JP2007058191A - Element, device, and method for wavelength conversion - Google Patents

Element, device, and method for wavelength conversion Download PDF

Info

Publication number
JP2007058191A
JP2007058191A JP2006200439A JP2006200439A JP2007058191A JP 2007058191 A JP2007058191 A JP 2007058191A JP 2006200439 A JP2006200439 A JP 2006200439A JP 2006200439 A JP2006200439 A JP 2006200439A JP 2007058191 A JP2007058191 A JP 2007058191A
Authority
JP
Japan
Prior art keywords
wavelength conversion
conversion element
incident
wavelength
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006200439A
Other languages
Japanese (ja)
Inventor
Takuya Yoda
依田琢也
Sung Chul Park
成哲 朴
Hiroshi Kajioka
博 梶岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Optoquest Co Ltd
Original Assignee
Optoquest Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Optoquest Co Ltd filed Critical Optoquest Co Ltd
Priority to JP2006200439A priority Critical patent/JP2007058191A/en
Publication of JP2007058191A publication Critical patent/JP2007058191A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem that a wavelength converting element which has high conversion efficiency and is suitable as a high-power light source can not be obtained though a great deal of effort is put for improvement of a wavelength converting element itself, since there are many problems such that a bulk type wavelength converting element has low conversion efficiency, a waveguide type having high conversion efficiency has problems when having high power and also has difficult constitution conditions when an element length is made long to increase conversion efficiency, and a resonator type need to have its resonator length adjusted according to a wavelength. <P>SOLUTION: In addition to improvement of the wavelength converting element itself, light convergence conditions of a way of converging incident light by a light convergence optical system which has not been taken into account so much are managed so that the light may be converged on an intermediate point of an optical path and the volume of the incident signal light beam may be minimized. Consequently, the wavelength conversion efficiency is made higher to provide a light source which has a simple structure and is usable even as a high-power light source at a low price. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明において、後述の波長変換素子本体に入射された第1の波長λ1の光(赤外光など可視光以外の光も含む、以下同様)から前記第1の波長λ1とは異なる波長である第2の波長λ2の光への波長変換を行うことができる素子自体を波長変換素子本体ともいい、前記波長変換素子本体に光学系等を配置したものや前記波長変換素子本体等をケース等に実装したものを波長変換素子ともいう。また、波長変換素子を有する装置を波長変換装置というが、構成の様子によって波長変換装置は波長変換素子と実質的に同じ場合もある。   In the present invention, the wavelength is different from the first wavelength λ1 from light having a first wavelength λ1 (including light other than visible light such as infrared light, etc., which is incident below) incident on a wavelength conversion element body described later. An element itself capable of performing wavelength conversion to light of the second wavelength λ2 is also referred to as a wavelength conversion element body, and an optical system or the like disposed in the wavelength conversion element body or the wavelength conversion element body as a case or the like. The mounted one is also called a wavelength conversion element. Moreover, although the apparatus which has a wavelength conversion element is called wavelength conversion apparatus, a wavelength conversion apparatus may be substantially the same as a wavelength conversion element depending on the mode of a structure.

本発明は第1の波長λ1を有する光を波長変換素子本体に入射させ、前記第1の波長λ1とは異なる第2の波長λ2の光を前記波長変換素子本体から出力させることができる波長変換素子本体を有する波長変換素子あるいはそれを用いた波長変換装置ならびに波長変換方法に関する。   The present invention is a wavelength converter capable of causing light having a first wavelength λ1 to enter the wavelength conversion element body and outputting light having a second wavelength λ2 different from the first wavelength λ1 from the wavelength conversion element body. The present invention relates to a wavelength conversion element having an element body, a wavelength conversion device using the same, and a wavelength conversion method.

コヒーレント光源は光通信分野のみならず、医療分野や顕微鏡などの計測分野などにおいても欠かせないものとなっている。そして、コヒーレント光の波長も、たとえば医療分野においてはその目的によって種々の波長が使われており、さらに広く使われようとしている。   Coherent light sources are indispensable not only in the optical communication field, but also in the medical field and the measurement field such as a microscope. As for the wavelength of the coherent light, for example, in the medical field, various wavelengths are used depending on the purpose, and are being used more widely.

コヒーレント光の光源としては、半導体レーザーをはじめ各種のレーザー発振器が知られているが、波長によっては、レーザー発振器から直接得られないものがある。その場合、必要な波長を得るために、たとえば非線形波長変換が用いられている。   Various types of laser oscillators including semiconductor lasers are known as light sources for coherent light. However, some light sources cannot be obtained directly from a laser oscillator depending on the wavelength. In that case, for example, nonlinear wavelength conversion is used in order to obtain a necessary wavelength.

たとえば、PPLN(Periodically Poled LiNbO3)やPPKTP(Periodically Poled KTiOPO4)などの分極反転素子の疑似位相整合による波長変換は、波長変換効率が比較的高く、1μm帯から500nm付近の可視光帯へのSHG波長変換等で広く利用されている。   For example, wavelength conversion based on quasi-phase matching of polarization inversion elements such as PPLN (Periodically Poled LiNbO3) and PPKTP (Periodically Poled KTiOPO4) has a relatively high wavelength conversion efficiency, and an SHG wavelength from a 1 μm band to a visible light band near 500 nm. Widely used in conversion and so on.

短波長のコヒーレント光を得る波長変換方法や波長変換素子については多くの提案がなされている。   Many proposals have been made on wavelength conversion methods and wavelength conversion elements for obtaining short-wavelength coherent light.

特開2002−99009(以下、特許文献1ともいう)の図12,図20,図24、特開2002−250950(以下、特許文献2ともいう)の図12,図20,図24、特開2003−295242(以下、特許文献3ともいう)の図12,図20,図24、には、レーザ光源からの光をレンズにより集光して波長変換素子に入射させて波長変換を行うことが記載されている。   FIG. 12, FIG. 20, FIG. 24 of Japanese Patent Laid-Open No. 2002-99009 (hereinafter also referred to as Patent Document 1), FIG. 12, FIG. 20, FIG. 24 of Japanese Patent Laid-Open No. 2002-250950 (hereinafter also referred to as Patent Document 2) In FIGS. 12, 20, and 24 of 2003-295242 (hereinafter also referred to as Patent Document 3), light from a laser light source is collected by a lens and incident on a wavelength conversion element to perform wavelength conversion. Are listed.

特許文献1〜3は同一出願人による出願で、共通部分が多く、いずれも特願平6−206748と特願平6−307410を優先権主張した出願である。   Patent Documents 1 to 3 are applications by the same applicant and have many common parts, both of which are priority applications of Japanese Patent Application Nos. 6-206748 and 6-307410.

図9は特許文献1の図20に記載されている波長変換素子で、符号1100は波長変換素子、209はMgOなどをドープした厚さ0.2mmのLiTaO3基板に形成された分極反転領域、218は基板を100nmエッチングして形成された溝(均一な分極反転領域を形成するのに効果有りと記載されている)、219は反射防止膜、221はレーザ、222は集光光学系、223は基本波、224は第2高調波、225は入射面、226は出射面である。   FIG. 9 is a wavelength conversion element described in FIG. 20 of Patent Document 1. Reference numeral 1100 denotes a wavelength conversion element, 209 denotes a domain-inverted region formed on a LiTaO 3 substrate having a thickness of 0.2 mm doped with MgO or the like. Is a groove formed by etching the substrate 100 nm (described as being effective in forming a uniform domain inversion region), 219 is an antireflection film, 221 is a laser, 222 is a condensing optical system, and 223 is The fundamental wave, 224 is the second harmonic, 225 is the entrance surface, and 226 is the exit surface.

特許文献1の段落0289には、図9で、レーザ221から出た基本波223を集光光学系222で波長変換素子1100の入射面225に集光して入射させ、波長変換素子1100内を伝搬させて波長変換を行い、基本波223の半分の波長を有する第2高調波224として出射面226から出射させる旨が記載されている。   In paragraph 0289 of Patent Document 1, the fundamental wave 223 emitted from the laser 221 in FIG. 9 is condensed and incident on the incident surface 225 of the wavelength conversion element 1100 by the condensing optical system 222, and the inside of the wavelength conversion element 1100 is entered. It is described that the wavelength conversion is performed by propagating and the light is emitted from the emission surface 226 as the second harmonic 224 having a half wavelength of the fundamental wave 223.

図10は特許文献1の図12に記載されている波長変換素子で、基板201に形成された周期状分極反転領域209をそのままバルク状態で利用して、半導体レーザ221の光(基本波)223を集光光学系222を介して入射させ、基板201の両端面の反射膜214(反射膜214は波長800nmの基本波を90%以上反射する)で多重反射させ、基板201の内部で共振させて高効率で第2高調波224に変換して出力することが記載されている。   FIG. 10 shows the wavelength conversion element described in FIG. 12 of Patent Document 1, and the light (fundamental wave) 223 of the semiconductor laser 221 is obtained by using the periodic domain-inverted region 209 formed in the substrate 201 as it is in the bulk state. Is incident through the condensing optical system 222, and is subjected to multiple reflection by the reflection films 214 on both end faces of the substrate 201 (the reflection film 214 reflects 90% or more of the fundamental wave having a wavelength of 800 nm) to resonate inside the substrate 201. It is described that it is converted into the second harmonic 224 with high efficiency and output.

図9の場合も、図10の場合も、集光光学系222による入射光の集光の詳細については、特に重要な問題とはされていないようで、文章では記載していないが、図においてはいずれも入射面に集光しているように受け取れる図になっている。   In both the cases of FIG. 9 and FIG. 10, the details of the condensing of incident light by the condensing optical system 222 do not seem to be particularly important and are not described in the text. Each is a figure that can be received as if it is focused on the incident surface.

特開2004−280019(以下、特許文献4ともいう)の図1には、本発明の明細書に図11として示した光パラメトリック発振器が記載されている。図11では、励起光源共振器101からの励起光パルス列はレンズ104により非線形結晶106中に結焦され、非線形結晶106でシグナル光とアイドラ光を生成し、アイドラ光は集光鏡107を透過して共振器外へとり出され、シグナル光は集光鏡107で反射されて近似的平行光とされ、端面鏡108を経て、出力結合鏡109に達し、その一部が出力結合鏡109で出力として取り出された残りのシグナル光は集光鏡105に達し、その後、集光鏡105−非線形結晶106−集光鏡107−端面鏡108−出力結合鏡109−集光鏡105−・・の共振器を周回し続ける。この周回中、上記のように、シグナル光が出力結合鏡109に達した際に、その一部が出力として取り出される。シグナル光が共振器を3/2周回した時点で、次の励起光パルスが非線形結晶106に入射し、その結果、共振器内に別のシグナル光が生成される。   FIG. 1 of Japanese Patent Laid-Open No. 2004-280019 (hereinafter also referred to as Patent Document 4) describes an optical parametric oscillator shown as FIG. 11 in the specification of the present invention. In FIG. 11, the pumping light pulse train from the pumping light source resonator 101 is focused into the nonlinear crystal 106 by the lens 104, and signal light and idler light are generated by the nonlinear crystal 106. The idler light passes through the condenser mirror 107. The light is taken out of the resonator, and the signal light is reflected by the condensing mirror 107 to be approximately parallel light, passes through the end mirror 108, reaches the output coupling mirror 109, and a part thereof is output as the output coupling mirror 109. The remaining extracted signal light reaches the condensing mirror 105, and then the resonator of the condensing mirror 105-the nonlinear crystal 106-the condensing mirror 107-the end face mirror 108-the output coupling mirror 109-the condensing mirror 105-. Keep going around. During this circulation, as described above, when the signal light reaches the output coupling mirror 109, a part thereof is taken out as an output. When the signal light makes 3/2 rounds of the resonator, the next excitation light pulse enters the nonlinear crystal 106, and as a result, another signal light is generated in the resonator.

分極反転波長変換素子には、バルクタイプのものと導波路タイプのものがある。   The polarization inversion wavelength conversion element includes a bulk type and a waveguide type.

バルクタイプのものは、特許文献1〜3のように入力光(入射光)をレンズで集光して素子に入力させ、そのビーム伝搬のプロファイルに応じた光密度の条件で波長変換が行われる。   In the bulk type, as in Patent Documents 1 to 3, input light (incident light) is collected by a lens and input to an element, and wavelength conversion is performed under a condition of light density corresponding to the beam propagation profile. .

導波路タイプのものは、入力光をレンズ等で素子の導波路に結合させ、その導波路モード径に応じた光密度の条件で波長変換が行われる。   In the waveguide type, the input light is coupled to the waveguide of the element by a lens or the like, and wavelength conversion is performed under a condition of light density corresponding to the waveguide mode diameter.

両タイプとも、素子長が長くなると、入力光との相互作用長が長くなり、変換効率が高まるが、導波路タイプのものは光密度が素子長に関係なく一定であるのに対し、バルクタイプのものは素子長が長くなると最適な集光径が大きくなり、光密度が小さくなる。このため、基本的に、導波路タイプのものは素子長の2乗に比例して変換効率が高まるが、バルクタイプのものは素子長の1乗に比例して変換効率が高まるといわれている。   In both types, as the element length increases, the interaction length with the input light increases and the conversion efficiency increases. However, the optical density of the waveguide type is constant regardless of the element length, whereas the bulk type As the element length increases, the optimum light collection diameter increases and the light density decreases. For this reason, basically, the waveguide type has a higher conversion efficiency in proportion to the square of the element length, whereas the bulk type has a higher conversion efficiency in proportion to the first power of the element length. .

導波路タイプのものの方が変換効率が高いが、入出力のパワーがワット(W)レベルの場合には光密度が大きくなりすぎ、素子にダメージを与えるなどの問題を生じる場合があり、高出力の応用ではバルクタイプのものも多く利用されている。   The waveguide type has higher conversion efficiency, but if the input / output power is at the watt (W) level, the light density becomes too high, which may cause problems such as damage to the device, resulting in high output. Many of the bulk types are also used in applications.

従来用いられているバルクタイプの分極反転素子の疑似位相整合を利用した波長変換においては、図12に示したように、波長変換素子200の分極反転領域を形成した分極反転素子211に、入射光204を反射防止膜202を配置した入力端部から入射させ、入射光205を分極反転素子211中を通過させて波長変換を行い、分極反転素子211の反射防止膜203を配置した出力端部から、波長変換された出力光206として出射させている。   In the wavelength conversion using the quasi-phase matching of a bulk type polarization inversion element that is conventionally used, as shown in FIG. 12, the incident light is incident on the polarization inversion element 211 in which the polarization inversion region of the wavelength conversion element 200 is formed. 204 is incident from the input end where the antireflection film 202 is disposed, and the incident light 205 is passed through the polarization inversion element 211 to perform wavelength conversion, and from the output end where the antireflection film 203 of the polarization inversion element 211 is disposed. The output light 206 after wavelength conversion is emitted.

PPLNやPPKTPなどの分極反転素子によるSHG波長変換の場合でも、1μm帯の入力光が〜1Wレベルの連続光(CW光)の場合、500nm帯への変換効率は数%で、大部分の入力光は変換されないまま分極反転素子を透過してしまう。   Even in the case of SHG wavelength conversion using a polarization inversion element such as PPLN or PPKTP, if the input light in the 1 μm band is continuous light (CW light) of ˜1 W level, the conversion efficiency to the 500 nm band is several percent, and most of the input Light passes through the polarization inverting element without being converted.

変換効率を高めるために、素子中での光密度を高めることができる導波路タイプの分極反転素子が利用される場合があるが、出力光のビーム品質が劣化する問題や、前述したように入力が〜1Wレベルのハイパワーでは、光密度が高くなりすぎて、素子にダメージを与えるなどの問題がある。   In order to increase the conversion efficiency, a waveguide-type polarization inversion element that can increase the light density in the element may be used. However, there is a problem that the beam quality of the output light deteriorates, or the input as described above. However, at high power of ˜1 W level, there is a problem that the light density becomes too high and damages the device.

素子長を長くして変換効率を高める方法も提案されているが、変換効率に波長特性があり、素子長が長くなるほど波長許容範囲が狭くなるため、入力光の波長条件が厳しくなる。
波長許容範囲Δλと素子長Lの間に、Δλ×L=一定という関係がある。また、素子長が長くなると、素子全体にわたって均質な分極反転構造を形成することも難しくなる。
A method for increasing the conversion efficiency by increasing the element length has also been proposed, but the wavelength efficiency of the conversion efficiency has a wavelength characteristic. As the element length increases, the allowable wavelength range becomes narrower, so that the wavelength condition of the input light becomes severe.
Between the allowable wavelength range Δλ and the element length L, there is a relationship Δλ × L = constant. In addition, when the element length is increased, it is difficult to form a uniform domain-inverted structure over the entire element.

特開平10−260438(以下、特許文献5ともいう)には、素子の寸法を小さいままにして、素子の端部でそこに到達した信号光を折り返して素子に再入射させて波長変換を行い、素子の実効長を長くすることも提案されていたが、あまりよいとは考えられていなかったようで、実用化に向けた細部の重要な詰めがなされていなかった。   Japanese Patent Laid-Open No. 10-260438 (hereinafter also referred to as Patent Document 5) performs wavelength conversion by turning back the signal light that has reached the end of the element and re-entering the element while keeping the dimensions of the element small. It has also been proposed to increase the effective length of the device, but it seems that it was not considered to be so good, and the details for practical use were not stuffed.

共振器を構成して、入力光をその中に閉じこめた状態をつくり、実効的に変換効率を高める方法も利用されており、変換効率が通常の構成に比べて数十倍になる場合もあるが、入力光の波長に合わせて共振器の共振周波数を制御する必要があり、離調成分の検出とそのフィードバック制御等が必要になる。   A method is also used in which a resonator is configured so that the input light is confined in it, and the conversion efficiency is effectively increased. The conversion efficiency may be several tens of times that of a normal configuration. However, it is necessary to control the resonance frequency of the resonator in accordance with the wavelength of the input light, and it is necessary to detect the detuning component and to perform feedback control thereof.

波長変換素子に入射光を入射させるときの集光方法に関しては、導波路タイプの波長変換素子の場合には、その入射面に集光させて入射させる。バルクタイプの波長変換素子の場合には、特許文献1〜3にみられるように、入射光を集光光学系で素子の入射面に集光させることが記載されているが、集光方法に関しては特に重要な問題とは考えられていないためか、それ以上の詳細な記述がない。   Concerning a condensing method when incident light is incident on the wavelength conversion element, in the case of a waveguide type wavelength conversion element, the incident light is condensed and incident. In the case of a bulk type wavelength conversion element, as described in Patent Documents 1 to 3, it is described that incident light is condensed on the incident surface of the element by a condensing optical system. Is not considered to be a particularly important problem, or there is no further detailed description.

特開2002−99009JP 2002-99009 特開2002−250950JP2002-250950 特開2003−295242JP 2003-295242 A 特開2004−280019JP2004-280019A 特開平10−260438JP-A-10-260438

以上説明したように、各利用分野で、簡単な構造で、変換効率が高く、高光出力が可能で、安価な波長変換装置、波長変換方法の実現が強く望まれているが、分極反転領域を有するバルクタイプの波長変換素子による波長変換は変換効率が低く、変換効率が比較的高い導波路タイプのものによる波長変換ではハイパワー化に問題がある。変換効率を高めるために素子長を長くすると、構成条件が難しくなり、共振器型は波長に合わせて共振器長を調整しなければならない。   As described above, in each application field, it is strongly desired to realize a wavelength conversion device and a wavelength conversion method that have a simple structure, high conversion efficiency, high light output, and low cost. Wavelength conversion by the bulk type wavelength conversion element possessed has low conversion efficiency, and wavelength conversion by a waveguide type having a relatively high conversion efficiency has a problem in achieving high power. If the element length is increased in order to increase the conversion efficiency, the configuration condition becomes difficult, and the resonator type must be adjusted in accordance with the wavelength.

波長変換素子に関して、波長変換効率を高めるための種々の改善が試みられているが、特にハイパワー応用で、実用に適した波長変換素子が得られないのが現状である。   Although various attempts have been made to improve the wavelength conversion efficiency with respect to the wavelength conversion element, it is the present situation that a wavelength conversion element suitable for practical use cannot be obtained particularly in high power applications.

ハイパワー応用向けに、分極反転領域を有する複数のバルクタイプの波長変換素子を集光光学系を用いて光路に沿って直列に接続して波長変換装置を構成することにより、変換効率を高めることが考えられる。   For high power applications, increase the conversion efficiency by constructing a wavelength converter by connecting multiple bulk type wavelength conversion elements with polarization inversion regions in series along the optical path using a condensing optical system Can be considered.

しかし、簡単な構造で、変換効率が高く、高光出力が可能で、安価な波長変換装置、波長変換方法の実現はまだなされていない。   However, an inexpensive wavelength conversion device and wavelength conversion method have not yet been realized with a simple structure, high conversion efficiency and high light output.

前記のように、波長変換素子自体の改善には大きな関心が払われているが、波長変換を行なう波長変換素子に被変換光を入射させる集光光学系についてはあまり重要視されていないのが現状といえる。   As described above, great attention has been paid to the improvement of the wavelength conversion element itself, but the condensing optical system in which the converted light is incident on the wavelength conversion element that performs wavelength conversion is not so important. The current situation.

本発明はこのような点に鑑みて成されたものであり、本発明の目的の一つは、波長変換素子に被変換光を入射させる集光光学系のあり方を改善して、簡単な構成で、波長変換効率を一層高めた、高光出力が可能な波長変換装置と波長変換方法を提供することにある。   The present invention has been made in view of the above points, and one of the objects of the present invention is to improve the state of a condensing optical system that makes converted light incident on a wavelength conversion element, and to have a simple configuration. Accordingly, an object of the present invention is to provide a wavelength conversion device and a wavelength conversion method capable of further increasing the wavelength conversion efficiency and enabling high light output.

本発明は前記の課題を解決せんとしてなされたものである。   The present invention has been made to solve the above problems.

前記課題を解決する手段として本発明で用いている技術の基本思想の特筆すべき特徴は、従来は波長変換を施される信号光を波長変換素子に入射させる時の集光光学系を、波長変換素子の入射面に集光させるようにしていたり、その部分をあまり厳密に管理していなかったりしていたものを、本発明においては、後述のように、集光光学系による波長変換素子への入射光の集光の仕方を特に好ましい状態に管理して、良質な、高出力の波長変換光を得ることができるようにしたところにある。   As a means for solving the above-mentioned problem, a special feature of the basic idea of the technology used in the present invention is that a condensing optical system when a signal light that has been wavelength-converted conventionally is incident on a wavelength conversion element, has a wavelength. In the present invention, the light that has been focused on the incident surface of the conversion element, or that portion was not strictly managed, is converted into a wavelength conversion element by a condensing optical system as described later. The method of condensing the incident light is managed in a particularly preferable state so that a high-quality, high-output wavelength converted light can be obtained.

以下、課題を解決するためになした本発明についてさらに具体的に説明する。   Hereinafter, the present invention made to solve the problems will be described more specifically.

本発明において、後述の波長変換素子本体に入射される入射光に含まれる第1の波長λ1の光を第1の波長λ1とは異なる波長である第2の波長λ2の光へ波長変換を行うことができる素子自体を波長変換素子本体ということにし、波長変換素子本体へ入射光を入射させる波長変換素子本体の端部を入射端部と定義し、入射光が波長変換素子本体に入射して前記波長変換素子本体内を第1の波長λ1の光から第2の波長λ2の光への波長変換を受けながら進行して第1の波長λ1の光と第2の波長λ2の光を含んだ光として到達する前記波長変換素子本体の前記入射端部とは異なる端部もしくは前記端部近傍を波長変換素子本体の到達端部と定義し、前記到達端部のうちでそこに前記波長変換を受けて到達した光を出射光として取り出す端部もしくは前記端部近傍を波長変換素子本体の出射端部と定義し、波長変換素子本体に入射される前の第1の波長λ1の光を含む入射光と前記入射光が波長変換素子本体に入射され波長変換を施されながら波長変換素子本体内を進行する第1の波長λ1の光と第2の波長λ2の光を含む入射光と波長変換素子本体に入射された前記入射光が波長変換素子本体内を進行して波長変換を施されて波長変換素子本体から出射した出射光のそれぞれをあるいはそれらを総称して信号光ともいい、波長変換素子本体に光学系等を配置したものや波長変換素子本体等をケース等に実装したものを波長変換素子ということにし、ともいうことにする。また、本発明においては、説明の都合上、波長変換素子本体と波長変換素子を区別しているような表現をとっているが、商業上においては、波長変換素子本体の外部に集光光学系を配置して用い、本発明の波長変換素子の効果を発揮させることが出きることは明らかなので、波長変換素子本体のみの場合にも、波長変換素子本体に反射膜等をつけたものに関して等、それらを本発明の波長変換素子に含めるものとする。   In the present invention, wavelength conversion is performed on light having a first wavelength λ1 included in incident light incident on a wavelength conversion element body, which will be described later, to light having a second wavelength λ2, which is a wavelength different from the first wavelength λ1. The element itself that can be used is called the wavelength conversion element body, the end of the wavelength conversion element body that makes incident light incident on the wavelength conversion element body is defined as the incident end, and the incident light enters the wavelength conversion element body. The wavelength converting element main body travels while undergoing wavelength conversion from the light having the first wavelength λ1 to the light having the second wavelength λ2, and includes light having the first wavelength λ1 and light having the second wavelength λ2. An end portion different from or near the end portion of the wavelength conversion element main body that reaches as light is defined as a reaching end portion of the wavelength conversion element main body, and the wavelength conversion is performed in the reaching end portion. The end that takes out the light that arrives and receives it as the outgoing light Defines the vicinity of the end as the exit end of the wavelength conversion element body, and the incident light including the light of the first wavelength λ1 before entering the wavelength conversion element body and the incident light enter the wavelength conversion element body The incident light including the light having the first wavelength λ1 and the light having the second wavelength λ2 that travels in the wavelength conversion element body while being subjected to wavelength conversion, and the incident light incident on the wavelength conversion element body are the wavelength conversion element. Each of the emitted light that travels through the body and is subjected to wavelength conversion and emitted from the wavelength conversion element main body, or these are collectively referred to as signal light, and an optical system or the like disposed in the wavelength conversion element main body or wavelength conversion A device in which an element body or the like is mounted on a case or the like is referred to as a wavelength conversion device, and is also referred to as a wavelength conversion device. Further, in the present invention, for the convenience of explanation, the expression that distinguishes the wavelength conversion element main body from the wavelength conversion element is taken. However, on the commercial side, a condensing optical system is provided outside the wavelength conversion element main body. Since it is obvious that the effect of the wavelength conversion element of the present invention can be exerted by using the arrangement, even in the case of only the wavelength conversion element main body, etc., with respect to the wavelength conversion element main body with a reflection film etc. These are included in the wavelength conversion element of the present invention.

本発明の例としての第1の発明(以下、発明1ともいう)による波長変換装置は、前記波長変換素子を少なくとも2つ用いた波長変換装置で、前記波長変換装置は、波長変換を施される信号光ビームの光路においてレンズ(以下、接続レンズともいう)を介して直列に接続されている少なくとも2つの波長変換素子を有する波長変換光回路部を少なくとも1つ有しており、前記波長変換装置の少なくとも1つの前記波長変換光回路部は、前記接続レンズを介して直列に接続されている2つの波長変換素子のうちの一方の波長変換素子(以下、第1の波長変換素子ともいう)の出射端部と他方の波長変換素子(以下、第2の波長変換素子ともいう)の入射端部の間の前記接続レンズを通る光路を含む信号光ビームの光路を接続レンズ光路ともいうことにして、前記第1の波長変換素子から出射した信号光ビームが、前記接続レンズ光路を通り前記接続レンズによって前記第2の波長変換素子の所定位置に集光されるように前記第2の波長変換素子に入射するように構成されており、前記第2の波長変換素子の前記所定位置は、前記第2の波長変換素子を構成している波長変換素子本体の入射端部と出射端部の間に、到達端部に到達した信号光ビームあるいは前記到達端部から出射した信号光ビームを前記到達端部あるいはその近傍に配置した反射体で反射させて同一波長変換素子本体に再入射させる反射体が配置されているが前記反射体と前記第2の波長変換素子の端部の間の光路に集光レンズ(以下、再入射レンズともいう)が配置されていない場合には入射端部と出射端部の間の全光路長の中間点に相当する位置もしくはその近傍であり、前記第2の波長変換素子を構成している波長変換素子本体の入射端部と出射端部の間に反射体も再入射レンズも配置されていない場合には入射端部と出射端部の間の全光路長の中間点に相当する位置もしくはその近傍であり、前記第2の波長変換素子を構成している波長変換素子本体の入射端部と出射端部の間の光路に反射体と再入射レンズが配置されている場合には入射端部と前記再入射レンズの直前の到達端部の間の全光路長の中間点に相当する位置もしくはその近傍であることを特徴とする波長変換装置である。   A wavelength conversion device according to a first invention (hereinafter also referred to as invention 1) as an example of the present invention is a wavelength conversion device using at least two wavelength conversion elements, and the wavelength conversion device is subjected to wavelength conversion. At least one wavelength conversion optical circuit unit having at least two wavelength conversion elements connected in series via a lens (hereinafter also referred to as a connecting lens) in the optical path of the signal light beam. At least one of the wavelength conversion optical circuit units of the device is one of the two wavelength conversion elements connected in series via the connection lens (hereinafter also referred to as a first wavelength conversion element). The optical path of the signal light beam including the optical path passing through the connection lens between the emission end of the light source and the incident end of the other wavelength conversion element (hereinafter also referred to as the second wavelength conversion element) is also referred to as a connection lens optical path. Accordingly, the signal light beam emitted from the first wavelength conversion element passes through the connection lens optical path and is condensed at a predetermined position of the second wavelength conversion element by the connection lens. It is comprised so that it may inject into a wavelength conversion element, The said predetermined position of a said 2nd wavelength conversion element is the incident end part and output end part of the wavelength conversion element main body which comprises the said 2nd wavelength conversion element During this period, the signal light beam that has reached the reaching end portion or the signal light beam that has exited from the reaching end portion is reflected by a reflector disposed at or near the reaching end portion, and is incident again on the same wavelength conversion element main body. In the case where a reflector is disposed but a condenser lens (hereinafter also referred to as a re-incident lens) is not disposed in the optical path between the reflector and the end of the second wavelength conversion element, the incident end And between the exit end A reflector and a re-incidence lens are arranged between the incident end and the exit end of the wavelength conversion element main body constituting the second wavelength conversion element at or near the position corresponding to the intermediate point of the optical path length. If not, the incident position of the wavelength converting element main body constituting the second wavelength converting element is at or near the position corresponding to the intermediate point of the total optical path length between the incident end and the emitting end. When a reflector and a re-incidence lens are arranged in the optical path between the end part and the exit end part, it corresponds to the intermediate point of the total optical path length between the incident end part and the arrival end part immediately before the re-incidence lens. The wavelength conversion device is characterized in that it is at or near the position to be operated.

本発明の前記発明1を展開した第2の発明(以下、発明2ともいう)による波長変換装置は、発明1に記載の波長変換装置において、前記波長変換装置の少なくとも1つの前記波長変換光回路部における前記第1の波長変換素子に入射される入射光ビームは、前記第1の波長変換素子の所定位置に集光されるように前記第1の波長変換素子に入射するように構成されており、前記第1の波長変換素子の前記所定位置は、前記第1の波長変換素子を構成している波長変換素子本体の入射端部と出射端部の間に、到達端部に到達した信号光ビームあるいは前記到達端部から出射した信号光ビームを前記到達端部あるいはその近傍に配置した反射体で反射させて同一波長変換素子本体に再入射させる前記反射体が配置されているが前記反射体と前記第1の波長変換素子の端部の間の光路に再入射レンズが配置されていない場合には入射端部と出射端部の間の全光路長の中間点に相当する位置もしくはその近傍であり、前記第1の波長変換素子を構成している波長変換素子本体の入射端部と出射端部の間に前記反射体も再入射レンズも配置されていない場合には入射端部と出射端部の間の全光路長の中間点に相当する位置もしくはその近傍であり、前記第1の波長変換素子を構成している波長変換素子本体の入射端部と出射端部の間の光路に前記反射体と再入射レンズが配置されている場合には入射端部と前記再入射レンズの直前の到達端部の間の全光路長の中間点に相当する位置もしくはその近傍であることを特徴とする波長変換装置である。   A wavelength conversion device according to a second invention (hereinafter also referred to as invention 2) in which the invention 1 of the present invention is developed is the wavelength conversion device according to the invention 1, wherein at least one of the wavelength conversion optical circuits of the wavelength conversion device is provided. An incident light beam incident on the first wavelength conversion element in the unit is configured to be incident on the first wavelength conversion element so as to be condensed at a predetermined position of the first wavelength conversion element. The predetermined position of the first wavelength conversion element is a signal that has reached the arrival end portion between the incident end portion and the emission end portion of the wavelength conversion element main body constituting the first wavelength conversion element. The reflector is arranged to reflect the light beam or the signal light beam emitted from the reaching end with a reflector arranged at or near the reaching end and re-enter the same wavelength conversion element body. Body and said When a re-incident lens is not disposed in the optical path between the end portions of the one wavelength conversion element, it is at or near the position corresponding to the midpoint of the total optical path length between the incident end portion and the exit end portion, In the case where neither the reflector nor the re-incidence lens is arranged between the incident end and the exit end of the wavelength conversion element main body constituting the first wavelength conversion element, the incident end and the exit end The reflector in the optical path between the incident end and the output end of the wavelength conversion element main body constituting the first wavelength conversion element, which is at or near the midpoint of the total optical path length between When the re-incident lens is disposed, the wavelength is a position corresponding to or near the intermediate point of the total optical path length between the incident end and the arrival end immediately before the re-incident lens. It is a conversion device.

本発明の前記発明1、発明2を展開した第3の発明(以下、発明3ともいう)による波長変換装置は、発明1または2に記載の波長変換装置において、少なくとも1つの波長変換素子は、少なくとも1つの再入射レンズを有しており、前記再入射レンズを通り当該波長変換素子に再入射する信号光ビームが、前記再入射レンズによって当該波長変換素子の所定位置に集光されるように当該波長変換素子に再入射するように構成されており、当該波長変換素子の前記所定位置は、当該波長変換素子を構成している波長変換素子本体の当該再入射レンズと当該波長変換素子本体の出射端部の間に、到達端部に到達した信号光ビームあるいは前記到達端部から出射した信号光ビームを前記到達端部あるいはその近傍に配置した反射体で反射させて同一波長変換素子本体に再入射させる反射体が配置されているが前記反射体と当該波長変換素子本体の間の光路に当該再入射レンズとは別の他の再入射レンズが配置されていない場合には当該再入射レンズの直後の再入射端部と当該波長変換素子本体の出射端部の間の全光路長の中間点に相当する位置もしくはその近傍であり、当該波長変換素子を構成している波長変換素子本体の当該再入射レンズと当該波長変換素子本体の出射端部の間に反射体も当該再入射レンズとは別の他の再入射レンズも配置されていない場合には当該再入射レンズの直後の再入射端部と出射端部の間の全光路長の中間点に相当する位置もしくはその近傍であり、当該波長変換素子を構成している波長変換素子本体の当該再入射レンズと当該波長変換素子本体の出射端部の間の光路に反射体と当該再入射レンズとは別の他の再入射レンズが配置されている場合には当該再入射レンズの直後の再入射端部と前記他の再入射レンズの直前の到達端部の間の全光路長の中間点に相当する位置もしくはその近傍であることを特徴とする波長変換装置である。   A wavelength conversion device according to a third invention (hereinafter also referred to as invention 3) in which the invention 1 and invention 2 of the present invention are developed, the wavelength conversion device according to the invention 1 or 2, wherein at least one wavelength conversion element is: A signal light beam that has at least one re-incidence lens and re-enters the wavelength conversion element through the re-incidence lens so as to be condensed at a predetermined position of the wavelength conversion element by the re-incidence lens; The wavelength conversion element is configured to re-enter the wavelength conversion element, and the predetermined position of the wavelength conversion element is determined by the re-incidence lens of the wavelength conversion element body constituting the wavelength conversion element and the wavelength conversion element body. The signal light beam reaching the arrival end or the signal light beam emitted from the arrival end is reflected between the emission ends by a reflector disposed at or near the arrival end. When a reflector that re-enters the wavelength conversion element body is disposed, but no other re-incidence lens is disposed in the optical path between the reflector and the wavelength conversion element body. Is a position corresponding to or near the midpoint of the total optical path length between the re-incidence end immediately after the re-incidence lens and the output end of the wavelength conversion element body, and constitutes the wavelength conversion element When neither a reflector nor another re-incident lens other than the re-incident lens is disposed between the re-incident lens of the wavelength conversion element main body and the exit end of the wavelength conversion element main body, the re-incident lens And the position corresponding to or near the midpoint of the total optical path length between the re-incidence end and the exit end immediately after the re-incidence lens of the wavelength conversion element body constituting the wavelength conversion element and the Output end of wavelength converter body When another re-incidence lens other than the reflector and the re-incident lens is arranged in the optical path between the re-incident end portion immediately after the re-incident lens and the re-incident lens immediately before the other re-incident lens A wavelength conversion device characterized in that it is at or near a position corresponding to an intermediate point of the total optical path length between reaching end portions.

本発明の前記発明1〜3を展開した第4の発明(以下、発明4ともいう)による波長変換装置は、発明1〜3に記載の波長変換装置において、前記波長変換装置の少なくとも1つの前記波長変換光回路部は、前記接続レンズを中心にして、前記接続レンズ光路の一方の側に前記第1の波長変換素子が配置されており、前記接続レンズ光路の他方の側に前記第2の波長変換素子が配置されており、前記第1の波長変換素子と第2の波長変換素子のうちの一方の波長変換素子から出射した信号光ビームが、前記接続レンズを通り前記接続レンズによって他方の波長変換素子の所定位置に集光されるように前記他方の波長変換素子に入射するように構成されており、前記他方の波長変換素子の前記所定位置は、前記他方の波長変換素子を構成している波長変換素子本体の入射端部と出射端部の間に、到達端部に到達した信号光ビームあるいは前記到達端部から出射した信号光ビームを前記到達端部あるいはその近傍に配置した反射体で反射させて同一波長変換素子本体に再入射させる前記反射体が配置されているが前記反射体と前記他方の波長変換素子の端部の間の光路に再入射レンズが配置されていない場合には入射端部と出射端部の間で当該信号光ビームが通る光路の光路長としてみたときの波長変換素子本体内における当該信号光ビームの体積を最小にするような集光位置もしくはその近傍であり、前記他方の波長変換素子を構成している波長変換素子本体の入射端部と出射端部の間に前記反射体も再入射レンズも配置されていない場合には入射端部と出射端部の間で当該信号光ビームが通る光路の光路長としてみたときの当該信号光ビームの体積を最小にするような集光位置もしくはその近傍であり、前記他方の波長変換素子を構成している波長変換素子本体の入射端部と出射端部の間の光路に反射体と再入射レンズが配置されている場合には入射端部と前記再入射レンズの直前の到達端部の間で当該信号光ビームが通る光路の光路長としてみたときの波長変換素子本体内における当該信号光ビームの体積を最小にするような集光位置もしくはその近傍であることを特徴とする波長変換装置である。   A wavelength conversion device according to a fourth invention (hereinafter also referred to as invention 4) in which the inventions 1 to 3 of the present invention are developed is the wavelength conversion device according to any one of the inventions 1 to 3, wherein at least one of the wavelength conversion devices is the above-mentioned. In the wavelength conversion optical circuit unit, the first wavelength conversion element is disposed on one side of the connection lens optical path with the connection lens as a center, and the second wavelength is on the other side of the connection lens optical path. A wavelength conversion element is disposed, and a signal light beam emitted from one of the first wavelength conversion element and the second wavelength conversion element passes through the connection lens and is connected to the other by the connection lens. It is configured to enter the other wavelength conversion element so as to be condensed at a predetermined position of the wavelength conversion element, and the predetermined position of the other wavelength conversion element constitutes the other wavelength conversion element. Have A reflector in which the signal light beam reaching the arrival end or the signal light beam emitted from the arrival end is disposed at or near the arrival end between the incident end and the emission end of the wavelength conversion element body. When the reflector for reflecting and re-entering the same wavelength conversion element main body is arranged, but no re-incident lens is arranged in the optical path between the reflector and the end of the other wavelength conversion element At or near the condensing position that minimizes the volume of the signal light beam in the wavelength conversion element body when viewed as the optical path length of the optical path through which the signal light beam passes between the incident end and the output end. Yes, if neither the reflector nor the re-incidence lens is arranged between the incident end and the exit end of the wavelength conversion element main body constituting the other wavelength conversion element, the entrance end and the exit end Between the signal light The incident end of the wavelength conversion element main body that constitutes the other wavelength conversion element that is at or near the condensing position that minimizes the volume of the signal light beam when viewed as the optical path length of the optical path through which the optical path passes. When the reflector and the re-incidence lens are arranged in the optical path between the light-emitting part and the light-exiting end part, the optical path of the optical path through which the signal light beam passes between the incident end part and the reaching end part immediately before the re-incident lens The wavelength conversion device is characterized by being at or near the condensing position that minimizes the volume of the signal light beam in the wavelength conversion element body when viewed as a length.

