreeC or more (preferably 80-90 degreeC) is solid. By supplying to the fuel gas supply port 101 and the oxidizing gas supply port 102 of the polymer electrolyte fuel cell 100, water 2 is supplied to the solid polymer electrolyte membrane of the solid polymer electrolyte fuel cell 100, and the solid polymer The electrolyte membrane is heated to 70 ° C. or higher (preferably 80 to 90 ° C.).

このため、従来は、エージング等の運転準備に長期間(約一週間前後)を要していたが、本実施形態においては、エージング等の運転準備を短期間(約一日前後)で終えることができる。この理由を以下に説明する。   For this reason, conventionally, preparation for operation such as aging took a long time (about one week), but in this embodiment, preparation for operation such as aging is completed in a short period (about one day). Can do. The reason for this will be described below.

固体高分子電解質形燃料電池が十分な発電性能を発現するためには、固体高分子電解質膜が十分なプロトン伝導性を発現する、すなわち、固体高分子電解質膜のポリマーに対して水分子が均一に分散している必要がある。従来は、発電運転を行うことにより、すなわち、作動に伴う固体高分子電解質膜中の水分子の自然な移動により、固体高分子電解質膜のポリマーに対して水分子を均一に分散させるようにしていた。このため、従来は、エージング等の運転準備に長期間(約一週間前後)を要してしまっていた。   In order for a solid polymer electrolyte fuel cell to exhibit sufficient power generation performance, the solid polymer electrolyte membrane exhibits sufficient proton conductivity, that is, water molecules are uniform with respect to the polymer of the solid polymer electrolyte membrane. Must be distributed. Conventionally, water molecules are uniformly dispersed in the polymer of the solid polymer electrolyte membrane by performing a power generation operation, that is, by natural movement of water molecules in the solid polymer electrolyte membrane during operation. It was. For this reason, conventionally, it took a long time (about one week) to prepare for operation such as aging.

そこで、本発明者らが鋭意検討を行ったところ、固体高分子電解質膜を70℃以上に加熱すると、固体高分子電解質膜中の水分子が急速に均一に分散することが明らかとなった。この原因は定かではないが、固体高分子電解質膜を70℃以上に加熱すると、固体高分子電解質膜のポリマー間やポリマー内の構造に変化が生じ、当該ポリマーの構造変化に伴って、当該ポリマー内に含まれている水分子が容易に移動するようになるからではないかと推察される。このために、本実施形態では、エージング等の運転準備を短期間(約一日前後)で終えることができたと推察される。   Thus, the present inventors conducted extensive studies and found that when the solid polymer electrolyte membrane was heated to 70 ° C. or higher, water molecules in the solid polymer electrolyte membrane were rapidly and uniformly dispersed. The reason for this is not clear, but when the solid polymer electrolyte membrane is heated to 70 ° C. or higher, the structure of the solid polymer electrolyte membrane changes between the polymers or within the polymer. It is presumed that the water molecules contained in the water move easily. For this reason, in this embodiment, it is guessed that operation preparations, such as aging, could be completed in a short period (about one day).

したがって、本実施形態によれば、エージング等の運転準備を短時間で簡単に実施することができるので、時間及び手間を大幅に削減することができ、コストの削減を図ることができる。   Therefore, according to the present embodiment, operation preparation such as aging can be easily performed in a short time, so that time and labor can be greatly reduced, and cost can be reduced.

なお、本発明に係る固体高分子電解質形燃料電池の運転準備方法による処理時間は、固体高分子電解質膜の面積や厚さ等を始めとして、電極構造やセパレータ形状等の各種条件によって大きく違いを生じてしまうものの、ほとんどの場合、約一日前後行えば処理を終えることができる。そして、処理時間に影響を与える上述したような各種因子が無視できるような条件の場合には、1時間程度あれば、運転準備を終えることが可能である。   In addition, the processing time according to the operation preparation method of the solid polymer electrolyte fuel cell according to the present invention varies greatly depending on various conditions such as the area and thickness of the solid polymer electrolyte membrane and the electrode structure and separator shape. In most cases, the process can be completed in about one day. In the case where the above-described various factors affecting the processing time can be ignored, the operation preparation can be completed in about one hour.

