JP2006208629A - Wavelength conversion element, wavelength converter and wavelength conversion method - Google Patents

Wavelength conversion element, wavelength converter and wavelength conversion method Download PDF

Info

Publication number
JP2006208629A
JP2006208629A JP2005019184A JP2005019184A JP2006208629A JP 2006208629 A JP2006208629 A JP 2006208629A JP 2005019184 A JP2005019184 A JP 2005019184A JP 2005019184 A JP2005019184 A JP 2005019184A JP 2006208629 A JP2006208629 A JP 2006208629A
Authority
JP
Japan
Prior art keywords
wavelength conversion
conversion element
wavelength
light
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005019184A
Other languages
Japanese (ja)
Inventor
Takuya Yoda
依田琢也
Sung Chul Park
成哲 朴
Hiroshi Kajioka
博 梶岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Optoquest Co Ltd
Original Assignee
Optoquest Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Optoquest Co Ltd filed Critical Optoquest Co Ltd
Priority to JP2005019184A priority Critical patent/JP2006208629A/en
Publication of JP2006208629A publication Critical patent/JP2006208629A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wavelength conversion element whose wavelength conversion efficiency is heightened, which produces high optical output with a simple construction, a wavelength converter using the wavelength conversion element and a nonlinear wavelength conversion method usable in the wavelength conversion in the wavelength conversion element and in the wavelength converter. <P>SOLUTION: The wavelength conversion is carried out by reflecting light, incident from an incident end of a polarization reversing element, subjected to the wavelength conversion, and having reached to the other end, with a reflection body arranged on the other end of the polarization reversing element, making it reenter into the polarization reversing element while changing an optical path, and making it again propagate inside the polarization reversing element. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明において、後述の波長変換素子本体に入射された第1の波長λ1の光から前記第1の波長λ1とは異なる波長である第2の波長λ2の光への波長変換を行うことができる素子自体を波長変換素子本体ということにし、前記波長変換素子本体に後述の反射体を配置したものや前記波長変換素子本体等をケース等に実装したものを波長変換素子ということにする。   In the present invention, it is possible to perform wavelength conversion from light having a first wavelength λ1 incident on a wavelength conversion element body described later to light having a second wavelength λ2, which is a wavelength different from the first wavelength λ1. The element itself is referred to as a wavelength conversion element main body, and the wavelength conversion element main body in which a reflector described later is disposed or the wavelength conversion element main body or the like mounted in a case or the like is referred to as a wavelength conversion element.

本発明は第1の波長λ1を有する光(可視光以外の光も含む)を、分極反転素子のような波長変換素子本体に入射し、前記第1の波長λ1とは異なる第2の波長λ2の光を前記波長変換素子本体から出力させることができる波長変換素子本体を有する波長変換素子と、前記波長変換素子を用いた波長変換装置、ならびに前記波長変換素子および前記波長変換装置における波長変換に用いることができる非線形波長変換方法に関する。   In the present invention, light having a first wavelength λ1 (including light other than visible light) is incident on a wavelength conversion element body such as a polarization inverting element, and a second wavelength λ2 different from the first wavelength λ1. A wavelength conversion element having a wavelength conversion element body capable of outputting the light from the wavelength conversion element body, a wavelength conversion device using the wavelength conversion element, and wavelength conversion in the wavelength conversion element and the wavelength conversion device The present invention relates to a nonlinear wavelength conversion method that can be used.

コヒーレント光源は光通信分野のみならず、医療分野や顕微鏡など計測分野などにおいても欠かせないものとなっている。そして、コヒーレント光の波長も、たとえば医療分野においてはその目的によって種々の波長が使われようとしている。   Coherent light sources are indispensable not only in the optical communication field, but also in the medical field and the measurement field such as a microscope. As for the wavelength of coherent light, various wavelengths are being used depending on the purpose in the medical field, for example.

コヒーレント光の光源としては、半導体レーザーや固体レーザーなど各種のレーザー発振器が知られているが、波長によっては、レーザー発振器から直接得られないものがある。その場合、必要な波長を得るために、非線形波長変換方法が用いられている。   Various laser oscillators such as semiconductor lasers and solid-state lasers are known as light sources for coherent light, but there are some that cannot be obtained directly from laser oscillators depending on the wavelength. In that case, a nonlinear wavelength conversion method is used to obtain a necessary wavelength.