本発明の前記発明4を展開した第5の発明(以下、発明5ともいう)による波長変換装置は、発明4に記載の波長変換装置において、前記一方の波長変換素子に入射する入射光ビームが、前記一方の波長変換素子の所定位置に集光されるように前記一方の波長変換素子に入射するように構成されており、前記一方の波長変換素子の前記所定位置は、前記一方の波長変換素子を構成している波長変換素子本体の入射端部と出射端部の間に、到達端部に到達した信号光ビームあるいは前記到達端部から出射した信号光ビームを前記到達端部あるいはその近傍に配置した反射体で反射させて同一波長変換素子本体に再入射させる前記反射体が配置されているが前記反射体と前記一方の波長変換素子の端部の間の光路に再入射レンズが配置されていない場合には入射端部と出射端部の間で当該信号光ビームが通る光路の光路長としてみたときの波長変換素子本体内における当該信号光ビームの体積を最小にするような集光位置もしくはその近傍であり、前記一方の波長変換素子を構成している波長変換素子本体の入射端部と出射端部の間に前記反射体も再入射レンズも配置されていない場合には入射端部と出射端部の間で当該信号光ビームが通る光路の光路長としてみたときの当該信号光ビームの体積を最小にするような集光位置もしくはその近傍であり、前記一方の波長変換素子を構成している波長変換素子本体の入射端部と出射端部の間の光路に再入射レンズが配置されている場合には入射端部と前記再入射レンズの直前の到達端部の間で当該信号光ビームが通る光路の光路長としてみたときの波長変換素子本体内における当該信号光ビームの体積を最小にするような集光位置もしくはその近傍であることを特徴とする波長変換装置である。   A wavelength conversion device according to a fifth invention (hereinafter also referred to as invention 5), which is a development of the invention 4 of the present invention, is the wavelength conversion device according to the invention 4, wherein the incident light beam incident on the one wavelength conversion element is The one wavelength conversion element is configured to be incident on the one wavelength conversion element so as to be condensed at a predetermined position of the one wavelength conversion element, and the predetermined position of the one wavelength conversion element is the one wavelength conversion element The signal light beam reaching the arrival end or the signal light beam emitted from the arrival end between the incident end and the emission end of the wavelength conversion element main body constituting the element, or the vicinity thereof The reflector is arranged so that it is reflected by the reflector arranged at the same position and re-enters the same wavelength conversion element body, but a re-incident lens is arranged in the optical path between the reflector and the end of the one wavelength conversion element. Not In such a case, the light condensing position that minimizes the volume of the signal light beam in the wavelength conversion element body when viewed as the optical path length of the optical path through which the signal light beam passes between the incident end and the output end If the reflector and the re-incidence lens are not arranged between the incident end and the exit end of the wavelength conversion element body that is in the vicinity and constitutes the one wavelength conversion element, the entrance end and the exit A light converging position that minimizes the volume of the signal light beam when viewed as the optical path length of the optical path through which the signal light beam passes between the end portions, or the vicinity thereof, and constitutes the one wavelength conversion element. When the re-incident lens is disposed in the optical path between the incident end and the outgoing end of the wavelength conversion element body, the signal light beam is between the incident end and the arrival end immediately before the re-incident lens. As the optical path length of the optical path through It is a wavelength conversion device, wherein the volume of the signal light beam at a wavelength conversion element main body is condensed position or in the vicinity thereof so as to minimize the time.

本発明の前記発明4または5を展開した第6の発明(以下、発明6ともいう)による波長変換装置は、発明4または5に記載の波長変換装置において、少なくとも1つの波長変換素子は、少なくとも1つの再入射レンズを有しており、前記再入射レンズを通り当該波長変換素子に再入射する信号光ビームが、前記再入射レンズによって当該波長変換素子の所定位置に集光されるように当該波長変換素子に再入射するように構成されており、当該波長変換素子の前記所定位置は、当該波長変換素子を構成している波長変換素子本体の前記再入射レンズと当該波長変換素子本体の出射端部の間に、到達端部に到達した信号光ビームあるいは前記到達端部から出射した信号光ビームを前記到達端部あるいはその近傍に配置した反射体で反射させて同一波長変換素子本体に再入射させる反射体が配置されているが前記反射体と当該波長変換素子本体の間の光路に当該再入射レンズとは別の他の再入射レンズが配置されていない場合には当該再入射レンズの直後の再入射端部と当該波長変換素子本体の出射端部の間で当該信号光ビームが通る光路の光路長としてみたときの波長変換素子本体内における当該信号光ビームの体積を最小にするような集光位置もしくはその近傍であり、当該波長変換素子を構成している波長変換素子本体の当該再入射レンズと当該波長変換素子本体の出射端部の間に反射体も当該再入射レンズとは別の他の再入射レンズも配置されていない場合には当該再入射レンズの直後の再入射端部と出射端部の間で当該信号光ビームが通る光路の光路長としてみたときの当該信号光ビームの体積を最小にするような集光位置もしくはその近傍であり、当該波長変換素子を構成している波長変換素子本体の当該再入射レンズと当該波長変換素子本体の出射端部の間の光路に反射体と当該再入射レンズとは別の他の再入射レンズが配置されている場合には当該再入射レンズの直後の再入射端部と前記他の再入射レンズの直前の到達端部の間で当該信号光ビームが通る光路の光路長としてみたときの波長変換素子本体内における当該信号光ビームの体積を最小にするような集光位置もしくはその近傍であることを特徴とする波長変換装置である。   A wavelength conversion device according to a sixth invention (hereinafter also referred to as invention 6) in which the invention 4 or 5 of the present invention is developed is the wavelength conversion device according to the invention 4 or 5, wherein at least one wavelength conversion element is at least A signal light beam that passes through the re-incidence lens and re-enters the wavelength conversion element, and is collected by the re-incidence lens at a predetermined position of the wavelength conversion element. The wavelength conversion element is configured to re-enter the wavelength conversion element, and the predetermined position of the wavelength conversion element is determined by the re-incidence lens of the wavelength conversion element body constituting the wavelength conversion element and the emission of the wavelength conversion element body. Between the end portions, the signal light beam reaching the reaching end portion or the signal light beam emitted from the reaching end portion is reflected by a reflector disposed at or near the reaching end portion, and the same. When a reflector that re-enters the wavelength conversion element body is disposed, but no other re-incidence lens is disposed in the optical path between the reflector and the wavelength conversion element body. Is the optical path length of the signal light beam in the wavelength conversion element body when viewed as the optical path length of the optical path through which the signal light beam passes between the re-incidence end immediately after the re-incidence lens and the emission end of the wavelength conversion element body. A reflector is also located at or near the condensing position that minimizes the volume, and between the re-incidence lens of the wavelength conversion element body constituting the wavelength conversion element and the emission end of the wavelength conversion element body. When another re-incidence lens other than the re-incident lens is not arranged, the optical path length of the optical path through which the signal light beam passes between the re-incident end and the exit end immediately after the re-incident lens. When we saw The condensing position that minimizes the volume of the light beam or the vicinity thereof, and between the re-incidence lens of the wavelength conversion element body constituting the wavelength conversion element and the emission end of the wavelength conversion element body In the case where a reflector and another re-incidence lens other than the re-incident lens are arranged in the optical path, a re-incident end immediately after the re-incident lens and a reaching end immediately before the other re-incident lens A converging position at or near the condensing position that minimizes the volume of the signal light beam in the wavelength conversion element body when viewed as the optical path length of the optical path through which the signal light beam passes between the sections. This is a wavelength conversion device.

本発明の前記発明1〜6を展開した第7の発明(以下、発明7ともいう)による波長変換装置は、発明1〜6に記載の波長変換装置において、前記波長変換素子本体の前記入射端部になる表面とそれと反対側の表面とが1分以内の開き角で互いに平行に形成されていることを特徴とする波長変換装置である。   A wavelength conversion device according to a seventh invention (hereinafter also referred to as invention 7) in which the inventions 1 to 6 of the present invention are developed is the wavelength conversion device according to any one of the inventions 1 to 6, wherein the incident end of the wavelength conversion element body The wavelength conversion device is characterized in that the surface to be a part and the surface on the opposite side are formed in parallel with each other with an opening angle within 1 minute.

本発明の前記発明1〜7を展開した第8の発明(以下、発明8ともいう)による波長変換装置は、発明1〜7に記載の波長変換装置において、前記波長変換素子本体が分極反転領域を有する分極反転素子であることを特徴とする波長変換装置である。   A wavelength conversion device according to an eighth invention (hereinafter also referred to as invention 8) in which the inventions 1 to 7 of the present invention are developed is the wavelength conversion device according to any one of the inventions 1 to 7, wherein the wavelength conversion element body is a domain-inverted region. It is a wavelength conversion device characterized by being a polarization reversal element having.

本発明の前記発明8を展開した第9の発明(以下、発明9ともいう)による波長変換装置は、発明8に記載の波長変換装置において、前記波長変換素子本体の表面と分極反転領域の境界面とが1分以内の開き角で互いに平行に形成されていることを特徴とする波長変換装置である。   A wavelength conversion device according to a ninth invention (hereinafter also referred to as invention 9) in which the invention 8 of the present invention is developed is the wavelength conversion device according to the invention 8, wherein the boundary between the surface of the wavelength conversion element body and the polarization inversion region The wavelength conversion device is characterized in that the surfaces are formed in parallel with each other with an opening angle within one minute.

本発明の前記発明8または9を展開した第10の発明(以下、発明10ともいう)による波長変換装置は、発明8または9に記載の波長変換装置において、前記波長変換素子本体の複数の分極反転領域の境界面同志が1分以内の開き角で互いに平行に形成されていることを特徴とする波長変換装置である。   A wavelength conversion device according to a tenth invention (hereinafter also referred to as invention 10), in which the invention 8 or 9 of the present invention is developed, is the wavelength conversion device according to the invention 8 or 9, wherein a plurality of polarizations of the wavelength conversion element body are provided. The wavelength conversion device is characterized in that the boundary surfaces of the inversion regions are formed in parallel with each other with an opening angle within one minute.

本発明の前記発明8〜10を展開した第11の発明(以下、発明11ともいう)による波長変換装置は、発明8〜10に記載の波長変換装置において、前記波長変換素子本体の分極反転領域の幅が、前記波長変換素子本体に最初に入射した入射光の光路に直交する方向でかつ前記光路とその次の再入射光の光路を含む面における幅において少なくとも2mmあることを特徴とする波長変換装置である。   A wavelength conversion device according to an eleventh invention (hereinafter also referred to as invention 11) in which the inventions 8 to 10 of the present invention are developed is the wavelength conversion device according to the inventions 8 to 10, wherein the polarization inversion region of the wavelength conversion element body A width of at least 2 mm in a direction perpendicular to the optical path of incident light first incident on the wavelength conversion element body and in a plane including the optical path and the optical path of the next re-incident light It is a conversion device.

本発明の前記発明8〜11を展開した第12の発明(以下、発明12ともいう)による波長変換装置は、発明8〜11に記載の波長変換装置において、前記分極反転素子がPPLN(Periodically Poled LiNbO3)あるいはPPLT(Periodically Poled LiTaO3)あるいはPPKTP(Periodically Poled KTiOPO4)であることを特徴とする波長変換装置である。   A wavelength conversion device according to a twelfth aspect of the present invention (hereinafter also referred to as the invention twelfth) according to the eighth to eleventh aspects of the present invention is the wavelength conversion device according to any of the eighth to eleventh aspects, wherein the polarization inverting element is a PPLN (Periodically Poled). The wavelength conversion device is characterized by being LiNbO3), PPLT (Periodically Poled LiTaO3) or PPKTP (Perially Polly KTiOPO4).

本発明の前記発明1〜12を展開した第13の発明(以下、発明13ともいう)による波長変換装置は、発明1〜12に記載の波長変換装置において、前記反射体が特定の波長の光の少なくとも一部を透過することが出きる機能素子であることを特徴とする波長変換装置である。   A wavelength conversion device according to a thirteenth invention (hereinafter also referred to as invention 13) in which the inventions 1 to 12 of the present invention are developed is the wavelength conversion device according to any one of inventions 1 to 12, wherein the reflector is light having a specific wavelength. A wavelength conversion device characterized in that it is a functional element that can transmit at least a part of the wavelength conversion device.

本発明の前記発明13を展開した第14の発明(以下、発明14ともいう)による波長変換装置は、発明13に記載の波長変換装置において、前記反射体の第1の波長λ1の光と第2の波長λ2の光のいずれか一方または双方に対する反射率が99.8%以上であることを特徴とする波長変換装置である。   A wavelength conversion device according to a fourteenth aspect of the present invention, which is the development of the thirteenth aspect of the present invention (hereinafter also referred to as the invention 14), is the wavelength conversion device according to the thirteenth aspect, wherein the light of the first wavelength λ1 of the reflector and The wavelength conversion device is characterized in that the reflectance with respect to one or both of the lights having the wavelength λ2 of 2 is 99.8% or more.

本発明の前記発明8〜14を展開した第15の発明(以下、発明15ともいう)による波長変換装置は、発明1〜14に記載の波長変換装置において、前記接続レンズが複数個あることを特徴とする波長変換装置である。   A wavelength converter according to a fifteenth aspect (hereinafter also referred to as invention 15) of the inventions 8 to 14 according to the present invention is the wavelength converter according to any one of aspects 1 to 14, wherein there are a plurality of the connecting lenses. This is a characteristic wavelength converter.

本発明の前記発明1〜15を展開した第16の発明(以下、発明16ともいう)による波長変換装置は、発明1〜15に記載の波長変換装置において、信号光ビームの光路上における前記接続レンズの位置と前記光路に対する角度の少なくとも一方を変える手段を有していることを特徴とする波長変換装置である。   A wavelength conversion device according to a sixteenth invention (hereinafter also referred to as invention 16) in which the first to fifteenth aspects of the present invention are developed is the wavelength conversion apparatus according to the first to fifteenth aspects, wherein the connection on the optical path of the signal light beam A wavelength conversion device comprising means for changing at least one of a lens position and an angle with respect to the optical path.

本発明の前記発明8〜16を展開した第17の発明(以下、発明17ともいう)による波長変換装置は、発明1〜16に記載の波長変換装置において、少なくとも2つの前記再入射レンズが一体に構成されていることを特徴とする波長変換装置である。   A wavelength conversion device according to a seventeenth invention (hereinafter also referred to as invention 17) in which the inventions 8 to 16 of the present invention are developed is the wavelength conversion device according to any one of the inventions 1 to 16, wherein at least two of the re-incident lenses are integrated. This is a wavelength conversion device that is configured as follows.

本発明の前記発明1〜17を展開した第18の発明(以下、発明18ともいう)による波長変換装置は、発明1〜17に記載の波長変換装置において、2つの波長変換素子の間に前記接続レンズが複数個あることを特徴とする波長変換装置である。   A wavelength conversion device according to an eighteenth invention (hereinafter also referred to as invention 18) in which the inventions 1 to 17 of the present invention are developed is the wavelength conversion device according to the inventions 1 to 17, wherein the wavelength conversion device is arranged between two wavelength conversion elements. A wavelength converter having a plurality of connecting lenses.

本発明の前記発明1〜18を展開した第19の発明(以下、発明19ともいう)による波長変換装置は、発明1〜18に記載の波長変換装置において、前記波長変換装置の少なくとも1つの前記波長変換光回路部は、前記波長変換光回路部を構成する前記接続レンズの一方の側に前記第1の波長変換素子と前記第2の波長変換素子が配置されており、前記接続レンズの他方の側に前記接続レンズ光路を進行する信号光ビームの光路を変えることができる反射体などの信号光光路変更手段が設けられており、前記接続レンズを通る信号光ビームはその少なくとも一部が前記信号光光路変更手段によって光路を折り変えされて、その光路が前記第1の波長変換素子と第2の波長変換素子のうちの一方の波長変換素子から出射した信号光ビームが他方の波長変換素子に入射するように折り返されていることを特徴とする波長変換装置である。前記信号光光路変更手段としては光路変更プリズム、コーナーキューブ、見開き状のミラーなど従来の光学要素を広く用いることができる。   A wavelength conversion device according to a nineteenth invention (hereinafter also referred to as an invention 19) in which the inventions 1 to 18 of the present invention are developed is the wavelength conversion device according to the inventions 1 to 18, wherein at least one of the wavelength conversion devices is In the wavelength conversion optical circuit unit, the first wavelength conversion element and the second wavelength conversion element are arranged on one side of the connection lens constituting the wavelength conversion optical circuit unit, and the other side of the connection lens. A signal light optical path changing means such as a reflector capable of changing the optical path of the signal light beam traveling in the connecting lens optical path is provided on the side of the connecting lens, and at least a part of the signal light beam passing through the connecting lens is the When the optical path is changed by the signal light optical path changing means, the signal light beam emitted from one of the first wavelength conversion element and the second wavelength conversion element is the other. It is the wavelength conversion device according to claim which is folded so as to enter the wavelength conversion element. As the signal light optical path changing means, conventional optical elements such as an optical path changing prism, a corner cube, and a spread mirror can be widely used.

本発明の例としての第20の発明(以下、発明20ともいう)による波長変換装置は、波長変換素子を少なくとも1つ用いた波長変換装置で、前記波長変換素子に入射される入射光ビームは、前記波長変換素子の所定位置に集光されるように前記波長変換素子に入射するように構成されており、前記波長変換素子の前記所定位置は、前記波長変換素子を構成している波長変換素子本体の入射端部と出射端部の間に、到達端部に到達した信号光ビームあるいは前記到達端部から出射した信号光ビームを前記到達端部あるいはその近傍に配置した反射体で反射させて同一波長変換素子本体に再入射させる前記反射体が配置されているが前記反射体と前記波長変換素子の端部の間の光路に集光レンズ(以下、再入射レンズともいう)が配置されていない場合には入射端部と出射端部の間の全光路長の中間点に相当する位置もしくはその近傍であり、前記波長変換素子を構成している波長変換素子本体の入射端部と出射端部の間に前記反射体も再入射レンズも配置されていない場合には入射端部と出射端部の間の全光路長の中間点に相当する位置もしくはその近傍であり、前記波長変換素子を構成している波長変換素子本体の入射端部と出射端部の間の光路に前記反射体と再入射レンズが配置されている場合には入射端部と前記再入射レンズの直前の到達端部の間の全光路長の中間点に相当する位置もしくはその近傍であることを特徴とする波長変換装置である。   A wavelength converter according to a twentieth invention (hereinafter also referred to as invention 20) as an example of the present invention is a wavelength converter using at least one wavelength converter, and an incident light beam incident on the wavelength converter is The wavelength conversion element is configured to be incident on the wavelength conversion element so as to be condensed at a predetermined position of the wavelength conversion element, and the predetermined position of the wavelength conversion element constitutes the wavelength conversion element. The signal light beam reaching the arrival end or the signal light beam emitted from the arrival end is reflected between the incident end and the emission end of the element body by a reflector disposed at or near the arrival end. The reflector that re-enters the same wavelength conversion element body is disposed, but a condensing lens (hereinafter also referred to as a re-incident lens) is disposed in the optical path between the reflector and the end of the wavelength conversion element. Have In this case, the position is equivalent to or in the vicinity of the intermediate point of the total optical path length between the incident end and the exit end, and the incident end and the exit end of the wavelength conversion element body constituting the wavelength conversion element In the case where neither the reflector nor the re-incidence lens is disposed between the portions, the wavelength conversion element is located at or near the midpoint of the total optical path length between the incident end and the exit end. In the case where the reflector and the re-incidence lens are arranged in the optical path between the incident end and the emission end of the wavelength conversion element main body, the incident end and the arrival end immediately before the re-incidence lens A wavelength conversion device characterized in that it is at or near the midpoint of the total optical path length.

本発明の前記発明20を展開した第21の発明(以下、発明21ともいう)による波長変換装置は、発明20に記載の波長変換装置において、少なくとも1つの波長変換素子は、少なくとも1つの再入射レンズを有しており、前記再入射レンズを通り当該波長変換素子に再入射する信号光ビームが、前記再入射レンズによって当該波長変換素子の所定位置に集光されるように当該波長変換素子に再入射するように構成されており、当該波長変換素子の前記所定位置は、当該波長変換素子を構成している波長変換素子本体の当該再入射レンズと当該波長変換素子本体の出射端部の間に、到達端部に到達した信号光ビームあるいは前記到達端部から出射した信号光ビームを前記到達端部あるいはその近傍に配置した反射体で反射させて同一波長変換素子本体に再入射させる反射体が配置されているが前記反射体と当該波長変換素子本体の間の光路に当該再入射レンズとは別の他の再入射レンズが配置されていない場合には当該再入射レンズの直後の再入射端部と当該波長変換素子本体の出射端部の間の全光路長の中間点に相当する位置もしくはその近傍であり、当該波長変換素子を構成している波長変換素子本体の当該再入射レンズと当該波長変換素子本体の出射端部の間に反射体も当該再入射レンズとは別の他の再入射レンズも配置されていない場合には当該再入射レンズと出射端部の間の全光路長の中間点に相当する位置もしくはその近傍であり、当該波長変換素子を構成している波長変換素子本体の当該再入射レンズの直後の再入射端部と当該波長変換素子本体の出射端部の間の光路に反射体と当該再入射レンズとは別の他の再入射レンズが配置されている場合には当該再入射レンズの直後の再入射端部と前記他の再入射レンズの直前の到達端部の間の全光路長の中間点に相当する位置もしくはその近傍であることを特徴とする波長変換装置である。   A wavelength conversion device according to a twenty-first invention (hereinafter also referred to as invention 21), in which the invention 20 of the present invention is developed, is the wavelength conversion device according to the invention 20, wherein at least one wavelength conversion element is at least one re-incidence. A signal light beam that has a lens and re-enters the wavelength conversion element through the re-incidence lens, is focused on the wavelength conversion element by the re-incidence lens at a predetermined position of the wavelength conversion element. The wavelength conversion element is configured to re-enter, and the predetermined position of the wavelength conversion element is between the re-incidence lens of the wavelength conversion element body constituting the wavelength conversion element and the emission end of the wavelength conversion element body. Then, the signal light beam reaching the reaching end or the signal light beam emitted from the reaching end is reflected by a reflector disposed at or near the reaching end to change the same wavelength. A reflector that re-enters the element main body is arranged, but when no other re-incident lens other than the re-incident lens is arranged in the optical path between the reflector and the wavelength conversion element main body, The wavelength conversion that constitutes the wavelength conversion element at or near the midpoint of the total optical path length between the re-incidence end immediately after the re-incidence lens and the output end of the wavelength conversion element body When neither a reflector nor another re-incidence lens other than the re-incidence lens is arranged between the re-incidence lens of the element main body and the emission end of the wavelength conversion element main body, the re-incidence lens and the emission The re-incident end immediately after the re-incident lens of the wavelength conversion element main body constituting the wavelength conversion element and the wavelength conversion corresponding to or near the midpoint of the total optical path length between the ends Between the output end of the element body When another re-incidence lens other than the reflector and the re-incident lens is disposed on the path, the re-incident end immediately after the re-incident lens and the reaching end immediately before the other re-incident lens A wavelength conversion device characterized in that it is at or near the midpoint of the total optical path length.

本発明の前記発明20または21を展開した第22の発明(以下、発明22ともいう)による波長変換装置は、発明20または21に記載の波長変換装置において、前記一方の波長変換素子に入射する入射光ビームが、前記一方の波長変換素子の所定位置に集光されるように前記一方の波長変換素子に入射するように構成されており、前記一方の波長変換素子の前記所定位置は、前記一方の波長変換素子を構成している波長変換素子本体の入射端部と出射端部の間に、到達端部に到達した信号光ビームあるいは前記到達端部から出射した信号光ビームを前記到達端部あるいはその近傍に配置した反射体で反射させて同一波長変換素子本体に再入射させる前記反射体が配置されているが前記反射体と前記一方の波長変換素子の端部の間の光路に再入射レンズが配置されていない場合には入射端部と出射端部の間で当該信号光ビームが通る光路の光路長としてみたときの波長変換素子本体内における当該信号光ビームの体積を最小にするような集光位置もしくはその近傍であり、前記一方の波長変換素子を構成している波長変換素子本体の入射端部と出射端部の間に前記反射体も再入射レンズも配置されていない場合には入射端部と出射端部の間で当該信号光ビームが通る光路の光路長としてみたときの当該信号光ビームの体積を最小にするような集光位置もしくはその近傍であり、前記一方の波長変換素子を構成している波長変換素子本体の入射端部と出射端部の間の光路に再入射レンズが配置されている場合には入射端部と前記再入射レンズの直前の到達端部の間で当該信号光ビームが通る光路の光路長としてみたときの波長変換素子本体内における当該信号光ビームの体積を最小にするような集光位置もしくはその近傍であることを特徴とする波長変換装置である。   A wavelength conversion device according to a twenty-second invention (hereinafter also referred to as invention 22) in which the invention 20 or 21 of the present invention is developed is the wavelength conversion device according to the invention 20 or 21, and is incident on the one wavelength conversion element. The incident light beam is configured to be incident on the one wavelength conversion element so as to be condensed at a predetermined position of the one wavelength conversion element, and the predetermined position of the one wavelength conversion element is A signal light beam that has reached the arrival end portion or a signal light beam that has exited from the arrival end portion is disposed between the incident end portion and the emission end portion of the wavelength conversion element body constituting one wavelength conversion element. The reflector is arranged so that it is reflected by a reflector arranged at or near the same portion and re-enters the same wavelength conversion element main body, but in the optical path between the reflector and the end of the one wavelength conversion element. When no incident lens is disposed, the volume of the signal light beam in the wavelength conversion element body is minimized when viewed as the optical path length of the optical path through which the signal light beam passes between the incident end and the exit end. When the reflector and the re-incident lens are not disposed between the incident end and the exit end of the wavelength conversion element main body constituting the one wavelength conversion element. Is the condensing position or its vicinity that minimizes the volume of the signal light beam when viewed as the optical path length of the optical path through which the signal light beam passes between the incident end and the output end, When a re-incident lens is arranged in the optical path between the incident end and the outgoing end of the wavelength conversion element main body constituting the wavelength conversion element, the incident end and the reaching end immediately before the re-incident lens The signal light between A wavelength converter which is a focusing position or in the vicinity thereof so as to minimize the volume of the signal light beam in the wavelength conversion element main body when seen in the optical path length of the optical path through which.

本発明の前記発明20〜22を展開した第23の発明(以下、発明23ともいう)による波長変換装置は、発明20〜22に記載の波長変換装置において、少なくとも1つの波長変換素子は、少なくとも1つの再入射レンズを有しており、前記再入射レンズを通り当該波長変換素子に再入射する信号光ビームが、前記再入射レンズによって当該波長変換素子の所定位置に集光されるように当該波長変換素子に再入射するように構成されており、当該波長変換素子の前記所定位置は、当該波長変換素子を構成している波長変換素子本体の前記再入射レンズと当該波長変換素子本体の出射端部の間に、到達端部に到達した信号光ビームあるいは前記到達端部から出射した信号光ビームを前記到達端部あるいはその近傍に配置した反射体で反射させて同一波長変換素子本体に再入射させる反射体が配置されているが前記反射体と当該波長変換素子本体の間の光路に当該再入射レンズとは別の他の再入射レンズが配置されていない場合には当該再入射レンズの直後の再入射端部と当該波長変換素子本体の出射端部の間で当該信号光ビームが通る光路の光路長としてみたときの波長変換素子本体内における当該信号光ビームの体積を最小にするような集光位置もしくはその近傍であり、当該波長変換素子を構成している波長変換素子本体の当該再入射レンズと当該波長変換素子本体の出射端部の間に反射体も当該再入射レンズとは別の他の再入射レンズも配置されていない場合には当該再入射レンズの直後の再入射端部と出射端部の間で当該信号光ビームが通る光路の光路長としてみたときの当該信号光ビームの体積を最小にするような集光位置もしくはその近傍であり、当該波長変換素子を構成している波長変換素子本体の当該再入射レンズと当該波長変換素子本体の出射端部の間の光路に反射体と当該再入射レンズとは別の他の再入射レンズが配置されている場合には当該再入射レンズの直後の再入射端部と前記他の再入射レンズの直前の到達端部の間で当該信号光ビームが通る光路の光路長としてみたときの波長変換素子本体内における当該信号光ビームの体積を最小にするような集光位置もしくはその近傍であることを特徴とする波長変換装置である。   A wavelength conversion device according to a twenty-third invention (hereinafter also referred to as invention 23) in which the inventions 20 to 22 of the present invention are developed is the wavelength conversion device according to the invention 20 to 22, wherein at least one wavelength conversion element is at least A signal light beam that passes through the re-incidence lens and re-enters the wavelength conversion element, and is collected by the re-incidence lens at a predetermined position of the wavelength conversion element. The wavelength conversion element is configured to re-enter the wavelength conversion element, and the predetermined position of the wavelength conversion element is determined by the re-incidence lens of the wavelength conversion element body constituting the wavelength conversion element and the emission of the wavelength conversion element body. Between the end portions, the signal light beam reaching the reaching end portion or the signal light beam emitted from the reaching end portion is reflected by a reflector disposed at or near the reaching end portion. When a reflector that re-enters the same wavelength conversion element body is disposed, but no other re-incidence lens is disposed in the optical path between the reflector and the wavelength conversion element body. The signal light beam in the wavelength conversion element body when viewed as the optical path length of the optical path through which the signal light beam passes between the re-incidence end immediately after the re-incidence lens and the emission end of the wavelength conversion element body A reflector between the re-incidence lens of the wavelength conversion element main body and the output end of the wavelength conversion element main body, which is at or near the condensing position that minimizes the volume of the wavelength conversion element If no other re-incidence lens is arranged other than the re-incidence lens, the optical path length of the optical path through which the signal light beam passes between the re-incident end and the exit end immediately after the re-incident lens As seen The condensing position that minimizes the volume of the signal light beam or the vicinity thereof, the re-incidence lens of the wavelength conversion element body constituting the wavelength conversion element, and the exit end of the wavelength conversion element body In the case where a reflector and another re-incident lens other than the re-incident lens are arranged in the optical path between them, the re-incident end immediately after the re-incident lens and the arrival before the other re-incident lens A condensing position at or near the condensing position that minimizes the volume of the signal light beam in the wavelength conversion element body when viewed as the optical path length of the optical path through which the signal light beam passes between the ends. Is a wavelength conversion device.

本発明の前記発明20〜23を展開した第24の発明(以下、発明24ともいう)による波長変換装置は、発明20〜23に記載の波長変換装置において、前記波長変換素子本体の前記入射端部になる表面とそれと反対側の表面とが1分以内の開き角で互いに平行に形成されていることを特徴とする波長変換装置である。   A wavelength conversion device according to a twenty-fourth invention (hereinafter also referred to as invention 24) in which the inventions 20 to 23 of the present invention are developed is the wavelength conversion device according to any one of the inventions 20 to 23, wherein the incident end of the wavelength conversion element main body is the same. The wavelength conversion device is characterized in that the surface to be a part and the surface on the opposite side are formed in parallel with each other with an opening angle within 1 minute.

本発明の前記発明20〜24を展開した第25の発明(以下、発明25ともいう)による波長変換装置は、発明20〜24に記載の波長変換装置において、前記波長変換素子本体が分極反転領域を有する分極反転素子であることを特徴とする波長変換装置である。   A wavelength conversion device according to a twenty-fifth invention (hereinafter also referred to as invention 25) in which the inventions 20 to 24 of the present invention are developed is the wavelength conversion device according to any one of the inventions 20 to 24, wherein the wavelength conversion element body is a domain-inverted region. It is a wavelength conversion device characterized by being a polarization reversal element having.

本発明の前記発明25を展開した第26の発明(以下、発明26ともいう)による波長変換装置は、発明25に記載の波長変換装置において、前記波長変換素子本体の表面と分極反転領域の境界面とが1分以内の開き角で互いに平行に形成されていることを特徴とする波長変換装置である。   A wavelength conversion device according to a twenty-sixth invention (hereinafter also referred to as invention 26) in which the invention 25 of the present invention is developed is the wavelength conversion device according to the invention 25, wherein the boundary between the surface of the wavelength conversion element body and the polarization inversion region. The wavelength conversion device is characterized in that the surfaces are formed in parallel with each other with an opening angle within one minute.

本発明の前記発明25または26を展開した第27の発明(以下、発明27ともいう)による波長変換装置は、発明25または26に記載の波長変換装置において、前記波長変換素子本体の複数の分極反転領域の境界面同志が1分以内の開き角で互いに平行に形成されていることを特徴とする波長変換装置である。   A wavelength conversion device according to a twenty-seventh invention (hereinafter also referred to as invention 27), in which the invention 25 or 26 of the present invention is developed, is the wavelength conversion device according to the invention 25 or 26, wherein a plurality of polarizations of the wavelength conversion element body are provided. The wavelength conversion device is characterized in that the boundary surfaces of the inversion regions are formed in parallel with each other with an opening angle within one minute.

本発明の前記発明25〜27を展開した第28の発明(以下、発明28ともいう)による波長変換装置は、発明25〜27に記載の波長変換装置において、前記波長変換素子本体の分極反転領域の幅が、前記波長変換素子本体に最初に入射した入射光の光路に直交する方向でかつ前記光路とその次の再入射光の光路を含む面における幅において少なくとも2mmあることを特徴とする波長変換装置である。   A wavelength conversion device according to a twenty-eighth invention (hereinafter also referred to as invention 28) in which the inventions 25 to 27 of the present invention are developed is the wavelength conversion device according to the invention 25 to 27, wherein the polarization inversion region of the wavelength conversion element body is A width of at least 2 mm in a direction perpendicular to the optical path of incident light first incident on the wavelength conversion element body and in a plane including the optical path and the optical path of the next re-incident light It is a conversion device.

本発明の前記発明25〜28を展開した第29の発明(以下、発明29ともいう)による波長変換装置は、発明25〜28に記載の波長変換装置において、前記分極反転素子がPPLN(Periodically Poled LiNbO3)あるいはPPLT(Periodically Poled LiTaO3)あるいはPPKTP(Periodically Poled KTiOPO4)であることを特徴とする波長変換装置である。   A wavelength conversion device according to a twenty-ninth invention (hereinafter also referred to as invention 29), which is the development of the inventions 25 to 28 of the present invention, is the wavelength conversion device according to the invention 25 to 28, wherein the polarization inverting element is a PPLN (Periodically Poled). The wavelength conversion device is characterized by being LiNbO3), PPLT (Periodically Poled LiTaO3) or PPKTP (Perially Polly KTiOPO4).

本発明の前記発明20〜29を展開した第30の発明(以下、発明30ともいう)による波長変換装置は、発明20〜29のいずれか1項に記載の波長変換装置において、前記反射体が特定の波長の光の少なくとも一部を透過することが出きる機能素子であることを特徴とする波長変換装置である。   A wavelength conversion device according to a thirtieth invention (hereinafter also referred to as invention 30) in which the inventions 20 to 29 of the present invention are developed, the wavelength conversion device according to any one of inventions 20 to 29, wherein the reflector is The wavelength conversion device is a functional element capable of transmitting at least part of light of a specific wavelength.

本発明の前記発明30を展開した第31の発明(以下、発明31ともいう)による波長変換装置は、発明30に記載の波長変換装置において、前記反射体の第1の波長λ1の光と第2の波長λ2の光のいずれか一方または双方に対する反射率が99.8%以上であることを特徴とする波長変換装置である。   A wavelength conversion device according to a thirty-first invention (hereinafter also referred to as invention 31), in which the invention 30 of the present invention is developed, is the wavelength conversion device according to the invention 30, wherein the light having the first wavelength λ1 of the reflector and the wavelength conversion device are the same. The wavelength conversion device is characterized in that the reflectance with respect to one or both of the lights having the wavelength λ2 of 2 is 99.8% or more.

本発明の前記発明20〜31を展開した第32の発明(以下、発明32ともいう)による波長変換装置は、発明20〜31に記載の波長変換装置において、少なくとも2つの前記再入射レンズが一体に構成されていることを特徴とする波長変換装置である。   A wavelength conversion device according to a thirty-second invention (hereinafter also referred to as invention 32) in which the inventions 20 to 31 of the present invention are developed is the wavelength conversion device according to the inventions 20 to 31, wherein at least two of the re-incident lenses are integrated. This is a wavelength conversion device that is configured as follows.

本発明の前記発明20〜32を展開した第33の発明(以下、発明33ともいう)による波長変換装置は、発明20〜32に記載の波長変換装置において、信号光ビームの光路上における前記接続レンズの位置と前記光路に対する角度の少なくとも一方を変える手段を有していることを特徴とする波長変換装置である。   A wavelength converter according to a thirty-third invention (hereinafter also referred to as invention 33) in which the inventions 20 to 32 of the present invention are developed is the wavelength converter according to the invention 20 to 32, wherein the connection on the optical path of the signal light beam A wavelength conversion device comprising means for changing at least one of a lens position and an angle with respect to the optical path.

本発明の例としての第34の発明(以下、発明34ともいう)による波長変換装置は波長変換素子を少なくとも2つ用いた波長変換装置で、前記波長変換装置は、波長変換を施される信号光ビームの光路においてレンズ(以下、接続レンズともいう)を介して直列に接続されている少なくとも2つの波長変換素子を有する波長変換光回路部を少なくとも1つ有しており、前記波長変換装置の少なくとも1つの前記波長変換光回路部は、前記接続レンズを介して直列に接続されている2つの波長変換素子のうちの一方の波長変換素子(以下、第1の波長変換素子ともいう)の出射端部と他方の波長変換素子(以下、第2の波長変換素子ともいう)の入射端部の間の前記接続レンズを通る光路を含む信号光ビームの光路を接続レンズ光路ともいうことにして、前記第1の波長変換素子から出射した信号光ビームが、前記接続レンズ光路を通り前記接続レンズによって前記第2の波長変換素子の所定位置に集光されるように前記第2の波長変換素子に入射するように構成されており、前記第2の波長変換素子の前記所定位置は、前記第2の波長変換素子を構成している波長変換素子本体の入射端部と出射端部の間に、到達端部に到達した信号光ビームあるいは前記到達端部から出射した信号光ビームを前記到達端部あるいはその近傍に配置した反射体で反射させて同一波長変換素子本体に再入射させる前記反射体が配置されているが前記反射体と前記第2の波長変換素子の端部の間の光路に集光レンズ(以下、再入射レンズともいう)が配置されていない場合には入射端部と出射端部の間で当該信号光ビームが通る光路の光路長としてみたときの波長変換素子本体内における当該信号光ビームの体積を最小にするような集光位置もしくはその近傍であり、前記第2の波長変換素子を構成している波長変換素子本体の入射端部と出射端部の間に前記反射体も再入射レンズも配置されていない場合には入射端部と出射端部の間で当該信号光ビームが通る光路の光路長としてみたときの波長変換素子本体内における当該信号光ビームの体積を最小にするような集光位置もしくはその近傍であり、前記第2の波長変換素子を構成している波長変換素子本体の入射端部と出射端部の間の光路に再入射レンズが配置されている場合には入射端部と前記再入射レンズの直前の到達端部の間で当該信号光ビームが通る光路の光路長としてみたときの波長変換素子本体内における当該信号光ビームの体積を最小にするような集光位置もしくはその近傍であることを特徴とする波長変換装置である。   A wavelength converter according to a thirty-fourth invention (hereinafter also referred to as invention 34) as an example of the present invention is a wavelength converter using at least two wavelength conversion elements, and the wavelength converter is a signal subjected to wavelength conversion. At least one wavelength conversion optical circuit unit having at least two wavelength conversion elements connected in series via a lens (hereinafter also referred to as a connection lens) in the optical path of the light beam; At least one of the wavelength conversion optical circuit units emits one of the two wavelength conversion elements connected in series via the connection lens (hereinafter also referred to as a first wavelength conversion element). The optical path of the signal light beam including the optical path passing through the connection lens between the end and the incident end of the other wavelength conversion element (hereinafter also referred to as the second wavelength conversion element) is also referred to as a connection lens optical path. Then, the signal light beam emitted from the first wavelength conversion element passes through the connection lens optical path and is condensed at a predetermined position of the second wavelength conversion element by the connection lens. It is comprised so that it may inject into a wavelength conversion element, The said predetermined position of a said 2nd wavelength conversion element is the incident end part and output end part of the wavelength conversion element main body which comprises the said 2nd wavelength conversion element During this period, the signal light beam that has reached the reaching end portion or the signal light beam that has exited from the reaching end portion is reflected by a reflector disposed at or near the reaching end portion, and is incident again on the same wavelength conversion element main body. The incident end when the reflector is disposed but a condensing lens (hereinafter also referred to as a re-incident lens) is not disposed in the optical path between the reflector and the end of the second wavelength conversion element. Between the head and the output end The second wavelength conversion element is configured at or near the condensing position that minimizes the volume of the signal light beam in the wavelength conversion element body when viewed as the optical path length of the optical path through which the signal light beam passes. The optical path through which the signal light beam passes between the incident end and the exit end when neither the reflector nor the re-incidence lens is disposed between the incident end and the exit end of the wavelength conversion element body. The wavelength conversion element body constituting the second wavelength conversion element at or near the condensing position that minimizes the volume of the signal light beam in the wavelength conversion element body when viewed as the optical path length When a re-incident lens is disposed in the optical path between the incident end and the outgoing end of the optical path, the optical path of the optical path through which the signal light beam passes between the incident end and the arrival end immediately before the re-incident lens As long as The wavelength conversion device is characterized by being at or near the condensing position that minimizes the volume of the signal light beam in the wavelength conversion element body.