また、本実施形態では、固体高分子電解質形燃料電池100の燃料ガス供給口101及び酸化ガス供給口102の両方に水2の蒸気を含む窒素ガス1を供給するようにしたが、本発明はこれに限らず、加湿ガスを構成するキャリアガスは、電極膜や触媒等に含まれている成分を極端に劣化させることがないものであればよく、他の実施形態として、例えば、二酸化炭素ガス又は二酸化炭素ガスと窒素ガスとの混合ガスからなるキャリアガスに水の蒸気を含ませた加湿ガスを固体高分子電解質形燃料電池100の燃料ガス供給口101に供給することや、空気、二酸化炭素ガス、窒素ガスと二酸化炭素ガスとの混合ガスのいずれか等からなるキャリアガスに水の蒸気を含ませた加湿ガスを固体高分子電解質形燃料電池100の酸化ガス供給口102に供給することも可能である。より具体的には、例えば、加熱等を行うために炭化水素系の燃料を燃焼させた燃焼排ガス(略飽和状態にまで水分を含有している窒素と二酸化炭素との混合ガス)を加湿ガスとして利用することが挙げられる。   In the present embodiment, the nitrogen gas 1 containing the vapor of water 2 is supplied to both the fuel gas supply port 101 and the oxidizing gas supply port 102 of the solid polymer electrolyte fuel cell 100. However, the carrier gas constituting the humidified gas is not limited to this as long as it does not extremely deteriorate the components contained in the electrode film, the catalyst, etc. As another embodiment, for example, carbon dioxide gas Alternatively, a humidified gas in which water vapor is contained in a carrier gas composed of a mixed gas of carbon dioxide gas and nitrogen gas is supplied to the fuel gas supply port 101 of the solid polymer electrolyte fuel cell 100, or air, carbon dioxide Oxidizing gas supply port 1 of solid polymer electrolyte fuel cell 100 is a humidified gas in which water vapor is contained in a carrier gas composed of gas, a mixed gas of nitrogen gas and carbon dioxide gas, or the like. It is also possible to feed two. More specifically, for example, a combustion exhaust gas (a mixed gas of nitrogen and carbon dioxide containing moisture up to a substantially saturated state) obtained by burning a hydrocarbon fuel to perform heating or the like is used as a humidified gas. It can be used.

また、本実施形態では、固体高分子電解質形燃料電池100の燃料ガス供給口101及び酸化ガス供給口102の両方に供給するようにしたが、他の実施形態として、例えば、燃料ガス供給口101及び酸化ガス供給口102のいずれか一方のみに供給する場合も可能である。しかしながら、本実施形態の場合のように、固体高分子電解質形燃料電池100の燃料ガス供給口101及び酸化ガス供給口102の両方に供給するようにすれば、最も効率よくエージング処理することができるので好ましい。   In the present embodiment, the fuel gas is supplied to both the fuel gas supply port 101 and the oxidizing gas supply port 102 of the solid polymer electrolyte fuel cell 100. However, as another embodiment, for example, the fuel gas supply port 101 is provided. It is also possible to supply to only one of the oxidizing gas supply port 102. However, the aging treatment can be most efficiently performed if the fuel gas is supplied to both the fuel gas supply port 101 and the oxidizing gas supply port 102 of the solid polymer electrolyte fuel cell 100 as in the case of the present embodiment. Therefore, it is preferable.

また、本実施形態では、70℃以上の加湿窒素ガス1を供給することにより、エージング処理を行うようにしたが、本発明はこれに限らず、固体高分子電解質形燃料電池の固体高分子電解質膜に水を供給して当該固体高分子電解質膜を70℃以上に加温する方法であれば、本実施形態の場合と同様な作用効果を得ることができる。しかしながら、本実施形態のようにして行うと、エージング処理を非常に簡単に行うことができるので好ましい。   In the present embodiment, the aging treatment is performed by supplying the humidified nitrogen gas 1 at 70 ° C. or higher. However, the present invention is not limited to this, and the solid polymer electrolyte of the solid polymer electrolyte fuel cell is used. If it is the method of supplying water to a membrane and heating the said solid polymer electrolyte membrane to 70 degreeC or more, the effect similar to the case of this embodiment can be acquired. However, it is preferable to perform as in the present embodiment because the aging process can be performed very easily.

また、本発明は、実運転使用前の慣らし運転(エージング)の場合だけに限らず、長期間運転停止後の実運転再開前の準備運転の場合等のように、固体高分子電解質形燃料電池の固体高分子電解質が乾燥している状態から発電運転を行う場合であれば、本実施形態の場合と同様にして適用することができる。   Further, the present invention is not limited to the case of running-in (aging) before using the actual operation, but also in the case of a preparatory operation before resuming the actual operation after a long-term operation stop. If the power generation operation is performed from the dry state of the solid polymer electrolyte, it can be applied in the same manner as in this embodiment.

本発明に係る固体高分子電解質形燃料電池の運転準備方法の効果を確認するため、以下のような確認試験を行った。   In order to confirm the effect of the operation preparation method of the solid polymer electrolyte fuel cell according to the present invention, the following confirmation test was performed.