たとえば、PPLN(Periodically Poled LiNbO3)やPPKTP(Periodically Poled KTiOPO4)などの分極反転素子の疑似位相整合による波長変換は、波長変換効率が比較的高く、1μm帯から500nm付近の可視光帯へのSHG波長変換等で広く利用されている。   For example, wavelength conversion based on quasi-phase matching of polarization inversion elements such as PPLN (Periodically Poled LiNbO3) and PPKTP (Periodically Poled KTiOPO4) has a relatively high wavelength conversion efficiency, and an SHG wavelength from a 1 μm band to a visible light band near 500 nm. Widely used in conversion and so on.

短波長のコヒーレント光を得る波長変換方法や波長変換素子については多くの提案がなされている。   Many proposals have been made on wavelength conversion methods and wavelength conversion elements for obtaining short-wavelength coherent light.

特開2004−219845(以下、特許文献1ともいう)の図1には、本発明の明細書に図10として示したSHG(第2高調波発生)素子である光導波路デバイス128を用いて半導体レーザ121の出力波長よりも短波長のコヒーレント光を出力するコヒーレント光源120について記載されている。光導波路デバイス128は、LN(LiNbO3)基板122上にオフカットのMgドープLiNbO3結晶の薄膜層123が接合層124を介して接着され、薄膜層123には分極反転領域125とリッジ導波路としての凸部126が形成された構成となっている。   FIG. 1 of Japanese Patent Application Laid-Open No. 2004-21845 (hereinafter also referred to as Patent Document 1) is a semiconductor using an optical waveguide device 128 which is an SHG (second harmonic generation) element shown as FIG. 10 in the specification of the present invention. A coherent light source 120 that outputs coherent light having a shorter wavelength than the output wavelength of the laser 121 is described. In the optical waveguide device 128, a thin film layer 123 of an off-cut Mg-doped LiNbO 3 crystal is bonded to an LN (LiNbO 3) substrate 122 via a bonding layer 124, and the polarization inversion region 125 and a ridge waveguide are connected to the thin film layer 123. The convex portion 126 is formed.

特開2002−372731(以下、特許文献2ともいう)の図1には、本発明の明細書に図11として示した分極反転領域を有する非線形光学結晶1を用いたSHG素子が記載されている。実施例として、入射光が1.5μm(中心波長1.55μm)、出射光が0.78μmの場合について記載されている。   FIG. 1 of Japanese Patent Application Laid-Open No. 2002-372731 (hereinafter also referred to as Patent Document 2) describes an SHG element using a nonlinear optical crystal 1 having a domain-inverted region shown in FIG. 11 in the specification of the present invention. . As an example, the case where incident light is 1.5 μm (center wavelength 1.55 μm) and outgoing light is 0.78 μm is described.

特開2004−280019(以下、特許文献3ともいう)の図1には、本発明の明細書に図12として示した光パラメトリック発振器が記載されている。図12では、励起光源共振器101からの励起光パルス列はレンズ104により非線形結晶106中に結焦され、非線形結晶106でシグナル光とアイドラ光を生成し、アイドラ光は集光鏡107を透過して共振器外へ出され、シグナル光は集光鏡107で反射されて近似的平行光とされ、端面鏡108を経て、出力結合鏡109に達し、その一部が出力結合鏡109から出力として取り出され、残りは出力結合鏡109で反射されて集光鏡105に達し、その後、集光鏡105−非線形結晶106−集光鏡107−端面鏡108−出力結合鏡109−集光鏡105−の共振器が構成されていることにより、シグナル光が出力結合鏡109に達する毎に所定の出力光が出力されるとともに、次の励起光パルスが所定間隔で非線形結晶106に入射し、共振器内に別のシグナル光が生成される。   FIG. 1 of Japanese Patent Application Laid-Open No. 2004-280019 (hereinafter also referred to as Patent Document 3) describes an optical parametric oscillator shown as FIG. 12 in the specification of the present invention. In FIG. 12, the excitation light pulse train from the excitation light source resonator 101 is focused in the nonlinear crystal 106 by the lens 104, and the nonlinear crystal 106 generates signal light and idler light. The idler light passes through the condenser mirror 107. Out of the resonator, the signal light is reflected by the condensing mirror 107 to be approximately parallel light, reaches the output coupling mirror 109 through the end mirror 108, and a part thereof is extracted from the output coupling mirror 109 as an output. The rest is reflected by the output coupling mirror 109 and reaches the condenser mirror 105, and then the condenser mirror 105-nonlinear crystal 106-condenser mirror 107-end face mirror 108-output coupling mirror 109-condenser mirror 105- By configuring the resonator, a predetermined output light is output every time the signal light reaches the output coupling mirror 109, and the next excitation light pulse is applied to the nonlinear crystal 106 at a predetermined interval. Shines, another signal light is generated in the resonator.