本発明の前記発明34を展開した第35の発明(以下、発明35ともいう)による波長変換装置は、発明34に記載の波長変換装置において、前記第1の波長変換素子に入射する入射光ビームが、前記一方の波長変換素子の所定位置に集光されるように前記一方の波長変換素子に入射するように構成されており、前記一方の波長変換素子の前記所定位置は、前記一方の波長変換素子を構成している波長変換素子本体の入射端部と出射端部の間に、到達端部に到達した信号光ビームあるいは前記到達端部から出射した信号光ビームを前記到達端部あるいはその近傍に配置した反射体で反射させて同一波長変換素子本体に再入射させる前記反射体が配置されているが前記反射体と前記一方の波長変換素子の端部の間の光路に再入射レンズが配置されていない場合には入射端部と出射端部の間で当該信号光ビームが通る光路の光路長としてみたときの波長変換素子本体内における当該信号光ビームの体積を最小にするような集光位置もしくはその近傍であり、前記一方の波長変換素子を構成している波長変換素子本体の入射端部と出射端部の間に前記反射体も再入射レンズも配置されていない場合には入射端部と出射端部の間で当該信号光ビームが通る光路の光路長としてみたときの波長変換素子本体内における当該信号光ビームの体積を最小にするような集光位置もしくはその近傍であり、前記一方の波長変換素子を構成している波長変換素子本体の入射端部と出射端部の間の光路に再入射レンズが配置されている場合には入射端部と前記再入射レンズの直前の到達端部の間で当該信号光ビームが通る光路の光路長としてみたときの波長変換素子本体内における当該信号光ビームの体積を最小にするような集光位置もしくはその近傍であることを特徴とする波長変換装置である。   A wavelength conversion device according to a thirty-fifth aspect of the present invention (hereinafter also referred to as the thirty-fifth aspect), in which the thirty-fourth aspect of the present invention is developed, is the wavelength conversion device according to the thirty-fourth aspect, wherein the incident light beam is incident on the first wavelength conversion element. Is configured to be incident on the one wavelength conversion element so as to be condensed at a predetermined position of the one wavelength conversion element, and the predetermined position of the one wavelength conversion element is the one wavelength A signal light beam reaching the arrival end or a signal light beam emitted from the arrival end between the incident end and the emission end of the wavelength conversion element body constituting the conversion element is the arrival end or its end The reflector that is reflected by a reflector disposed in the vicinity and re-enters the same wavelength conversion element main body is disposed, but a re-incident lens is disposed in the optical path between the reflector and the end of the one wavelength conversion element. Arranged If not, the condensing position that minimizes the volume of the signal light beam in the wavelength conversion element body when viewed as the optical path length of the optical path through which the signal light beam passes between the incident end and the output end Alternatively, if the reflector and the re-incidence lens are not disposed between the incident end and the emission end of the wavelength conversion element main body constituting the one wavelength conversion element, the incident end The light converging position or the vicinity thereof that minimizes the volume of the signal light beam in the wavelength conversion element body when viewed as the optical path length of the optical path through which the signal light beam passes between When a re-incident lens is disposed in the optical path between the incident end and the outgoing end of the wavelength conversion element main body constituting the wavelength conversion element, the incident end and the arrival end immediately before the re-incidence lens The signal between parts Is a wavelength conversion device, characterized in that the volume of the signal light beam in the wavelength conversion element main body is condensed position or in the vicinity thereof so as to minimize when viewed as a optical path length of the optical path which the beam passes.

本発明の前記発明34または35を展開した第36の発明(以下、発明36ともいう)による波長変換装置は、発明34または35に記載の波長変換装置において、少なくとも1つの波長変換素子は、少なくとも1つの再入射レンズを有しており、前記再入射レンズを通り当該波長変換素子に再入射する信号光ビームが、前記再入射レンズによって当該波長変換素子の所定位置に集光されるように当該波長変換素子に再入射するように構成されており、当該波長変換素子の前記所定位置は、当該波長変換素子を構成している波長変換素子本体の当該再入射レンズと当該波長変換素子本体の出射端部の間に、到達端部に到達した信号光ビームあるいは前記到達端部から出射した信号光ビームを前記到達端部あるいはその近傍に配置した反射体で反射させて同一波長変換素子本体に再入射させる反射体が配置されているが前記反射体と当該波長変換素子本体の間の光路に当該再入射レンズとは別の他の再入射レンズが配置されていない場合には当該再入射レンズの直後の再入射端部と当該波長変換素子本体の出射端部の間で当該信号光ビームが通る光路の光路長としてみたときの波長変換素子本体内における当該信号光ビームの体積を最小にするような集光位置もしくはその近傍であり、当該波長変換素子を構成している波長変換素子本体の当該再入射レンズと当該波長変換素子本体の出射端部の間に反射体も当該再入射レンズとは別の他の再入射レンズも配置されていない場合には当該再入射レンズの直後の再入射端部と出射端部の間で当該信号光ビームが通る光路の光路長としてみたときの波長変換素子本体内における当該信号光ビームの体積を最小にするような集光位置もしくはその近傍であり、当該波長変換素子を構成している波長変換素子本体の当該再入射レンズと当該波長変換素子本体の出射端部の間の光路に反射体と当該再入射レンズとは別の他の再入射レンズが配置されている場合には当該再入射レンズの直後の再入射端部と前記他の再入射レンズの直前の到達端部の間で当該信号光ビームが通る光路の光路長としてみたときの波長変換素子本体内における当該信号光ビームの体積を最小にするような集光位置もしくはその近傍であることを特徴とする波長変換装置である。   A wavelength converter according to a thirty-sixth aspect of the present invention (hereinafter also referred to as the thirty-sixth aspect) according to the thirty-fourth aspect of the present invention is the wavelength converter according to the thirty-fourth aspect of the present invention, wherein at least one wavelength conversion element is at least A signal light beam that passes through the re-incidence lens and re-enters the wavelength conversion element, and is collected by the re-incidence lens at a predetermined position of the wavelength conversion element. The wavelength conversion element is configured to re-enter the wavelength conversion element, and the predetermined position of the wavelength conversion element is the re-incidence lens of the wavelength conversion element body constituting the wavelength conversion element and the emission of the wavelength conversion element body. A reflector in which the signal light beam reaching the reaching end portion or the signal light beam emitted from the reaching end portion is arranged between the end portions or in the vicinity thereof. A reflector that is incident on the same wavelength conversion element main body is disposed, but another re-incidence lens is disposed on the optical path between the reflector and the wavelength conversion element main body. If not, the wavelength conversion element body in the wavelength conversion element body when viewed as the optical path length of the optical path through which the signal light beam passes between the re-incidence end part immediately after the re-incidence lens and the emission end part of the wavelength conversion element body A condensing position that minimizes the volume of the signal light beam or its vicinity, and between the re-incident lens of the wavelength conversion element body constituting the wavelength conversion element and the emission end of the wavelength conversion element body In the case where neither the reflector nor another re-incidence lens other than the re-incident lens is arranged, the optical path through which the signal light beam passes between the re-incident end and the exit end immediately after the re-incident lens As the optical path length of The re-incident lens and the wavelength of the wavelength conversion element body constituting the wavelength conversion element at or near the condensing position that minimizes the volume of the signal light beam in the wavelength conversion element body When another re-incidence lens other than the reflector and the re-incidence lens is arranged in the optical path between the output end of the conversion element body, the re-incidence end immediately after the re-incidence lens and the other A condensing position that minimizes the volume of the signal light beam in the wavelength conversion element body when viewed as the optical path length of the optical path through which the signal light beam passes between the arrival ends immediately before the re-incidence lens Alternatively, it is a wavelength converter characterized by being in the vicinity thereof.

本発明の前記発明34〜36を展開した第37の発明(以下、発明37ともいう)による波長変換装置は、発明34〜36に記載の波長変換装置において、前記波長変換素子本体の前記入射端部になる表面とそれと反対側の表面とが1分以内の開き角で互いに平行に形成されていることを特徴とする波長変換装置である。   A wavelength conversion device according to a thirty-seventh invention (hereinafter also referred to as invention 37), in which the inventions 34 to 36 of the present invention are developed, is the wavelength conversion device according to the inventions 34 to 36, wherein the incident end of the wavelength conversion element main body. The wavelength conversion device is characterized in that the surface to be a part and the surface on the opposite side are formed in parallel with each other with an opening angle within 1 minute.

本発明の前記発明34〜37を展開した第38の発明(以下、発明38ともいう)による波長変換装置は、発明34〜37に記載の波長変換装置において、前記波長変換素子本体が分極反転領域を有する分極反転素子であることを特徴とする波長変換装置である。   A wavelength converter according to a thirty-eighth aspect (hereinafter also referred to as invention 38) of the present inventions 34 to 37 according to the present invention is the wavelength converter according to any of the thirty-fourth to thirty-seventh aspects, wherein the wavelength conversion element body is a domain-inverted region. It is a wavelength conversion device characterized by being a polarization reversal element having.

本発明の前記発明38を展開した第39の発明(以下、発明39ともいう)による波長変換装置は、発明38に記載の波長変換装置において、前記波長変換素子本体の表面と分極反転領域の境界面とが1分以内の開き角で互いに平行に形成されていることを特徴とする波長変換装置である。   A wavelength converter according to a thirty-ninth aspect of the present invention (hereinafter also referred to as the thirty-ninth aspect) is a wavelength conversion apparatus according to the thirty-eighth aspect, wherein the boundary between the surface of the wavelength conversion element body and the domain-inverted region is provided. The wavelength conversion device is characterized in that the surfaces are formed in parallel with each other with an opening angle within one minute.

本発明の前記発明38または39を展開した第40の発明(以下、発明40ともいう)による波長変換装置は、発明38または39に記載の波長変換装置において、前記波長変換素子本体の複数の分極反転領域の境界面同志が1分以内の開き角で互いに平行に形成されていることを特徴とする波長変換装置である。   A wavelength conversion device according to a 40th aspect (hereinafter also referred to as invention 40) of the invention 38 or 39 according to the invention is the wavelength conversion device according to aspect 38 or 39, wherein a plurality of polarizations of the wavelength conversion element body are provided. The wavelength conversion device is characterized in that the boundary surfaces of the inversion regions are formed in parallel with each other with an opening angle within one minute.

本発明の前記発明38〜40を展開した第41の発明(以下、発明41ともいう)による波長変換装置は、発明38〜40に記載の波長変換装置において、前記波長変換素子本体の分極反転領域の幅が、前記波長変換素子本体に最初に入射した入射光の光路に直交する方向でかつ前記光路とその次の再入射光の光路を含む面における幅において少なくとも2mmあることを特徴とする波長変換装置である。   A wavelength conversion device according to a forty-first invention (hereinafter also referred to as invention 41) in which the inventions 38 to 40 of the present invention are developed is the wavelength conversion device according to the invention 38 to 40, wherein the polarization inversion region of the wavelength conversion element body is A width of at least 2 mm in a direction perpendicular to the optical path of incident light first incident on the wavelength conversion element body and in a plane including the optical path and the optical path of the next re-incident light It is a conversion device.

本発明の前記発明38〜41を展開した第42の発明(以下、発明42ともいう)による波長変換装置は、発明38〜41に記載の波長変換装置において、前記分極反転素子がPPLN(Periodically Poled LiNbO3)あるいはPPLT(Periodically Poled LiTaO3)あるいはPPKTP(Periodically Poled KTiOPO4)であることを特徴とする波長変換装置である。   A wavelength converter according to a forty-second invention (hereinafter also referred to as invention 42) in which the inventions 38 to 41 of the present invention are developed is the wavelength converter according to the invention 38 to 41, wherein the polarization inverting element is PPLN (Periodically Poled). The wavelength conversion device is characterized by being LiNbO3), PPLT (Periodically Poled LiTaO3) or PPKTP (Perially Polly KTiOPO4).

本発明の前記発明34〜42を展開した第43の発明(以下、発明43ともいう)による波長変換装置は、発明34〜42に記載の波長変換装置において、前記反射体が特定の波長の光の少なくとも一部を透過することが出きる機能素子であることを特徴とする波長変換装置である。   A wavelength conversion device according to a forty-third invention (hereinafter also referred to as invention 43) in which the inventions 34 to 42 of the present invention are developed is the wavelength conversion device according to any of the inventions 34 to 42, wherein the reflector is light having a specific wavelength. A wavelength conversion device characterized in that it is a functional element that can transmit at least a part of the wavelength conversion device.

本発明の前記発明43を展開した第44の発明(以下、発明44ともいう)による波長変換装置は、発明43に記載の波長変換装置において、前記反射体の第1の波長λ1の光と第2の波長λ2の光のいずれか一方または双方に対する反射率が99.8%以上であることを特徴とする波長変換装置である。   A wavelength conversion device according to a forty-fourth invention (hereinafter also referred to as invention 44), which is a development of the invention 43 of the present invention, is the wavelength conversion device according to the invention 43, wherein the light of the first wavelength λ1 of the reflector and the wavelength conversion device are the same. The wavelength conversion device is characterized in that the reflectance with respect to one or both of the lights having the wavelength λ2 of 2 is 99.8% or more.

本発明の前記発明34〜44を展開した第45の発明(以下、発明45ともいう)による波長変換装置は、発明34〜44に記載の波長変換装置において、少なくとも2つの前記再入射レンズが一体に構成されていることを特徴とする波長変換装置である。   A wavelength converter according to a forty-fifth aspect (hereinafter also referred to as "invention 45") of the inventions 34 to 44 according to the present invention is the wavelength converter according to the invention 34 to 44, wherein at least two of the re-incident lenses are integrated. This is a wavelength conversion device that is configured as follows.

本発明の前記発明34〜45を展開した第46の発明(以下、発明46ともいう)による波長変換装置は、発明34〜45に記載の波長変換装置において、2つの波長変換素子の間に前記接続レンズが複数個あることを特徴とする波長変換装置である。   A wavelength converter according to a forty-sixth invention (hereinafter also referred to as invention 46), in which the inventions 34 to 45 of the present invention are developed, is the wavelength converter according to the invention 34 to 45, wherein the wavelength converter is provided between two wavelength conversion elements. A wavelength converter having a plurality of connecting lenses.

本発明の前記発明34〜46を展開した第47の発明(以下、発明47ともいう)による波長変換装置は、発明34〜46に記載の波長変換装置において、信号光ビームの光路上における前記接続レンズの位置と前記光路に対する角度の少なくとも一方を変える手段を有していることを特徴とする波長変換装置である。   A wavelength converter according to a forty-seventh aspect (hereinafter also referred to as invention 47) of the inventions 34 to 46 according to the present invention is the wavelength converter according to any one of aspects 34 to 46, wherein the connection on the optical path of the signal light beam. A wavelength conversion device comprising means for changing at least one of a lens position and an angle with respect to the optical path.

本発明の前記発明34〜47を展開した第48の発明(以下、発明48ともいう)による波長変換装置は、発明34〜47に記載の波長変換装置において、前記波長変換装置の少なくとも1つの前記波長変換光回路部は、前記波長変換光回路部を構成する前記接続レンズの一方の側に前記第1の波長変換素子と前記第2の波長変換素子が配置されており、前記接続レンズの他方の側に前記接続レンズ光路を進行する信号光ビームの光路を変えることができる反射体などの信号光光路変更手段が設けられており、前記接続レンズを通る信号光ビームはその少なくとも一部が前記信号光光路変更手段によって光路を折り変えされて、その光路が前記第1の波長変換素子と第2の波長変換素子のうちの一方の波長変換素子から出射した信号光ビームが他方の波長変換素子に入射するように折り返されていることを特徴とする波長変換装置である。   A wavelength conversion device according to a forty-eighth invention (hereinafter also referred to as invention 48), in which the inventions 34 to 47 of the present invention are developed, is the wavelength conversion device according to the invention 34 to 47, in which at least one of the wavelength conversion devices is In the wavelength conversion optical circuit unit, the first wavelength conversion element and the second wavelength conversion element are arranged on one side of the connection lens constituting the wavelength conversion optical circuit unit, and the other side of the connection lens. A signal light optical path changing means such as a reflector capable of changing the optical path of the signal light beam traveling in the connecting lens optical path is provided on the side of the connecting lens, and at least a part of the signal light beam passing through the connecting lens is the A signal light beam whose optical path is folded by the signal light optical path changing means and whose optical path is emitted from one of the first wavelength conversion element and the second wavelength conversion element. It is the wavelength conversion device according to claim which is folded so as to enter the other of the wavelength conversion element.

本発明の例としての第49の発明(以下、発明49ともいう)による波長変換装置は波長変換素子を少なくとも1つ用いた波長変換装置で、前記波長変換素子に入射される入射光ビームは、前記波長変換素子の所定位置に集光されるように前記波長変換素子に入射するように構成されており、前記波長変換素子の前記所定位置は、前記波長変換素子を構成している波長変換素子本体の入射端部と出射端部の間に、到達端部に到達した信号光ビームあるいは前記到達端部から出射した信号光ビームを前記到達端部あるいはその近傍に配置した反射体で反射させて同一波長変換素子本体に再入射させる前記反射体が配置されているが前記反射体と前記波長変換素子の端部の間の光路に集光レンズ(以下、再入射レンズともいう)が配置されていない場合には入射端部と出射端部の間で当該信号光ビームが通る光路の光路長としてみたときの波長変換素子本体内における当該信号光ビームの体積を最小にするような集光位置もしくはその近傍であり、前記波長変換素子を構成している波長変換素子本体の入射端部と出射端部の間に前記反射体も再入射レンズも配置されていない場合には入射端部と出射端部の間で当該信号光ビームが通る光路の光路長としてみたときの波長変換素子本体内における当該信号光ビームの体積を最小にするような集光位置もしくはその近傍であり、前記波長変換素子を構成している波長変換素子本体の入射端部と出射端部の間の光路に再入射レンズが配置されている場合には入射端部と前記再入射レンズの直前の到達端部の間で当該信号光ビームが通る光路の光路長としてみたときの波長変換素子本体内における当該信号光ビームの体積を最小にするような集光位置もしくはその近傍であることを特徴とする波長変換装置である。   A wavelength conversion device according to a 49th invention (hereinafter also referred to as invention 49) as an example of the present invention is a wavelength conversion device using at least one wavelength conversion element, and an incident light beam incident on the wavelength conversion element is: The wavelength conversion element is configured to be incident on the wavelength conversion element so as to be condensed at a predetermined position of the wavelength conversion element, and the predetermined position of the wavelength conversion element constitutes the wavelength conversion element The signal light beam reaching the arrival end or the signal light beam emitted from the arrival end is reflected between the incident end and the emission end of the main body by a reflector disposed at or near the arrival end. The reflector that re-enters the same wavelength conversion element body is disposed, but a condenser lens (hereinafter also referred to as a re-incidence lens) is disposed in the optical path between the reflector and the end of the wavelength conversion element. Na In such a case, the light condensing position that minimizes the volume of the signal light beam in the wavelength conversion element body when viewed as the optical path length of the optical path through which the signal light beam passes between the incident end and the output end When the reflector and the re-incidence lens are not disposed between the incident end and the exit end of the wavelength conversion element main body that is in the vicinity and constitutes the wavelength conversion element, the entrance end and the exit end The wavelength conversion element is at or near the condensing position that minimizes the volume of the signal light beam in the wavelength conversion element body when viewed as the optical path length of the optical path through which the signal light beam passes. When a re-incident lens is disposed in the optical path between the incident end and the outgoing end of the wavelength conversion element body, the signal is between the incident end and the arrival end immediately before the re-incident lens. Of the light path through which the light beam passes A wavelength converter which is a focusing position or in the vicinity thereof so as to minimize the volume of the signal light beam in the wavelength conversion element main body when viewed as a path length.

本発明の前記発明49を展開した第50の発明(以下、発明50ともいう)による波長変換装置は、発明49に記載の波長変換装置において、少なくとも1つの波長変換素子は、少なくとも1つの再入射レンズを有しており、前記再入射レンズを通り当該波長変換素子に再入射する信号光ビームが、前記再入射レンズによって当該波長変換素子の所定位置に集光されるように当該波長変換素子に再入射するように構成されており、当該波長変換素子の前記所定位置は、当該波長変換素子を構成している波長変換素子本体の当該再入射レンズと当該波長変換素子本体の出射端部の間に、到達端部に到達した信号光ビームあるいは前記到達端部から出射した信号光ビームを前記到達端部あるいはその近傍に配置した反射体で反射させて同一波長変換素子本体に再入射させる反射体が配置されているが前記反射体と当該波長変換素子本体の間の光路に再入射レンズとは別の他の再入射レンズが配置されていない場合には入射端部と出射端部の間で当該信号光ビームが通る光路の光路長としてみたときの波長変換素子本体内における当該信号光ビームの体積を最小にするような集光位置もしくはその近傍であり、当該波長変換素子を構成している波長変換素子本体の当該再入射レンズの直後の再入射端部と当該波長変換素子本体の出射端部の間に反射体も再入射レンズとは別の他の再入射レンズも配置されていない場合には当該再入射レンズの直後の再入射端部と出射端部の間で当該信号光ビームが通る光路の光路長としてみたときの波長変換素子本体内における当該信号光ビームの体積を最小にするような集光位置もしくはその近傍であり、当該波長変換素子を構成している波長変換素子本体の当該再入射レンズと当該波長変換素子本体の出射端部の間の光路に反射体と当該再入射レンズとは別の他の再入射レンズが配置されている場合には当該再入射レンズの直後の再入射端部と前記他の再入射レンズの直前の到達端部の間で当該信号光ビームが通る光路の光路長としてみたときの波長変換素子本体内における当該信号光ビームの体積を最小にするような集光位置もしくはその近傍であることを特徴とする波長変換装置である。   A wavelength conversion device according to a 50th aspect (hereinafter also referred to as invention 50) of the present invention 49, which is the development of the present invention 49, is the wavelength conversion device according to aspect 49, wherein at least one wavelength conversion element is at least one re-incidence. A signal light beam that has a lens and re-enters the wavelength conversion element through the re-incidence lens, is focused on the wavelength conversion element by the re-incidence lens at a predetermined position of the wavelength conversion element. The wavelength conversion element is configured to re-enter, and the predetermined position of the wavelength conversion element is between the re-incidence lens of the wavelength conversion element body constituting the wavelength conversion element and the emission end of the wavelength conversion element body. Then, the signal light beam reaching the reaching end or the signal light beam emitted from the reaching end is reflected by a reflector disposed at or near the reaching end to change the same wavelength. In the case where a reflector that re-enters the element body is disposed, but no other re-incident lens other than the re-incident lens is disposed in the optical path between the reflector and the wavelength conversion element body, the incident end A condensing position or the vicinity thereof that minimizes the volume of the signal light beam in the wavelength conversion element body when viewed as the optical path length of the optical path through which the signal light beam passes between the light emitting portion and the emission end, Between the re-incident end immediately after the re-incidence lens of the wavelength conversion element main body constituting the wavelength conversion element and the output end of the wavelength conversion element main body, the reflector is another re-entrance different from the re-incident lens. When the incident lens is not arranged, the signal in the wavelength conversion element body when viewed as the optical path length of the optical path through which the signal light beam passes between the re-incidence end and the exit end immediately after the re-incidence lens The volume of the light beam It is a condensing position to make it small or its vicinity, and a reflector is provided in the optical path between the re-incidence lens of the wavelength conversion element body constituting the wavelength conversion element and the emission end of the wavelength conversion element body. When another re-incidence lens other than the re-incident lens is arranged, the signal between the re-incident end immediately after the re-incident lens and the reaching end immediately before the other re-incident lens. A wavelength conversion device characterized by being at or near a condensing position that minimizes the volume of the signal light beam in the wavelength conversion element body when viewed as the optical path length of the optical path through which the light beam passes .

本発明の前記発明49または50を展開した第51の発明(以下、発明51ともいう)による波長変換装置は、発明49または50に記載の波長変換装置において、前記波長変換素子本体の前記入射端部になる表面とそれと反対側の表面とが1分以内の開き角で互いに平行に形成されていることを特徴とする波長変換装置である。   A wavelength conversion device according to a fifty-first invention (hereinafter also referred to as invention 51) in which the invention 49 or 50 of the present invention is developed is the wavelength conversion device according to the invention 49 or 50, in which the incident end of the wavelength conversion element body is the incident end. The wavelength conversion device is characterized in that the surface to be a part and the surface on the opposite side are formed in parallel with each other with an opening angle within 1 minute.

本発明の前記発明49〜51を展開した第52の発明(以下、発明52ともいう)による波長変換装置は、発明49〜51のいずれかに記載の波長変換装置において、前記波長変換素子本体が分極反転領域を有する分極反転素子であることを特徴とする波長変換装置である。   A wavelength converter according to a fifty-second invention (hereinafter also referred to as invention 52), in which the inventions 49 to 51 of the present invention are developed, is the wavelength converter according to any of the inventions 49 to 51, wherein the wavelength conversion element body is The wavelength conversion device is a polarization reversal element having a polarization reversal region.

本発明の前記発明52を展開した第53の発明(以下、発明53ともいう)による波長変換装置は、発明52に記載の波長変換装置において、前記波長変換素子本体の表面と分極反転領域の境界面とが1分以内の開き角で互いに平行に形成されていることを特徴とする波長変換装置である。   A wavelength converter according to a fifty-third invention (hereinafter also referred to as invention 53) in which the invention 52 of the present invention is developed is the wavelength converter according to the invention 52, wherein the boundary between the surface of the wavelength conversion element body and the domain-inverted region. The wavelength conversion device is characterized in that the surfaces are formed in parallel with each other with an opening angle within one minute.

本発明の前記発明52または53を展開した第54の発明(以下、発明54ともいう)による波長変換装置は、発明52または53に記載の波長変換装置において、前記波長変換素子本体の複数の分極反転領域の境界面同志が1分以内の開き角で互いに平行に形成されていることを特徴とする波長変換装置である。   A wavelength converter according to a fifty-fourth invention (hereinafter also referred to as invention 54) obtained by developing the invention 52 or 53 according to the present invention is the wavelength converter according to the invention 52 or 53, wherein a plurality of polarizations of the wavelength conversion element body are provided. The wavelength conversion device is characterized in that the boundary surfaces of the inversion regions are formed in parallel with each other with an opening angle within one minute.

本発明の前記発明52〜54を展開した第55の発明(以下、発明55ともいう)による波長変換装置は、発明52〜54に記載の波長変換装置において、前記波長変換素子本体の分極反転領域の幅が、前記波長変換素子本体に最初に入射した入射光の光路に直交する方向でかつ前記光路とその次の再入射光の光路を含む面における幅において少なくとも2mmあることを特徴とする波長変換装置である。   A wavelength converter according to a fifty-fifth invention (hereinafter also referred to as invention 55) obtained by developing the inventions 52 to 54 of the present invention is the wavelength converter according to the invention 52 to 54, wherein the domain-inverted region of the wavelength converter element body is the same. A width of at least 2 mm in a direction perpendicular to the optical path of incident light first incident on the wavelength conversion element body and in a plane including the optical path and the optical path of the next re-incident light It is a conversion device.

本発明の前記発明52〜55を展開した第56の発明(以下、発明56ともいう)による波長変換装置は、発明52〜55に記載の波長変換装置において、前記分極反転素子がPPLN(Periodically Poled LiNbO3)あるいはPPLT(Periodically Poled LiTaO3)あるいはPPKTP(Periodically Poled KTiOPO4)であることを特徴とする波長変換装置である。   A wavelength converter according to a fifty-sixth invention (hereinafter also referred to as invention 56) in which the inventions 52 to 55 of the present invention are developed, in the wavelength converter according to the invention 52 to 55, the polarization inversion element is PPLN (Periodically Poled). The wavelength conversion device is characterized by being LiNbO3), PPLT (Periodically Poled LiTaO3) or PPKTP (Perially Polly KTiOPO4).

本発明の前記発明49〜56を展開した第57の発明(以下、発明57ともいう)による波長変換装置は、発明49〜56に記載の波長変換装置において、少なくとも2つの前記再入射レンズが一体に構成されていることを特徴とする波長変換装置である。   A wavelength converter according to a 57th aspect (hereinafter also referred to as invention 57) of the inventions 49 to 56 according to the present invention is the wavelength converter according to aspects 49 to 56, wherein at least two of the re-incident lenses are integrated. This is a wavelength conversion device that is configured as follows.

本発明の前記発明49〜57を展開した第58の発明(以下、発明58ともいう)による波長変換装置は、発明49〜57に記載の波長変換装置において、信号光ビームの光路上における前記接続レンズの位置と前記光路に対する角度の少なくとも一方を変える手段を有していることを特徴とする波長変換装置である。   A wavelength converter according to a 58th invention (hereinafter also referred to as invention 58), in which the inventions 49 to 57 of the present invention are developed, is the wavelength converter according to the invention 49 to 57, wherein the connection on the optical path of the signal light beam A wavelength conversion device comprising means for changing at least one of a lens position and an angle with respect to the optical path.

本発明の例としての第59の発明(以下、発明59ともいう)による波長変換方法は前記波長変換素子を少なくとも2つ用いて信号光の波長を変換する波長変換方法で、前記波長変換方法は、波長変換を施される信号光ビームの光路においてレンズ(以下、接続レンズともいう)を介して直列に接続されている少なくとも2つの波長変換素子を用いており、前記接続レンズを介して直列に接続されている2つの波長変換素子のうちの一方の波長変換素子(以下、第1の波長変換素子ともいう)の出射端部と他方の波長変換素子(以下、第2の波長変換素子ともいう)の入射端部の間の前記接続レンズを通る光路を含む信号光ビームの光路を接続レンズ光路ともいうことにして、前記接続レンズ光路の中間点を挟んで、前記接続レンズ光路の一方の側に前記第1の波長変換素子を配置し、前記接続レンズ光路の他方の側に前記第2の波長変換素子を配置し、前記第1の波長変換素子から出射した信号光ビームを、前記接続レンズを通り前記接続レンズによって前記第2の波長変換素子の所定位置に集光されるように前記第2の波長変換素子に入射するように構成し、前記第2の波長変換素子の前記所定位置が、前記第2の波長変換素子を構成している波長変換素子本体の入射端部と出射端部の間に、到達端部に到達した信号光ビームあるいは前記到達端部から出射した信号光ビームを前記到達端部あるいはその近傍に配置した反射体で反射させて同一波長変換素子本体に再入射させる前記反射体が配置されているが前記反射体と前記第2の波長変換素子の端部の間の光路に集光レンズ(以下、再入射レンズともいう)が配置されていない場合には入射端部と出射端部の間の全光路長の中間点に相当する位置もしくはその近傍になるようにして信号光の波長を変換し、前記第2の波長変換素子を構成している波長変換素子本体の入射端部と出射端部の間に前記反射体も再入射レンズも配置されていない場合には入射端部と出射端部の間の全光路長の中間点に相当する位置もしくはその近傍になるようにして信号光の波長を変換し、前記第2の波長変換素子を構成している波長変換素子本体の入射端部と出射端部の間の光路に前記反射体と再入射レンズが配置されている場合には入射端部と前記再入射レンズの直前の到達端部の間の全光路長の中間点に相当する位置もしくはその近傍になるようにして信号光の波長を変換することを特徴とする波長変換方法である。   A wavelength conversion method according to a 59th invention (hereinafter also referred to as invention 59) as an example of the present invention is a wavelength conversion method for converting the wavelength of signal light by using at least two wavelength conversion elements, and the wavelength conversion method includes: , Using at least two wavelength conversion elements connected in series via a lens (hereinafter also referred to as a connection lens) in the optical path of the signal light beam subjected to wavelength conversion, and connected in series via the connection lens The output end of one of the two wavelength conversion elements connected (hereinafter also referred to as a first wavelength conversion element) and the other wavelength conversion element (hereinafter also referred to as a second wavelength conversion element). The optical path of the signal light beam including the optical path passing through the connecting lens between the incident end portions is also referred to as a connecting lens optical path, and one of the connecting lens optical paths is sandwiched between the intermediate points of the connecting lens optical paths. The first wavelength conversion element is disposed on the side of the connection lens, the second wavelength conversion element is disposed on the other side of the connection lens optical path, and the signal light beam emitted from the first wavelength conversion element is The second wavelength conversion element is configured to be incident on the second wavelength conversion element so as to pass through a connection lens and be condensed at a predetermined position of the second wavelength conversion element by the connection lens. The signal light beam that has reached the arrival end or the signal light that has exited from the arrival end between the incident end and the emission end of the wavelength conversion element main body constituting the second wavelength conversion element The reflector for reflecting the beam by the reflector disposed at or near the reaching end and re-entering the same wavelength conversion element main body is disposed, but the end of the reflector and the second wavelength conversion element is disposed. Condensing lens in the optical path between If the re-incidence lens is not arranged, the wavelength of the signal light is converted so that it is at or near the midpoint of the total optical path length between the incident end and the exit end. In the case where neither the reflector nor the re-incidence lens is arranged between the incident end and the exit end of the wavelength conversion element main body constituting the second wavelength conversion element, the entrance end and the exit end The wavelength conversion element body constituting the second wavelength conversion element by converting the wavelength of the signal light so as to be at or near the position corresponding to the intermediate point of the total optical path length between the sections When the reflector and the re-incidence lens are arranged in the optical path between the incident end and the exit end, it corresponds to the intermediate point of the total optical path length between the entrance end and the arrival end immediately before the re-incidence lens. Convert the wavelength of signal light so that it is at or near the position The wavelength conversion method characterized by the above.

本発明の前記発明59を展開した第60の発明(以下、発明60ともいう)による波長変換方法は、発明59に記載の波長変換方法において、少なくとも1つの波長変換素子は、少なくとも1つの再入射レンズを有しており、前記再入射レンズを通り当該波長変換素子に再入射する信号光ビームが、前記再入射レンズによって当該波長変換素子の所定位置に集光されるように当該波長変換素子に再入射するように構成されており、当該波長変換素子の前記所定位置が、当該波長変換素子を構成している波長変換素子本体の当該再入射レンズと当該波長変換素子本体の出射端部の間に、到達端部に到達した信号光ビームあるいは前記到達端部から出射した信号光ビームを前記到達端部あるいはその近傍に配置した反射体で反射させて同一波長変換素子本体に再入射させる反射体が配置されているが前記反射体と当該波長変換素子本体の間の光路に当該再入射レンズとは別の他の再入射レンズが配置されていない場合には当該再入射レンズの直後の再入射端部と当該波長変換素子本体の出射端部の間の全光路長の中間点に相当する位置もしくはその近傍になるようにして信号光の波長を変換し、当該波長変換素子を構成している波長変換素子本体の当該再入射レンズと当該波長変換素子本体の出射端部の間に反射体も当該再入射レンズとは別の他の再入射レンズも配置されていない場合には当該再入射レンズの直後の再入射端部と出射端部の間の全光路長の中間点に相当する位置もしくはその近傍になるようにして信号光の波長を変換し、当該波長変換素子を構成している波長変換素子本体の当該再入射レンズと当該波長変換素子本体の出射端部の間の光路に反射体と当該再入射レンズとは別の他の再入射レンズが配置されている場合には当該再入射レンズの直後の再入射端部と前記他の再入射レンズの直前の到達端部の間の全光路長の中間点に相当する位置もしくはその近傍になるようにして信号光の波長を変換することを特徴とする波長変換方法である。   A wavelength conversion method according to a sixty-second invention (hereinafter also referred to as the invention 60) in which the invention 59 of the present invention is developed is the wavelength conversion method according to the invention 59, wherein at least one wavelength conversion element has at least one re-incidence. A signal light beam that has a lens and re-enters the wavelength conversion element through the re-incidence lens, is focused on the wavelength conversion element by the re-incidence lens at a predetermined position of the wavelength conversion element. The wavelength conversion element is configured to re-enter, and the predetermined position of the wavelength conversion element is between the re-incidence lens of the wavelength conversion element main body and the emission end of the wavelength conversion element main body constituting the wavelength conversion element. Then, the signal light beam reaching the reaching end or the signal light beam emitted from the reaching end is reflected by a reflector disposed at or near the reaching end to change the same wavelength. A reflector that re-enters the element main body is arranged, but when no other re-incident lens other than the re-incident lens is arranged in the optical path between the reflector and the wavelength conversion element main body, Convert the wavelength of the signal light so that it is at or near the midpoint of the total optical path length between the re-incidence end immediately after the re-incidence lens and the output end of the wavelength conversion element body, Between the re-incident lens of the wavelength conversion element main body constituting the wavelength conversion element and the exit end of the wavelength conversion element main body, a reflector and another re-incident lens other than the re-incident lens are also arranged. If not, convert the wavelength of the signal light so that it is at or near the midpoint of the total optical path length between the re-incidence end and the exit end immediately after the re-incidence lens. Wavelength conversion element constituting conversion element When another re-incidence lens other than the reflector and the re-incidence lens is arranged in the optical path between the re-incidence lens of the body and the exit end of the wavelength conversion element main body, The wavelength of the signal light is converted so that it is at or near the position corresponding to the midpoint of the total optical path length between the re-incidence end immediately after and the arrival end just before the other re-incidence lens. This is a wavelength conversion method.

本発明の前記発明59または60を展開した第61の発明(以下、発明61ともいう)による波長変換方法は、発明59または60に記載の波長変換方法において、前記波長変換素子本体に分極反転領域を有する分極反転素子を用いることを特徴とする波長変換方法である。   A wavelength conversion method according to a 61st invention (hereinafter also referred to as invention 61) obtained by developing the invention 59 or 60 of the present invention is the wavelength conversion method according to the invention 59 or 60, wherein a polarization inversion region is provided in the wavelength conversion element body. A wavelength conversion method characterized by using a polarization inversion element having

本発明の例としての第62の発明(以下、発明62ともいう)による波長変換方法は前記波長変換素子を少なくとも2つ用いて信号光の波長を変換する波長変換方法で、前記波長変換方法は、波長変換を施される信号光ビームの光路においてレンズ(以下、接続レンズともいう)を介して直列に接続されている少なくとも2つの波長変換素子を用いており、前記接続レンズを介して直列に接続されている2つの波長変換素子のうちの一方の波長変換素子(以下、第1の波長変換素子ともいう)の出射端部と他方の波長変換素子(以下、第2の波長変換素子ともいう)の入射端部の間の前記接続レンズを通る光路を含む信号光ビームの光路を接続レンズ光路ともいうことにして、前記接続レンズ光路の中間点を挟んで、前記接続レンズ光路の一方の側に前記第1の波長変換素子を配置し、前記接続レンズ光路の他方の側に前記第2の波長変換素子を配置し、前記第1の波長変換素子から出射した信号光ビームを、前記接続レンズを通り前記接続レンズによって前記第2の波長変換素子の所定位置に集光されるように前記第2の波長変換素子に入射させ、前記第2の波長変換素子の前記所定位置が、前記第2の波長変換素子を構成している波長変換素子本体の入射端部と出射端部の間に、到達端部に到達した信号光ビームあるいは前記到達端部から出射した信号光ビームを前記到達端部あるいはその近傍に配置した反射体で反射させて同一波長変換素子本体に再入射させる前記反射体が配置されているが前記反射体と前記第2の波長変換素子の端部の間の光路に集光レンズ(以下、再入射レンズともいう)が配置されていない場合には入射端部と出射端部の間で当該信号光ビームが通る光路の光路長としてみたときの波長変換素子本体内における当該信号光ビームの体積を最小にするような集光位置もしくはその近傍になるようにして信号光の波長を変換し、前記第2の波長変換素子を構成している波長変換素子本体の入射端部と出射端部の間に前記反射体も再入射レンズも配置されていない場合には入射端部と出射端部の間で当該信号光ビームが通る光路の光路長としてみたときの波長変換素子本体内における当該信号光ビームの体積を最小にするような集光位置もしくはその近傍になるようにして信号光の波長を変換し、前記第2の波長変換素子を構成している波長変換素子本体の入射端部と出射端部の間の光路に再入射レンズが配置されている場合には入射端部と前記再入射レンズの直前の到達端部の間で当該信号光ビームが通る光路の光路長としてみたときの波長変換素子本体内における当該信号光ビームの体積を最小にするような集光位置もしくはその近傍になるようにして信号光の波長を変換することを特徴とする波長変換方法である。   A wavelength conversion method according to a 62nd invention (hereinafter also referred to as invention 62) as an example of the present invention is a wavelength conversion method that converts the wavelength of signal light using at least two wavelength conversion elements, and the wavelength conversion method is , Using at least two wavelength conversion elements connected in series via a lens (hereinafter also referred to as a connection lens) in the optical path of the signal light beam subjected to wavelength conversion, and connected in series via the connection lens The output end of one of the two wavelength conversion elements connected (hereinafter also referred to as a first wavelength conversion element) and the other wavelength conversion element (hereinafter also referred to as a second wavelength conversion element). The optical path of the signal light beam including the optical path passing through the connecting lens between the incident end portions is also referred to as a connecting lens optical path, and one of the connecting lens optical paths is sandwiched between the intermediate points of the connecting lens optical paths. The first wavelength conversion element is disposed on the side of the connection lens, the second wavelength conversion element is disposed on the other side of the connection lens optical path, and the signal light beam emitted from the first wavelength conversion element is The light is incident on the second wavelength conversion element so as to be condensed at a predetermined position of the second wavelength conversion element by the connection lens through the connection lens, and the predetermined position of the second wavelength conversion element is The signal light beam reaching the arrival end or the signal light beam emitted from the arrival end is reached between the incident end and the emission end of the wavelength conversion element main body constituting the second wavelength conversion element. An optical path between the reflector and the end of the second wavelength conversion element is disposed where the reflector that is reflected by the reflector disposed at or near the end and re-enters the same wavelength conversion element main body is disposed. Condensing lens (hereinafter re-entry) If the lens is not disposed, the volume of the signal light beam in the wavelength conversion element body is minimized when viewed as the optical path length of the optical path through which the signal light beam passes between the incident end and the output end. The wavelength of the signal light is converted so as to be at or near the condensing position, and between the incident end and the output end of the wavelength conversion element body constituting the second wavelength conversion element When neither the reflector nor the re-incidence lens is arranged, the signal light beam in the wavelength conversion element body when viewed as the optical path length of the optical path through which the signal light beam passes between the incident end and the exit end. The wavelength conversion element main body constituting the second wavelength conversion element converts the wavelength of the signal light so as to be at or near the condensing position that minimizes the volume, and enters and exits the wavelength conversion element body. Re-incident level in the optical path between The signal light beam in the wavelength conversion element body when viewed as the optical path length of the optical path through which the signal light beam passes between the incident end and the arrival end immediately before the re-incidence lens. The wavelength conversion method is characterized in that the wavelength of the signal light is converted so as to be at or near the condensing position where the volume of the light is minimized.