[試験方法]
作製した固体高分子電解質形燃料電池(固体高分子電解質膜の種類:デュポン社製ナフィオン112(登録商標)、固体高分子電解質膜の厚さ:50μm、固体高分子電解質膜のサイズ:5cm四方(25cm2))に対して、前述した実施形態のようにして運転準備(エージング処理)を下記の条件で行った後、当該固体高分子電解質形燃料電池の電流電位(I−V)特性の測定を行う。そして、確認のためのサイクリックボルタンメトリ測定(CV)や交流インピーダンス測定(FRA)等の電気化学的測定を行った後、I−V特性の測定を再び行う。これを複数回(3回)繰り返して、I−V特性の値の変化を調べた(試験例)。なお、比較のため、従来のエージング処理(比較例1:強制発電運転による)の場合(I−V特性の測定:2回)、及び、作製直後の場合(比較例2)、すなわち、エージング処理を行わなかった場合(I−V特性の測定:1回)も併せて測定した。
[Test method]
The produced solid polymer electrolyte fuel cell (type of solid polymer electrolyte membrane: Nafion 112 (registered trademark) manufactured by DuPont, solid polymer electrolyte membrane thickness: 50 μm, solid polymer electrolyte membrane size: 5 cm square ( 25 cm 2 )), after preparing for operation (aging treatment) as in the above-described embodiment under the following conditions, measurement of current potential (IV) characteristics of the solid polymer electrolyte fuel cell I do. Then, after performing electrochemical measurement such as cyclic voltammetry measurement (CV) or alternating current impedance measurement (FRA) for confirmation, the measurement of the IV characteristic is performed again. This was repeated a plurality of times (three times), and the change in the IV characteristic value was examined (test example). For comparison, in the case of conventional aging treatment (Comparative Example 1: by forced power generation operation) (measurement of IV characteristics: twice) and immediately after fabrication (Comparative Example 2), that is, aging treatment The measurement was also performed in the case where the measurement was not performed (measurement of IV characteristics: once).

[試験条件]
〈試験例〉
・ガス:燃料ガス側及び酸化ガス側共に窒素ガス
・温度:85℃
・処理時間:1時間
〈比較例1〉
・ガス:燃料ガス側−水素、酸化ガス側−当初55分間窒素、その後5分間空気
・温度:65℃
・処理時間:1時間(最後の5分間は0.8A/cm2で発電運転)
〈比較例2〉
エージングなし
[Test conditions]
<Test example>
・ Gas: Nitrogen gas on both fuel gas side and oxidizing gas side ・ Temperature: 85 ℃
Processing time: 1 hour <Comparative Example 1>
-Gas: Fuel gas side-Hydrogen, Oxidizing gas side-Initial nitrogen for 55 minutes, then air for 5 minutes-Temperature: 65 ° C
・ Processing time: 1 hour (power generation operation at 0.8 A / cm 2 for the last 5 minutes)
<Comparative example 2>
No aging

[試験結果]
上述した試験方法及び試験条件に基づいて行った試験結果を図2に示す。
図2からわかるように、エージングを行っていない比較例2においては、目的とする電流密度(0.5A/cm2)の値近傍で電圧値が急激に小さくなってしまい、十分な発電特性を得ることができない。また、従来のエージング処理を行った比較例1においては、目的とする電流密度(0.5A/cm2)の値近傍ほど、1回目の測定値と2回目の測定値とに差を生じていることから、最初のエージング処理だけで十分な発電特性を得られないことが明らかである。これに対し、本発明に係る試験例1においては、目的とする電流密度(0.5A/cm2)の値近傍であっても、1〜3回目の測定値がほとんど同一であることから、最初のエージング処理だけで十分な発電特性を得られることが確認できた。
[Test results]
FIG. 2 shows the test results conducted based on the test method and test conditions described above.
As can be seen from FIG. 2, in Comparative Example 2 in which aging was not performed, the voltage value suddenly decreased in the vicinity of the target current density (0.5 A / cm 2 ), and sufficient power generation characteristics were obtained. Can't get. Moreover, in the comparative example 1 which performed the conventional aging process, the difference was produced in the measured value of the 1st time and the measured value of the 2nd time, so that the value of the target current density (0.5 A / cm < 2 >) is near. Therefore, it is clear that sufficient power generation characteristics cannot be obtained only by the first aging process. On the other hand, in Test Example 1 according to the present invention, even in the vicinity of the target current density (0.5 A / cm 2 ), the first to third measurements are almost the same, It was confirmed that sufficient power generation characteristics can be obtained only by the first aging treatment.