分極反転波長変換素子には、バルクタイプのものと導波路タイプのものがある。   The polarization inversion wavelength conversion element includes a bulk type and a waveguide type.

バルクタイプのものは、入力光(入射光)をレンズで集光して素子に入力させ、そのビーム伝搬のプロファイルに応じた光密度の条件で波長変換が行われる。   In the bulk type, input light (incident light) is collected by a lens and input to an element, and wavelength conversion is performed under a condition of light density corresponding to the beam propagation profile.

導波路タイプのものは、入力光をレンズ等で素子の導波路に結合させ、その導波路モード径に応じた光密度の条件で波長変換が行われる。   In the waveguide type, the input light is coupled to the waveguide of the element by a lens or the like, and wavelength conversion is performed under a condition of light density corresponding to the waveguide mode diameter.

両タイプとも、素子長が長くなると、入力光との相互作用長が長くなり、変換効率が高まるが、導波路タイプのものは光密度が素子長に関係なく一定であるのに対し、バルクタイプのものは素子長が長くなると最適な集光径が大きくなり、光密度が小さくなる。このため、基本的に、導波路タイプのものは素子長の2乗に比例して変換効率が高まるが、バルクタイプのものは素子長の1乗に比例して変換効率が高まる。   In both types, as the element length increases, the interaction length with the input light increases and the conversion efficiency increases. However, the optical density of the waveguide type is constant regardless of the element length, whereas the bulk type As the element length increases, the optimum light collection diameter increases and the light density decreases. For this reason, basically, the waveguide type has a higher conversion efficiency in proportion to the square of the element length, whereas the bulk type has a higher conversion efficiency in proportion to the first power of the element length.

導波路タイプのものの方が変換効率が高いが、入出力のパワーがワット(W)レベルで光密度が大きくなりすぎ、素子にダメージを与えるなどの問題を生じる場合があり、高出力の応用ではバルクタイプのものも多く利用されている。   The waveguide type has higher conversion efficiency, but when the input / output power is in watts (W) level, the light density becomes too high, which may cause problems such as damage to the device. Many bulk types are also used.

従来用いられているバルクタイプの分極反転素子の疑似位相整合を利用した波長変換においては、図13に示したように、波長変換素子200の分極反転領域を形成した分極反転素子201に、入射光204を反射防止膜202を配置した入力端部から入射させ、入射光205を分極反転素子201中を通過させて波長変換を行い、分極反転素子201の反射防止膜203を配置した出力端部から、波長変換された出力光206として出射させている。   In the wavelength conversion using the quasi phase matching of a bulk type polarization inversion element that is conventionally used, as shown in FIG. 13, incident light is incident on the polarization inversion element 201 in which the polarization inversion region of the wavelength conversion element 200 is formed. 204 is made incident from the input end where the antireflection film 202 is disposed, and incident light 205 is passed through the polarization inverting element 201 to perform wavelength conversion, and from the output end where the antireflection film 203 of the polarization inverting element 201 is disposed. The output light 206 after wavelength conversion is emitted.