本発明の前記発明62を展開した第63の発明(以下、発明63ともいう)による波長変換方法は、発明62に記載の波長変換方法において、少なくとも1つの波長変換素子は、少なくとも1つの再入射レンズを有しており、前記再入射レンズを通り当該波長変換素子に再入射する信号光ビームが、前記再入射レンズによって当該波長変換素子の所定位置に集光されるように当該波長変換素子に再入射するように構成されており、当該波長変換素子の前記所定位置が、当該波長変換素子を構成している波長変換素子本体の当該再入射レンズと当該波長変換素子本体の出射端部の間に、到達端部に到達した信号光ビームあるいは前記到達端部から出射した信号光ビームを前記到達端部あるいはその近傍に配置した反射体で反射させて同一波長変換素子本体に再入射させる反射体が配置されているが前記反射体と当該波長変換素子本体の間の光路に当該再入射レンズとは別の他の再入射レンズが配置されていない場合には当該再入射レンズの直後の再入射端部と当該波長変換素子本体の出射端部の間で当該信号光ビームが通る光路の光路長としてみたときの波長変換素子本体内における当該信号光ビームの体積を最小にするような集光位置もしくはその近傍になるようにして信号光の波長を変換し、当該波長変換素子を構成している波長変換素子本体の当該再入射レンズと当該波長変換素子本体の出射端部の間に反射体も当該再入射レンズとは別の他の再入射レンズも配置されていない場合には当該再入射レンズの直後の再入射端部と出射端部の間で当該信号光ビームが通る光路の光路長としてみたときの波長変換素子本体内における当該信号光ビームの体積を最小にするような集光位置もしくはその近傍になるようにして信号光の波長を変換し、当該波長変換素子を構成している波長変換素子本体の当該再入射レンズと当該波長変換素子本体の出射端部の間の光路に反射体と当該再入射レンズとは別の他の再入射レンズが配置されている場合には当該再入射レンズの直後の再入射端部と前記他の再入射レンズの直前の到達端部の間で当該信号光ビームが通る光路の光路長としてみたときの波長変換素子本体内における当該信号光ビームの体積を最小にするような集光位置もしくはその近傍になるようにして信号光の波長を変換することを特徴とする波長変換方法である。   A wavelength conversion method according to a 63rd invention (hereinafter also referred to as an invention 63) in which the invention 62 of the present invention is developed is the wavelength conversion method according to the invention 62, wherein at least one wavelength conversion element is at least one re-incident. A signal light beam that has a lens and re-enters the wavelength conversion element through the re-incidence lens, is focused on the wavelength conversion element by the re-incidence lens at a predetermined position of the wavelength conversion element. The wavelength conversion element is configured to re-enter, and the predetermined position of the wavelength conversion element is between the re-incidence lens of the wavelength conversion element main body and the emission end of the wavelength conversion element main body constituting the wavelength conversion element. Then, the signal light beam reaching the reaching end or the signal light beam emitted from the reaching end is reflected by a reflector disposed at or near the reaching end to change the same wavelength. A reflector that re-enters the element main body is arranged, but when no other re-incident lens other than the re-incident lens is arranged in the optical path between the reflector and the wavelength conversion element main body, The volume of the signal light beam in the wavelength conversion element body when viewed as the optical path length of the optical path through which the signal light beam passes between the re-incidence end immediately after the re-incidence lens and the emission end of the wavelength conversion element body The wavelength of the signal light is converted so as to be at or near the condensing position to be minimized, and the re-incident lens of the wavelength conversion element body constituting the wavelength conversion element and the emission of the wavelength conversion element body When neither a reflector nor another re-incidence lens other than the re-incidence lens is disposed between the end portions, the signal light is transmitted between the re-incidence end portion immediately after the re-incident lens and the emission end portion. The optical path of the optical path through which the beam passes The wavelength conversion element is configured to convert the wavelength of the signal light so that the volume of the signal light beam in the wavelength conversion element body is minimized or at the vicinity of the condensing position. When another re-incidence lens other than the reflector and the re-incident lens is arranged in the optical path between the re-incident lens of the wavelength conversion element main body and the emission end of the wavelength conversion element main body, The signal light beam in the wavelength conversion element body when viewed as the optical path length of the optical path through which the signal light beam passes between the re-incidence end immediately after the incident lens and the arrival end immediately before the other re-incidence lens The wavelength conversion method is characterized in that the wavelength of the signal light is converted so as to be at or near the condensing position that minimizes the volume of the optical system.

本発明の前記発明62または63を展開した第64の発明(以下、発明64ともいう)による波長変換方法は、発明62または63に記載の波長変換方法において、前記波長変換素子本体に分極反転領域を有する分極反転素子であることを特徴とする波長変換方法である。   A wavelength conversion method according to a sixty-fourth invention (hereinafter also referred to as invention 64) obtained by developing the invention 62 or 63 of the present invention is the wavelength conversion method according to the invention 62 or 63, wherein the polarization inversion region is provided in the wavelength conversion element body. It is a wavelength conversion method characterized by being a polarization reversal element having.

本発明の例としての第65の発明(以下、発明65ともいう)においては、入射光に含まれる第1の波長λ1の光を第1の波長λ1とは異なる波長である第2の波長λ2の光へ波長変換を行うことができる素子自体を波長変換素子ということにし、波長変換素子へ入射光を入射させる波長変換素子の端部を入射端部と定義し、入射光が波長変換素子に入射して前記波長変換素子内を第1の波長λ1の光から第2の波長λ2の光への波長変換を受けながら進行して第1の波長λ1の光と第2の波長λ2の光を含んだ光として到達する前記波長変換素子の前記入射端部とは異なる端部もしくは前記端部近傍を波長変換素子の到達端部と定義し、前記到達端部のうちでそこに前記波長変換を受けて到達した光を出射光として取り出す端部もしくは前記端部近傍を波長変換素子の出射端部と定義し、波長変換素子に入射される前の第1の波長λ1の光を含む入射光と前記入射光が波長変換素子に入射され波長変換を施されながら波長変換素子内を進行する第1の波長λ1の光と第2の波長λ2の光を含む入射光と波長変換素子に入射された前記入射光が波長変換素子内を進行して波長変換を施されて波長変換素子から出射した出射光のそれぞれをあるいはそれらを総称して信号光ともいうことにし、発明65の波長変換素子は、入射端部と出射端部とは異なる到達端部を少なくとも1つ有しており、前記到達端部あるいはその近傍に、そこに到達した信号光としての少なくとも第1の波長λ1の光を反射して前記波長変換素子内を第2の波長λ2の光への波長変換を受けさせながら進行させるように作用する反射体が配置されており、前記波長変換素子には分極反転領域を有する分極反転素子が用いられており、条件1を波長変換素子の入射面と分極反転領域の境界面とが1分以内の開き角で互いに平行に形成されていることであるとし、条件2を波長変換素子の出射面と分極反転領域の境界面とが1分以内の開き角で互いに平行に形成されていることであるとし、条件3を複数の分極反転領域の境界面同志が1分以内の開き角で互いに平行に形成されていることであるとし、条件4を前記分極反転領域の幅が、前記波長変換素子に最初に入射した入射光の光路に直交する方向でかつ前記光路とその次の再入射光の光路を含む面における幅において少なくとも2mmあることとし、条件5を前記波長変換素子の前記入射端部になる表面とそれと反対側の表面とが1分以内の開き角で互いに平行に形成されていることして、前記波長変換素子は、前記条件1〜5のうちの少なくとも2つを満たしていることを特徴とする波長変換素子である。   In the 65th invention as an example of the present invention (hereinafter also referred to as the invention 65), the light having the first wavelength λ1 included in the incident light is converted into the second wavelength λ2 having a wavelength different from the first wavelength λ1. The element itself that can convert the wavelength of the light into the wavelength conversion element is referred to as the wavelength conversion element, and the end of the wavelength conversion element that makes the incident light incident on the wavelength conversion element is defined as the incident end, and the incident light becomes the wavelength conversion element. The light enters the wavelength conversion element and undergoes wavelength conversion from the light of the first wavelength λ1 to the light of the second wavelength λ2, and travels the light of the first wavelength λ1 and the light of the second wavelength λ2. An end portion that is different from the incident end portion of the wavelength conversion element that reaches as contained light or the vicinity of the end portion is defined as a reaching end portion of the wavelength conversion element, and the wavelength conversion is performed in the reaching end portion. The end which takes out the received light as outgoing light or the end The vicinity is defined as the output end of the wavelength conversion element, and the incident light including the light having the first wavelength λ1 before being incident on the wavelength conversion element and the incident light are incident on the wavelength conversion element and subjected to wavelength conversion. The incident light including the light of the first wavelength λ1 and the light of the second wavelength λ2 traveling in the wavelength conversion element and the incident light incident on the wavelength conversion element travel in the wavelength conversion element and perform wavelength conversion. Each of the emitted light emitted from the wavelength conversion element or collectively referred to as signal light, and the wavelength conversion element of the invention 65 has at least one arrival end portion different from the incident end portion and the emission end portion. And at least the light having the first wavelength λ1 as the signal light reaching the reflection end portion or the vicinity thereof is reflected to the light having the second wavelength λ2 in the wavelength conversion element. To proceed while undergoing wavelength conversion The wavelength conversion element is a polarization reversal element having a polarization reversal region, and condition 1 is 1 minute between the incident surface of the wavelength conversion element and the boundary surface of the polarization reversal region. The condition 2 is that the output surface of the wavelength conversion element and the boundary surface of the domain-inverted region are formed parallel to each other with an opening angle of less than 1 minute. And condition 3 is that the boundary surfaces of the plurality of domain-inverted regions are formed in parallel with each other with an opening angle within 1 minute, and condition 4 is that the width of the domain-inverted region is the wavelength conversion It is assumed that there is at least 2 mm in the width in the plane perpendicular to the optical path of the incident light first incident on the element and including the optical path and the optical path of the next re-incident light, and Condition 5 is the incident end of the wavelength conversion element. Part surface and it The wavelength, wherein the wavelength conversion element satisfies at least two of the above conditions 1 to 5 by being formed in parallel with each other at an opening angle of less than 1 minute with the opposite surface It is a conversion element.

以上、課題を解決する手段としてなした本発明の例を説明したが、本発明は、これらに狭く限定されるものではなく、多くのバリエーションを可能とするものであり、前記各発明を適宜組み合わせた発明を構成することができることは明らかであるとともに、後述のように、本発明の基本技術を展開して多くの発明を構成することができるものである。   In the above, examples of the present invention have been described as means for solving the problems. However, the present invention is not limited to these, and many variations are possible. It is obvious that the present invention can be configured, and as described later, the basic technology of the present invention can be developed to configure many inventions.

以上説明したように、本発明による波長変換方法ならびに波長変換装置は、特に入射光を有効に波長変換できるように入射させることができ、波長変換効率を一層高めることができるため、構成が簡単で、小型で、波長変換効率が高く、高出力にすることができる波長変換素子や波長変換装置を安価に提供することができ、それらを用いたコヒーレント光源を安価に提供することができるという多大な効果を奏するものである。   As described above, the wavelength conversion method and the wavelength conversion apparatus according to the present invention can make incident light incident so that the wavelength can be converted effectively, and can further increase the wavelength conversion efficiency. Therefore, it is possible to provide a wavelength conversion element and a wavelength conversion device that are small in size, have high wavelength conversion efficiency, and have high output at low cost, and that a coherent light source using them can be provided at low cost. There is an effect.

以下、図面を参照して本発明の実施の形態例について説明する。なお、説明に用いる各図は本発明の例を理解できる程度に各構成成分の寸法、形状、配置関係などを概略的に示してある。そして本発明の説明の都合上、部分的に拡大率を変えて図示する場合もあり、本発明の例の説明に用いる図は、必ずしも実施例などの実物や記述と相似形でない場合もある。また、各図において、同様な構成成分については同一の番号を付けて示し、重複する説明を省略することもある。   Embodiments of the present invention will be described below with reference to the drawings. The drawings used for the description schematically show the dimensions, shapes, arrangement relationships, and the like of each component to the extent that an example of the present invention can be understood. For convenience of explanation of the present invention, there may be cases where the enlargement ratio is partially changed for illustration, and the drawings used for explanation of the examples of the present invention may not necessarily be similar to the actual objects and descriptions of the embodiments. Moreover, in each figure, about the same component, it attaches and shows the same number, The overlapping description may be abbreviate | omitted.

前記のように本発明に用いている技術の基本思想の特筆すべき特徴は、従来は波長変換を施される信号光を波長変換素子に入射させる時の集光光学系を、波長変換素子の入射面に集光させるようにしていたり、その部分をあまり厳密に管理していなかったりしていたものを、本発明においては、後述のように、集光光学系による波長変換素子への入射光の集光の仕方を特に好ましい状態に管理して、高い波長変換効率で、良質な、高出力の波長変換光を得ることができるようにしたところにある。さらに、本発明では、波長変換素子本体での波長変換の質的向上を図り、波長変換素子本体の顕著な改善をも図っている。   As mentioned above, the remarkable feature of the basic idea of the technology used in the present invention is that the condensing optical system when the signal light to be subjected to wavelength conversion is made incident on the wavelength conversion element is conventionally used for the wavelength conversion element. In the present invention, the incident light to the wavelength conversion element by the condensing optical system is used in the present invention as described in the following. The method of condensing light is managed in a particularly preferable state so that high-quality, high-output wavelength-converted light can be obtained with high wavelength conversion efficiency. Furthermore, in the present invention, the qualitative improvement of the wavelength conversion in the wavelength conversion element body is aimed at, and the wavelength conversion element body is markedly improved.

本発明の実施の形態例にはいくつかの特徴がある。そして本発明はその各特徴それぞれに着目した波長変換方法ならびに波長変換装置として実施することができ、また、いくつかの特徴を組み合わせて実施することもできる。   The exemplary embodiment of the present invention has several features. The present invention can be implemented as a wavelength conversion method and a wavelength conversion device that pay attention to each of the respective characteristics, and can also be implemented by combining several characteristics.

また、本発明の波長変換装置と波長変換方法の技術思想の説明は、以下の説明からも容易に理解できるように、それぞれを独立に説明する場合、重複する部分が多くなる。したがって、重複を避けるため、技術的に大きな欠落が生じなくそして誤解を生じない範囲において、本発明の波長変換装置の説明をもって本発明の波長変換方法の技術思想の説明を兼ねたり、本発明の波長変換方法の説明をもって本発明の波長変換装置の技術思想の説明を兼ねたりする場合がある。   In addition, the explanation of the technical idea of the wavelength conversion device and the wavelength conversion method of the present invention can be easily understood from the following explanation. Therefore, in order to avoid duplication, the explanation of the wavelength conversion method of the present invention is also used as the explanation of the wavelength conversion method of the present invention, or the technical idea of the wavelength conversion method of the present invention is used in the range where no major omission occurs and no misunderstanding occurs. The description of the wavelength conversion method may also serve as an explanation of the technical idea of the wavelength conversion device of the present invention.

以下、図を用いて本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to the drawings.

本発明の構成を説明する前に、本発明を構成する波長変換素子ならびにそれを用いた波長変換について説明する。   Before explaining the configuration of the present invention, the wavelength conversion element constituting the present invention and wavelength conversion using the same will be described.

図1と図2は本発明の波長変換素子の例を説明する図で、波長変換を受ける光の光路を含む断面を用いて説明する図である。図1は後述の分極反転領域を図示せずに示した図、図2は分極反転領域の例を記入して示した図である。   FIG. 1 and FIG. 2 are diagrams for explaining examples of the wavelength conversion element of the present invention, which are explained using a cross section including an optical path of light subjected to wavelength conversion. FIG. 1 is a diagram showing a domain-inverted region (not shown) shown below, and FIG. 2 is a diagram showing examples of domain-inverted regions.

図1と図2で、符号20aは波長変換素子、21はレーザ光源(図示せず)からの波長が第1の波長λ1であるコヒーレント光で波長変換素子20aに入射させる入射光ビーム(入射光ということもある)、22は波長変換素子20aを構成する波長変換素子本体としての分極反転非線形波長変換素子本体、33は波長変換素子本体22の分極反転領域、71a〜71cは光路、11aは波長変換素子本体22に入射光ビーム21が入射する入射端部、12a〜12cは入射光が波長変換素子本体22に入射(再入射も最初の入射等と特に区別する必要がないときは単に入射ともいう)して波長変換素子本体中を波長変換を受けながら進行して波長変換素子本体端部(表面)に到達したところである到達端部、13aは光路71cを波長変換を受けながら進行してきた信号光が出射する出射端部、711は入射端部11aから出射端部13aまでの光路71a〜71cの全光路長の中間点(中心点ともいう)に相当する位置を示す符号、23と26は反射防止膜、24と25は反射体としての反射膜、27は出射光ビームである。   1 and 2, reference numeral 20a denotes a wavelength conversion element, 21 denotes an incident light beam (incident light) incident on the wavelength conversion element 20a with coherent light having a wavelength λ1 from a laser light source (not shown). 22 is a polarization inversion nonlinear wavelength conversion element body as a wavelength conversion element body constituting the wavelength conversion element 20a, 33 is a polarization inversion region of the wavelength conversion element body 22, 71a to 71c are optical paths, and 11a is a wavelength. The incident end portions 12a to 12c at which the incident light beam 21 is incident on the conversion element main body 22 are incident on the wavelength conversion element main body 22. The advancing end portion 13a that has reached the end portion (surface) of the wavelength conversion element main body while undergoing wavelength conversion in the wavelength conversion element main body, and 13a converts the wavelength of the optical path 71c. An exit end 711 from which the signal light traveling while being received exits, 711 indicates a position corresponding to an intermediate point (also referred to as a central point) of all the optical path lengths of the optical paths 71a to 71c from the entrance end 11a to the exit end 13a. Reference numerals 23 and 26 are antireflection films, 24 and 25 are reflection films as reflectors, and 27 is an outgoing light beam.

反射防止膜23,26には従来の光学素子に用いられている反射防止膜を用いることができる。   As the antireflection films 23 and 26, an antireflection film used in a conventional optical element can be used.

反射膜24,25には、波長がλ1の光に対する反射率と波長がλ2の光に対する反射率がともに90%以上の反射特性を有する多層膜を用いることができる。前記反射率を99%以上、特に99.8%以上にすることが特に好ましく、99.9%以上の反射率の多層膜を用いることによって特に好ましい効果を発揮できる。   As the reflection films 24 and 25, a multilayer film having reflection characteristics in which the reflectance for light having a wavelength of λ1 and the reflectance for light having a wavelength of λ2 are both 90% or more can be used. The reflectance is particularly preferably 99% or more, particularly 99.8% or more, and a particularly preferable effect can be exhibited by using a multilayer film having a reflectance of 99.9% or more.

図1,図2で、入射端部11aから波長変換素子本体22に入射した入射光すなわち信号光ビームは、分極反転領域33を第1の波長λ1から第2の波長λ2への波長変換を受けながら進行して波長変換素子本体22の到達端部12aに到達光ビームとして到達する。   In FIG. 1 and FIG. 2, the incident light, that is, the signal light beam incident on the wavelength conversion element body 22 from the incident end 11a undergoes wavelength conversion from the first wavelength λ1 to the second wavelength λ2 in the polarization inversion region 33. The light travels while reaching the reaching end 12a of the wavelength conversion element body 22 as a reaching light beam.

波長が第1の波長λ1である入射光ビーム21が入射端部11aから波長変換素子本体22に入射して光路71aを進行して、その一部が、分極反転領域33を通ることによって第2の波長λ2の光に変換された到達光ビームとして、未変換部分は波長変換されずに波長が第1の波長λ1の到達光ビームとして到達端部12aに到達する。   The incident light beam 21 whose wavelength is the first wavelength λ1 is incident on the wavelength conversion element body 22 from the incident end 11a and travels on the optical path 71a. As the reaching light beam converted into the light having the wavelength λ2, the unconverted portion reaches the reaching end 12a as the reaching light beam having the first wavelength λ1 without being subjected to wavelength conversion.

すなわち、到達端部12a(第1の到達端部)に到達した前記到達光ビームには前記波長変換を受けた結果としての第2の波長λ2の光と未変換のままで残っている第1の波長λ1の光が混在している。   That is, the reaching light beam that has reached the reaching end 12a (the first reaching end) remains unconverted with the light of the second wavelength λ2 as a result of the wavelength conversion. The light of the wavelength λ1 is mixed.

第1の到達端部12aに到達した前記到達光ビームは、反射率が99.8%以上である多層膜から成る反射膜24によって反射され、反射則にしたがって分極反転領域33の光路71aとは異なる光路71bを進行するように波長変換素子本体22に再入射されて、第2の到達端部12bに到達光ビームとして到達する。   The reaching light beam that has reached the first reaching end 12a is reflected by the reflecting film 24 made of a multilayer film having a reflectivity of 99.8% or more, and what is the optical path 71a of the polarization inversion region 33 in accordance with the reflection law? The light is incident again on the wavelength conversion element main body 22 so as to travel on a different optical path 71b, and reaches the second reaching end 12b as a reaching light beam.

前記反射膜24によって反射されて波長変換素子本体22に再入射された光のうちの波長がλ1の光の一部は、光路71bを進行することによって前記と同様に波長がλ2の光へと波長変換され、未変換部分は波長変換されずに波長が第1の波長λ1の光として到達端部12bに到達する。   Of the light reflected by the reflective film 24 and re-entering the wavelength conversion element main body 22, a part of the light having the wavelength λ1 travels along the optical path 71b to become the light having the wavelength λ2 as described above. The wavelength is converted, and the unconverted portion is not wavelength-converted and reaches the end 12b as light having the first wavelength λ1.

すなわち、第2の到達端部12bに到達した前記到達光ビームには前記波長変換を受けた結果としての第2の波長λ2の光と未変換のままで残っている第1の波長λ1の光が混在しているが、第1の到達端部12aに到達した前記到達光ビームに比較して、全光量に対する第2の波長λ2の光の割合が増加している。   That is, the light having the second wavelength λ2 as a result of the wavelength conversion and the light having the first wavelength λ1 remaining unconverted as a result of the wavelength conversion in the reaching light beam reaching the second reaching end 12b However, the ratio of the light of the second wavelength λ2 to the total amount of light is increased as compared with the reaching light beam that has reached the first reaching end 12a.

第2の到達端部12bに到達した前記到達光ビームは、多層膜から成る反射膜25によって反射され、分極反転領域33の光路71bとは異なる光路71cを進行するように波長変換素子本体22に再入射されて、第3の到達端部12cに到達光ビームとして到達する。   The reaching light beam that has reached the second reaching end 12b is reflected by the reflective film 25 made of a multilayer film, and travels through the optical path 71c different from the optical path 71b of the domain-inverted region 33 to the wavelength conversion element main body 22. The light is incident again and reaches the third reaching end 12c as a reaching light beam.

前記反射膜25によって反射されて波長変換素子本体22に再入射された光のうちの波長がλ1の光の一部は、光路71cを進行することによって前記と同様に波長がλ2の光へと波長変換され、未変換部分は波長変換されずに波長が第1の波長λ1の光として第3の到達端部12cに到達し、到達端部12cである出射端部13a(図示のように、到達端部12cと出射端部13aは同一の端部である)から反射防止膜26を通り、出射光ビーム27として波長変換素子本体22の外部へ出力される。   Of the light reflected by the reflective film 25 and re-entering the wavelength conversion element body 22, a part of the light having a wavelength of λ1 travels through the optical path 71c to become light having a wavelength of λ2 as described above. The wavelength is converted, the unconverted portion is not wavelength-converted and reaches the third reaching end 12c as light having the first wavelength λ1, and the emitting end 13a (as shown in the figure) is the reaching end 12c. The reaching end portion 12c and the emitting end portion 13a are the same end portion), pass through the antireflection film 26, and are output as the outgoing light beam 27 to the outside of the wavelength conversion element body 22.

すなわち、第3の到達端部12cに到達した前記到達光ビームには前記波長変換を受けた結果としての第2の波長λ2の光と未変換のままで残っている第1の波長λ1の光がある場合にはそれが混在しているが、第2の到達端部12bに到達した前記到達光ビームに比較して、全光量に対する第2の波長λ2の光の割合が増加している。   That is, the light having the second wavelength λ2 resulting from the wavelength conversion and the light having the first wavelength λ1 remaining unconverted as a result of the wavelength conversion in the reaching light beam that has reached the third reaching end 12c. However, the ratio of the light having the second wavelength λ2 to the total amount of light is increased as compared with the reaching light beam that has reached the second reaching end 12b.

このように、第1の到達端部12aに反射膜24の代わりに反射防止膜を形成しておき、入射光ビームを入射端部11aから波長変換素子本体22に入射させて、第1の到達端部12aに到達した到達光ビームを反射させずに波長λ2の光を含む光を出射光ビームとして第1の到達端部12aから波長変換素子本体22の外に取り出した場合の波長λ2の光の光量に比べて、前記のようにして、図1と図2を用いて説明した波長変換素子20aの到達端部12cから反射防止膜26を通り、波長λ2の光を含む光を出射光ビーム27として波長変換素子本体22の外部へ出力させた場合の波長λ2の光の光量はおおむね3倍になっている。   In this way, an antireflection film is formed in place of the reflection film 24 at the first arrival end 12a, and an incident light beam is incident on the wavelength conversion element body 22 from the incidence end 11a. Light of wavelength λ2 when light including light of wavelength λ2 is extracted from the first reaching end 12a out of the wavelength conversion element body 22 as an outgoing light beam without reflecting the reaching light beam that has reached the end 12a As described above, the light including the light having the wavelength λ2 passes through the antireflection film 26 from the reaching end 12c of the wavelength conversion element 20a described with reference to FIGS. 1 and 2 as described above. When the light is output to the outside of the wavelength conversion element body 22 as 27, the amount of light of the wavelength λ2 is approximately three times.

本発明では、このような波長変換効率の向上をさらに改善することができる。   In the present invention, such improvement in wavelength conversion efficiency can be further improved.

図からもわかるように、図1と図2は、前記到達端部に到達した信号光ビームをそこに配置した反射体としての反射膜24や25で反射させて同一波長変換素子本体に再入射させる反射体が配置されている例であるが、前記反射体と前記到達端部の間および前記反射体と前記反射体によって反射された信号光ビームが再び当該波長変換素子本体に再入射するときの再入射端部(前記の説明から明らかであるが、この場合は再入射端部は前記到達端部と同一である)との間の光路には集光レンズ(再入射レンズ)が配置されていない場合の例である。   As can be seen from FIGS. 1 and 2, in FIG. 1 and FIG. 2, the signal light beam reaching the reaching end is reflected by the reflecting films 24 and 25 as reflectors disposed there and re-entered the same wavelength conversion element body. In this example, the signal light beam reflected between the reflector and the reaching end portion and reflected by the reflector and the reflector again enters the wavelength conversion element body again. A condensing lens (re-incident lens) is disposed in the optical path between the re-incident end (which is apparent from the above description, in which case the re-incident end is the same as the reaching end). It is an example when it is not.

前記のように、入射端部11aから波長変換素子本体22に入射して光路71a〜71cを進行する信号光ビームは、その一部が波長λ1の光から波長λ2の光へと波長変換を施され、到達端部12c(出射端部13a)から反射防止膜26を通り、出射光ビーム27として波長変換素子本体22の外部へ出力されることになるが、本発明の発明者の実験結果によれば、出射光ビーム27中の波長λ2の光の量の多少は、入射光ビームを入射端部11aから波長変換素子本体22に入射させるときの集光光学系の集光の仕方によって大きく左右されるという結果を得ている。   As described above, a part of the signal light beam that enters the wavelength conversion element body 22 from the incident end 11a and travels along the optical paths 71a to 71c undergoes wavelength conversion from light having the wavelength λ1 to light having the wavelength λ2. Then, the light is output from the reaching end 12c (outgoing end 13a) through the antireflection film 26 to the outside of the wavelength conversion element body 22 as the outgoing light beam 27. According to this, the amount of light having the wavelength λ2 in the outgoing light beam 27 largely depends on how the condensing optical system condenses when the incident light beam is incident on the wavelength conversion element body 22 from the incident end 11a. It has been obtained that results.

本発明の技術思想による波長変換効率を高める方法の例では、図1,図2のように入射端部11aから出射端部13aまでの光路71a〜71cの全光路において、前記到達端部に反射体は配置されているが前記のように再入射レンズが配置されていない場合の例で、入射光ビームを入射端部11aから波長変換素子本体22に入射させるときの集光光学系の集光の仕方として、前記集光光学系の焦点が入射端部11aから出射端部13aまでの光路71a〜71cの全光路長の中間点711あるいはその近傍にあるように集光して入射光ビームを波長変換素子本体22に入射させる方法を用いることができる。本発明の発明者による実験の結果、このようにすることによって、波長変換効率を効果的に高めることができることがわかった。   In the example of the method for increasing the wavelength conversion efficiency according to the technical idea of the present invention, as shown in FIGS. 1 and 2, in all the optical paths 71a to 71c from the entrance end 11a to the exit end 13a, the light is reflected on the arrival end. In the example where the body is disposed but the re-incident lens is not disposed as described above, the condensing optical system condenses light when the incident light beam is incident on the wavelength conversion element body 22 from the incident end 11a. As a method, the condensing optical system condenses so that the focal point of the condensing optical system is at or near the intermediate point 711 of the total optical path lengths of the optical paths 71a to 71c from the incident end 11a to the output end 13a. A method of making the light incident on the wavelength conversion element main body 22 can be used. As a result of experiments by the inventors of the present invention, it has been found that the wavelength conversion efficiency can be effectively increased by doing so.

出射光ビーム27は、図示していないが、たとえば波長選択フィルタに入射させ、波長λ2の光を選択出力させて、顕微鏡用光源など目的の用途に用いることができる。   Although not shown, the emitted light beam 27 can be incident on a wavelength selection filter and selectively output light of wavelength λ2, for use in a purpose such as a light source for a microscope.

なお、出射端部13aに反射防止膜26に重ねてあるいはその代わりに、波長λ2の光を透過し波長λ1の光を反射する多層膜フィルタを形成しておき、波長λ2の光と波長λ1の光を分離し、波長λ2の光は出射端部13aから出射させ、波長λ1の光は他の端部から出射させるようにして、小型の光源を構成することが出きる。この構成は、以下の例においても適用することができる。   Note that a multilayer filter that transmits light of wavelength λ2 and reflects light of wavelength λ1 is formed on the emission end portion 13a in place of or in place of the antireflection film 26, and the light of wavelength λ2 and wavelength λ1 are formed. By separating the light, the light having the wavelength λ2 is emitted from the emission end portion 13a, and the light having the wavelength λ1 is emitted from the other end portion, thereby forming a small light source. This configuration can also be applied to the following examples.

図1、図2を用いて説明した波長変換素子は、前記到達光ビームを前記反射体によって反射させ波長変換素子本体に再入射させ、入射させた光の波長変換を行う光路長を実質的に長くするという波長変換方法の例である。   The wavelength conversion element described with reference to FIGS. 1 and 2 substantially has an optical path length for performing wavelength conversion of incident light by reflecting the reaching light beam by the reflector and re-entering the wavelength conversion element body. It is an example of the wavelength conversion method of lengthening.

前記入射光と波長変換された結果としての出力光の波長の例として、第1の波長λ1が1120nmで第2の波長λ2が560nmの波長変換素子と、第1の波長λ1が1160nmで第2の波長λ2が580nmの波長変換素子について、それぞれの波長変換素子における各波長λ1とλ2に対する高反射率を有する前記反射膜を形成した各波長変換素子を作成したところ、極めて良好な波長変換効率を有する波長変換素子を得ることができた。   Examples of the wavelength of the incident light and the wavelength of the output light as a result of wavelength conversion include a wavelength conversion element having a first wavelength λ1 of 1120 nm and a second wavelength λ2 of 560 nm, and a second wavelength λ1 of 1160 nm and a second wavelength λ1. For each wavelength conversion element having a wavelength λ2 of 580 nm, each wavelength conversion element in which the reflection film having a high reflectance with respect to each wavelength λ1 and λ2 in each wavelength conversion element is formed. The wavelength conversion element which has was able to be obtained.

良好な波長変換効率を有する波長変換素子を得るのに、前記のことに加えて、種々の工夫をすることにより、一層顕著な効果をもたらすことができる。前記工夫としては、たとえば、各到達端部における素子表面の平行度、分極反転領域の境界と素子表面の平行度などを高めることをあげることができる。   In addition to the above, in order to obtain a wavelength conversion element having good wavelength conversion efficiency, a more remarkable effect can be brought about by various measures. Examples of the device include increasing the parallelism of the element surface at each reaching end, the parallelism between the boundary of the domain-inverted region and the element surface, and the like.

一つの好ましい方法として、波長変換素子本体の入射端部、到達端部、出射端部の該当する端部が位置する互いに対向する関係にある素子表面同士の平行度を高めることをあげることができる。   As one preferred method, it is possible to increase the parallelism between the element surfaces in the relationship where the incident end portion, the arrival end portion, and the emission end portion of the wavelength conversion element main body are located opposite to each other. .

好ましい一例をあげれば、図1,図2で、図の上下方向になる波長変換素子本体22の波長変換に有効な部分の寸法を波長変換素子本体22の素子長ということにして、素子長を30mmにしたときに、波長変換素子本体22の入射端部11aと到達端部12bが含まれる表面と到達端部12aと出射端部13a(到達端部12c)が含まれる表面の平行度をおおむね1分以内に構成すること、分極反転領域の境界面同士の平行度をおおむね1分以内に構成することによって、一層良好な波長変換効率を有する波長変換素子を得ることができる。   As a preferred example, in FIGS. 1 and 2, the dimension of the wavelength conversion element body 22 that is effective in the wavelength conversion of the wavelength conversion element body 22 in the vertical direction is referred to as the element length of the wavelength conversion element body 22. When the thickness is 30 mm, the parallelism of the surface including the incident end portion 11a and the reaching end portion 12b of the wavelength conversion element body 22 and the surface including the reaching end portion 12a and the emitting end portion 13a (the reaching end portion 12c) is approximately. By configuring within 1 minute, and configuring the parallelism between the boundary surfaces of the domain-inverted regions within approximately 1 minute, a wavelength conversion element having even better wavelength conversion efficiency can be obtained.

図3と図4は、本発明の波長変換素子についてさらに詳しく説明する図で、図3は波長変換素子本体として平行平板の素子を用いた場合における素子の反射体を配置している対向する表面の到達端部近傍の平行度について説明する断面図、図4は図3の波長変換素子本体の分極反転領域の境界と素子表面の平行度について説明する断面図である。   FIGS. 3 and 4 are diagrams for explaining the wavelength conversion element of the present invention in more detail. FIG. 3 shows the opposing surfaces on which the reflectors of the element are disposed when a parallel plate element is used as the wavelength conversion element body. FIG. 4 is a cross-sectional view for explaining the parallelism between the boundary of the domain-inverted region of the wavelength conversion element body of FIG. 3 and the element surface.

図3と図4で、符号34aは波長変換素子本体22の入射端部11aと到達端部12bが含まれる表面を延長した線、34bは波長変換素子本体22の到達端部12aと出射端部13aとなる到達端部12cが含まれる表面を延長した線、35a1と35b1は分極反転領域の境界面を延長した線、34は線34aと線34bの平行度を表す符号、35aは線34aと線35a1の平行度を表す符号、35bは線35b1と線34bの平行度を表す符号、39は分極反転領域の幅を説明する符号である。   3 and 4, reference numeral 34 a is a line extending from the surface including the incident end 11 a and the arrival end 12 b of the wavelength conversion element body 22, and 34 b is the arrival end 12 a and the emission end of the wavelength conversion element body 22. A line extending the surface including the reaching end 12c to be 13a, 35a1 and 35b1 are lines extending the boundary surface of the domain-inverted region, 34 is a symbol indicating the parallelism between the lines 34a and 34b, and 35a is a line 34a. Reference numeral 35 represents a parallelism of the line 35a1, reference numeral 35b represents a parallelism of the lines 35b1 and 34b, and reference numeral 39 represents a width of the domain-inverted region.

図3と図4を用いて説明する波長変換素子本体22は、入射端部11aおよび到達端部12bを含む表面34aと到達端部12aおよび入射端部13aを含む表面34bとが互いに平行な平面に形成されている。   The wavelength conversion element body 22 described with reference to FIGS. 3 and 4 is a plane in which a surface 34a including the incident end portion 11a and the reaching end portion 12b and a surface 34b including the reaching end portion 12a and the incident end portion 13a are parallel to each other. Is formed.

図3と図4において、表面34aと表面34bの両表面に交わる法線に対して直交し、図の上下方向になる分極反転領域33の寸法を分極反転領域の幅といい、表面34aと表面34bの両表面に交わる法線方向になる波長変換素子本体22の寸法を波長変換素子本体22の素子長ということにする。素子長を30mmにしたときに、符号34,符号35a,符号35bで示したところの平行度をおおむね1分以内に構成することが前記の理由で好ましい。   3 and 4, the dimension of the domain-inverted region 33 perpendicular to the normal line intersecting both surfaces 34a and 34b and in the vertical direction in the figure is called the width of the domain-inverted region. The dimension of the wavelength conversion element body 22 in the normal direction intersecting both surfaces of 34b is referred to as the element length of the wavelength conversion element body 22. When the element length is set to 30 mm, it is preferable for the above reason that the parallelism indicated by reference numeral 34, reference numeral 35a, and reference numeral 35b is set within approximately one minute.

符号39を付した矢印で示した分極反転領域33の当該光路を含む面における幅は、前記到達光を反射して波長変換素子本体に再入射させる反射体を配置した到達端部が1つの場合、すなわち、波長変換素子本体に入射した光路(パス)の折り返しが1回(2パス)の場合、少なくとも2mmに構成することが好ましい。図3と図4に示した例は光路の折り返しが2回の場合であり、分極反転領域33の当該光路を含む面における幅を3mm以上になるように構成した。この分極反転領域の当該光路を含む面における幅は、前記面内における前記波長変換素子本体に最初に入射した入射光の光路に直交する方向で近似して表現することもできる。   The width in the plane including the optical path of the domain-inverted region 33 indicated by the arrow with reference numeral 39 is the case where there is one reaching end where a reflector that reflects the reaching light and re-enters the wavelength conversion element body is disposed. In other words, when the return of the optical path (path) incident on the wavelength conversion element main body is one time (two paths), it is preferable to configure at least 2 mm. The example shown in FIGS. 3 and 4 is the case where the optical path is folded twice, and the width of the polarization inversion region 33 on the surface including the optical path is 3 mm or more. The width in the plane including the optical path of the domain-inverted region can also be expressed by approximating in the direction orthogonal to the optical path of the incident light first incident on the wavelength conversion element body in the plane.

このような構成にすることにより、小型で波長変換効率が高く、ハイパワー応用も可能な、本発明の波長変換素子を実現することができた。   By adopting such a configuration, it was possible to realize the wavelength conversion element of the present invention that is small in size, has high wavelength conversion efficiency, and can be applied to high power.

図5は、本発明の波長変換素子についてさらに詳しく説明する図で、波長変換素子本体の分極反転領域の境界と外部反射鏡の表面の平行度について説明する図である。   FIG. 5 is a diagram for explaining the wavelength conversion element of the present invention in more detail, and for explaining the parallelism between the boundary of the polarization inversion region of the wavelength conversion element body and the surface of the external reflecting mirror.

図5で、符号37aと37bは外部反射鏡29の反射面を延長した線、36aと36bは外部反射鏡29の反射面と分極反転領域の境界の平行度を説明する符号である。   In FIG. 5, reference numerals 37a and 37b denote lines obtained by extending the reflecting surface of the external reflecting mirror 29, and 36a and 36b denote the parallelism of the boundary between the reflecting surface of the external reflecting mirror 29 and the polarization inversion region.