本発明に係る固体高分子電解質形燃料電池の運転準備方法は、運転準備を短時間で簡単に実施することができるので、時間及び手間を大幅に削減することができ、コストの削減を図ることができることから、産業上、極めて有益に利用することができる。   The operation preparation method for a solid polymer electrolyte fuel cell according to the present invention can easily prepare for operation in a short time, so that time and labor can be greatly reduced, and cost can be reduced. Therefore, it can be used extremely beneficially in the industry.

本発明に係る固体高分子電解質形燃料電池の運転準備方法の実施形態の説明図である。It is explanatory drawing of embodiment of the operation preparation method of the solid polymer electrolyte fuel cell which concerns on this invention. 本発明に係る固体高分子電解質形燃料電池の運転準備方法の効果を確認するために行った試験例及び比較例1,2の電流電位特性曲線を表わすグラフである。It is a graph showing the current-potential characteristic curve of the test example and Comparative Examples 1 and 2 which were performed in order to confirm the effect of the operation preparation method of the solid polymer electrolyte fuel cell according to the present invention.

符号の説明Explanation of symbols

1 窒素ガス
2 水
11 窒素ガスボンベ
12 加湿温器
13〜15 流量調整弁
100 固体高分子電解質形燃料電池
101 燃料ガス供給口
102 酸化ガス供給口
103 燃料ガス排出口
104 酸化ガス排出口
DESCRIPTION OF SYMBOLS 1 Nitrogen gas 2 Water 11 Nitrogen gas cylinder 12 Humidifier / heater 13-15 Flow control valve 100 Solid polymer electrolyte fuel cell 101 Fuel gas supply port 102 Oxidation gas supply port 103 Fuel gas discharge port 104 Oxidation gas discharge port

Claims (5)

固体高分子電解質形燃料電池の運転準備方法であって、
前記固体高分子電解質形燃料電池の固体高分子電解質膜に水を供給して当該固体高分子電解質膜を70℃以上に加温する
ことを特徴とする固体高分子電解質形燃料電池の運転準備方法。
An operation preparation method for a solid polymer electrolyte fuel cell,
An operation preparation method for a solid polymer electrolyte fuel cell, characterized in that water is supplied to the solid polymer electrolyte membrane of the solid polymer electrolyte fuel cell and the solid polymer electrolyte membrane is heated to 70 ° C or higher. .
請求項1において、
前記固体高分子電解質形燃料電池の燃料ガス供給口及び酸化ガス供給口の少なくとも一方に70℃以上の加湿ガスを供給する
ことを特徴とする固体高分子電解質形燃料電池の運転準備方法。
In claim 1,
An operation preparation method for a solid polymer electrolyte fuel cell, comprising supplying a humidified gas of 70 ° C. or higher to at least one of a fuel gas supply port and an oxidizing gas supply port of the solid polymer electrolyte fuel cell.
請求項2において、
前記固体高分子電解質形燃料電池の前記燃料ガス供給口に供給する前記加湿ガスが、窒素ガス及び二酸化炭素ガスの少なくとも一種からなるキャリアガスに水分を含有させたものである
ことを特徴とする固体高分子電解質形燃料電池の運転準備方法。
In claim 2,
The solid gas characterized in that the humidified gas supplied to the fuel gas supply port of the solid polymer electrolyte fuel cell is a carrier gas composed of at least one of nitrogen gas and carbon dioxide gas containing moisture. Operation preparation method for polymer electrolyte fuel cell.
請求項2において、
前記固体高分子電解質形燃料電池の前記酸化ガス供給口に供給する前記加湿ガスが、窒素ガス、二酸化炭素ガス、空気のうちの少なくとも一種からなるキャリアガスに水分を含有させたものである
ことを特徴とする固体高分子電解質形燃料電池の運転準備方法。
In claim 2,
The humidified gas supplied to the oxidizing gas supply port of the solid polymer electrolyte fuel cell is a carrier gas composed of at least one of nitrogen gas, carbon dioxide gas, and air containing water. A solid polymer electrolyte fuel cell operation preparation method characterized by
請求項1から請求項4のいずれかにおいて、
前記固体高分子電解質形燃料電池の実運転使用前の慣らし運転、又は、前記固体高分子電解質形燃料電池の長期間運転停止後の実運転再開前の準備運転である
ことを特徴とする固体高分子電解質形燃料電池の運転準備方法。
In any one of Claims 1-4,
It is a break-in operation before the actual operation of the solid polymer electrolyte fuel cell, or a preparatory operation before resuming the actual operation after a long-term operation stop of the solid polymer electrolyte fuel cell. Operation preparation method of a molecular electrolyte fuel cell.
JP2005239534A 2005-08-22 2005-08-22 Operation preparation method of solid polymer electrolyte fuel cell Withdrawn JP2007059069A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005239534A JP2007059069A (en) 2005-08-22 2005-08-22 Operation preparation method of solid polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005239534A JP2007059069A (en) 2005-08-22 2005-08-22 Operation preparation method of solid polymer electrolyte fuel cell