図5を用いて説明する波長変換素子本体22は、入射端部11aおよび到達端部12eを含む表面と到達端部12dおよび入射端部13bを含む表面とが互いに平行な平面に形成されている。   The wavelength conversion element body 22 described with reference to FIG. 5 has a surface including the incident end portion 11a and the reaching end portion 12e and a surface including the reaching end portion 12d and the incident end portion 13b formed in parallel planes. .

図5において、符号37a,符号37bで示したところの平行度をおおむね1分以内に構成することが前記と同様の理由で好ましい。   In FIG. 5, it is preferable for the same reason as described above that the parallelism indicated by reference numerals 37a and 37b is set within approximately one minute.

入射端部近傍と到達端部近傍の素子表面の平行度、分極反転領域の境界と前記素子表面の表面の平行度についても、おおむね1分以内に構成することが前記と同様の理由で好ましい。   For the same reason as described above, the parallelism of the element surface in the vicinity of the incident end and the arrival end, and the parallelism of the boundary between the domain-inverted region and the surface of the element surface are preferably within one minute.

図5で、入射端部11aの部分の反射防止膜28と到達端部12eの部分の反射防止膜28は連続した一体の反射防止膜として形成されており、到達端部12dの部分の反射防止膜28と出射端部13b(到達端部12f)の部分の反射防止膜28も連続した一体の反射防止膜として形成されている。   In FIG. 5, the antireflection film 28 at the incident end 11a and the antireflection film 28 at the reaching end 12e are formed as a continuous integral antireflection film, and the antireflection at the reaching end 12d. The antireflection film 28 at the portion of the film 28 and the emission end portion 13b (the reaching end portion 12f) is also formed as a continuous integral antireflection film.

本発明の技術思想に従えば、本発明の分極反転領域を有する分極反転素子の前記好ましい条件は、条件1を波長変換素子の入射面あるいは再入射面と分極反転領域の境界面とが1分以内の開き角で互いに平行に形成されていることであるとし、条件2を波長変換素子の出射面あるいは到達端部の面と分極反転領域の境界面とが1分以内の開き角で互いに平行に形成されていることであるとし、条件3を複数の分極反転領域の境界面同志が1分以内の開き角で互いに平行に形成されていることであるとし、条件4を前記分極反転領域の幅が前記波長変換素子に最初に入射した入射光の光路に直交する方向でかつ前記光路とその次の再入射光の光路を含む面における幅において少なくとも2mmあることとし、条件5を前記波長変換素子の前記入射端部になる表面とそれと反対側の表面とが1分以内の開き角で互いに平行に形成されていることして、少なくとも2つの条件を満たすことが好ましく、5つの条件を満たすことが特に好ましい。   According to the technical idea of the present invention, the preferable condition of the domain-inverted element having the domain-inverted region according to the present invention is that the condition 1 is that the incident surface or re-incident surface of the wavelength conversion element and the boundary surface between the domain-inverted region are 1 minute. In condition 2, the output surface of the wavelength conversion element or the surface of the arrival end and the boundary surface of the domain-inverted region are parallel to each other with an opening angle of less than 1 minute. And the condition 3 is that the boundary surfaces of the plurality of domain-inverted regions are formed in parallel with each other at an opening angle of 1 minute or less. The width is at least 2 mm in a direction perpendicular to the optical path of the incident light first incident on the wavelength conversion element and in the plane including the optical path and the optical path of the next re-incident light, and Condition 5 is the wavelength conversion The incident of the element It is preferable that the end surface and the opposite surface are formed in parallel with each other at an opening angle of 1 minute or less, and it is preferable that at least two conditions are satisfied, and it is particularly preferable that five conditions be satisfied.

本発明の技術思想による波長変換効率を高める方法の例では、図1,図2のように入射端部11aから出射端部13aまでの光路71a〜71cの光路において、前記到達端部に反射体は配置されているが再入射レンズが配置されていない場合の例で、入射光ビームを入射端部11aから波長変換素子本体22に入射させるときの集光光学系の集光の仕方として、図1,図2には図示していないが、入射端部11aから出射端部13aまでの光路71a〜71cの全光路における信号光ビームの光路長としてみたときの体積を最小にあるいはできるだけ最小に近い状態になるように集光させて入射光ビームを波長変換素子本体22に入射させる方法を用いることができる。本発明の発明者による実験の結果、このようにすることによって、波長変換効率を効果的に高めることができることが確かめられた。   In the example of the method for increasing the wavelength conversion efficiency according to the technical idea of the present invention, as shown in FIGS. 1 and 2, in the optical paths 71a to 71c from the incident end 11a to the exit end 13a, a reflector is provided at the arrival end. Is an example in which a re-incidence lens is not disposed. As a method of condensing the condensing optical system when an incident light beam is incident on the wavelength conversion element body 22 from the incident end portion 11a, FIG. 1, although not shown in FIG. 2, the volume when viewed as the optical path length of the signal light beam in all the optical paths 71a to 71c from the incident end 11a to the exit end 13a is minimized or as close as possible to the minimum. It is possible to use a method in which the light is condensed so as to be in a state and an incident light beam is incident on the wavelength conversion element body 22. As a result of experiments by the inventor of the present invention, it has been confirmed that the wavelength conversion efficiency can be effectively increased in this way.

このような構成にすることにより、小型で波長変換効率の高い波長変換素子を実現することができた。   By adopting such a configuration, a small wavelength conversion element with high wavelength conversion efficiency could be realized.

図6は本発明の技術思想による波長変換素子の例を説明する図で、集光光学系について前記図1や図2の例とは異なる例である。波長変換素子の波長変換を受ける光の光路を含む断面を用いて説明する。   FIG. 6 is a diagram for explaining an example of a wavelength conversion element according to the technical idea of the present invention, and is a different example of the condensing optical system from the examples of FIG. 1 and FIG. Description will be made using a cross section including an optical path of light subjected to wavelength conversion of the wavelength conversion element.

図6で、符号20cは本発明の波長変換装置に用いる波長変換素子、12a1と12b1は到達端部、12a2と12b2は再入射端部、28は反射防止膜、29aと29bは反射体としての外部反射鏡、30aと30bはレンズ、50a1,50b1,50c1は光路、50a〜50cは当該光路の光路長としての中心点(中間点ともいう)である。到達端部12a1と再入射端部12a2が接近している場合は図1と同様に到達端部12aとして扱うこともあり、到達端部12b1と再入射端部12b2が接近している場合も図1と同様に到達端部12bとして扱うこともできる。各レンズ30a,30bは、図示の波長変換素子本体22の各到達端部に到達した信号光ビームが、図示のようにそれぞれ各レンズ30a,30bを通り、各外部反射鏡29a,29bにより反射されて、再び各レンズ30a,30bを通り波長変換素子本体22に再入射するときに、本発明の技術思想にしたがって適切に集光させて再入射させる再入射レンズである。光路50a1は入射端部11aと到達端部12a1の間の光路で、中心点50aは光路50a1の光路長としてみたときの中心点、光路50b1は再入射端部12a2と到達端部12b1の間の光路で、中心点50bは光路50b1の光路長としてみたときの中心点、光路50c1は再入射端部12b2と到達端部13aの間の光路で、中心点50cは光路50c1の光路長としてみたときの中心点である。   In FIG. 6, reference numeral 20c is a wavelength conversion element used in the wavelength conversion device of the present invention, 12a1 and 12b1 are arrival end parts, 12a2 and 12b2 are re-incidence end parts, 28 is an antireflection film, and 29a and 29b are reflectors. External reflecting mirrors, 30a and 30b are lenses, 50a1, 50b1 and 50c1 are optical paths, and 50a to 50c are central points (also referred to as intermediate points) as optical path lengths of the optical paths. When the reaching end portion 12a1 and the re-incident end portion 12a2 are close to each other, they may be handled as the reaching end portion 12a similarly to FIG. 1, and also when the reaching end portion 12b1 and the re-incident end portion 12b2 are close to each other. 1 can be treated as the reaching end 12b. In each lens 30a, 30b, the signal light beam that has reached each reaching end of the illustrated wavelength conversion element body 22 passes through each lens 30a, 30b, as shown, and is reflected by each external reflecting mirror 29a, 29b. When the light passes through the lenses 30a and 30b again and reenters the wavelength conversion element body 22, it is a re-incident lens that is appropriately condensed and re-entered according to the technical concept of the present invention. The optical path 50a1 is an optical path between the incident end portion 11a and the reaching end portion 12a1, the center point 50a is a center point when viewed as the optical path length of the optical path 50a1, and the optical path 50b1 is between the re-incident end portion 12a2 and the reaching end portion 12b1. In the optical path, the center point 50b is the center point when viewed as the optical path length of the optical path 50b1, the optical path 50c1 is the optical path between the re-incidence end portion 12b2 and the reaching end portion 13a, and the center point 50c is viewed as the optical path length of the optical path 50c1. Is the center point.

本発明を用いた波長変換効率を高める波長変換方法を用いた波長変換装置の例における信号光ビームを波長変換素子本体22に再入射させるときの各レンズ30a,30bの焦点は、それぞれ外部反射鏡29a,29bで反射されて波長変換素子本体22に再入射される信号光ビームを、符号50bや50cで示した各光路の光路長としての中心点50b1や50c1に集光するような焦点になっている。   The focal points of the lenses 30a and 30b when the signal light beam is re-incident on the wavelength conversion element main body 22 in the example of the wavelength conversion apparatus using the wavelength conversion method for increasing the wavelength conversion efficiency using the present invention are respectively external reflection mirrors. The signal light beam reflected by 29a and 29b and re-entering the wavelength conversion element main body 22 is focused on the central points 50b1 and 50c1 as the optical path lengths of the respective optical paths indicated by reference numerals 50b and 50c. ing.

さらに具体的に説明すると、図6に図示していないが、波長変換素子本体22の入射端部の前段に配置してある集光光学系を、光路50a1の前記中心点50aに焦点を有するように調整しておき、信号光ビームとしての入射光ビーム21を、反射防止膜28を透過させ、入射端部11aから波長変換素子本体22に入射させて波長変換素子本体22を進行させながら高い変換効率で波長変換を行わせ、到達端部12a1に達した信号光ビームを、反射防止膜28を透過させ、レンズ30aを通り、反射体としての外部反射鏡29aに到達せしめ、外部反射鏡29aにより反射させて再びレンズ30a(レンズ30aは再入射レンス30aとして機能する)を通って、反射防止膜28を透過させ、再入射端部12a2から波長変換素子本体22に再入射させる。このとき、再入射光学系は、再入射レンス30aの焦点が光路50b1の中心点50bになるように調整されている。   More specifically, although not shown in FIG. 6, the condensing optical system arranged at the front stage of the incident end of the wavelength conversion element main body 22 is focused on the central point 50a of the optical path 50a1. The incident light beam 21 as a signal light beam is transmitted through the antireflection film 28 and is incident on the wavelength conversion element body 22 from the incident end 11a, so that the wavelength conversion element body 22 is advanced and high conversion is performed. Wavelength conversion is performed with efficiency, and the signal light beam that has reached the reaching end 12a1 is transmitted through the antireflection film 28, passes through the lens 30a, and reaches the external reflecting mirror 29a as a reflector, and is reflected by the external reflecting mirror 29a. The reflected light passes through the lens 30a again (the lens 30a functions as the re-incidence lens 30a), passes through the antireflection film 28, and passes through the re-incident end 12a2 to the wavelength conversion element body 2 To re-enter the. At this time, the re-incidence optical system is adjusted so that the focus of the re-incidence lens 30a is the center point 50b of the optical path 50b1.

再入射端部12a2から波長変換素子本体22に再入射させた信号光ビームを波長変換素子本体22を進行させながら高い変換効率で波長変換を行わせ、到達端部12b1に達した信号光ビームを、反射防止膜28を透過させ、レンズ30bを介して反射体としての外部反射鏡29bに到達せしめ、外部反射鏡29bにより反射させて再びレンズ30b(レンズ30bは再入射レンス30bとして機能している)を通って、反射防止膜28を透過させ、再入射端部12b2から波長変換素子本体22に再入射させる。   The signal light beam re-entered to the wavelength conversion element body 22 from the re-incident end 12a2 is converted with high conversion efficiency while traveling through the wavelength conversion element body 22, and the signal light beam reaching the reaching end 12b1 is converted. Then, the light passes through the antireflection film 28, reaches the external reflecting mirror 29b as a reflector through the lens 30b, is reflected by the external reflecting mirror 29b, and is again the lens 30b (the lens 30b functions as the re-incidence lens 30b). ) Through the antireflection film 28 and re-enter the wavelength conversion element body 22 from the re-incident end 12b2.

再入射端部12b2から波長変換素子本体22に再入射させた信号光ビームを波長変換素子本体22を進行させながら高い変換効率で波長変換を行わせ、到達端部12cに達した信号光ビームを出射端部13aとしての到達端部12cから反射防止膜28を透過させて出射光ビーム27として出射させる。   The signal light beam re-incident on the wavelength conversion element body 22 from the re-incidence end portion 12b2 is subjected to wavelength conversion with high conversion efficiency while advancing the wavelength conversion element body 22, and the signal light beam reaching the arrival end portion 12c is The antireflection film 28 is transmitted from the reaching end portion 12 c serving as the emission end portion 13 a and emitted as the emission light beam 27.

以上説明したように、本発明の実施の形態例における集光光学系を用いた波長変換素子本体への入射光ビームの集光位置は、当該集光光学系の焦点が、当該波長変換素子本体の入射端部と出射端部の間に、到達端部に到達した信号光ビームあるいは前記到達端部から出射した信号光ビームを前記到達端部あるいはその近傍に配置した反射体で反射させて同一波長変換素子本体に再入射させる反射体が配置されているが前記反射体と前記波長変換素子本体の端部の間の光路に再入射レンズとしての集光レンズが配置されていない場合には入射端部と出射端部の間の全光路長の中間点に相当する位置もしくはその近傍であり、前記波長変換素子本体の入射端部と出射端部の間に前記反射体も再入射レンズも配置されていない場合には入射端部と出射端部の間の全光路長の中間点に相当する位置もしくはその近傍であり、前記波長変換素子本体の入射端部と出射端部の間の光路に前記反射体と再入射レンズが配置されている場合には入射端部と前記再入射レンズの直前の到達端部の間の全光路長の中間点に相当する位置もしくはその近傍であることを特徴としていることがわかる。   As described above, the condensing position of the incident light beam on the wavelength conversion element main body using the condensing optical system in the embodiment of the present invention is such that the focal point of the condensing optical system is the wavelength conversion element main body. The signal light beam reaching the arrival end or the signal light beam emitted from the arrival end is reflected by a reflector disposed at or near the arrival end between the incident end and the emission end of the same A reflector that re-enters the wavelength conversion element body is disposed, but is incident when a condenser lens as a re-incidence lens is not disposed in the optical path between the reflector and the end of the wavelength conversion element body. The position corresponding to or in the vicinity of the intermediate point of the total optical path length between the end and the exit end, and the reflector and the re-incident lens are arranged between the entrance end and the exit end of the wavelength conversion element body If not, enter and exit A position corresponding to or near the midpoint of the total optical path length between the end portions, and the reflector and the re-incident lens are disposed in the optical path between the incident end portion and the exit end portion of the wavelength conversion element body. It is understood that the characteristic is that it is at or near the midpoint of the total optical path length between the incident end and the arrival end immediately before the re-incidence lens.

そして、波長変換素子が少なくとも1つの再入射レンズを有している場合、当該再入射レンズを通り当該波長変換素子本体に再入射する信号光ビームが、当該再入射レンズによって当該波長変換素子本体の所定位置に集光されるように当該波長変換素子本体に再入射するように構成されており、当該波長変換素子本体の前記所定位置は、当該波長変換素子本体の当該再入射レンズと当該波長変換素子本体の出射端部の間に、到達端部に到達した信号光ビームあるいは前記到達端部から出射した信号光ビームを前記到達端部あるいはその近傍に配置した反射体で反射させて同一波長変換素子本体に再入射させる反射体が配置されているが前記反射体と当該波長変換素子本体の間の光路に当該再入射レンズとは別の他の再入射レンズが配置されていない場合には当該再入射レンズと当該波長変換素子本体の出射端部の間の全光路長の中間点に相当する位置もしくはその近傍であり、当該波長変換素子を構成している波長変換素子本体の当該再入射レンズと当該波長変換素子本体の出射端部の間に反射体も当該再入射レンズとは別の他の再入射レンズも配置されていない場合には当該再入射レンズと出射端部の間の全光路長の中間点に相当する位置もしくはその近傍であり、当該波長変換素子本体の当該再入射レンズと当該波長変換素子本体の出射端部の間の光路に反射体と当該再入射レンズとは別の他の再入射レンズが配置されている場合には当該再入射レンズの直後の再入射端部と前記他の再入射レンズの直前の到達端部の間の全光路長の中間点に相当する位置もしくはその近傍であることを特徴としていることがわかる。   When the wavelength conversion element has at least one re-incidence lens, a signal light beam that passes through the re-incident lens and re-enters the wavelength conversion element main body is reflected by the re-incident lens on the wavelength conversion element main body. The wavelength conversion element body is configured to re-enter the wavelength conversion element body so as to be condensed at a predetermined position, and the wavelength conversion element body has the predetermined position corresponding to the re-incidence lens and the wavelength conversion of the wavelength conversion element body. The same wavelength conversion is performed by reflecting the signal light beam reaching the arrival end or the signal light beam emitted from the arrival end with a reflector disposed at or near the arrival end between the emission ends of the element body. A reflector that re-enters the element body is disposed, but another re-incident lens other than the re-incident lens is disposed in the optical path between the reflector and the wavelength conversion element body. If not, the wavelength conversion element body constituting the wavelength conversion element at or near the midpoint of the total optical path length between the re-incidence lens and the output end of the wavelength conversion element body In the case where neither a reflector nor another re-incidence lens other than the re-incidence lens is arranged between the re-incidence lens and the emission end of the wavelength conversion element body, the re-incidence lens and the emission end Between the re-incident lens of the wavelength conversion element body and the light path between the exit end of the wavelength conversion element body When another re-incidence lens other than the lens is arranged, the middle of the total optical path length between the re-incident end immediately after the re-incident lens and the arrival end immediately before the other re-incident lens At or near the point It can be seen that it is characterized in that.

このように簡単な構成の装置を用いることにより、波長変換素子本体22に入射あるいは再入射された信号光ビームの広がりの悪影響を防ぎ、波長変換素子本体22内における波長変換効率を高め、出射光ビーム27の品質を高めることができるという大きな効果をもたらしている。   By using an apparatus with such a simple configuration, the adverse effect of the spread of the signal light beam incident on or re-incident on the wavelength conversion element body 22 is prevented, the wavelength conversion efficiency in the wavelength conversion element body 22 is increased, and the outgoing light This brings about a great effect that the quality of the beam 27 can be improved.

本発明を用いた波長変換効率を高める波長変換方法の例についてさらに説明する。前記とは異なる観点からの波長変換素子本体22内における波長変換効率を高める方法として、波長変換を施される信号光ビームの波長変換素子本体22内における光密度を適切に高めることが考えられる。   An example of a wavelength conversion method for improving the wavelength conversion efficiency using the present invention will be further described. As a method for increasing the wavelength conversion efficiency in the wavelength conversion element body 22 from a different viewpoint, it is conceivable to appropriately increase the light density in the wavelength conversion element body 22 of the signal light beam subjected to wavelength conversion.

本発明の発明者の検討の結果、本発明の好ましい例として、図6には全体を図示していないが、図6において、入射端部11aから出射端部13aまでの間の波長変換素子本体22内における信号光ビームの体積を小さくして波長変換素子本体22内における信号光ビームの光密度を高め、波長変換効率を高めることができることをあげることができる。   As a preferable example of the present invention as a result of the study of the inventors of the present invention, although not shown in its entirety in FIG. 6, in FIG. 6, the wavelength conversion element main body between the incident end portion 11a and the outgoing end portion 13a. The volume of the signal light beam in the wavelength converter 22 can be reduced to increase the optical density of the signal light beam in the wavelength conversion element body 22 and the wavelength conversion efficiency can be increased.

具体的に説明すると、図6において、波長変換を施す信号光ビームとしての入射光ビーム21を入射端部11aから波長変換素子本体22に入射させて波長変換素子本体22を進行させながら到達端部12a1に到達せしめるにあたり、図6に図示していない波長変換素子本体22の入射端部の前段に配置してある集光光学系による入射光ビームの入射方法を、入射端部11aから波長変換素子本体22に入射させた信号光ビームの、波長変換素子本体22内における入射端部11aと到達端部12a1の間の体積が最小あるいは最小に近い状態になるようにすることにより、波長変換効率を効果的に高めることができる。   More specifically, in FIG. 6, an incident light beam 21 as a signal light beam to be subjected to wavelength conversion is incident on the wavelength conversion element main body 22 from the incident end 11a and the wavelength conversion element main body 22 is advanced to reach the arrival end. In order to reach 12a1, the incident light beam incident method by the condensing optical system arranged in front of the incident end of the wavelength conversion element main body 22 (not shown in FIG. 6) is changed from the incident end 11a to the wavelength conversion element. By making the volume of the signal light beam incident on the main body 22 between the incident end portion 11a and the reaching end portion 12a1 in the wavelength conversion element main body 22 be in a minimum or near minimum state, the wavelength conversion efficiency can be improved. Can be effectively increased.

そして、到達端部12a1に達した信号光ビームを、反射防止膜28を透過させ、レンズ30aを通して反射体としての外部反射鏡29aに到達せしめ、外部反射鏡29aにより反射させて再び再入射レンス30aを通して、反射防止膜28を透過させ、再入射端部12a2から波長変換素子本体22に再入射させる。このとき、再入射レンズ30aを有する再入射集光光学系は、再入射端部12a2から波長変換素子本体22に再入射させた信号光ビームの、波長変換素子本体22内における再入射端部12a2と次の再入射レンズ30bの直前の到達端部である到達端部12b1の間の体積が最小あるいは最小に近い状態になるようにすることにより、波長変換効率を効果的に高めることができる。   Then, the signal light beam that has reached the reaching end 12a1 is transmitted through the antireflection film 28, reaches the external reflecting mirror 29a as a reflector through the lens 30a, is reflected by the external reflecting mirror 29a, and is re-incidence lens 30a. Then, the light is transmitted through the antireflection film 28 and reentered to the wavelength conversion element body 22 from the re-incident end 12a2. At this time, the re-incident condensing optical system having the re-incident lens 30a has a re-incident end 12a2 in the wavelength conversion element main body 22 of the signal light beam re-incident on the wavelength conversion element main body 22 from the re-incident end 12a2. The wavelength conversion efficiency can be effectively increased by setting the volume between the reaching end portion 12b1, which is the reaching end portion immediately before the next re-incidence lens 30b, to a minimum or near minimum state.

このように、再入射端部12a2から波長変換素子本体22に再入射させた信号光ビームを波長変換素子本体22を進行させながら高い変換効率で波長変換を行わせ、到達端部12b1に達した信号光ビームを、反射防止膜28を透過させ、レンズ30bを通過させて反射体としての外部反射鏡29bに到達せしめ、外部反射鏡29bにより反射させて再び再入射レンス30bを通過させて、反射防止膜28を透過させ、再入射端部12b2から波長変換素子本体22に再入射させる。このとき、再入射レンズ30bを有する再入射集光光学系は、再入射端部12b2から波長変換素子本体22に再入射させた信号光ビームの、波長変換素子本体22内における再入射端部12b2と次の到達端部である到達端部12cすなわち出射端部13aの間の体積が最小あるいは最小に近い状態になるようにすることにより、波長変換効率を効果的に高めることができる。   In this way, the signal light beam re-entered to the wavelength conversion element body 22 from the re-incidence end portion 12a2 is subjected to wavelength conversion with high conversion efficiency while traveling through the wavelength conversion element body 22, and reaches the reaching end portion 12b1. The signal light beam is transmitted through the antireflection film 28, passes through the lens 30b, reaches the external reflecting mirror 29b as a reflector, is reflected by the external reflecting mirror 29b, and passes again through the re-incidence lens 30b to be reflected. The light is transmitted through the prevention film 28 and reentered to the wavelength conversion element main body 22 from the re-incident end 12b2. At this time, the re-incident condensing optical system having the re-incident lens 30b has a re-incident end 12b2 in the wavelength conversion element main body 22 of the signal light beam re-incident on the wavelength conversion element main body 22 from the re-incident end 12b2. In addition, the wavelength conversion efficiency can be effectively increased by setting the volume between the reaching end portion 12c, that is, the next reaching end portion, that is, the emission end portion 13a, to a minimum or near minimum state.

このように、再入射端部12b2から波長変換素子本体22に再入射させた信号光ビームを波長変換素子本体22を進行させながら高い変換効率で波長変換を行わせ、到達端部12cに達した信号光ビームを出射端部13aとしての到達端部12cから反射防止膜28を透過させて出射光ビーム27として出射させる。   In this way, the signal light beam re-entered to the wavelength conversion element body 22 from the re-incidence end portion 12b2 is subjected to wavelength conversion with high conversion efficiency while traveling through the wavelength conversion element body 22, and reaches the reaching end portion 12c. The signal light beam is transmitted through the antireflection film 28 from the arrival end portion 12 c as the emission end portion 13 a and is emitted as the emission light beam 27.

以上説明したように、本発明の実施の形態例における集光光学系を用いた波長変換素子本体への入射光ビームの集光位置は、当該波長変換素子本体の入射端部と出射端部の間に、到達端部に到達した信号光ビームあるいは前記到達端部から出射した信号光ビームを前記到達端部あるいはその近傍に配置した反射体で反射させて同一波長変換素子本体に再入射させる反射体が配置されているが前記反射体と当該波長変換素子の再入射端部の間の光路に再入射レンズが配置されていない場合には入射端部と出射端部の間で当該信号光ビームが通る光路の光路長としてみたときの波長変換素子本体内における当該信号光ビームの体積を最小にするような集光位置もしくはその近傍であり、前記波長変換素子本体の入射端部と出射端部の間に前記反射体も再入射レンズも配置されていない場合には入射端部と出射端部の間で当該信号光ビームが通る光路の光路長としてみたときの波長変換素子本体内における当該信号光ビームの体積を最小にするような集光位置もしくはその近傍であり、前記波長変換素子本体の入射端部と出射端部の間の光路に再入射レンズが配置されている場合には入射端部と前記再入射レンズの直前の到達端部の間で当該信号光ビームが通る光路の光路長としてみたときの波長変換素子本体内における当該信号光ビームの体積を最小にあるいは最小に近い状態にするような集光位置もしくはその近傍であることを特徴としていることがわかる。   As described above, the condensing position of the incident light beam to the wavelength conversion element body using the condensing optical system in the embodiment of the present invention is the incident end portion and the emission end portion of the wavelength conversion element body. In the meantime, the signal light beam reaching the reaching end portion or the signal light beam emitted from the reaching end portion is reflected by a reflector disposed at or near the reaching end portion and re-enters the same wavelength conversion element main body. A signal light beam between the incident end and the exit end when no re-incidence lens is disposed in the optical path between the reflector and the re-incident end of the wavelength conversion element. Is the light condensing position or the vicinity thereof that minimizes the volume of the signal light beam in the wavelength conversion element body when viewed as the optical path length of the optical path that passes through, the incident end and the emission end of the wavelength conversion element main body Reflection between parts In the case where neither the re-incidence lens nor the re-incidence lens is arranged, the volume of the signal light beam in the wavelength conversion element body is minimized when viewed as the optical path length of the optical path through which the signal light beam passes between the entrance end and the exit end. When the re-incident lens is disposed in the optical path between the incident end and the output end of the wavelength conversion element body, the incident end and the re-incident lens A condensing position that makes the volume of the signal light beam within the wavelength conversion element body minimum or close to the minimum when viewed as the optical path length of the optical path through which the signal light beam passes between the reaching ends immediately before Or it turns out that it is the feature in the vicinity.

そして、波長変換素子が少なくとも1つの再入射レンズを有している場合、前記再入射レンズを通り当該波長変換素子に再入射する信号光ビームが、前記再入射レンズによって当該波長変換素子の所定位置に集光されるように当該波長変換素子に再入射するように構成されており、当該波長変換素子の前記所定位置は、当該波長変換素子を構成している波長変換素子本体の当該再入射レンズと当該波長変換素子本体の出射端部の間に、到達端部に到達した信号光ビームあるいは前記到達端部から出射した信号光ビームを前記到達端部あるいはその近傍に配置した反射体で反射させて同一波長変換素子本体に再入射させる反射体が配置されているが前記反射体と当該波長変換素子本体の間の光路に当該再入射レンズとは別の他の再入射レンズが配置されていない場合には当該再入射レンズと当該波長変換素子本体の出射端部の間で当該信号光ビームが通る光路の光路長としてみたときの波長変換素子本体内における当該信号光ビームの体積を最小にするような集光位置もしくはその近傍であり、当該波長変換素子本体の当該再入射レンズと当該波長変換素子本体の出射端部の間に反射体も当該再入射レンズとは別の他の再入射レンズも配置されていない場合には当該再入射レンズと出射端部の間で当該信号光ビームが通る光路の光路長としてみたときの波長変換素子本体内における当該信号光ビームの体積を最小にするような集光位置もしくはその近傍であり、当該波長変換素子本体の当該再入射レンズと当該波長変換素子本体の出射端部の間の光路に反射体と当該再入射レンズとは別の他の再入射レンズが配置されている場合には当該再入射レンズの直後の再入射端部と前記他の再入射レンズの直前の到達端部の間で当該信号光ビームが通る光路の光路長としてみたときの波長変換素子本体内における当該信号光ビームの体積を最小にするような集光位置もしくはその近傍であることを特徴としていることがわかる。   When the wavelength conversion element has at least one re-incidence lens, a signal light beam that passes through the re-incidence lens and re-enters the wavelength conversion element is moved to a predetermined position of the wavelength conversion element by the re-incidence lens. The wavelength conversion element is re-incident on the wavelength conversion element, and the predetermined position of the wavelength conversion element is the re-incidence lens of the wavelength conversion element main body constituting the wavelength conversion element. And the signal light beam that has reached the arrival end or the signal light beam that has exited from the arrival end is reflected by a reflector disposed at or near the arrival end. A reflector that re-enters the same wavelength conversion element body is disposed, but another re-incidence lens other than the re-incidence lens is disposed in the optical path between the reflector and the wavelength conversion element body. If not placed, the volume of the signal light beam in the wavelength conversion element body when viewed as the optical path length of the optical path through which the signal light beam passes between the re-incidence lens and the emission end of the wavelength conversion element body Is a condensing position at or near the condensing position, and the reflector is also different from the re-incidence lens between the re-incident lens of the wavelength conversion element body and the exit end of the wavelength conversion element body. If the re-incidence lens is not arranged, the volume of the signal light beam in the wavelength conversion element body when viewed as the optical path length of the optical path through which the signal light beam passes between the re-incidence lens and the emission end is The light condensing position or the vicinity thereof to be minimized, the reflector and the re-incidence lens in the optical path between the re-incidence lens of the wavelength conversion element body and the emission end of the wavelength conversion element body When another re-incidence lens is arranged, the optical path of the optical path through which the signal light beam passes between the re-incident end immediately after the re-incident lens and the arrival end immediately before the other re-incident lens It can be seen that it is characterized by being at or near the condensing position that minimizes the volume of the signal light beam in the wavelength conversion element body when viewed as a length.

このように、本発明の技術思想を用いれば、小型で簡単な構造の装置を用いて、波長変換効率を効果的に高め、良質の波長変換出射光ビームを得ることができる。   As described above, by using the technical idea of the present invention, it is possible to effectively improve the wavelength conversion efficiency and obtain a high-quality wavelength-converted outgoing light beam by using a small and simple device.

なお、前記の例において、反射体として特定の波長の光ビームをたとえば99%以上の高い反射率で反射し、前記特定の波長とは異なる波長の光ビームを透過することができる機能素子を用いることによって、用途に応じて反射体のところである波長の光ビームを取り出して用いることができる。   In the above example, a functional element capable of reflecting a light beam having a specific wavelength as a reflector with a high reflectance of 99% or more and transmitting a light beam having a wavelength different from the specific wavelength is used. Thus, a light beam having a wavelength at the reflector can be extracted and used depending on the application.

また、図6で再入射レンズ30a,30bを用いずに、外部反射鏡29a,29bを波長変換素子本体22に接近させて配置し、図1,図2と同様の構成にすることもできる。   Further, in FIG. 6, the external reflecting mirrors 29a and 29b can be arranged close to the wavelength conversion element main body 22 without using the re-incidence lenses 30a and 30b, so that the same configuration as in FIGS.

図7は本発明の実施例としての波長変換装置の要部を説明する図で、波長変換素子を2つ用いた波長変換装置において、接続レンズ30の一方の側に第1の波長変換素子を接続レンズ30の他方の側に第2の波長変換素子を配置した例である。   FIG. 7 is a diagram for explaining a main part of the wavelength conversion device as an embodiment of the present invention. In the wavelength conversion device using two wavelength conversion elements, the first wavelength conversion element is provided on one side of the connecting lens 30. This is an example in which a second wavelength conversion element is arranged on the other side of the connecting lens 30.

図7で、符号20eは本発明の実施例としての波長変換装置、20e1と20e2は本発明の実施の形態例としての波長変換素子、27cと27dは出射光ビーム、27c1は入射光ビーム、30は接続レンズである。   In FIG. 7, reference numeral 20e is a wavelength conversion device as an embodiment of the present invention, 20e1 and 20e2 are wavelength conversion elements as embodiments of the present invention, 27c and 27d are outgoing light beams, 27c1 is an incident light beam, 30 Is a connecting lens.

波長変換装置20eは、その主要部に波長変換素子20e1と波長変換素子20e2を間にレンズを介して直列に接続した構成になっており、図示していないが、入射光ビーム21の光路で波長変換素子20e1の前段にはレーザ光源と入射光を図示の入射端部に導く集光光学系が配置されており、出射光ビーム27dの後段にはたとえば多層膜から成る波長選択フィルタが配置されており、さらに、このような構成のセットで、波長の異なる複数の出射光を取り出せるように構成されている。   The wavelength conversion device 20e has a configuration in which a wavelength conversion element 20e1 and a wavelength conversion element 20e2 are connected in series via a lens in the main part, and although not shown in the drawing, the wavelength conversion device 20e has a wavelength in the optical path of the incident light beam 21. A laser light source and a condensing optical system for guiding incident light to the incident end shown in the figure are arranged upstream of the conversion element 20e1, and a wavelength selection filter made of, for example, a multilayer film is arranged downstream of the outgoing light beam 27d. In addition, with such a set of configurations, a plurality of outgoing lights having different wavelengths can be extracted.

図7は、前記第2の波長変換素子20e2を構成している波長変換素子本体22の入射端部と出射端部の間に、到達端部に到達した信号光あるいは前記到達端部から出射した信号光を前記到達端部あるいはその近傍に配置した反射体で反射させて同一波長変換素子本体に再入射させる反射体が配置されているが前記反射体と前記第2の波長変換素子の再入射端部の間の光路に再入射レンズとしての集光レンズが配置されていない場合の例である。   FIG. 7 shows that the signal light that has reached the arrival end or the arrival end is emitted between the incident end and the emission end of the wavelength conversion element main body 22 constituting the second wavelength conversion element 20e2. A reflector for reflecting the signal light with a reflector disposed at or near the reaching end and re-entering the same wavelength conversion element main body is disposed, but re-incidence of the reflector and the second wavelength conversion element is provided. This is an example in which a condensing lens as a re-incidence lens is not disposed in the optical path between the end portions.

接続レンズ30の焦点は、第1の波長変換素子20e1からの出射光ビーム27cを第2の波長変換素子20e2への入射ビーム27c1として、波長変換素子本体22内における前光路の光路長としての中間点すなわち光路71bの望ましくは中心点50dあるいはその近傍に結像するような焦点になっている。これにより、波長変換効率を効果的に高めることができる。第1の波長変換素子20e1への入射ビーム21の集光の仕方を、第2の波長変換素子20e2への入射ビーム27c1の集光の仕方と同様にすることによって、波長変換効率を一層高めることができる。   The focal point of the connecting lens 30 is an intermediate as the optical path length of the front optical path in the wavelength conversion element body 22 with the outgoing light beam 27c from the first wavelength conversion element 20e1 as the incident beam 27c1 to the second wavelength conversion element 20e2. The focal point is formed so that an image is formed at a point, that is, preferably at the central point 50d or in the vicinity thereof. Thereby, wavelength conversion efficiency can be improved effectively. The wavelength conversion efficiency is further increased by making the method of condensing the incident beam 21 on the first wavelength conversion element 20e1 the same as the method of condensing the incident beam 27c1 on the second wavelength conversion element 20e2. Can do.

このように構成することによって、小型で、安価で、優れた波長変換を行うことができる波長変換装置を提供することができる。   By configuring in this way, it is possible to provide a wavelength conversion device that is small, inexpensive, and capable of performing excellent wavelength conversion.

第1の波長変換素子20e1および第2の波長変換素子20e2の構成を種々変えた場合、それらへの各入射光ビームの集光の仕方として、図1〜図6を用いて説明した前記各集光方法を用いることができ、また、それらを適宜組み合わせた集光方法を用いることができる。   When the configurations of the first wavelength conversion element 20e1 and the second wavelength conversion element 20e2 are variously changed, the respective light collection methods described with reference to FIGS. An optical method can be used, and a condensing method in which they are appropriately combined can be used.

図8は本発明の実施例としての波長変換装置の要部を説明する図で、反射体の一方の側に第1の波長変換素子と第2の波長変換素子が配置した例である。   FIG. 8 is a diagram for explaining a main part of the wavelength conversion device as an embodiment of the present invention, in which the first wavelength conversion element and the second wavelength conversion element are arranged on one side of the reflector.

図8で、符号250は波長変換装置、251と252は波長変換素子、253と254は波長変換素子本体、255は入射光ビーム、256は出射光ビーム、257〜260は反射防止膜、261と262はそれぞれ波長変換素子本体内における光路、261aは光路261における波長変換素子本体253の入射端部271と出射端部272の間の光路長としての中間点、262aは光路262における波長変換素子本体254の入射端部273と出射端部274の間の光路長としての中間点、263と264は接続レンズ、265は反射体としてのプリズム、280は接続レンズ光路である。   In FIG. 8, reference numeral 250 denotes a wavelength conversion device, 251 and 252 denote wavelength conversion elements, 253 and 254 denote wavelength conversion element bodies, 255 denotes an incident light beam, 256 denotes an outgoing light beam, 257 to 260 denote antireflection films, and 261. 262 is an optical path in the wavelength conversion element main body, 261a is an intermediate point as an optical path length between the incident end 271 and the emission end 272 of the wavelength conversion element main body 253 in the optical path 261, and 262a is a wavelength conversion element main body in the optical path 262. An intermediate point as an optical path length between the entrance end 273 and the exit end 274 of 254, 263 and 264 are connection lenses, 265 is a prism as a reflector, and 280 is a connection lens optical path.

図示のように、波長変換装置250は反射体265の一方の側に第1の波長変換素子253と第2の波長変換素子254が配置された構成になっている。   As illustrated, the wavelength conversion device 250 has a configuration in which a first wavelength conversion element 253 and a second wavelength conversion element 254 are disposed on one side of the reflector 265.

レンズ光路280は第1の波長変換素子253の出射端部272から第2の波長変換素子254の入射端部273に到る接続レンズ263,264を通る光路で、反射体としてのプリズム265によって光路が折り返されている。   The lens optical path 280 is an optical path that passes through the connection lenses 263 and 264 from the emission end 272 of the first wavelength conversion element 253 to the incident end 273 of the second wavelength conversion element 254, and is optical by the prism 265 as a reflector. Is wrapped.

波長変換装置250は2つの波長変換素子の間の光路に接続レンズが図示のように複数ある例で、接続レンズ263と接続レンズ264で構成されている。   The wavelength conversion device 250 is an example in which there are a plurality of connection lenses in the optical path between two wavelength conversion elements as shown in the figure, and includes a connection lens 263 and a connection lens 264.

波長変換素子本体253への入射光ビーム255は、図示していないが、入射光用の集光光学系により、光路261の中間点261aの近傍に前記集光光学系の焦点があるように集光されて波長変換素子本体253へ入射される。接続レンズ光路280を通った波長変換素子本体254への入射光ビームは、集光光学系としての接続レンズにより、光路262の中間点262aの近傍に前記集光光学系の焦点があるように集光されて波長変換素子本体254へ入射される。   Although not shown, the incident light beam 255 to the wavelength conversion element main body 253 is collected by the condensing optical system for incident light so that the focal point of the condensing optical system is in the vicinity of the intermediate point 261a of the optical path 261. The light is incident on the wavelength conversion element body 253. The incident light beam that has passed through the connecting lens optical path 280 and enters the wavelength conversion element body 254 is collected by the connecting lens as the condensing optical system so that the focal point of the condensing optical system is in the vicinity of the intermediate point 262a of the optical path 262. The light is incident on the wavelength conversion element body 254.

このように各波長変換素子本体への入射光の集光光学系を管理して波長変換装置250を構成することにより、構成が簡単で、小型で、波長変換効率が高く、高品質で、ハイパワーのコヒーレント光源を安価に製造することができ、使用目的に応じて、波長可変光源としても構成することができるという多大な効果を奏するものである。   In this way, by configuring the wavelength conversion device 250 by managing the condensing optical system of the incident light to each wavelength conversion element body, the configuration is simple, compact, high in wavelength conversion efficiency, high quality, high quality A power coherent light source can be manufactured at low cost, and can be configured as a wavelength tunable light source according to the purpose of use.

また、図8に示した構成の波長変換装置250を各集光光学系を、前記の実施の形態例の場合と同様に、波長変換素子本体253,254の各入射端部から出射端部までの間の波長変換素子本体内における信号光ビームの体積を小さくして波長変換素子本体内における信号光ビームの光密度を高め、波長変換効率を高めることができる。   Further, in the wavelength converter 250 having the configuration shown in FIG. 8, each condensing optical system is connected from the incident end to the output end of the wavelength conversion element main bodies 253 and 254 in the same manner as in the above embodiment. By reducing the volume of the signal light beam in the wavelength conversion element body between the two, the optical density of the signal light beam in the wavelength conversion element body can be increased, and the wavelength conversion efficiency can be increased.

具体的に説明すると、図8において、波長変換を施す信号光ビームとしての入射光ビーム255を入射端部271から波長変換素子本体253に入射させて波長変換素子本体253内を進行させながら到達端部272に到達せしめるにあたり、図8に図示していない集光光学系による入射光ビームの入射方法を、入射端部271から波長変換素子本体253に入射させた信号光ビームの波長変換素子本体253内における入射端部271と到達端部272の間の体積が最小あるいは最小に近い状態になるように前記集光光学系を管理することにより、波長変換効率を効果的に高めることができる。   More specifically, in FIG. 8, an incident light beam 255 as a signal light beam to be subjected to wavelength conversion is incident on the wavelength conversion element body 253 from the incident end 271 and travels through the wavelength conversion element body 253 while reaching the arrival end. In order to reach the portion 272, the incident light beam incident method by a condensing optical system (not shown in FIG. 8) is used as the wavelength conversion element body 253 of the signal light beam incident on the wavelength conversion element body 253 from the incident end 271. By managing the condensing optical system so that the volume between the incident end portion 271 and the arrival end portion 272 is minimized or close to the minimum, the wavelength conversion efficiency can be effectively increased.

さらに、波長変換素子251から出射して接続レンズ光路280を通り波長変換素子252の波長変換素子本体254に入射光する入射光を、出射端部272から入射端部273の間に配置されている接続レンズ264を含む集光光学系を、入射端部273から波長変換素子本体254に入射させた信号光ビームの波長変換素子本体254内における入射端部273と到達端部274の間の体積が最小あるいは最小に近い状態になるように前記集光光学系を管理することにより、波長変換効率をさらに効果的に高めることができる。   Further, incident light that is emitted from the wavelength conversion element 251 and enters the wavelength conversion element body 254 of the wavelength conversion element 252 through the connection lens optical path 280 is disposed between the emission end 272 and the incident end 273. The volume between the incident end 273 and the arrival end 274 in the wavelength conversion element main body 254 of the signal light beam incident on the wavelength conversion element main body 254 from the incident end 273 in the condensing optical system including the connecting lens 264 is as follows. By managing the condensing optical system so as to be in the minimum or near-minimum state, the wavelength conversion efficiency can be further effectively increased.

図8において、接続レンズとして接続レンズ263と接続レンズ264の2つを用いたが、接続レンズ263と接続レンズ264の2つのレンズの代わりに、連続した1つのレンズを用いることができる。このようにすることにより、さらなる小型化とコストダウンを図ることができる。特に、波長変換素子の図8における縦方向の寸法を小さく構成した場合、小型化に有利になる。   In FIG. 8, the connection lens 263 and the connection lens 264 are used as the connection lens. However, instead of the two lenses of the connection lens 263 and the connection lens 264, one continuous lens can be used. In this way, further downsizing and cost reduction can be achieved. In particular, when the size of the wavelength conversion element in FIG.

反射体として、プリズム265を用いた例を示したが、この反射体に関しても、種々のバリエーションが可能である。   Although an example in which the prism 265 is used as the reflector is shown, various variations are possible for this reflector.

図8で説明した波長変換装置は、長さの短い小型波長変換装置としての利点の他に、入出力を波長変換装の同じ側に設けることができるという実用上大きな効果を奏するものである。   The wavelength converter described with reference to FIG. 8 has a practically significant effect that the input / output can be provided on the same side of the wavelength converter in addition to the advantage as a small wavelength converter having a short length.

また、図7と図8に例示した波長変換装置を構成する各波長変換素子の一部または全部に、たとえば図6を用いて説明したような、波長変換素子本体の到達端部と反射体の間に再入射レンズを配置してある波長変換素子を用いる場合、図6を用いて説明した前記集光の技術思想を適用して、波長変換効率が良く、波長変換されたハイパワーで良質の光源を提供することができることを以上の説明から容易に理解することができる。   Further, the wavelength conversion element main body as shown in FIG. 6, for example, as described with reference to FIG. 6 may be used for a part or all of the wavelength conversion elements constituting the wavelength conversion device illustrated in FIGS. In the case of using a wavelength conversion element having a re-incidence lens disposed between them, the above-described condensing technical concept described with reference to FIG. 6 is applied, and wavelength conversion efficiency is good, and wavelength-converted high power and good quality It can be easily understood from the above description that a light source can be provided.

このように、本発明は、構成が簡単で、小型で、波長変換効率が高く、高品質で、ハイパワーのコヒーレント光源を安価に製造することができ、使用目的に応じて、前記の特徴を有する波長可変光源をも安価に提供することができるという多大な効果を奏するものである。   As described above, the present invention is simple in structure, small in size, high in wavelength conversion efficiency, can produce a high-quality, high-power coherent light source at low cost, and has the above-described characteristics according to the purpose of use. This brings about a great effect that the wavelength tunable light source can also be provided at low cost.

以上、図面を参照しながら本発明の実施の形態例としての波長変換装置と波長変換方法を説明したが、本発明はこれに狭く限定されるものではなく、たとえば、各種レンズの構成、反射体の構成等々、多くのバリエーションを可能とするものである。   As described above, the wavelength conversion device and the wavelength conversion method as the embodiment of the present invention have been described with reference to the drawings. However, the present invention is not limited to this, for example, configurations of various lenses, reflectors, and the like. Many variations are possible, such as the configuration.

以上説明したように、本発明により、良質で、小型で、ハイパワーを実現できる、安価なコヒーレント光源として光通信分野、医療分野、顕微鏡、計測分野など広い分野において用いることができる光源を提供することができる。   As described above, the present invention provides a light source that can be used in a wide range of fields such as an optical communication field, a medical field, a microscope, and a measurement field as a low-cost coherent light source that can be realized with high quality, small size, and high power. be able to.

本発明の実施例としての波長変換素子を説明する図である。It is a figure explaining the wavelength conversion element as an Example of this invention. 本発明の実施例としての波長変換素子を説明する図である。It is a figure explaining the wavelength conversion element as an Example of this invention. 本発明の実施例としての波長変換素子本体の表面の平行度について説明する図である。It is a figure explaining the parallelism of the surface of the wavelength conversion element main body as an Example of this invention. 図3の波長変換素子本体の分極反転領域の境界と素子表面の平行度について説明する図である。It is a figure explaining the parallelism of the boundary of the polarization inversion area | region of the wavelength conversion element main body of FIG. 3, and an element surface. 波長変換素子をさらに詳しく説明する図で、波長変換素子本体の分極反転領域の境界と外部反射鏡の表面の平行度について説明する図である。It is a figure explaining a wavelength conversion element in more detail, and is a figure explaining the parallelism of the boundary of the polarization inversion area | region of a wavelength conversion element main body, and the surface of an external reflective mirror. 本発明に用いる波長変換素子の例を説明する図である。It is a figure explaining the example of the wavelength conversion element used for this invention. 本発明の実施例としての波長変換装置の要部を説明する図である。It is a figure explaining the principal part of the wavelength converter as an Example of this invention. 本発明の実施例としての波長変換装置の要部を説明する図である。It is a figure explaining the principal part of the wavelength converter as an Example of this invention. 従来の波長変換素子を説明する図である。It is a figure explaining the conventional wavelength conversion element. 従来の波長変換素子を説明する図である。It is a figure explaining the conventional wavelength conversion element. 従来の光パラメトリック発振器を説明する図である。It is a figure explaining the conventional optical parametric oscillator. 従来の波長変換素子を説明する図である。It is a figure explaining the conventional wavelength conversion element.

符号の説明Explanation of symbols

11a:入射端部
12a〜12c,12a1,12b1:到達端部
12a2,12b2:再入射端部
13a:出射端部
20a,20c,20e1,20e2,200,251,252,1100:波長変換素子
20e,250:波長変換装置
21,27c1,204,221,255:入射光ビーム
22,253,254:波長変換素子本体
23,26,28,202,203,205,219,257〜260:反射防止膜
24,25:反射体としての反射膜
27,27c,27d,256:出射光ビーム
29a,29b:外部反射鏡
30,263,264:接続レンズ
30a,30b:再入射レンズ
33,209:分極反転領域
34:線34aと線34bの平行度を表す符号
34a:波長変換素子本体の入射端部と到達端部が含まれる表面を延長した線
34b:波長変換素子本体の到達端部と出射端部が含まれる表面を延長した線
35a:線34aと線35a1の平行度を表す符号
35a1,35b1:分極反転領域の境界面を延長した線
35b:線35b1と線34bの平行度を表す符号
36a,36b:外部反射鏡の反射面と分極反転領域の境界の平行度を説明する符号
37a,37b:外部反射鏡29の反射面を延長した線
39:分極反転領域の幅を説明する符号
50a〜50d,261a,262a,711:光路の光路長としての中間点(中心点)
50a1,50b1,50c1,71a〜71c,261,262:光路
106:非線形結晶
221:レーザ
222:集光光学系
225:入射面
226:出射面
265:プリズム
280:接続レンズ光路
11a: incident end portions 12a to 12c, 12a1, 12b1: reaching end portions 12a2, 12b2: re-incident end portions 13a: emitting end portions 20a, 20c, 20e1, 20e2, 200, 251, 252, 1100: wavelength conversion elements 20e, 250: Wavelength conversion device 21, 27c1, 204, 221, 255: Incident light beam 22,253, 254: Wavelength conversion element body 23, 26, 28, 202, 203, 205, 219, 257 to 260: Antireflection film 24 , 25: Reflective films as reflectors 27, 27c, 27d, 256: outgoing light beams 29a, 29b: external reflectors 30, 263, 264: connection lenses 30a, 30b: re-incident lenses 33, 209: polarization inversion regions 34 : Symbol representing the parallelism between the line 34a and the line 34b 34a: The incident end and the reaching end of the wavelength conversion element body are Line 34b extended from the included surface 34b: Line extended from the surface including the arrival end and the output end of the wavelength conversion element main body 35a: Symbols 35a1, 35b1: Denoting the parallelism of the line 34a and the line 35a1 Line 35b extended from the boundary surface: Symbols 36a, 36b representing the parallelism of the lines 35b1 and 34b: Symbols 37a, 37b explaining the parallelism of the boundary between the reflecting surface of the external reflector and the polarization inversion region 37a, 37b: External reflector 29 Line 39 obtained by extending the reflection surface of 39: Reference numeral 50a to 50d, 261a, 262a, 711 for explaining the width of the domain-inverted region: Intermediate point (center point) as the optical path length of the optical path
50a1, 50b1, 50c1, 71a-71c, 261, 262: optical path 106: nonlinear crystal 221: laser 222: condensing optical system 225: incident surface 226: exit surface 265: prism 280: connecting lens optical path

Claims (65)