Publications (1)

Publication Number Publication Date
JP2007059069A true JP2007059069A (en) 2007-03-08

Family

ID=37922389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005239534A Withdrawn JP2007059069A (en) 2005-08-22 2005-08-22 Operation preparation method of solid polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP2007059069A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009104921A (en) * 2007-10-24 2009-05-14 Honda Motor Co Ltd Method for operating solid polymer fuel cell
JP2010027431A (en) * 2008-07-22 2010-02-04 Honda Motor Co Ltd Aging method for solid polymer type fuel cell
JP2010027370A (en) * 2008-07-18 2010-02-04 Honda Motor Co Ltd Aging method and device for solid polymer type fuel cell
JP2010027430A (en) * 2008-07-22 2010-02-04 Honda Motor Co Ltd Method of aging polymer electrolyte fuel cell
JP2010086851A (en) * 2008-10-01 2010-04-15 Honda Motor Co Ltd Method for aging polymer electrolyte fuel cell
JP2016143621A (en) * 2015-02-04 2016-08-08 トヨタ自動車株式会社 Break-in system for fuel battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009104921A (en) * 2007-10-24 2009-05-14 Honda Motor Co Ltd Method for operating solid polymer fuel cell
JP2010027370A (en) * 2008-07-18 2010-02-04 Honda Motor Co Ltd Aging method and device for solid polymer type fuel cell
JP2010027431A (en) * 2008-07-22 2010-02-04 Honda Motor Co Ltd Aging method for solid polymer type fuel cell
JP2010027430A (en) * 2008-07-22 2010-02-04 Honda Motor Co Ltd Method of aging polymer electrolyte fuel cell
JP2010086851A (en) * 2008-10-01 2010-04-15 Honda Motor Co Ltd Method for aging polymer electrolyte fuel cell
JP2016143621A (en) * 2015-02-04 2016-08-08 トヨタ自動車株式会社 Break-in system for fuel battery

Similar Documents

Publication Publication Date Title
Yuan et al. A review of accelerated conditioning for a polymer electrolyte membrane fuel cell
US11192064B2 (en) Electrochemical hydrogen pump and method for operating electrochemical hydrogen pump
JP2007059069A (en) Operation preparation method of solid polymer electrolyte fuel cell
JP2001057215A (en) Solid high polymer film type fuel cell and forming method for gas diffusion layer thereof
US20130260266A1 (en) Fast mea break-in and voltage recovery
Liu et al. Performance improvement of the open-cathode proton exchange membrane fuel cell by optimizing membrane electrode assemblies
US7829230B2 (en) Method for optimizing diffusion media with spatially varying mass transport resistance
US20070227900A1 (en) Performance enhancement via water management in electrochemical cells
Xu et al. Combined activation methods for proton-exchange membrane fuel cells
JP2001006698A (en) Solid polymer electrolyte fuel cell and manufacture of its diffusion layer
KR20180095987A (en) Method for activating the membrabne-electrode assembly of the fuel cell
JP2009043552A (en) Method for manufacturing membrane electrode assembly
US10985393B2 (en) Methods for forming membrane electrode assemblies
JP2005158298A (en) Operation method of fuel cell power generation system, and fuel cell power generation system
JP2012059586A (en) Fuel cell system and method of measuring content of radical scavenging promoter in fuel cell
Pharoah et al. Investigating the Role of a Microporous Layer on the Water Transport and Performance of a PEMFC
JP2005071778A (en) Fuel cell system and its operation method
JP2008198386A (en) Fuel cell
JP7076418B2 (en) Fuel cell system and its control method
Yeetsorn et al. Influence of cycle repetition on stack voltage degradation during fuel cell stress tests
GB2362500A (en) Method for activating a solid polymer electrolyte fuel cell.
Sunil et al. Performance Analysis of Air Breathing Proton Exchange Membrane Fuel Cell Stack (PEMFCS) At Different Operating Condition
JP2008027606A (en) Fuel cell system
RU2805994C1 (en) Method for manufacturing membrane-electrode block with solid polymer electrolyte
JP2004207133A (en) Fuel cell system and operation method of fuel cell

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20081104