本発明において、後述の波長変換素子本体に入射される入射光に含まれる第1の波長λ1の光を第1の波長λ1とは異なる波長である第2の波長λ2の光へ波長変換を行うことができる素子自体を波長変換素子本体ということにし、波長変換素子本体へ入射光を入射させる波長変換素子本体の端部を入射端部と定義し、入射光が波長変換素子本体に入射して前記波長変換素子本体内を第1の波長λ1の光から第2の波長λ2の光への波長変換を受けながら進行して第1の波長λ1の光と第2の波長λ2の光を含んだ光として到達する前記波長変換素子本体の前記入射端部とは異なる端部もしくは前記端部近傍を波長変換素子本体の到達端部と定義し、前記到達端部のうちでそこに前記波長変換を受けて到達した光を出射光として取り出す端部もしくは前記端部近傍を波長変換素子本体の出射端部と定義し、波長変換素子本体に入射される前の第1の波長λ1の光を含む入射光と前記入射光が波長変換素子本体に入射され波長変換を施されながら波長変換素子本体内を進行する第1の波長λ1の光と第2の波長λ2の光を含む入射光と波長変換素子本体に入射された前記入射光が波長変換素子本体内を進行して波長変換を施されて波長変換素子本体から出射した出射光のそれぞれをあるいはそれらを総称して信号光ともいうことにし、波長変換素子本体に光学系等を配置したものや波長変換素子本体等をケース等に実装したものを波長変換素子ということにし、前記波長変換素子を少なくとも2つ用いた波長変換装置において、前記波長変換装置は、波長変換を施される信号光ビームの光路においてレンズ(以下、接続レンズともいう)を介して直列に接続されている少なくとも2つの波長変換素子を有する波長変換光回路部を少なくとも1つ有しており、前記波長変換装置の少なくとも1つの前記波長変換光回路部は、前記接続レンズを介して直列に接続されている2つの波長変換素子のうちの一方の波長変換素子(以下、第1の波長変換素子ともいう)の出射端部と他方の波長変換素子(以下、第2の波長変換素子ともいう)の入射端部の間の前記接続レンズを通る光路を含む信号光ビームの光路を接続レンズ光路ともいうことにして、前記第1の波長変換素子から出射した信号光ビームが、前記接続レンズ光路を通り前記接続レンズによって前記第2の波長変換素子の所定位置に集光されるように前記第2の波長変換素子に入射するように構成されており、前記第2の波長変換素子の前記所定位置は、前記第2の波長変換素子を構成している波長変換素子本体の入射端部と出射端部の間に、到達端部に到達した信号光ビームあるいは前記到達端部から出射した信号光ビームを前記到達端部あるいはその近傍に配置した反射体で反射させて同一波長変換素子本体に再入射させる反射体が配置されているが前記反射体と前記第2の波長変換素子の端部の間の光路に集光レンズ(以下、再入射レンズともいう)が配置されていない場合には入射端部と出射端部の間の全光路長の中間点に相当する位置もしくはその近傍であり、前記第2の波長変換素子を構成している波長変換素子本体の入射端部と出射端部の間に反射体も再入射レンズも配置されていない場合には入射端部と出射端部の間の全光路長の中間点に相当する位置もしくはその近傍であり、前記第2の波長変換素子を構成している波長変換素子本体の入射端部と出射端部の間の光路に反射体と再入射レンズが配置されている場合には入射端部と前記再入射レンズの直前の到達端部の間の全光路長の中間点に相当する位置もしくはその近傍であることを特徴とする波長変換装置。   In the present invention, wavelength conversion is performed on light having a first wavelength λ1 included in incident light incident on a wavelength conversion element body, which will be described later, to light having a second wavelength λ2, which is a wavelength different from the first wavelength λ1. The element itself that can be used is called the wavelength conversion element body, the end of the wavelength conversion element body that makes incident light incident on the wavelength conversion element body is defined as the incident end, and the incident light enters the wavelength conversion element body. The wavelength converting element main body travels while undergoing wavelength conversion from the light having the first wavelength λ1 to the light having the second wavelength λ2, and includes light having the first wavelength λ1 and light having the second wavelength λ2. An end portion different from or near the end portion of the wavelength conversion element main body that reaches as light is defined as a reaching end portion of the wavelength conversion element main body, and the wavelength conversion is performed in the reaching end portion. The end that takes out the light that arrives and receives it as the outgoing light Defines the vicinity of the end as the exit end of the wavelength conversion element body, and the incident light including the light of the first wavelength λ1 before entering the wavelength conversion element body and the incident light enter the wavelength conversion element body The incident light including the light having the first wavelength λ1 and the light having the second wavelength λ2 that travels in the wavelength conversion element body while being subjected to wavelength conversion, and the incident light incident on the wavelength conversion element body are the wavelength conversion element. Each of the outgoing lights that have traveled through the body and have been subjected to wavelength conversion and emitted from the wavelength conversion element main body, or collectively referred to as signal light, an optical system or the like disposed in the wavelength conversion element main body, A wavelength conversion device in which a wavelength conversion device main body or the like is mounted in a case or the like is referred to as a wavelength conversion device, and in the wavelength conversion device using at least two of the wavelength conversion devices, the wavelength conversion device is a signal light beam subjected to wavelength conversion. In the light path And having at least one wavelength conversion optical circuit unit having at least two wavelength conversion elements connected in series via a lens (hereinafter also referred to as a connecting lens), and at least one of the wavelength conversion devices The wavelength conversion optical circuit section includes an emission end of one wavelength conversion element (hereinafter also referred to as a first wavelength conversion element) of two wavelength conversion elements connected in series via the connection lens. An optical path of a signal light beam including an optical path passing through the connection lens between incident ends of the other wavelength conversion element (hereinafter also referred to as a second wavelength conversion element) is also referred to as a connection lens optical path. The signal light beam emitted from the wavelength conversion element enters the second wavelength conversion element so that it passes through the connection lens optical path and is condensed by the connection lens at a predetermined position of the second wavelength conversion element. The predetermined position of the second wavelength conversion element reaches between the incident end and the emission end of the wavelength conversion element main body constituting the second wavelength conversion element. A reflector for reflecting the signal light beam reaching the end or the signal light beam emitted from the reaching end by a reflector disposed at or near the reaching end and re-entering the same wavelength conversion element body is disposed. However, when a condensing lens (hereinafter also referred to as a re-incidence lens) is not disposed in the optical path between the reflector and the end of the second wavelength conversion element, the incident end and the exit end The reflector is also re-incident between the incident end and the exit end of the wavelength conversion element main body constituting the second wavelength conversion element at or near the position corresponding to the intermediate point of the total optical path length between Input end if no lens is placed The optical path between the incident end and the exit end of the wavelength conversion element main body constituting the second wavelength conversion element, which is at or near the midpoint of the total optical path length between the exit ends. When the reflector and the re-incidence lens are arranged, the position is equivalent to or in the vicinity of the intermediate point of the total optical path length between the incident end and the arrival end immediately before the re-incidence lens. And a wavelength converter. 請求項1に記載の波長変換装置において、前記波長変換装置の少なくとも1つの前記波長変換光回路部における前記第1の波長変換素子に入射される入射光ビームは、前記第1の波長変換素子の所定位置に集光されるように前記第1の波長変換素子に入射するように構成されており、前記第1の波長変換素子の前記所定位置は、前記第1の波長変換素子を構成している波長変換素子本体の入射端部と出射端部の間に、到達端部に到達した信号光ビームあるいは前記到達端部から出射した信号光ビームを前記到達端部あるいはその近傍に配置した反射体で反射させて同一波長変換素子本体に再入射させる前記反射体が配置されているが前記反射体と前記第1の波長変換素子の端部の間の光路に再入射レンズが配置されていない場合には入射端部と出射端部の間の全光路長の中間点に相当する位置もしくはその近傍であり、前記第1の波長変換素子を構成している波長変換素子本体の入射端部と出射端部の間に前記反射体も再入射レンズも配置されていない場合には入射端部と出射端部の間の全光路長の中間点に相当する位置もしくはその近傍であり、前記第1の波長変換素子を構成している波長変換素子本体の入射端部と出射端部の間の光路に前記反射体と再入射レンズが配置されている場合には入射端部と前記再入射レンズの直前の到達端部の間の全光路長の中間点に相当する位置もしくはその近傍であることを特徴とする波長変換装置。   2. The wavelength conversion device according to claim 1, wherein an incident light beam incident on the first wavelength conversion element in at least one of the wavelength conversion optical circuit units of the wavelength conversion device is the wavelength of the first wavelength conversion element. The first wavelength conversion element is configured to enter the first wavelength conversion element so as to be condensed at a predetermined position, and the predetermined position of the first wavelength conversion element constitutes the first wavelength conversion element. A reflector in which the signal light beam reaching the arrival end or the signal light beam emitted from the arrival end is arranged at or near the arrival end between the incident end and the emission end of the wavelength conversion element main body In the case where the reflector that is reflected by the light source and re-enters the same wavelength conversion element main body is disposed, but no re-incidence lens is disposed in the optical path between the reflector and the end of the first wavelength conversion element. The incident end The position corresponding to or in the vicinity of the intermediate point of the total optical path length between the emission end portions, and between the incident end portion and the emission end portion of the wavelength conversion element main body constituting the first wavelength conversion element. When neither a reflector nor a re-incidence lens is arranged, it is at or near the position corresponding to the intermediate point of the total optical path length between the entrance end and the exit end, and constitutes the first wavelength conversion element. When the reflector and the re-incident lens are arranged in the optical path between the incident end and the outgoing end of the wavelength conversion element body, the distance between the incident end and the arrival end immediately before the re-incident lens A wavelength converter characterized by being located at or near the midpoint of the total optical path length. 請求項1または2に記載の波長変換装置において、少なくとも1つの波長変換素子は、少なくとも1つの再入射レンズを有しており、前記再入射レンズを通り当該波長変換素子に再入射する信号光ビームが、前記再入射レンズによって当該波長変換素子の所定位置に集光されるように当該波長変換素子に再入射するように構成されており、当該波長変換素子の前記所定位置は、当該波長変換素子を構成している波長変換素子本体の当該再入射レンズと当該波長変換素子本体の出射端部の間に、到達端部に到達した信号光ビームあるいは前記到達端部から出射した信号光ビームを前記到達端部あるいはその近傍に配置した反射体で反射させて同一波長変換素子本体に再入射させる反射体が配置されているが前記反射体と当該波長変換素子本体の間の光路に当該再入射レンズとは別の他の再入射レンズが配置されていない場合には当該再入射レンズの直後の再入射端部と当該波長変換素子本体の出射端部の間の全光路長の中間点に相当する位置もしくはその近傍であり、当該波長変換素子を構成している波長変換素子本体の当該再入射レンズと当該波長変換素子本体の出射端部の間に反射体も当該再入射レンズとは別の他の再入射レンズも配置されていない場合には当該再入射レンズの直後の再入射端部と出射端部の間の全光路長の中間点に相当する位置もしくはその近傍であり、当該波長変換素子を構成している波長変換素子本体の当該再入射レンズと当該波長変換素子本体の出射端部の間の光路に反射体と当該再入射レンズとは別の他の再入射レンズが配置されている場合には当該再入射レンズの直後の再入射端部と前記他の再入射レンズの直前の到達端部の間の全光路長の中間点に相当する位置もしくはその近傍であることを特徴とする波長変換装置。   3. The wavelength conversion device according to claim 1, wherein at least one wavelength conversion element has at least one re-incident lens, and the signal light beam passes through the re-incident lens and reenters the wavelength conversion element. Is re-incident on the wavelength conversion element so as to be condensed at a predetermined position of the wavelength conversion element by the re-incident lens, and the predetermined position of the wavelength conversion element is Between the re-incident lens of the wavelength conversion element main body and the emission end of the wavelength conversion element main body constituting the signal light beam reaching the arrival end or the signal light beam emitted from the arrival end A reflector that is reflected by a reflector disposed at or near the arrival end and re-enters the same wavelength conversion element main body is disposed, but the reflector and the wavelength conversion element main body If no other re-incidence lens other than the re-incidence lens is arranged in the optical path, the entire optical path between the re-incident end immediately after the re-incident lens and the output end of the wavelength conversion element body The reflector is also located between the re-incident lens of the wavelength conversion element main body constituting the wavelength conversion element and the exit end of the wavelength conversion element main body at or near the position corresponding to the middle point of the length. If another re-incidence lens other than the incident lens is not arranged, the position corresponding to the intermediate point of the total optical path length between the re-incidence end and the exit end immediately after the re-incidence lens or the vicinity thereof In the optical path between the re-incidence lens of the wavelength conversion element body constituting the wavelength conversion element and the exit end of the wavelength conversion element body, another reflector and the re-incidence lens are different from each other. If an incident lens is placed Wavelength converter, characterized in that the position or the vicinity thereof corresponding to the midpoint of the total optical path length between the arrival end of the previous re-entering end and the other re-entering lens immediately following the incident lens. 請求項1〜3のいずれかに記載の波長変換装置において、前記波長変換装置の少なくとも1つの前記波長変換光回路部は、前記接続レンズを中心にして、前記接続レンズ光路の一方の側に前記第1の波長変換素子が配置されており、前記接続レンズ光路の他方の側に前記第2の波長変換素子が配置されており、前記第1の波長変換素子と第2の波長変換素子のうちの一方の波長変換素子から出射した信号光ビームが、前記接続レンズを通り前記接続レンズによって他方の波長変換素子の所定位置に集光されるように前記他方の波長変換素子に入射するように構成されており、前記他方の波長変換素子の前記所定位置は、前記他方の波長変換素子を構成している波長変換素子本体の入射端部と出射端部の間に、到達端部に到達した信号光ビームあるいは前記到達端部から出射した信号光ビームを前記到達端部あるいはその近傍に配置した反射体で反射させて同一波長変換素子本体に再入射させる前記反射体が配置されているが前記反射体と前記他方の波長変換素子の端部の間の光路に再入射レンズが配置されていない場合には入射端部と出射端部の間で当該信号光ビームが通る光路の光路長としてみたときの波長変換素子本体内における当該信号光ビームの体積を最小にするような集光位置もしくはその近傍であり、前記他方の波長変換素子を構成している波長変換素子本体の入射端部と出射端部の間に前記反射体も再入射レンズも配置されていない場合には入射端部と出射端部の間で当該信号光ビームが通る光路の光路長としてみたときの当該信号光ビームの体積を最小にするような集光位置もしくはその近傍であり、前記他方の波長変換素子を構成している波長変換素子本体の入射端部と出射端部の間の光路に反射体と再入射レンズが配置されている場合には入射端部と前記再入射レンズの直前の到達端部の間で当該信号光ビームが通る光路の光路長としてみたときの波長変換素子本体内における当該信号光ビームの体積を最小にするような集光位置もしくはその近傍であることを特徴とする波長変換装置。   4. The wavelength conversion device according to claim 1, wherein at least one of the wavelength conversion optical circuit units of the wavelength conversion device is located on one side of the connection lens optical path around the connection lens. A first wavelength conversion element is disposed, the second wavelength conversion element is disposed on the other side of the connection lens optical path, and the first wavelength conversion element and the second wavelength conversion element The signal light beam emitted from one of the wavelength conversion elements is configured to be incident on the other wavelength conversion element so as to pass through the connection lens and be condensed at a predetermined position of the other wavelength conversion element by the connection lens. The predetermined position of the other wavelength conversion element is a signal that has reached the arrival end portion between the incident end portion and the emission end portion of the wavelength conversion element body constituting the other wavelength conversion element. Light beam Alternatively, the reflector is arranged so that the signal light beam emitted from the reaching end is reflected by a reflector disposed at or near the reaching end and re-enters the same wavelength conversion element body. And when the re-incidence lens is not disposed in the optical path between the end of the other wavelength conversion element, the optical path length of the optical path through which the signal light beam passes between the entrance end and the exit end An incident end and an exit end of the wavelength conversion element main body that is at or near the condensing position that minimizes the volume of the signal light beam in the wavelength conversion element main body and that constitutes the other wavelength conversion element When neither the reflector nor the re-incidence lens is disposed between the portions, the volume of the signal light beam when viewed as the optical path length of the optical path through which the signal light beam passes between the incident end and the exit end To minimize When a reflector and a re-incidence lens are disposed in the optical path between the incident end and the exit end of the wavelength conversion element main body constituting the other wavelength conversion element at or near the condensing position Is to minimize the volume of the signal light beam in the wavelength conversion element body when viewed as the optical path length of the optical path through which the signal light beam passes between the incident end and the arrival end immediately before the re-incidence lens. A wavelength conversion device characterized by being at or near a condensing position. 請求項4に記載の波長変換装置において、前記一方の波長変換素子に入射する入射光ビームが、前記一方の波長変換素子の所定位置に集光されるように前記一方の波長変換素子に入射するように構成されており、前記一方の波長変換素子の前記所定位置は、前記一方の波長変換素子を構成している波長変換素子本体の入射端部と出射端部の間に、到達端部に到達した信号光ビームあるいは前記到達端部から出射した信号光ビームを前記到達端部あるいはその近傍に配置した反射体で反射させて同一波長変換素子本体に再入射させる前記反射体が配置されているが前記反射体と前記一方の波長変換素子の端部の間の光路に再入射レンズが配置されていない場合には入射端部と出射端部の間で当該信号光ビームが通る光路の光路長としてみたときの波長変換素子本体内における当該信号光ビームの体積を最小にするような集光位置もしくはその近傍であり、前記一方の波長変換素子を構成している波長変換素子本体の入射端部と出射端部の間に前記反射体も再入射レンズも配置されていない場合には入射端部と出射端部の間で当該信号光ビームが通る光路の光路長としてみたときの当該信号光ビームの体積を最小にするような集光位置もしくはその近傍であり、前記一方の波長変換素子を構成している波長変換素子本体の入射端部と出射端部の間の光路に再入射レンズが配置されている場合には入射端部と前記再入射レンズの直前の到達端部の間で当該信号光ビームが通る光路の光路長としてみたときの波長変換素子本体内における当該信号光ビームの体積を最小にするような集光位置もしくはその近傍であることを特徴とする波長変換装置。   5. The wavelength conversion device according to claim 4, wherein an incident light beam incident on the one wavelength conversion element is incident on the one wavelength conversion element so as to be condensed at a predetermined position of the one wavelength conversion element. The predetermined position of the one wavelength conversion element is at the arrival end between the incident end and the emission end of the wavelength conversion element main body constituting the one wavelength conversion element. The reflector is arranged to reflect the signal light beam that has arrived or the signal light beam emitted from the arrival end by a reflector disposed at or near the arrival end and re-enter the same wavelength conversion element body. Is the optical path length of the optical path through which the signal light beam passes between the incident end and the exit end when no re-incidence lens is disposed in the optical path between the reflector and the end of the one wavelength converting element. When I looked at The incident end and the exit end of the wavelength conversion element body constituting the one wavelength conversion element at or near the condensing position that minimizes the volume of the signal light beam in the wavelength conversion element body When the reflector and the re-incidence lens are not disposed between the input end and the output end, the volume of the signal light beam when viewed as the optical path length of the optical path through which the signal light beam passes is minimized. When the re-incident lens is disposed in the optical path between the incident end and the exit end of the wavelength conversion element main body constituting the one wavelength conversion element, which is at or near the condensing position In order to minimize the volume of the signal light beam in the wavelength conversion element body when viewed as the optical path length of the optical path through which the signal light beam passes between the incident end and the arrival end immediately before the re-incidence lens. Focusing position Properly the wavelength converter, characterized in that the in the vicinity. 請求項4または5に記載の波長変換装置において、少なくとも1つの波長変換素子は、少なくとも1つの再入射レンズを有しており、前記再入射レンズを通り当該波長変換素子に再入射する信号光ビームが、前記再入射レンズによって当該波長変換素子の所定位置に集光されるように当該波長変換素子に再入射するように構成されており、当該波長変換素子の前記所定位置は、当該波長変換素子を構成している波長変換素子本体の前記再入射レンズと当該波長変換素子本体の出射端部の間に、到達端部に到達した信号光ビームあるいは前記到達端部から出射した信号光ビームを前記到達端部あるいはその近傍に配置した反射体で反射させて同一波長変換素子本体に再入射させる反射体が配置されているが前記反射体と当該波長変換素子本体の間の光路に当該再入射レンズとは別の他の再入射レンズが配置されていない場合には当該再入射レンズの直後の再入射端部と当該波長変換素子本体の出射端部の間で当該信号光ビームが通る光路の光路長としてみたときの波長変換素子本体内における当該信号光ビームの体積を最小にするような集光位置もしくはその近傍であり、当該波長変換素子を構成している波長変換素子本体の当該再入射レンズと当該波長変換素子本体の出射端部の間に反射体も当該再入射レンズとは別の他の再入射レンズも配置されていない場合には当該再入射レンズの直後の再入射端部と出射端部の間で当該信号光ビームが通る光路の光路長としてみたときの当該信号光ビームの体積を最小にするような集光位置もしくはその近傍であり、当該波長変換素子を構成している波長変換素子本体の当該再入射レンズと当該波長変換素子本体の出射端部の間の光路に反射体と当該再入射レンズとは別の他の再入射レンズが配置されている場合には当該再入射レンズの直後の再入射端部と前記他の再入射レンズの直前の到達端部の間で当該信号光ビームが通る光路の光路長としてみたときの波長変換素子本体内における当該信号光ビームの体積を最小にするような集光位置もしくはその近傍であることを特徴とする波長変換装置。   6. The wavelength conversion device according to claim 4, wherein at least one wavelength conversion element includes at least one re-incidence lens, and the signal light beam passes through the re-incident lens and re-enters the wavelength conversion element. Is re-incident on the wavelength conversion element so as to be condensed at a predetermined position of the wavelength conversion element by the re-incident lens, and the predetermined position of the wavelength conversion element is Between the re-incidence lens of the wavelength conversion element main body and the emission end of the wavelength conversion element main body, the signal light beam reaching the arrival end or the signal light beam emitted from the arrival end is A reflector that is reflected by a reflector disposed at or near the arrival end and re-enters the same wavelength conversion element main body is disposed, but the reflector and the wavelength conversion element main body When no other re-incidence lens other than the re-incidence lens is arranged in the optical path, the signal between the re-incident end immediately after the re-incident lens and the output end of the wavelength conversion element body The wavelength conversion that constitutes the wavelength conversion element at or near the condensing position that minimizes the volume of the signal light beam in the wavelength conversion element body when viewed as the optical path length of the optical path through which the light beam passes If neither a reflector nor another re-incidence lens other than the re-incident lens is disposed between the re-incident lens of the element body and the exit end of the wavelength conversion element main body, immediately after the re-incident lens The wavelength conversion is at or near the condensing position that minimizes the volume of the signal light beam when viewed as the optical path length of the optical path through which the signal light beam passes between the re-incident end and the output end. Configure element When a re-incident lens other than the reflector and the re-incident lens is arranged in the optical path between the re-incident lens of the wavelength converting element main body and the exit end of the wavelength converting element main body The signal light in the wavelength conversion element body when viewed as the optical path length of the optical path through which the signal light beam passes between the re-incident end immediately after the re-incident lens and the arrival end immediately before the other re-incident lens A wavelength conversion device characterized by being at or near a condensing position that minimizes the volume of the beam. 請求項1〜6のいずれかに記載の波長変換装置において、前記波長変換素子本体の前記入射端部になる表面とそれと反対側の表面とが1分以内の開き角で互いに平行に形成されていることを特徴とする波長変換装置。   The wavelength conversion device according to any one of claims 1 to 6, wherein the surface of the wavelength conversion element main body that is the incident end and the opposite surface thereof are formed in parallel with each other with an opening angle within one minute. A wavelength converter characterized by comprising: 請求項1〜7のいずれかに記載の波長変換装置において、前記波長変換素子本体が分極反転領域を有する分極反転素子であることを特徴とする波長変換装置。   8. The wavelength conversion device according to claim 1, wherein the wavelength conversion element body is a polarization reversal element having a polarization reversal region. 請求項8に記載の波長変換装置において、前記波長変換素子本体の表面と分極反転領域の境界面とが1分以内の開き角で互いに平行に形成されていることを特徴とする波長変換装置。   9. The wavelength conversion device according to claim 8, wherein the surface of the wavelength conversion element main body and the boundary surface of the domain-inverted region are formed in parallel with each other with an opening angle within 1 minute. 請求項8または9に記載の波長変換装置において、前記波長変換素子本体の複数の分極反転領域の境界面同志が1分以内の開き角で互いに平行に形成されていることを特徴とする波長変換装置。   10. The wavelength conversion device according to claim 8, wherein boundary surfaces of the plurality of polarization inversion regions of the wavelength conversion element body are formed in parallel with each other with an opening angle of less than 1 minute. apparatus. 請求項8〜10のいずれかに記載の波長変換装置において、前記波長変換素子本体の分極反転領域の幅が、前記波長変換素子本体に最初に入射した入射光の光路に直交する方向でかつ前記光路とその次の再入射光の光路を含む面における幅において少なくとも2mmあることを特徴とする波長変換装置。   The wavelength conversion device according to any one of claims 8 to 10, wherein the width of the domain-inverted region of the wavelength conversion element body is in a direction orthogonal to an optical path of incident light first incident on the wavelength conversion element body, and A wavelength conversion device having a width of at least 2 mm in a plane including an optical path and an optical path of the next re-incident light. 請求項8〜11のいずれかに記載の波長変換装置において、前記分極反転素子がPPLN(Periodically Poled LiNbO3)あるいはPPLT(Periodically Poled LiTaO3)あるいはPPKTP(Periodically Poled KTiOPO4)であることを特徴とする波長変換装置。   12. The wavelength conversion device according to claim 8, wherein the polarization inversion element is PPLN (Periodically Polinated LiNbO 3), PPLT (Periodically Poled LiTaO 3), or PPKTP (Periodically Poled KTiOPO 4). apparatus. 請求項1〜12のいずれかに記載の波長変換装置において、前記反射体が特定の波長の光の少なくとも一部を透過することが出きる機能素子であることを特徴とする波長変換装置。   13. The wavelength converter according to claim 1, wherein the reflector is a functional element that can transmit at least part of light having a specific wavelength. 請求項13に記載の波長変換装置において、前記反射体の第1の波長λ1の光と第2の波長λ2の光のいずれか一方または双方に対する反射率が99.8%以上であることを特徴とする波長変換装置。   14. The wavelength converter according to claim 13, wherein the reflectance of the reflector with respect to one or both of light having the first wavelength λ1 and light having the second wavelength λ2 is 99.8% or more. And a wavelength converter. 請求項1〜14のいずれかに記載の波長変換装置において、前記接続レンズが複数個あることを特徴とする波長変換装置。   The wavelength conversion device according to claim 1, wherein there are a plurality of the connecting lenses. 請求項1〜15のいずれかに記載の波長変換装置において、信号光ビームの光路上における前記接続レンズの位置と前記光路に対する角度の少なくとも一方を変える手段を有していることを特徴とする波長変換装置。   16. The wavelength conversion device according to claim 1, further comprising means for changing at least one of a position of the connection lens on the optical path of the signal light beam and an angle with respect to the optical path. Conversion device. 請求項1〜16のいずれかに記載の波長変換装置において、少なくとも2つの前記再入射レンズが一体に構成されていることを特徴とする波長変換装置。   17. The wavelength conversion device according to claim 1, wherein at least two of the re-incidence lenses are integrally formed. 請求項1〜17のいずれかに記載の波長変換装置において、2つの波長変換素子の間に前記接続レンズが複数個あることを特徴とする波長変換装置。   The wavelength conversion device according to any one of claims 1 to 17, wherein a plurality of the connecting lenses are provided between two wavelength conversion elements. 請求項1〜18のいずれかに記載の波長変換装置において、前記波長変換装置の少なくとも1つの前記波長変換光回路部は、前記波長変換光回路部を構成する前記接続レンズの一方の側に前記第1の波長変換素子と前記第2の波長変換素子が配置されており、前記接続レンズの他方の側に前記接続レンズ光路を進行する信号光ビームの光路を変えることができる反射体などの信号光光路変更手段が設けられており、前記接続レンズを通る信号光ビームはその少なくとも一部が前記信号光光路変更手段によって光路を折り変えされて、その光路が前記第1の波長変換素子と第2の波長変換素子のうちの一方の波長変換素子から出射した信号光ビームが他方の波長変換素子に入射するように折り返されていることを特徴とする波長変換装置。   The wavelength conversion device according to any one of claims 1 to 18, wherein at least one of the wavelength conversion optical circuit units of the wavelength conversion device is provided on one side of the connection lens constituting the wavelength conversion optical circuit unit. A signal, such as a reflector, in which the first wavelength conversion element and the second wavelength conversion element are arranged, and which can change the optical path of the signal light beam traveling in the connection lens optical path on the other side of the connection lens. An optical light path changing means is provided, and at least a part of the signal light beam passing through the connecting lens is bent by the signal light optical path changing means, and the optical path is changed between the first wavelength conversion element and the first wavelength conversion element. A wavelength conversion device, wherein a signal light beam emitted from one of the two wavelength conversion elements is folded so as to enter the other wavelength conversion element. 本発明において、後述の波長変換素子本体に入射される入射光に含まれる第1の波長λ1の光を第1の波長λ1とは異なる波長である第2の波長λ2の光へ波長変換を行うことができる素子自体を波長変換素子本体ということにし、波長変換素子本体へ入射光を入射させる波長変換素子本体の端部を入射端部と定義し、入射光が波長変換素子本体に入射して前記波長変換素子本体内を第1の波長λ1の光から第2の波長λ2の光への波長変換を受けながら進行して第1の波長λ1の光と第2の波長λ2の光を含んだ光として到達する前記波長変換素子本体の前記入射端部とは異なる端部もしくは前記端部近傍を波長変換素子本体の到達端部と定義し、前記到達端部のうちでそこに前記波長変換を受けて到達した光を出射光として取り出す端部もしくは前記端部近傍を波長変換素子本体の出射端部と定義し、波長変換素子本体に入射される前の第1の波長λ1の光を含む入射光と前記入射光が波長変換素子本体に入射され波長変換を施されながら波長変換素子本体内を進行する第1の波長λ1の光と第2の波長λ2の光を含む入射光と波長変換素子本体に入射された前記入射光が波長変換素子本体内を進行して波長変換を施されて波長変換素子本体から出射した出射光のそれぞれをあるいはそれらを総称して信号光ともいうことにし、波長変換素子本体に光学系等を配置したものや波長変換素子本体等をケース等に実装したものを波長変換素子ということにし、前記波長変換素子を少なくとも1つ用いた波長変換装置において、前記波長変換素子に入射される入射光ビームは、前記波長変換素子の所定位置に集光されるように前記波長変換素子に入射するように構成されており、前記波長変換素子の前記所定位置は、前記波長変換素子を構成している波長変換素子本体の入射端部と出射端部の間に、到達端部に到達した信号光ビームあるいは前記到達端部から出射した信号光ビームを前記到達端部あるいはその近傍に配置した反射体で反射させて同一波長変換素子本体に再入射させる前記反射体が配置されているが前記反射体と前記波長変換素子の端部の間の光路に集光レンズ(以下、再入射レンズともいう)が配置されていない場合には入射端部と出射端部の間の全光路長の中間点に相当する位置もしくはその近傍であり、前記波長変換素子を構成している波長変換素子本体の入射端部と出射端部の間に前記反射体も再入射レンズも配置されていない場合には入射端部と出射端部の間の全光路長の中間点に相当する位置もしくはその近傍であり、前記波長変換素子を構成している波長変換素子本体の入射端部と出射端部の間の光路に前記反射体と再入射レンズが配置されている場合には入射端部と前記再入射レンズの直前の到達端部の間の全光路長の中間点に相当する位置もしくはその近傍であることを特徴とする波長変換装置。   In the present invention, wavelength conversion is performed on light having a first wavelength λ1 included in incident light incident on a wavelength conversion element body, which will be described later, to light having a second wavelength λ2, which is a wavelength different from the first wavelength λ1. The element itself that can be used is called the wavelength conversion element body, the end of the wavelength conversion element body that makes incident light incident on the wavelength conversion element body is defined as the incident end, and the incident light enters the wavelength conversion element body. The wavelength converting element main body travels while undergoing wavelength conversion from the light having the first wavelength λ1 to the light having the second wavelength λ2, and includes light having the first wavelength λ1 and light having the second wavelength λ2. An end portion different from or near the end portion of the wavelength conversion element main body that reaches as light is defined as a reaching end portion of the wavelength conversion element main body, and the wavelength conversion is performed in the reaching end portion. The end that takes out the light that arrives and receives it as the outgoing light Defines the vicinity of the end as the exit end of the wavelength conversion element body, and the incident light including the light of the first wavelength λ1 before entering the wavelength conversion element body and the incident light enter the wavelength conversion element body The incident light including the light having the first wavelength λ1 and the light having the second wavelength λ2 that travels in the wavelength conversion element body while being subjected to wavelength conversion, and the incident light incident on the wavelength conversion element body are the wavelength conversion element. Each of the outgoing lights that have traveled through the body and have been subjected to wavelength conversion and emitted from the wavelength conversion element main body, or collectively referred to as signal light, an optical system or the like disposed in the wavelength conversion element main body, A wavelength conversion element body or the like mounted in a case is referred to as a wavelength conversion element. In a wavelength conversion device using at least one wavelength conversion element, an incident light beam incident on the wavelength conversion element is the wavelength Transformation element It is configured to enter the wavelength conversion element so as to be condensed at a predetermined position of the child, and the predetermined position of the wavelength conversion element is incident on the wavelength conversion element main body constituting the wavelength conversion element The same wavelength conversion is performed by reflecting the signal light beam reaching the arrival end or the signal light beam emitted from the arrival end between the end and the emission end with a reflector disposed at or near the arrival end. When the reflector to be re-incident on the element body is disposed, but a condenser lens (hereinafter also referred to as a re-incident lens) is not disposed on the optical path between the reflector and the end of the wavelength conversion element. Is a position corresponding to or near the midpoint of the total optical path length between the incident end and the output end, and between the incident end and the output end of the wavelength conversion element body constituting the wavelength conversion element. The reflector is also a re-incident lens If not disposed, the incident end of the wavelength conversion element main body constituting the wavelength conversion element is located at or near the midpoint of the total optical path length between the incident end and the emission end. When the reflector and the re-incidence lens are arranged in the optical path between the incident end and the exit end, it corresponds to the intermediate point of the total optical path length between the entrance end and the arrival end immediately before the re-incidence lens. A wavelength converter characterized by being at or near a position. 請求項20に記載の波長変換装置において、少なくとも1つの波長変換素子は、少なくとも1つの再入射レンズを有しており、前記再入射レンズを通り当該波長変換素子に再入射する信号光ビームが、前記再入射レンズによって当該波長変換素子の所定位置に集光されるように当該波長変換素子に再入射するように構成されており、当該波長変換素子の前記所定位置は、当該波長変換素子を構成している波長変換素子本体の当該再入射レンズと当該波長変換素子本体の出射端部の間に、到達端部に到達した信号光ビームあるいは前記到達端部から出射した信号光ビームを前記到達端部あるいはその近傍に配置した反射体で反射させて同一波長変換素子本体に再入射させる反射体が配置されているが前記反射体と当該波長変換素子本体の間の光路に当該再入射レンズとは別の他の再入射レンズが配置されていない場合には当該再入射レンズの直後の再入射端部と当該波長変換素子本体の出射端部の間の全光路長の中間点に相当する位置もしくはその近傍であり、当該波長変換素子を構成している波長変換素子本体の当該再入射レンズと当該波長変換素子本体の出射端部の間に反射体も当該再入射レンズとは別の他の再入射レンズも配置されていない場合には当該再入射レンズと出射端部の間の全光路長の中間点に相当する位置もしくはその近傍であり、当該波長変換素子を構成している波長変換素子本体の当該再入射レンズの直後の再入射端部と当該波長変換素子本体の出射端部の間の光路に反射体と当該再入射レンズとは別の他の再入射レンズが配置されている場合には当該再入射レンズの直後の再入射端部と前記他の再入射レンズの直前の到達端部の間の全光路長の中間点に相当する位置もしくはその近傍であることを特徴とする波長変換装置。   The wavelength conversion device according to claim 20, wherein the at least one wavelength conversion element has at least one re-incidence lens, and the signal light beam that re-enters the wavelength conversion element through the re-incident lens, The wavelength conversion element is configured to be re-incident on the wavelength conversion element so as to be condensed at a predetermined position of the wavelength conversion element by the re-incident lens, and the wavelength conversion element constitutes the wavelength conversion element. Between the re-incident lens of the wavelength conversion element body and the emission end of the wavelength conversion element body, the signal light beam reaching the arrival end or the signal light beam emitted from the arrival end is the arrival end. The reflector between the reflector and the wavelength conversion element main body is arranged so as to be reflected by the reflector arranged at or near the same portion and re-enter the same wavelength conversion element main body. If there is no other re-incident lens other than the re-incident lens, the total optical path length between the re-incident end immediately after the re-incident lens and the output end of the wavelength conversion element body is The reflector is also the re-incident lens between the re-incident lens of the wavelength conversion element main body constituting the wavelength conversion element and the exit end of the wavelength conversion element main body, which is at or near the position corresponding to the intermediate point. If no other re-incidence lens is disposed, the wavelength conversion element is located at or near the midpoint of the total optical path length between the re-incidence lens and the exit end. Another re-incidence lens different from the reflector and the re-incident lens in the optical path between the re-incident end immediately after the re-incident lens of the wavelength conversion element main body and the output end of the wavelength conversion element main body The re-incident Wavelength converter, characterized in that the position or the vicinity thereof corresponding to the midpoint of the total optical path length between the immediately preceding arrival end of the re-incident end portion and the other re-entering lenses immediately following lens. 請求項20または21に記載の波長変換装置において、前記一方の波長変換素子に入射する入射光ビームが、前記一方の波長変換素子の所定位置に集光されるように前記一方の波長変換素子に入射するように構成されており、前記一方の波長変換素子の前記所定位置は、前記一方の波長変換素子を構成している波長変換素子本体の入射端部と出射端部の間に、到達端部に到達した信号光ビームあるいは前記到達端部から出射した信号光ビームを前記到達端部あるいはその近傍に配置した反射体で反射させて同一波長変換素子本体に再入射させる前記反射体が配置されているが前記反射体と前記一方の波長変換素子の端部の間の光路に再入射レンズが配置されていない場合には入射端部と出射端部の間で当該信号光ビームが通る光路の光路長としてみたときの波長変換素子本体内における当該信号光ビームの体積を最小にするような集光位置もしくはその近傍であり、前記一方の波長変換素子を構成している波長変換素子本体の入射端部と出射端部の間に前記反射体も再入射レンズも配置されていない場合には入射端部と出射端部の間で当該信号光ビームが通る光路の光路長としてみたときの当該信号光ビームの体積を最小にするような集光位置もしくはその近傍であり、前記一方の波長変換素子を構成している波長変換素子本体の入射端部と出射端部の間の光路に再入射レンズが配置されている場合には入射端部と前記再入射レンズの直前の到達端部の間で当該信号光ビームが通る光路の光路長としてみたときの波長変換素子本体内における当該信号光ビームの体積を最小にするような集光位置もしくはその近傍であることを特徴とする波長変換装置。   The wavelength conversion device according to claim 20 or 21, wherein an incident light beam incident on the one wavelength conversion element is focused on the one wavelength conversion element so as to be condensed at a predetermined position of the one wavelength conversion element. The predetermined position of the one wavelength conversion element is configured to be incident between the incident end and the emission end of the wavelength conversion element main body constituting the one wavelength conversion element. The reflector is arranged to reflect the signal light beam reaching the part or the signal light beam emitted from the arrival end by a reflector disposed at or near the arrival end and re-enter the same wavelength conversion element body. However, when a re-incident lens is not arranged in the optical path between the reflector and the end of the one wavelength conversion element, the optical path of the signal light beam passes between the incident end and the output end. With optical path length The wavelength conversion element main body forming the one wavelength conversion element at or near the condensing position that minimizes the volume of the signal light beam in the wavelength conversion element main body when viewed When the reflector and the re-incidence lens are not arranged between the incident end and the exit end, the signal light beam when viewed as the optical path length of the optical path through which the signal light beam passes between the entrance end and the exit end The re-incident lens is disposed in the optical path between the incident end and the output end of the wavelength conversion element main body that constitutes the one wavelength conversion element that is at or near the condensing position that minimizes the volume of The volume of the signal light beam in the wavelength conversion element body when viewed as the optical path length of the optical path through which the signal light beam passes between the incident end and the arrival end just before the re-incidence lens. I will minimize it Wavelength converter, characterized in that such a condensing position or the vicinity thereof. 請求項20〜22のいずれかに記載の波長変換装置において、少なくとも1つの波長変換素子は、少なくとも1つの再入射レンズを有しており、前記再入射レンズを通り当該波長変換素子に再入射する信号光ビームが、前記再入射レンズによって当該波長変換素子の所定位置に集光されるように当該波長変換素子に再入射するように構成されており、当該波長変換素子の前記所定位置は、当該波長変換素子を構成している波長変換素子本体の前記再入射レンズと当該波長変換素子本体の出射端部の間に、到達端部に到達した信号光ビームあるいは前記到達端部から出射した信号光ビームを前記到達端部あるいはその近傍に配置した反射体で反射させて同一波長変換素子本体に再入射させる反射体が配置されているが前記反射体と当該波長変換素子本体の間の光路に当該再入射レンズとは別の他の再入射レンズが配置されていない場合には当該再入射レンズの直後の再入射端部と当該波長変換素子本体の出射端部の間で当該信号光ビームが通る光路の光路長としてみたときの波長変換素子本体内における当該信号光ビームの体積を最小にするような集光位置もしくはその近傍であり、当該波長変換素子を構成している波長変換素子本体の当該再入射レンズと当該波長変換素子本体の出射端部の間に反射体も当該再入射レンズとは別の他の再入射レンズも配置されていない場合には当該再入射レンズの直後の再入射端部と出射端部の間で当該信号光ビームが通る光路の光路長としてみたときの当該信号光ビームの体積を最小にするような集光位置もしくはその近傍であり、当該波長変換素子を構成している波長変換素子本体の当該再入射レンズと当該波長変換素子本体の出射端部の間の光路に反射体と当該再入射レンズとは別の他の再入射レンズが配置されている場合には当該再入射レンズの直後の再入射端部と前記他の再入射レンズの直前の到達端部の間で当該信号光ビームが通る光路の光路長としてみたときの波長変換素子本体内における当該信号光ビームの体積を最小にするような集光位置もしくはその近傍であることを特徴とする波長変換装置。   23. The wavelength conversion device according to claim 20, wherein at least one wavelength conversion element has at least one re-incidence lens, and re-enters the wavelength conversion element through the re-incident lens. The signal light beam is configured to re-enter the wavelength conversion element so that the signal light beam is condensed at the predetermined position of the wavelength conversion element by the re-incidence lens, and the predetermined position of the wavelength conversion element is Between the re-incident lens of the wavelength conversion element main body constituting the wavelength conversion element and the emission end of the wavelength conversion element main body, the signal light beam reaching the arrival end or the signal light emitted from the arrival end A reflector that reflects the beam with a reflector disposed at or near the reaching end and re-enters the same wavelength conversion element main body is disposed. When another re-incident lens other than the re-incident lens is not disposed in the optical path between the child main bodies, the re-incident end immediately after the re-incident lens and the output end of the wavelength conversion element main body The wavelength conversion element is located at or near the condensing position that minimizes the volume of the signal light beam in the wavelength conversion element body when viewed as the optical path length of the optical path through which the signal light beam passes. If neither a reflector nor another re-incidence lens other than the re-incidence lens is disposed between the re-incidence lens of the wavelength conversion element main body and the exit end of the wavelength conversion element main body, A condensing position at or near the condensing position that minimizes the volume of the signal light beam when viewed as the optical path length of the optical path through which the signal light beam passes between the re-incidence end and the exit end immediately after the incident lens. , The wavelength conversion Another re-incident lens other than the reflector and the re-incident lens is disposed in the optical path between the re-incident lens of the wavelength conversion element main body constituting the optical element and the emission end of the wavelength conversion element main body. In the wavelength conversion element body when viewed as the optical path length of the optical path through which the signal light beam passes between the re-incident end immediately after the re-incident lens and the arrival end immediately before the other re-incident lens. A wavelength conversion device characterized by being at or near the light condensing position that minimizes the volume of the signal light beam. 請求項20〜23のいずれかに記載の波長変換装置において、前記波長変換素子本体の前記入射端部になる表面とそれと反対側の表面とが1分以内の開き角で互いに平行に形成されていることを特徴とする波長変換装置。   The wavelength conversion device according to any one of claims 20 to 23, wherein a surface that becomes the incident end of the wavelength conversion element body and a surface opposite to the surface are formed in parallel with each other with an opening angle of within 1 minute. A wavelength converter characterized by comprising: 請求項20〜24のいずれかに記載の波長変換装置において、前記波長変換素子本体が分極反転領域を有する分極反転素子であることを特徴とする波長変換装置。   25. The wavelength conversion device according to claim 20, wherein the wavelength conversion element body is a polarization reversal element having a polarization reversal region. 請求項25に記載の波長変換装置において、前記波長変換素子本体の表面と分極反転領域の境界面とが1分以内の開き角で互いに平行に形成されていることを特徴とする波長変換装置。   26. The wavelength conversion device according to claim 25, wherein a surface of the wavelength conversion element body and a boundary surface of the domain-inverted region are formed in parallel with each other with an opening angle of 1 minute or less. 請求項25または26に記載の波長変換装置において、前記波長変換素子本体の複数の分極反転領域の境界面同志が1分以内の開き角で互いに平行に形成されていることを特徴とする波長変換装置。   27. The wavelength conversion device according to claim 25, wherein boundary surfaces of a plurality of polarization inversion regions of the wavelength conversion element body are formed in parallel with each other with an opening angle of less than 1 minute. apparatus. 請求項25〜27のいずれかに記載の波長変換装置において、前記波長変換素子本体の分極反転領域の幅が、前記波長変換素子本体に最初に入射した入射光の光路に直交する方向でかつ前記光路とその次の再入射光の光路を含む面における幅において少なくとも2mmあることを特徴とする波長変換装置。   28. The wavelength conversion device according to claim 25, wherein a width of a polarization inversion region of the wavelength conversion element body is in a direction orthogonal to an optical path of incident light first incident on the wavelength conversion element body, and A wavelength conversion device having a width of at least 2 mm in a plane including an optical path and an optical path of the next re-incident light. 請求項25〜28のいずれかに記載の波長変換装置において、前記分極反転素子がPPLN(Periodically Poled LiNbO3)あるいはPPLT(Periodically Poled LiTaO3)あるいはPPKTP(Periodically Poled KTiOPO4)であることを特徴とする波長変換装置。   29. The wavelength conversion device according to claim 25, wherein the polarization inverting element is PPLN (Periodically Poled LiNbO3), PPLT (Periodically Poled LiTaO3), or PPKTP (Periodically Poled KTiOPO4). apparatus. 請求項20〜29のいずれかに記載の波長変換装置において、前記反射体が特定の波長の光の少なくとも一部を透過することが出きる機能素子であることを特徴とする波長変換装置。   30. The wavelength converter according to any one of claims 20 to 29, wherein the reflector is a functional element capable of transmitting at least part of light having a specific wavelength. 請求項30に記載の波長変換装置において、前記反射体の第1の波長λ1の光と第2の波長λ2の光のいずれか一方または双方に対する反射率が99.8%以上であることを特徴とする波長変換装置。   31. The wavelength converter according to claim 30, wherein the reflectance of the reflector with respect to one or both of the light with the first wavelength λ1 and the light with the second wavelength λ2 is 99.8% or more. And a wavelength converter. 請求項20〜31のいずれかに記載の波長変換装置において、少なくとも2つの前記再入射レンズが一体に構成されていることを特徴とする波長変換装置。   32. The wavelength conversion device according to claim 20, wherein at least two of the re-incidence lenses are integrally formed. 請求項20〜32のいずれかに記載の波長変換装置において、信号光ビームの光路上における前記接続レンズの位置と前記光路に対する角度の少なくとも一方を変える手段を有していることを特徴とする波長変換装置。   33. The wavelength conversion device according to claim 20, further comprising means for changing at least one of a position of the connection lens on the optical path of the signal light beam and an angle with respect to the optical path. Conversion device. 本発明において、後述の波長変換素子本体に入射される入射光に含まれる第1の波長λ1の光を第1の波長λ1とは異なる波長である第2の波長λ2の光へ波長変換を行うことができる素子自体を波長変換素子本体ということにし、波長変換素子本体へ入射光を入射させる波長変換素子本体の端部を入射端部と定義し、入射光が波長変換素子本体に入射して前記波長変換素子本体内を第1の波長λ1の光から第2の波長λ2の光への波長変換を受けながら進行して第1の波長λ1の光と第2の波長λ2の光を含んだ光として到達する前記波長変換素子本体の前記入射端部とは異なる端部もしくは前記端部近傍を波長変換素子本体の到達端部と定義し、前記到達端部のうちでそこに前記波長変換を受けて到達した光を出射光として取り出す端部もしくは前記端部近傍を波長変換素子本体の出射端部と定義し、波長変換素子本体に入射される前の第1の波長λ1の光を含む入射光と前記入射光が波長変換素子本体に入射され波長変換を施されながら波長変換素子本体内を進行する第1の波長λ1の光と第2の波長λ2の光を含む入射光と波長変換素子本体に入射された前記入射光が波長変換素子本体内を進行して波長変換を施されて波長変換素子本体から出射した出射光のそれぞれをあるいはそれらを総称して信号光ともいうことにし、波長変換素子本体に光学系等を配置したものや波長変換素子本体等をケース等に実装したものを波長変換素子ということにし、前記波長変換素子を少なくとも2つ用いた波長変換装置において、前記波長変換装置は、波長変換を施される信号光ビームの光路においてレンズ(以下、接続レンズともいう)を介して直列に接続されている少なくとも2つの波長変換素子を有する波長変換光回路部を少なくとも1つ有しており、前記波長変換装置の少なくとも1つの前記波長変換光回路部は、前記接続レンズを介して直列に接続されている2つの波長変換素子のうちの一方の波長変換素子(以下、第1の波長変換素子ともいう)の出射端部と他方の波長変換素子(以下、第2の波長変換素子ともいう)の入射端部の間の前記接続レンズを通る光路を含む信号光ビームの光路を接続レンズ光路ともいうことにして、前記第1の波長変換素子から出射した信号光ビームが、前記接続レンズ光路を通り前記接続レンズによって前記第2の波長変換素子の所定位置に集光されるように前記第2の波長変換素子に入射するように構成されており、前記第2の波長変換素子の前記所定位置は、前記第2の波長変換素子を構成している波長変換素子本体の入射端部と出射端部の間に、到達端部に到達した信号光ビームあるいは前記到達端部から出射した信号光ビームを前記到達端部あるいはその近傍に配置した反射体で反射させて同一波長変換素子本体に再入射させる前記反射体が配置されているが前記反射体と前記第2の波長変換素子の端部の間の光路に集光レンズ(以下、再入射レンズともいう)が配置されていない場合には入射端部と出射端部の間で当該信号光ビームが通る光路の光路長としてみたときの波長変換素子本体内における当該信号光ビームの体積を最小にするような集光位置もしくはその近傍であり、前記第2の波長変換素子を構成している波長変換素子本体の入射端部と出射端部の間に前記反射体も再入射レンズも配置されていない場合には入射端部と出射端部の間で当該信号光ビームが通る光路の光路長としてみたときの波長変換素子本体内における当該信号光ビームの体積を最小にするような集光位置もしくはその近傍であり、前記第2の波長変換素子を構成している波長変換素子本体の入射端部と出射端部の間の光路に再入射レンズが配置されている場合には入射端部と前記再入射レンズの直前の到達端部の間で当該信号光ビームが通る光路の光路長としてみたときの波長変換素子本体内における当該信号光ビームの体積を最小にするような集光位置もしくはその近傍であることを特徴とする波長変換装置。   In the present invention, wavelength conversion is performed on light having a first wavelength λ1 included in incident light incident on a wavelength conversion element body, which will be described later, to light having a second wavelength λ2, which is a wavelength different from the first wavelength λ1. The element itself that can be used is called the wavelength conversion element body, the end of the wavelength conversion element body that makes incident light incident on the wavelength conversion element body is defined as the incident end, and the incident light enters the wavelength conversion element body. The wavelength converting element main body travels while undergoing wavelength conversion from the light having the first wavelength λ1 to the light having the second wavelength λ2, and includes light having the first wavelength λ1 and light having the second wavelength λ2. An end portion different from or near the end portion of the wavelength conversion element main body that reaches as light is defined as a reaching end portion of the wavelength conversion element main body, and the wavelength conversion is performed in the reaching end portion. The end that takes out the light that arrives and receives it as the outgoing light Defines the vicinity of the end as the exit end of the wavelength conversion element body, and the incident light including the light of the first wavelength λ1 before entering the wavelength conversion element body and the incident light enter the wavelength conversion element body The incident light including the light having the first wavelength λ1 and the light having the second wavelength λ2 that travels in the wavelength conversion element body while being subjected to wavelength conversion, and the incident light incident on the wavelength conversion element body are the wavelength conversion element. Each of the outgoing lights that have traveled through the body and have been subjected to wavelength conversion and emitted from the wavelength conversion element main body, or collectively referred to as signal light, an optical system or the like disposed in the wavelength conversion element main body, A wavelength conversion device in which a wavelength conversion device main body or the like is mounted in a case or the like is referred to as a wavelength conversion device, and in the wavelength conversion device using at least two of the wavelength conversion devices, the wavelength conversion device is a signal light beam subjected to wavelength conversion In the light path And having at least one wavelength conversion optical circuit unit having at least two wavelength conversion elements connected in series via a lens (hereinafter also referred to as a connecting lens), and at least one of the wavelength conversion devices The wavelength conversion optical circuit section includes an emission end of one wavelength conversion element (hereinafter also referred to as a first wavelength conversion element) of two wavelength conversion elements connected in series via the connection lens. An optical path of a signal light beam including an optical path passing through the connection lens between incident ends of the other wavelength conversion element (hereinafter also referred to as a second wavelength conversion element) is also referred to as a connection lens optical path. The signal light beam emitted from the wavelength conversion element enters the second wavelength conversion element so that it passes through the connection lens optical path and is condensed by the connection lens at a predetermined position of the second wavelength conversion element. The predetermined position of the second wavelength conversion element reaches between the incident end and the emission end of the wavelength conversion element main body constituting the second wavelength conversion element. The reflector is arranged to reflect the signal light beam reaching the end or the signal light beam emitted from the reaching end by a reflector disposed at or near the reaching end and re-enter the same wavelength conversion element body. However, when a condenser lens (hereinafter also referred to as a re-incident lens) is not disposed in the optical path between the reflector and the end of the second wavelength conversion element, the incident end and the exit end The second wavelength conversion is at or near the condensing position that minimizes the volume of the signal light beam in the wavelength conversion element body when viewed as the optical path length of the optical path through which the signal light beam passes. Make up element When neither the reflector nor the re-incidence lens is arranged between the incident end and the exit end of the wavelength conversion element body, the optical path length of the optical path through which the signal light beam passes between the entrance end and the exit end The wavelength conversion element main body constituting the second wavelength conversion element at or near the condensing position that minimizes the volume of the signal light beam in the wavelength conversion element main body When the re-incident lens is disposed in the optical path between the light-emitting portion and the exit end portion, the optical path length of the optical path through which the signal light beam passes between the incident end portion and the arrival end portion immediately before the re-incident lens is viewed. A wavelength conversion device characterized by being at or near a condensing position that minimizes the volume of the signal light beam in the wavelength conversion element body. 請求項34に記載の波長変換装置において、前記第1の波長変換素子に入射する入射光ビームが、前記一方の波長変換素子の所定位置に集光されるように前記一方の波長変換素子に入射するように構成されており、前記一方の波長変換素子の前記所定位置は、前記一方の波長変換素子を構成している波長変換素子本体の入射端部と出射端部の間に、到達端部に到達した信号光ビームあるいは前記到達端部から出射した信号光ビームを前記到達端部あるいはその近傍に配置した反射体で反射させて同一波長変換素子本体に再入射させる前記反射体が配置されているが前記反射体と前記一方の波長変換素子の端部の間の光路に再入射レンズが配置されていない場合には入射端部と出射端部の間で当該信号光ビームが通る光路の光路長としてみたときの波長変換素子本体内における当該信号光ビームの体積を最小にするような集光位置もしくはその近傍であり、前記一方の波長変換素子を構成している波長変換素子本体の入射端部と出射端部の間に前記反射体も再入射レンズも配置されていない場合には入射端部と出射端部の間で当該信号光ビームが通る光路の光路長としてみたときの波長変換素子本体内における当該信号光ビームの体積を最小にするような集光位置もしくはその近傍であり、前記一方の波長変換素子を構成している波長変換素子本体の入射端部と出射端部の間の光路に再入射レンズが配置されている場合には入射端部と前記再入射レンズの直前の到達端部の間で当該信号光ビームが通る光路の光路長としてみたときの波長変換素子本体内における当該信号光ビームの体積を最小にするような集光位置もしくはその近傍であることを特徴とする波長変換装置。   35. The wavelength conversion device according to claim 34, wherein an incident light beam incident on the first wavelength conversion element is incident on the one wavelength conversion element so as to be condensed at a predetermined position of the one wavelength conversion element. The predetermined position of the one wavelength conversion element is between the incident end and the output end of the wavelength conversion element main body constituting the one wavelength conversion element, and the reaching end The reflector is arranged to reflect the signal light beam that has arrived at or the signal light beam emitted from the arrival end by a reflector disposed at or near the arrival end and re-enter the same wavelength conversion element body. However, when a re-incident lens is not disposed in the optical path between the reflector and the end of the one wavelength conversion element, the optical path of the optical path through which the signal light beam passes between the incident end and the output end As long as In the wavelength conversion element main body of the wavelength conversion element main body, which is at or near the condensing position that minimizes the volume of the signal light beam, and that constitutes the one wavelength conversion element, In the case where neither the reflector nor the re-incidence lens is arranged between the portions, the wavelength conversion element body in the wavelength conversion element body when viewed as the optical path length of the optical path through which the signal light beam passes between the entrance end and the exit end Re-enter the optical path between the incident end and the output end of the wavelength conversion element body that is at or near the condensing position that minimizes the volume of the signal light beam. When a lens is disposed, the signal light beam in the wavelength conversion element body when viewed as the optical path length of the optical path through which the signal light beam passes between the incident end and the arrival end immediately before the re-incidence lens Body of Wavelength converter, characterized in that the a focusing position or in the vicinity thereof so as to minimize. 請求項34または35に記載の波長変換装置において、少なくとも1つの波長変換素子は、少なくとも1つの再入射レンズを有しており、前記再入射レンズを通り当該波長変換素子に再入射する信号光ビームが、前記再入射レンズによって当該波長変換素子の所定位置に集光されるように当該波長変換素子に再入射するように構成されており、当該波長変換素子の前記所定位置は、当該波長変換素子を構成している波長変換素子本体の当該再入射レンズと当該波長変換素子本体の出射端部の間に、到達端部に到達した信号光ビームあるいは前記到達端部から出射した信号光ビームを前記到達端部あるいはその近傍に配置した反射体で反射させて同一波長変換素子本体に再入射させる反射体が配置されているが前記反射体と当該波長変換素子本体の間の光路に当該再入射レンズとは別の他の再入射レンズが配置されていない場合には当該再入射レンズの直後の再入射端部と当該波長変換素子本体の出射端部の間で当該信号光ビームが通る光路の光路長としてみたときの波長変換素子本体内における当該信号光ビームの体積を最小にするような集光位置もしくはその近傍であり、当該波長変換素子を構成している波長変換素子本体の当該再入射レンズと当該波長変換素子本体の出射端部の間に反射体も当該再入射レンズとは別の他の再入射レンズも配置されていない場合には当該再入射レンズの直後の再入射端部と出射端部の間で当該信号光ビームが通る光路の光路長としてみたときの波長変換素子本体内における当該信号光ビームの体積を最小にするような集光位置もしくはその近傍であり、当該波長変換素子を構成している波長変換素子本体の当該再入射レンズと当該波長変換素子本体の出射端部の間の光路に反射体と当該再入射レンズとは別の他の再入射レンズが配置されている場合には当該再入射レンズの直後の再入射端部と前記他の再入射レンズの直前の到達端部の間で当該信号光ビームが通る光路の光路長としてみたときの波長変換素子本体内における当該信号光ビームの体積を最小にするような集光位置もしくはその近傍であることを特徴とする波長変換装置。   36. The wavelength conversion device according to claim 34 or 35, wherein at least one wavelength conversion element has at least one re-incident lens, and passes through the re-incident lens and re-enters the wavelength conversion element. Is re-incident on the wavelength conversion element so as to be condensed at a predetermined position of the wavelength conversion element by the re-incident lens, and the predetermined position of the wavelength conversion element is Between the re-incident lens of the wavelength conversion element main body and the emission end of the wavelength conversion element main body constituting the signal light beam reaching the arrival end or the signal light beam emitted from the arrival end A reflector that is reflected by a reflector disposed at or near the arrival end and re-enters the same wavelength conversion element main body is disposed, but the reflector and the wavelength conversion element book If no other re-incidence lens other than the re-incidence lens is arranged in the optical path between the re-incident end immediately after the re-incident lens and the emission end of the wavelength conversion element body The wavelength conversion element constitutes the wavelength conversion element at or near the condensing position that minimizes the volume of the signal light beam in the wavelength conversion element body when viewed as the optical path length of the optical path through which the signal light beam passes. When neither a reflector nor another re-incident lens other than the re-incident lens is disposed between the re-incident lens of the wavelength conversion element main body and the exit end of the wavelength conversion element main body, the re-incident lens Or a condensing position that minimizes the volume of the signal light beam in the wavelength conversion element body when viewed as the optical path length of the optical path through which the signal light beam passes between the re-incident end and the output end immediately after Its neighborhood Yes, another re-incidence of the reflector and the re-incidence lens in the optical path between the re-incidence lens of the wavelength conversion element body constituting the wavelength conversion element and the emission end of the wavelength conversion element body When the lens is arranged, the optical path length of the optical path through which the signal light beam passes between the re-incident end immediately after the re-incident lens and the arrival end immediately before the other re-incident lens A wavelength conversion device characterized by being at or near a condensing position that minimizes the volume of the signal light beam in the wavelength conversion element body. 請求項34〜36のいずれかに記載の波長変換装置において、前記波長変換素子本体の前記入射端部になる表面とそれと反対側の表面とが1分以内の開き角で互いに平行に形成されていることを特徴とする波長変換装置。   37. The wavelength conversion device according to claim 34, wherein a surface serving as the incident end of the wavelength conversion element body and a surface opposite to the surface are formed in parallel with each other with an opening angle of within one minute. A wavelength converter characterized by comprising: 請求項34〜37のいずれかに記載の波長変換装置において、前記波長変換素子本体が分極反転領域を有する分極反転素子であることを特徴とする波長変換装置。   38. The wavelength conversion device according to claim 34, wherein the wavelength conversion element body is a polarization reversal element having a polarization reversal region. 請求項38に記載の波長変換装置において、前記波長変換素子本体の表面と分極反転領域の境界面とが1分以内の開き角で互いに平行に形成されていることを特徴とする波長変換装置。   39. The wavelength conversion device according to claim 38, wherein the surface of the wavelength conversion element main body and the boundary surface of the domain-inverted region are formed in parallel with each other with an opening angle of 1 minute or less. 請求項38または39に記載の波長変換装置において、前記波長変換素子本体の複数の分極反転領域の境界面同志が1分以内の開き角で互いに平行に形成されていることを特徴とする波長変換装置。   40. The wavelength conversion device according to claim 38 or 39, wherein boundary surfaces of the plurality of polarization inversion regions of the wavelength conversion element body are formed in parallel with each other with an opening angle of 1 minute or less. apparatus. 請求項38〜40のいずれかに記載の波長変換装置において、前記波長変換素子本体の分極反転領域の幅が、前記波長変換素子本体に最初に入射した入射光の光路に直交する方向でかつ前記光路とその次の再入射光の光路を含む面における幅において少なくとも2mmあることを特徴とする波長変換装置。   41. The wavelength conversion device according to claim 38, wherein a width of a polarization inversion region of the wavelength conversion element body is in a direction orthogonal to an optical path of incident light first incident on the wavelength conversion element body, and A wavelength conversion device having a width of at least 2 mm in a plane including an optical path and an optical path of the next re-incident light. 請求項38〜41のいずれかに記載の波長変換装置において、前記分極反転素子がPPLN(Periodically Poled LiNbO3)あるいはPPLT(Periodically Poled LiTaO3)あるいはPPKTP(Periodically Poled KTiOPO4)であることを特徴とする波長変換装置。   The wavelength conversion device according to any one of claims 38 to 41, wherein the polarization inverting element is PPLN (Periodically Poled LiNbO3), PPLT (Periodically Poled LiTaO3), or PPKTP (Periodically Poled KTiOPO4). apparatus. 請求項34〜42のいずれかに記載の波長変換装置において、前記反射体が特定の波長の光の少なくとも一部を透過することが出きる機能素子であることを特徴とする波長変換装置。   43. The wavelength converter according to claim 34, wherein the reflector is a functional element that can transmit at least part of light of a specific wavelength. 請求項43に記載の波長変換装置において、前記反射体の第1の波長λ1の光と第2の波長λ2の光のいずれか一方または双方に対する反射率が99.8%以上であることを特徴とする波長変換装置。   44. The wavelength conversion device according to claim 43, wherein the reflectance of the reflector with respect to one or both of light having the first wavelength λ1 and light having the second wavelength λ2 is 99.8% or more. And a wavelength converter. 請求項34〜44のいずれかに記載の波長変換装置において、少なくとも2つの前記再入射レンズが一体に構成されていることを特徴とする波長変換装置。   45. The wavelength converter according to claim 34, wherein at least two of the re-incidence lenses are integrally formed. 請求項34〜45のいずれかに記載の波長変換装置において、2つの波長変換素子の間に前記接続レンズが複数個あることを特徴とする波長変換装置。   46. The wavelength conversion device according to claim 34, wherein a plurality of the connecting lenses are provided between two wavelength conversion elements. 請求項34〜46のいずれかに記載の波長変換装置において、信号光ビームの光路上における前記接続レンズの位置と前記光路に対する角度の少なくとも一方を変える手段を有していることを特徴とする波長変換装置。   47. The wavelength conversion device according to claim 34, further comprising means for changing at least one of a position of the connection lens on the optical path of the signal light beam and an angle with respect to the optical path. Conversion device. 請求項34〜47のいずれかに記載の波長変換装置において、前記波長変換装置の少なくとも1つの前記波長変換光回路部は、前記波長変換光回路部を構成する前記接続レンズの一方の側に前記第1の波長変換素子と前記第2の波長変換素子が配置されており、前記接続レンズの他方の側に前記接続レンズ光路を進行する信号光ビームの光路を変えることができる反射体などの信号光光路変更手段が設けられており、前記接続レンズを通る信号光ビームはその少なくとも一部が前記信号光光路変更手段によって光路を折り変えされて、その光路が前記第1の波長変換素子と第2の波長変換素子のうちの一方の波長変換素子から出射した信号光ビームが他方の波長変換素子に入射するように折り返されていることを特徴とする波長変換装置。   48. The wavelength conversion device according to claim 34, wherein at least one of the wavelength conversion optical circuit units of the wavelength conversion device is provided on one side of the connection lens constituting the wavelength conversion optical circuit unit. A signal, such as a reflector, in which the first wavelength conversion element and the second wavelength conversion element are arranged, and which can change the optical path of the signal light beam traveling in the connection lens optical path on the other side of the connection lens. An optical light path changing means is provided, and at least a part of the signal light beam passing through the connecting lens is bent by the signal light optical path changing means, and the optical path is changed between the first wavelength conversion element and the first wavelength conversion element. A wavelength conversion device, wherein a signal light beam emitted from one of the two wavelength conversion elements is folded so as to enter the other wavelength conversion element. 本発明において、後述の波長変換素子本体に入射される入射光に含まれる第1の波長λ1の光を第1の波長λ1とは異なる波長である第2の波長λ2の光へ波長変換を行うことができる素子自体を波長変換素子本体ということにし、波長変換素子本体へ入射光を入射させる波長変換素子本体の端部を入射端部と定義し、入射光が波長変換素子本体に入射して前記波長変換素子本体内を第1の波長λ1の光から第2の波長λ2の光への波長変換を受けながら進行して第1の波長λ1の光と第2の波長λ2の光を含んだ光として到達する前記波長変換素子本体の前記入射端部とは異なる端部もしくは前記端部近傍を波長変換素子本体の到達端部と定義し、前記到達端部のうちでそこに前記波長変換を受けて到達した光を出射光として取り出す端部もしくは前記端部近傍を波長変換素子本体の出射端部と定義し、波長変換素子本体に入射される前の第1の波長λ1の光を含む入射光と前記入射光が波長変換素子本体に入射され波長変換を施されながら波長変換素子本体内を進行する第1の波長λ1の光と第2の波長λ2の光を含む入射光と波長変換素子本体に入射された前記入射光が波長変換素子本体内を進行して波長変換を施されて波長変換素子本体から出射した出射光のそれぞれをあるいはそれらを総称して信号光ともいうことにし、波長変換素子本体に光学系等を配置したものや波長変換素子本体等をケース等に実装したものを波長変換素子ということにし、前記波長変換素子を少なくとも1つ用いた波長変換装置において、前記波長変換素子に入射される入射光ビームは、前記波長変換素子の所定位置に集光されるように前記波長変換素子に入射するように構成されており、前記波長変換素子の前記所定位置は、前記波長変換素子を構成している波長変換素子本体の入射端部と出射端部の間に、到達端部に到達した信号光ビームあるいは前記到達端部から出射した信号光ビームを前記到達端部あるいはその近傍に配置した反射体で反射させて同一波長変換素子本体に再入射させる前記反射体が配置されているが前記反射体と前記波長変換素子の端部の間の光路に集光レンズ(以下、再入射レンズともいう)が配置されていない場合には入射端部と出射端部の間で当該信号光ビームが通る光路の光路長としてみたときの波長変換素子本体内における当該信号光ビームの体積を最小にするような集光位置もしくはその近傍であり、前記波長変換素子を構成している波長変換素子本体の入射端部と出射端部の間に前記反射体も再入射レンズも配置されていない場合には入射端部と出射端部の間で当該信号光ビームが通る光路の光路長としてみたときの波長変換素子本体内における当該信号光ビームの体積を最小にするような集光位置もしくはその近傍であり、前記波長変換素子を構成している波長変換素子本体の入射端部と出射端部の間の光路に再入射レンズが配置されている場合には入射端部と前記再入射レンズの直前の到達端部の間で当該信号光ビームが通る光路の光路長としてみたときの波長変換素子本体内における当該信号光ビームの体積を最小にするような集光位置もしくはその近傍であることを特徴とする波長変換装置。   In the present invention, wavelength conversion is performed on light having a first wavelength λ1 included in incident light incident on a wavelength conversion element body, which will be described later, to light having a second wavelength λ2, which is a wavelength different from the first wavelength λ1. The element itself that can be used is called the wavelength conversion element body, the end of the wavelength conversion element body that makes incident light incident on the wavelength conversion element body is defined as the incident end, and the incident light enters the wavelength conversion element body. The wavelength converting element main body travels while undergoing wavelength conversion from the light having the first wavelength λ1 to the light having the second wavelength λ2, and includes light having the first wavelength λ1 and light having the second wavelength λ2. An end portion different from or near the end portion of the wavelength conversion element main body that reaches as light is defined as a reaching end portion of the wavelength conversion element main body, and the wavelength conversion is performed in the reaching end portion. The end that takes out the light that arrives and receives it as the outgoing light Defines the vicinity of the end as the exit end of the wavelength conversion element body, and the incident light including the light of the first wavelength λ1 before entering the wavelength conversion element body and the incident light enter the wavelength conversion element body The incident light including the light having the first wavelength λ1 and the light having the second wavelength λ2 that travels in the wavelength conversion element body while being subjected to wavelength conversion, and the incident light incident on the wavelength conversion element body are the wavelength conversion element. Each of the outgoing lights that have traveled through the body and have been subjected to wavelength conversion and emitted from the wavelength conversion element main body, or collectively referred to as signal light, an optical system or the like disposed in the wavelength conversion element main body, A wavelength conversion element body or the like mounted in a case is referred to as a wavelength conversion element. In a wavelength conversion device using at least one wavelength conversion element, an incident light beam incident on the wavelength conversion element is the wavelength Transformation element It is configured to enter the wavelength conversion element so as to be condensed at a predetermined position of the child, and the predetermined position of the wavelength conversion element is incident on the wavelength conversion element main body constituting the wavelength conversion element The same wavelength conversion is performed by reflecting the signal light beam reaching the arrival end or the signal light beam emitted from the arrival end between the end and the emission end with a reflector disposed at or near the arrival end. When the reflector to be re-incident on the element body is disposed, but a condenser lens (hereinafter also referred to as a re-incident lens) is not disposed on the optical path between the reflector and the end of the wavelength conversion element. Is at or near the condensing position that minimizes the volume of the signal light beam in the wavelength conversion element body when viewed as the optical path length of the optical path through which the signal light beam passes between the input end and the output end. Yes, before When neither the reflector nor the re-incidence lens is disposed between the incident end and the exit end of the wavelength conversion element main body constituting the wavelength conversion element, the signal is transmitted between the entrance end and the exit end. The wavelength conversion that constitutes the wavelength conversion element at or near the condensing position that minimizes the volume of the signal light beam in the wavelength conversion element body when viewed as the optical path length of the optical path through which the light beam passes When a re-incident lens is disposed in the optical path between the incident end and the outgoing end of the element body, the optical path through which the signal light beam passes between the incident end and the arrival end immediately before the re-incident lens A wavelength conversion device characterized in that it is at or near the condensing position that minimizes the volume of the signal light beam in the wavelength conversion element main body when viewed as the optical path length. 請求項49に記載の波長変換装置において、少なくとも1つの波長変換素子は、少なくとも1つの再入射レンズを有しており、前記再入射レンズを通り当該波長変換素子に再入射する信号光ビームが、前記再入射レンズによって当該波長変換素子の所定位置に集光されるように当該波長変換素子に再入射するように構成されており、当該波長変換素子の前記所定位置は、当該波長変換素子を構成している波長変換素子本体の当該再入射レンズと当該波長変換素子本体の出射端部の間に、到達端部に到達した信号光ビームあるいは前記到達端部から出射した信号光ビームを前記到達端部あるいはその近傍に配置した反射体で反射させて同一波長変換素子本体に再入射させる反射体が配置されているが前記反射体と当該波長変換素子本体の間の光路に再入射レンズとは別の他の再入射レンズが配置されていない場合には入射端部と出射端部の間で当該信号光ビームが通る光路の光路長としてみたときの波長変換素子本体内における当該信号光ビームの体積を最小にするような集光位置もしくはその近傍であり、当該波長変換素子を構成している波長変換素子本体の当該再入射レンズの直後の再入射端部と当該波長変換素子本体の出射端部の間に反射体も再入射レンズとは別の他の再入射レンズも配置されていない場合には当該再入射レンズの直後の再入射端部と出射端部の間で当該信号光ビームが通る光路の光路長としてみたときの波長変換素子本体内における当該信号光ビームの体積を最小にするような集光位置もしくはその近傍であり、当該波長変換素子を構成している波長変換素子本体の当該再入射レンズと当該波長変換素子本体の出射端部の間の光路に反射体と当該再入射レンズとは別の他の再入射レンズが配置されている場合には当該再入射レンズの直後の再入射端部と前記他の再入射レンズの直前の到達端部の間で当該信号光ビームが通る光路の光路長としてみたときの波長変換素子本体内における当該信号光ビームの体積を最小にするような集光位置もしくはその近傍であることを特徴とする波長変換装置。   The wavelength conversion device according to claim 49, wherein at least one wavelength conversion element has at least one re-incidence lens, and the signal light beam that re-enters the wavelength conversion element through the re-incident lens, The wavelength conversion element is configured to be re-incident on the wavelength conversion element so as to be condensed at a predetermined position of the wavelength conversion element by the re-incident lens, and the wavelength conversion element constitutes the wavelength conversion element. Between the re-incident lens of the wavelength conversion element body and the emission end of the wavelength conversion element body, the signal light beam reaching the arrival end or the signal light beam emitted from the arrival end is the arrival end. The reflector between the reflector and the wavelength conversion element main body is arranged so as to be reflected by the reflector arranged at or near the same portion and re-enter the same wavelength conversion element main body. If no other re-incidence lens is disposed on the wavelength conversion element body, the optical path length of the optical path through which the signal light beam passes between the incident end and the exit end is determined. A re-incidence end immediately after the re-incidence lens of the wavelength conversion element main body constituting the wavelength conversion element and the wavelength thereof at or near the condensing position that minimizes the volume of the signal light beam at When neither a reflector nor another re-incidence lens other than the re-incidence lens is arranged between the exit end of the conversion element body, it is between the re-incidence end immediately after the re-incident lens and the exit end. In the wavelength conversion element body when viewed as the optical path length of the optical path through which the signal light beam passes, it is at or near the condensing position that minimizes the volume of the signal light beam, and constitutes the wavelength conversion element. Wavelength conversion element When another re-incident lens other than the reflector and the re-incident lens is disposed in the optical path between the re-incident lens of the main body and the emission end of the wavelength conversion element main body, The volume of the signal light beam in the wavelength conversion element body is minimized when viewed as the optical path length of the optical path through which the signal light beam passes between the re-incident end immediately after and the arrival end immediately before the other re-incidence lens. A wavelength conversion device characterized by being at or near the condensing position. 請求項49または50に記載の波長変換装置において、前記波長変換素子本体の前記入射端部になる表面とそれと反対側の表面とが1分以内の開き角で互いに平行に形成されていることを特徴とする波長変換装置。   The wavelength conversion device according to claim 49 or 50, wherein the surface that becomes the incident end of the wavelength conversion element body and the surface on the opposite side thereof are formed in parallel with each other with an opening angle of within one minute. A featured wavelength converter. 請求項49〜51のいずれかに記載の波長変換装置において、前記波長変換素子本体が分極反転領域を有する分極反転素子であることを特徴とする波長変換装置。   52. The wavelength conversion device according to claim 49, wherein the wavelength conversion element body is a polarization reversal element having a polarization reversal region. 請求項52に記載の波長変換装置において、前記波長変換素子本体の表面と分極反転領域の境界面とが1分以内の開き角で互いに平行に形成されていることを特徴とする波長変換装置。   53. The wavelength conversion device according to claim 52, wherein a surface of the wavelength conversion element body and a boundary surface of the domain-inverted region are formed in parallel with each other with an opening angle within 1 minute. 請求項52または53に記載の波長変換装置において、前記波長変換素子本体の複数の分極反転領域の境界面同志が1分以内の開き角で互いに平行に形成されていることを特徴とする波長変換装置。   54. The wavelength conversion device according to claim 52, wherein boundary surfaces of a plurality of polarization inversion regions of the wavelength conversion element body are formed in parallel with each other with an opening angle of less than 1 minute. apparatus. 請求項52〜54のいずれかに記載の波長変換装置において、前記波長変換素子本体の分極反転領域の幅が、前記波長変換素子本体に最初に入射した入射光の光路に直交する方向でかつ前記光路とその次の再入射光の光路を含む面における幅において少なくとも2mmあることを特徴とする波長変換装置。   The wavelength conversion device according to any one of claims 52 to 54, wherein a width of a polarization inversion region of the wavelength conversion element main body is in a direction orthogonal to an optical path of incident light first incident on the wavelength conversion element main body, and A wavelength conversion device characterized in that the width in the plane including the optical path and the optical path of the next re-incident light is at least 2 mm. 請求項52〜55のいずれかに記載の波長変換装置において、前記分極反転素子がPPLN(Periodically Poled LiNbO3)あるいはPPLT(Periodically Poled LiTaO3)あるいはPPKTP(Periodically Poled KTiOPO4)であることを特徴とする波長変換装置。   The wavelength conversion device according to any one of claims 52 to 55, wherein the polarization inverting element is PPLN (Periodically Poled LiNbO3), PPLT (Periodically Poled LiTaO3) or PPKTP (Periodically Poled KTiOPO4). apparatus. 請求項49〜56のいずれかに記載の波長変換装置において、少なくとも2つの前記再入射レンズが一体に構成されていることを特徴とする波長変換装置。   57. The wavelength conversion device according to claim 49, wherein at least two of the re-incidence lenses are integrally formed. 請求項49〜57のいずれかに記載の波長変換装置において、信号光ビームの光路上における前記接続レンズの位置と前記光路に対する角度の少なくとも一方を変える手段を有していることを特徴とする波長変換装置。   The wavelength converter according to any one of claims 49 to 57, further comprising means for changing at least one of a position of the connecting lens and an angle with respect to the optical path on the optical path of the signal light beam. Conversion device. 本発明において、後述の波長変換素子本体に入射される入射光に含まれる第1の波長λ1の光を第1の波長λ1とは異なる波長である第2の波長λ2の光へ波長変換を行うことができる素子自体を波長変換素子本体ということにし、波長変換素子本体へ入射光を入射させる波長変換素子本体の端部を入射端部と定義し、入射光が波長変換素子本体に入射して前記波長変換素子本体内を第1の波長λ1の光から第2の波長λ2の光への波長変換を受けながら進行して第1の波長λ1の光と第2の波長λ2の光を含んだ光として到達する前記波長変換素子本体の前記入射端部とは異なる端部もしくは前記端部近傍を波長変換素子本体の到達端部と定義し、前記到達端部のうちでそこに前記波長変換を受けて到達した光を出射光として取り出す端部もしくは前記端部近傍を波長変換素子本体の出射端部と定義し、波長変換素子本体に入射される前の第1の波長λ1の光を含む入射光と前記入射光が波長変換素子本体に入射され波長変換を施されながら波長変換素子本体内を進行する第1の波長λ1の光と第2の波長λ2の光を含む入射光と波長変換素子本体に入射された前記入射光が波長変換素子本体内を進行して波長変換を施されて波長変換素子本体から出射した出射光のそれぞれをあるいはそれらを総称して信号光ともいうことにし、波長変換素子本体に光学系等を配置したものや波長変換素子本体等をケース等に実装したものを波長変換素子ということにし、前記波長変換素子を少なくとも2つ用いて信号光の波長を変換する波長変換方法において、前記波長変換方法は、波長変換を施される信号光ビームの光路においてレンズ(以下、接続レンズともいう)を介して直列に接続されている少なくとも2つの波長変換素子を用いており、前記接続レンズを介して直列に接続されている2つの波長変換素子のうちの一方の波長変換素子(以下、第1の波長変換素子ともいう)の出射端部と他方の波長変換素子(以下、第2の波長変換素子ともいう)の入射端部の間の前記接続レンズを通る光路を含む信号光ビームの光路を接続レンズ光路ともいうことにして、前記接続レンズ光路の中間点を挟んで、前記接続レンズ光路の一方の側に前記第1の波長変換素子を配置し、前記接続レンズ光路の他方の側に前記第2の波長変換素子を配置し、前記第1の波長変換素子から出射した信号光ビームを、前記接続レンズを通り前記接続レンズによって前記第2の波長変換素子の所定位置に集光されるように前記第2の波長変換素子に入射するように構成し、前記第2の波長変換素子の前記所定位置が、前記第2の波長変換素子を構成している波長変換素子本体の入射端部と出射端部の間に、到達端部に到達した信号光ビームあるいは前記到達端部から出射した信号光ビームを前記到達端部あるいはその近傍に配置した反射体で反射させて同一波長変換素子本体に再入射させる前記反射体が配置されているが前記反射体と前記第2の波長変換素子の端部の間の光路に集光レンズ(以下、再入射レンズともいう)が配置されていない場合には入射端部と出射端部の間の全光路長の中間点に相当する位置もしくはその近傍になるようにして信号光の波長を変換し、前記第2の波長変換素子を構成している波長変換素子本体の入射端部と出射端部の間に前記反射体も再入射レンズも配置されていない場合には入射端部と出射端部の間の全光路長の中間点に相当する位置もしくはその近傍になるようにして信号光の波長を変換し、前記第2の波長変換素子を構成している波長変換素子本体の入射端部と出射端部の間の光路に前記反射体と再入射レンズが配置されている場合には入射端部と前記再入射レンズの直前の到達端部の間の全光路長の中間点に相当する位置もしくはその近傍になるようにして信号光の波長を変換することを特徴とする波長変換方法。   In the present invention, wavelength conversion is performed on light having a first wavelength λ1 included in incident light incident on a wavelength conversion element body, which will be described later, to light having a second wavelength λ2, which is a wavelength different from the first wavelength λ1. The element itself that can be used is called the wavelength conversion element body, the end of the wavelength conversion element body that makes incident light incident on the wavelength conversion element body is defined as the incident end, and the incident light enters the wavelength conversion element body. The wavelength converting element main body travels while undergoing wavelength conversion from the light having the first wavelength λ1 to the light having the second wavelength λ2, and includes light having the first wavelength λ1 and light having the second wavelength λ2. An end portion different from or near the end portion of the wavelength conversion element main body that reaches as light is defined as a reaching end portion of the wavelength conversion element main body, and the wavelength conversion is performed in the reaching end portion. The end that takes out the light that arrives and receives it as the outgoing light Defines the vicinity of the end as the exit end of the wavelength conversion element body, and the incident light including the light of the first wavelength λ1 before entering the wavelength conversion element body and the incident light enter the wavelength conversion element body The incident light including the light having the first wavelength λ1 and the light having the second wavelength λ2 that travels in the wavelength conversion element body while being subjected to wavelength conversion, and the incident light incident on the wavelength conversion element body are the wavelength conversion element. Each of the outgoing lights that have traveled through the body and have been subjected to wavelength conversion and emitted from the wavelength conversion element main body, or collectively referred to as signal light, an optical system or the like disposed in the wavelength conversion element main body, A wavelength conversion element in which a wavelength conversion element main body or the like is mounted in a case or the like is referred to as a wavelength conversion element, and the wavelength conversion method converts the wavelength of signal light using at least two of the wavelength conversion elements. Given At least two wavelength conversion elements connected in series via a lens (hereinafter also referred to as a connecting lens) in the optical path of the signal light beam, and the two connected in series via the connecting lens Of the wavelength conversion elements, one of the wavelength conversion elements (hereinafter also referred to as a first wavelength conversion element) and the other end of the wavelength conversion element (hereinafter also referred to as a second wavelength conversion element). The optical path of the signal light beam including the optical path passing through the connecting lens in between is also referred to as a connecting lens optical path, and the first wavelength is placed on one side of the connecting lens optical path across the intermediate point of the connecting lens optical path. A conversion element is disposed, the second wavelength conversion element is disposed on the other side of the connection lens optical path, and the signal light beam emitted from the first wavelength conversion element passes through the connection lens to the connection lens. The second wavelength conversion element is configured to be incident on the second wavelength conversion element so as to be condensed at a predetermined position of the second wavelength conversion element, and the predetermined position of the second wavelength conversion element is the second wavelength conversion element. The signal light beam reaching the arrival end or the signal light beam emitted from the arrival end between the incident end and the emission end of the wavelength conversion element body constituting the wavelength conversion element Alternatively, the reflector that is reflected by the reflector disposed in the vicinity thereof and re-enters the same wavelength conversion element main body is disposed, but is collected in the optical path between the reflector and the end of the second wavelength conversion element. When an optical lens (hereinafter also referred to as a re-incident lens) is not disposed, the signal light is positioned so as to be at or near the midpoint of the total optical path length between the entrance end and the exit end. Wavelength is converted, and the second wavelength conversion element is In the case where neither the reflector nor the re-incidence lens is arranged between the incident end and the exit end of the wavelength conversion element body formed, the intermediate point of the total optical path length between the entrance end and the exit end The wavelength of the signal light is converted so that the position corresponds to or near the position, and the optical path between the incident end and the output end of the wavelength conversion element body constituting the second wavelength conversion element When the reflector and the re-incidence lens are arranged, the signal is positioned so as to be at or near the midpoint of the total optical path length between the incident end and the arrival end immediately before the re-incidence lens. A wavelength conversion method characterized by converting the wavelength of light. 請求項59に記載の波長変換方法において、少なくとも1つの波長変換素子は、少なくとも1つの再入射レンズを有しており、前記再入射レンズを通り当該波長変換素子に再入射する信号光ビームが、前記再入射レンズによって当該波長変換素子の所定位置に集光されるように当該波長変換素子に再入射するように構成されており、当該波長変換素子の前記所定位置が、当該波長変換素子を構成している波長変換素子本体の当該再入射レンズと当該波長変換素子本体の出射端部の間に、到達端部に到達した信号光ビームあるいは前記到達端部から出射した信号光ビームを前記到達端部あるいはその近傍に配置した反射体で反射させて同一波長変換素子本体に再入射させる反射体が配置されているが前記反射体と当該波長変換素子本体の間の光路に当該再入射レンズとは別の他の再入射レンズが配置されていない場合には当該再入射レンズの直後の再入射端部と当該波長変換素子本体の出射端部の間の全光路長の中間点に相当する位置もしくはその近傍になるようにして信号光の波長を変換し、当該波長変換素子を構成している波長変換素子本体の当該再入射レンズと当該波長変換素子本体の出射端部の間に反射体も当該再入射レンズとは別の他の再入射レンズも配置されていない場合には当該再入射レンズの直後の再入射端部と出射端部の間の全光路長の中間点に相当する位置もしくはその近傍になるようにして信号光の波長を変換し、当該波長変換素子を構成している波長変換素子本体の当該再入射レンズと当該波長変換素子本体の出射端部の間の光路に反射体と当該再入射レンズとは別の他の再入射レンズが配置されている場合には当該再入射レンズの直後の再入射端部と前記他の再入射レンズの直前の到達端部の間の全光路長の中間点に相当する位置もしくはその近傍になるようにして信号光の波長を変換することを特徴とする波長変換方法。   The wavelength conversion method according to claim 59, wherein the at least one wavelength conversion element has at least one re-incidence lens, and the signal light beam that re-enters the wavelength conversion element through the re-incidence lens, The wavelength conversion element is configured to be re-incident on the wavelength conversion element so that the light is focused on the wavelength conversion element at a predetermined position by the re-incident lens, and the wavelength conversion element constitutes the wavelength conversion element. Between the re-incident lens of the wavelength conversion element body and the emission end of the wavelength conversion element body, the signal light beam reaching the arrival end or the signal light beam emitted from the arrival end is the arrival end. The reflector between the reflector and the wavelength conversion element main body is arranged so as to be reflected by the reflector arranged at or near the same portion and re-enter the same wavelength conversion element main body. If there is no other re-incident lens other than the re-incident lens, the total optical path length between the re-incident end immediately after the re-incident lens and the output end of the wavelength conversion element body is The wavelength of the signal light is converted so as to be at or near the position corresponding to the intermediate point, and the re-incident lens of the wavelength conversion element body constituting the wavelength conversion element and the emission end of the wavelength conversion element body If no reflector or another re-incidence lens other than the re-incidence lens is disposed between the re-incidence lens and the re-incidence end portion immediately after the re-incidence lens, the middle of the total optical path length between the exit end portion The wavelength of the signal light is converted so that it is at or near the position corresponding to the point, and the re-incidence lens of the wavelength conversion element body constituting the wavelength conversion element and the emission end of the wavelength conversion element body Reflector and the re-incident lens in the optical path between In the case where another re-incidence lens is arranged, the intermediate point of the total optical path length between the re-incident end immediately after the re-incident lens and the arrival end immediately before the other re-incident lens A wavelength conversion method characterized by converting the wavelength of the signal light so as to be in a position corresponding to or near the position. 請求項59または60に記載の波長変換方法において、前記波長変換素子本体に分極反転領域を有する分極反転素子を用いることを特徴とする波長変換方法。   61. The wavelength conversion method according to claim 59, wherein a polarization reversal element having a polarization reversal region is used in the wavelength conversion element body. 本発明において、後述の波長変換素子本体に入射される入射光に含まれる第1の波長λ1の光を第1の波長λ1とは異なる波長である第2の波長λ2の光へ波長変換を行うことができる素子自体を波長変換素子本体ということにし、波長変換素子本体へ入射光を入射させる波長変換素子本体の端部を入射端部と定義し、入射光が波長変換素子本体に入射して前記波長変換素子本体内を第1の波長λ1の光から第2の波長λ2の光への波長変換を受けながら進行して第1の波長λ1の光と第2の波長λ2の光を含んだ光として到達する前記波長変換素子本体の前記入射端部とは異なる端部もしくは前記端部近傍を波長変換素子本体の到達端部と定義し、前記到達端部のうちでそこに前記波長変換を受けて到達した光を出射光として取り出す端部もしくは前記端部近傍を波長変換素子本体の出射端部と定義し、波長変換素子本体に入射される前の第1の波長λ1の光を含む入射光と前記入射光が波長変換素子本体に入射され波長変換を施されながら波長変換素子本体内を進行する第1の波長λ1の光と第2の波長λ2の光を含む入射光と波長変換素子本体に入射された前記入射光が波長変換素子本体内を進行して波長変換を施されて波長変換素子本体から出射した出射光のそれぞれをあるいはそれらを総称して信号光ともいうことにし、波長変換素子本体に光学系等を配置したものや波長変換素子本体等をケース等に実装したものを波長変換素子ということにし、前記波長変換素子を少なくとも2つ用いて信号光の波長を変換する波長変換方法において、前記波長変換方法は、波長変換を施される信号光ビームの光路においてレンズ(以下、接続レンズともいう)を介して直列に接続されている少なくとも2つの波長変換素子を用いており、前記接続レンズを介して直列に接続されている2つの波長変換素子のうちの一方の波長変換素子(以下、第1の波長変換素子ともいう)の出射端部と他方の波長変換素子(以下、第2の波長変換素子ともいう)の入射端部の間の前記接続レンズを通る光路を含む信号光ビームの光路を接続レンズ光路ともいうことにして、前記接続レンズ光路の中間点を挟んで、前記接続レンズ光路の一方の側に前記第1の波長変換素子を配置し、前記接続レンズ光路の他方の側に前記第2の波長変換素子を配置し、前記第1の波長変換素子から出射した信号光ビームを、前記接続レンズを通り前記接続レンズによって前記第2の波長変換素子の所定位置に集光されるように前記第2の波長変換素子に入射させ、前記第2の波長変換素子の前記所定位置が、前記第2の波長変換素子を構成している波長変換素子本体の入射端部と出射端部の間に、到達端部に到達した信号光ビームあるいは前記到達端部から出射した信号光ビームを前記到達端部あるいはその近傍に配置した反射体で反射させて同一波長変換素子本体に再入射させる前記反射体が配置されているが前記反射体と前記第2の波長変換素子の端部の間の光路に集光レンズ(以下、再入射レンズともいう)が配置されていない場合には入射端部と出射端部の間で当該信号光ビームが通る光路の光路長としてみたときの波長変換素子本体内における当該信号光ビームの体積を最小にするような集光位置もしくはその近傍になるようにして信号光の波長を変換し、前記第2の波長変換素子を構成している波長変換素子本体の入射端部と出射端部の間に前記反射体も再入射レンズも配置されていない場合には入射端部と出射端部の間で当該信号光ビームが通る光路の光路長としてみたときの波長変換素子本体内における当該信号光ビームの体積を最小にするような集光位置もしくはその近傍になるようにして信号光の波長を変換し、前記第2の波長変換素子を構成している波長変換素子本体の入射端部と出射端部の間の光路に再入射レンズが配置されている場合には入射端部と前記再入射レンズの直前の到達端部の間で当該信号光ビームが通る光路の光路長としてみたときの波長変換素子本体内における当該信号光ビームの体積を最小にするような集光位置もしくはその近傍になるようにして信号光の波長を変換することを特徴とする波長変換方法。   In the present invention, wavelength conversion is performed on light having a first wavelength λ1 included in incident light incident on a wavelength conversion element body, which will be described later, to light having a second wavelength λ2, which is a wavelength different from the first wavelength λ1. The element itself that can be used is called the wavelength conversion element body, the end of the wavelength conversion element body that makes incident light incident on the wavelength conversion element body is defined as the incident end, and the incident light enters the wavelength conversion element body. The wavelength converting element main body travels while undergoing wavelength conversion from the light having the first wavelength λ1 to the light having the second wavelength λ2, and includes light having the first wavelength λ1 and light having the second wavelength λ2. An end portion different from or near the end portion of the wavelength conversion element main body that reaches as light is defined as a reaching end portion of the wavelength conversion element main body, and the wavelength conversion is performed in the reaching end portion. The end that takes out the light that arrives and receives it as the outgoing light Defines the vicinity of the end as the exit end of the wavelength conversion element body, and the incident light including the light of the first wavelength λ1 before entering the wavelength conversion element body and the incident light enter the wavelength conversion element body The incident light including the light having the first wavelength λ1 and the light having the second wavelength λ2 that travels in the wavelength conversion element body while being subjected to wavelength conversion, and the incident light incident on the wavelength conversion element body are the wavelength conversion element. Each of the outgoing lights that have traveled through the body and have been subjected to wavelength conversion and emitted from the wavelength conversion element main body, or collectively referred to as signal light, an optical system or the like disposed in the wavelength conversion element main body, A wavelength conversion element in which a wavelength conversion element main body or the like is mounted in a case or the like is referred to as a wavelength conversion element, and the wavelength conversion method converts the wavelength of signal light using at least two of the wavelength conversion elements. Given At least two wavelength conversion elements connected in series via a lens (hereinafter also referred to as a connecting lens) in the optical path of the signal light beam, and the two connected in series via the connecting lens Of the wavelength conversion elements, one of the wavelength conversion elements (hereinafter also referred to as a first wavelength conversion element) and the other end of the wavelength conversion element (hereinafter also referred to as a second wavelength conversion element). The optical path of the signal light beam including the optical path passing through the connecting lens in between is also referred to as a connecting lens optical path, and the first wavelength is placed on one side of the connecting lens optical path across the intermediate point of the connecting lens optical path. A conversion element is disposed, the second wavelength conversion element is disposed on the other side of the connection lens optical path, and the signal light beam emitted from the first wavelength conversion element passes through the connection lens to the connection lens. Then, the light is incident on the second wavelength conversion element so as to be condensed at a predetermined position of the second wavelength conversion element, and the predetermined position of the second wavelength conversion element is the second wavelength conversion element. The signal light beam reaching the arrival end or the signal light beam emitted from the arrival end between the incident end and the emission end of the wavelength conversion element main body constituting the The reflector that is reflected by the disposed reflector and re-enters the same wavelength conversion element main body is disposed, but a condensing lens (hereinafter referred to as an optical path) between the reflector and the end of the second wavelength conversion element is disposed. (Also referred to as a re-incidence lens) is not disposed, the signal light beam in the wavelength conversion element body when viewed as the optical path length of the optical path through which the signal light beam passes between the entrance end and the exit end Condensation that minimizes volume The wavelength of the signal light is converted so as to be in the vicinity thereof or in the vicinity thereof, and the reflector is also reincident between the incident end and the emission end of the wavelength conversion element main body constituting the second wavelength conversion element. When no lens is arranged, the volume of the signal light beam in the wavelength conversion element body is minimized when viewed as the optical path length of the optical path through which the signal light beam passes between the incident end and the output end. The wavelength of the signal light is converted so as to be at or near the light condensing position, and re-entered in the optical path between the incident end and the output end of the wavelength conversion element body constituting the second wavelength conversion element. When an incident lens is disposed, the signal light in the wavelength conversion element body when viewed as the optical path length of the optical path through which the signal light beam passes between the incident end and the arrival end immediately before the re-incidence lens Minimize the volume of the beam A wavelength conversion method characterized by converting the wavelength of signal light so as to be at or near such a condensing position. 請求項62に記載の波長変換方法において、少なくとも1つの波長変換素子は、少なくとも1つの再入射レンズを有しており、前記再入射レンズを通り当該波長変換素子に再入射する信号光ビームが、前記再入射レンズによって当該波長変換素子の所定位置に集光されるように当該波長変換素子に再入射するように構成されており、当該波長変換素子の前記所定位置が、当該波長変換素子を構成している波長変換素子本体の当該再入射レンズと当該波長変換素子本体の出射端部の間に、到達端部に到達した信号光ビームあるいは前記到達端部から出射した信号光ビームを前記到達端部あるいはその近傍に配置した反射体で反射させて同一波長変換素子本体に再入射させる反射体が配置されているが前記反射体と当該波長変換素子本体の間の光路に当該再入射レンズとは別の他の再入射レンズが配置されていない場合には当該再入射レンズの直後の再入射端部と当該波長変換素子本体の出射端部の間で当該信号光ビームが通る光路の光路長としてみたときの波長変換素子本体内における当該信号光ビームの体積を最小にするような集光位置もしくはその近傍になるようにして信号光の波長を変換し、当該波長変換素子を構成している波長変換素子本体の当該再入射レンズと当該波長変換素子本体の出射端部の間に反射体も当該再入射レンズとは別の他の再入射レンズも配置されていない場合には当該再入射レンズの直後の再入射端部と出射端部の間で当該信号光ビームが通る光路の光路長としてみたときの波長変換素子本体内における当該信号光ビームの体積を最小にするような集光位置もしくはその近傍になるようにして信号光の波長を変換し、当該波長変換素子を構成している波長変換素子本体の当該再入射レンズと当該波長変換素子本体の出射端部の間の光路に反射体と当該再入射レンズとは別の他の再入射レンズが配置されている場合には当該再入射レンズの直後の再入射端部と前記他の再入射レンズの直前の到達端部の間で当該信号光ビームが通る光路の光路長としてみたときの波長変換素子本体内における当該信号光ビームの体積を最小にするような集光位置もしくはその近傍になるようにして信号光の波長を変換することを特徴とする波長変換方法。   63. The wavelength conversion method according to claim 62, wherein at least one wavelength conversion element has at least one re-incident lens, and the signal light beam that re-enters the wavelength conversion element through the re-incident lens, The wavelength conversion element is configured to be re-incident on the wavelength conversion element so that the light is focused on the wavelength conversion element at a predetermined position by the re-incident lens, and the wavelength conversion element constitutes the wavelength conversion element. Between the re-incident lens of the wavelength conversion element body and the emission end of the wavelength conversion element body, the signal light beam reaching the arrival end or the signal light beam emitted from the arrival end is the arrival end. The reflector between the reflector and the wavelength conversion element main body is arranged so as to be reflected by the reflector arranged at or near the same portion and re-enter the same wavelength conversion element main body. If no other re-incidence lens other than the re-incidence lens is disposed, the signal light beam is between the re-incidence end immediately after the re-incidence lens and the emission end of the wavelength conversion element body. The wavelength of the signal light is converted so that the volume of the signal light beam within the wavelength conversion element body is at or near the condensing position when viewed as the optical path length of the optical path that passes through the wavelength conversion element. When neither a reflector nor another re-incidence lens other than the re-incident lens is arranged between the re-incident lens of the wavelength conversion element main body constituting the element and the exit end of the wavelength conversion element main body The volume of the signal light beam in the wavelength conversion element body is minimized when viewed as the optical path length of the optical path through which the signal light beam passes between the re-incidence end and the exit end immediately after the re-incidence lens. Condensing like The wavelength of the signal light is converted so as to be in the vicinity thereof or in the vicinity thereof, in the optical path between the re-incident lens of the wavelength conversion element body constituting the wavelength conversion element and the emission end of the wavelength conversion element body When another re-incidence lens other than the reflector and the re-incidence lens is arranged, between the re-incidence end immediately after the re-incidence lens and the arrival end just before the other re-incidence lens The wavelength of the signal light so that the volume of the signal light beam in the wavelength conversion element body is at or near the condensing position when viewed as the optical path length of the optical path through which the signal light beam passes. The wavelength conversion method characterized by converting. 請求項62または63に記載の波長変換方法において、前記波長変換素子本体に分極反転領域を有する分極反転素子であることを特徴とする波長変換方法。   64. The wavelength conversion method according to claim 62, wherein the wavelength conversion method is a polarization reversal element having a polarization reversal region in the wavelength conversion element body. 本発明において、入射光に含まれる第1の波長λ1の光を第1の波長λ1とは異なる波長である第2の波長λ2の光へ波長変換を行うことができる素子自体を波長変換素子ということにし、波長変換素子へ入射光を入射させる波長変換素子の端部を入射端部と定義し、入射光が波長変換素子に入射して前記波長変換素子内を第1の波長λ1の光から第2の波長λ2の光への波長変換を受けながら進行して第1の波長λ1の光と第2の波長λ2の光を含んだ光として到達する前記波長変換素子の前記入射端部とは異なる端部もしくは前記端部近傍を波長変換素子の到達端部と定義し、前記到達端部のうちでそこに前記波長変換を受けて到達した光を出射光として取り出す端部もしくは前記端部近傍を波長変換素子の出射端部と定義し、波長変換素子に入射される前の第1の波長λ1の光を含む入射光と前記入射光が波長変換素子に入射され波長変換を施されながら波長変換素子内を進行する第1の波長λ1の光と第2の波長λ2の光を含む入射光と波長変換素子に入射された前記入射光が波長変換素子内を進行して波長変換を施されて波長変換素子から出射した出射光のそれぞれをあるいはそれらを総称して信号光ともいうことにし、波長変換素子において、前記波長変換素子は、入射端部と出射端部とは異なる到達端部を少なくとも1つ有しており、前記到達端部あるいはその近傍に、そこに到達した信号光としての少なくとも第1の波長λ1の光を反射して前記波長変換素子内を第2の波長λ2の光への波長変換を受けさせながら進行させるように作用する反射体が配置されており、前記波長変換素子には分極反転領域を有する分極反転素子が用いられており、条件1を波長変換素子の入射面と分極反転領域の境界面とが1分以内の開き角で互いに平行に形成されていることであるとし、条件2を波長変換素子の出射面と分極反転領域の境界面とが1分以内の開き角で互いに平行に形成されていることであるとし、条件3を複数の分極反転領域の境界面同志が1分以内の開き角で互いに平行に形成されていることであるとし、条件4を前記分極反転領域の幅が、前記波長変換素子に最初に入射した入射光の光路に直交する方向でかつ前記光路とその次の再入射光の光路を含む面における幅において少なくとも2mmあることとし、条件5を前記波長変換素子の前記入射端部になる表面とそれと反対側の表面とが1分以内の開き角で互いに平行に形成されていることして、前記波長変換素子は、前記条件1〜5のうちの少なくとも2つを満たしていることを特徴とする波長変換素子。
In the present invention, the element that can convert the wavelength of the first wavelength λ1 included in the incident light into the light of the second wavelength λ2 that is different from the first wavelength λ1 is called a wavelength conversion element. In particular, the end of the wavelength conversion element that causes the incident light to enter the wavelength conversion element is defined as the incident end, and the incident light enters the wavelength conversion element and the light from the first wavelength λ1 enters the wavelength conversion element. What is the incident end of the wavelength conversion element that travels while undergoing wavelength conversion to light of the second wavelength λ2 and arrives as light including light of the first wavelength λ1 and light of the second wavelength λ2? A different end portion or the vicinity of the end portion is defined as a reaching end portion of the wavelength conversion element, and the end portion or the vicinity of the end portion that takes out the light that has reached the wavelength conversion in the reaching end portion as outgoing light. Is defined as the output end of the wavelength conversion element, and the wavelength conversion element The incident light including the light of the first wavelength λ1 before being incident, the light of the first wavelength λ1 traveling through the wavelength conversion element while the incident light is incident on the wavelength conversion element and undergoes wavelength conversion, and the second light The incident light including the light of wavelength λ2 and the incident light incident on the wavelength conversion element travel through the wavelength conversion element and are subjected to wavelength conversion, respectively, or emitted light emitted from the wavelength conversion element, or a general term for them. In the wavelength conversion element, the wavelength conversion element has at least one arrival end portion different from the incident end portion and the emission end portion, and is located at or near the arrival end portion. A reflector that acts to reflect at least the light of the first wavelength λ1 as the signal light that has reached the light, and to proceed while undergoing wavelength conversion to the light of the second wavelength λ2 in the wavelength conversion element Is arranged and said As the long conversion element, a polarization inversion element having a polarization inversion region is used. Condition 1 is that the incident surface of the wavelength conversion element and the boundary surface of the polarization inversion region are formed in parallel with each other with an opening angle of less than 1 minute. Condition 2 is that the output surface of the wavelength conversion element and the boundary surface of the domain-inverted region are formed in parallel with each other with an opening angle within 1 minute, and Condition 3 is that a plurality of domain-inverted It is assumed that the boundary surfaces of the regions are formed in parallel with each other with an opening angle of 1 minute or less. Condition 4 is that the width of the domain-inverted region is equal to the optical path of the incident light first incident on the wavelength conversion element. It is assumed that the width in the plane including the optical path and the optical path of the next re-incident light is at least 2 mm in the orthogonal direction, and condition 5 is that the surface that becomes the incident end of the wavelength conversion element and the surface opposite to the surface With an opening angle within 1 minute And it is formed in parallel to have the wavelength conversion element is the wavelength conversion element characterized in that it meets at least two of said condition 1-5.
JP2006200439A 2005-07-25 2006-07-24 Element, device, and method for wavelength conversion Pending JP2007058191A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006200439A JP2007058191A (en) 2005-07-25 2006-07-24 Element, device, and method for wavelength conversion

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005214141 2005-07-25
JP2006200439A JP2007058191A (en) 2005-07-25 2006-07-24 Element, device, and method for wavelength conversion

Publications (1)

Publication Number Publication Date
JP2007058191A true JP2007058191A (en) 2007-03-08

Family

ID=37921700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006200439A Pending JP2007058191A (en) 2005-07-25 2006-07-24 Element, device, and method for wavelength conversion

Country Status (1)

Country Link
JP (1) JP2007058191A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009025811A (en) * 2007-06-21 2009-02-05 Panasonic Corp Short wavelength light source
WO2009066450A1 (en) 2007-11-21 2009-05-28 Panasonic Corporation Wavelength conversion device and image display device using same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009025811A (en) * 2007-06-21 2009-02-05 Panasonic Corp Short wavelength light source
WO2009066450A1 (en) 2007-11-21 2009-05-28 Panasonic Corporation Wavelength conversion device and image display device using same
US8294979B2 (en) 2007-11-21 2012-10-23 Panasonic Corporation Wavelength conversion device and image display apparatus using the same

Similar Documents

Publication Publication Date Title
US6999483B1 (en) External 3rd, 4th and 5th harmonic laser
US5640405A (en) Multi quasi phase matched interactions in a non-linear crystal
US7692848B2 (en) Wavelength conversion module, laser light source device, two-dimensional image display device, backlight light source, liquid crystal display device and laser processing device
WO2005099054A1 (en) Coherent light source and optical device
WO2007026510A1 (en) Fiber laser and optical device
JP6104376B2 (en) Waveguide laser device
JP2006019603A (en) Coherent light source and optical device
JP5654576B2 (en) Wavelength conversion laser light source
JP5330261B2 (en) Wavelength converter and image display device using the same
JP2007058191A (en) Element, device, and method for wavelength conversion
US8369366B2 (en) Semiconductor laser excited solid-state laser device
JP2008040293A (en) Wavelength variable wavelength converter and wavelength variable wavelength converting method
US7330300B1 (en) Optical frequency mixer and method for the same
JPH06102545A (en) Wavelength converter
JP3211770B2 (en) Solid-state laser device and solid-state laser amplifier having the same
JP2006208629A (en) Wavelength conversion element, wavelength converter and wavelength conversion method
JP2006330661A (en) Optical wavelength conversion element and optical wavelength converter
JPWO2007066747A1 (en) Fiber laser
JP2008040301A (en) Wavelength converting element, wavelength converter, and wavelength converting method
JPWO2013140432A1 (en) Laser equipment
US20120087383A1 (en) Bonded periodically poled optical nonlinear crystals
JP2007322695A (en) Wavelength conversion element
JP3762654B2 (en) Optical device
JP2005148390A (en) Optical frequency com generator and optical modulator
JP2738155B2 (en) Waveguide type wavelength conversion element