PPLNやPPKTPなどの分極反転素子によるSHG波長変換の場合でも、1μm帯の入力光が〜1Wレベルの連続光(CW光)の場合、500nm帯への変換効率は数%で、大部分の入力光は変換されないまま分極反転素子を透過してしまう。   Even in the case of SHG wavelength conversion using a polarization inversion element such as PPLN or PPKTP, if the input light in the 1 μm band is continuous light (CW light) of ˜1 W level, the conversion efficiency to the 500 nm band is several percent, and most of the input Light passes through the polarization inverting element without being converted.

変換効率を高めるために、素子中での光密度を高めることができる導波路タイプの分極反転素子が利用される場合があるが、出力光のビーム品質が劣化する問題や、入力が〜1Wレベルのハイパワーでは、光密度が高くなりすぎて、素子にダメージを与えるなどの問題がある。   In order to increase the conversion efficiency, a waveguide type polarization inversion element that can increase the light density in the element may be used. However, there is a problem that the beam quality of the output light is deteriorated, and the input is about 1 W level. With high power, there is a problem that the light density becomes too high and damages the device.

素子長を長くして変換効率を高める方法も提案されているが、変換効率に波長特性があり、素子長が長くなるほど波長許容範囲が狭くなるため、入力光の波長条件が厳しくなる。波長許容範囲Δλと素子長Lの間に、Δλ×L=一定という関係がある。また、素子長が長くなると、素子全体にわたって均質な分極反転構造を形成することも難しくなる。   Although a method for increasing the conversion efficiency by increasing the element length has been proposed, the wavelength efficiency of the conversion light has a wavelength characteristic. As the element length becomes longer, the allowable wavelength range becomes narrower, so that the wavelength condition of the input light becomes severe. Between the allowable wavelength range Δλ and the element length L, there is a relationship Δλ × L = constant. Further, when the element length is increased, it is difficult to form a uniform domain inversion structure over the entire element.

共振器を構成して、入力光をその中に閉じこめた状態をつくり、実効的に変換効率を高める方法も利用されており、変換効率が通常の構成に比べて数十倍になる場合もあるが、入力光の波長に合わせて共振器の共振周波数を制御する必要があり、離調成分の検出とそのフィードバック制御等が必要になる。   A method is also used in which a resonator is configured so that the input light is confined in it, and the conversion efficiency is effectively increased. The conversion efficiency may be several tens of times that of a normal configuration. However, it is necessary to control the resonance frequency of the resonator in accordance with the wavelength of the input light, and it is necessary to detect the detuning component and to perform feedback control thereof.

特開2004−219845JP 2004-21845 特開2002−372731JP 2002-372731 特開2004−280019JP2004-280019A

以上説明したように、バルクタイプの分極反転素子による波長変換は変換効率が低く、変換効率が高い導波路タイプのものによる波長変換ではハイパワー化に問題がある。変換効率を高めるために素子長を長くすると、構成条件が難しくなり、共振器型は波長に合わせて共振器長を調整しなければならない。特にハイパワー応用で、実用に適した波長変換素子が得られないのが現状である。   As described above, the wavelength conversion by the bulk type polarization inverting element has a low conversion efficiency, and the wavelength conversion by the waveguide type having a high conversion efficiency has a problem in increasing the power. If the element length is increased in order to increase the conversion efficiency, the configuration condition becomes difficult, and the resonator type must be adjusted in accordance with the wavelength. The current situation is that a wavelength conversion element suitable for practical use cannot be obtained particularly in high power applications.

各利用分野で、簡単な構造で、変換効率が高く、高光出力が可能で、安価な波長変換素子、波長変換方法の実現が強く望まれている。   In each application field, realization of an inexpensive wavelength conversion element and wavelength conversion method with a simple structure, high conversion efficiency, high light output, and low cost is strongly desired.

本発明はこのような点に鑑みて成されたものであり、本発明の目的の一つは、簡単な構成で、波長変換効率を高めた、高光出力が可能な波長変換素子と、前記波長変換素子を用いた波長変換装置、ならびに前記波長変換素子および前記波長変換装置における波長変換に用いることができる非線形波長変換方法を提供することにある。   The present invention has been made in view of the above points, and one of the objects of the present invention is to provide a wavelength conversion element capable of high light output with a simple configuration and improved wavelength conversion efficiency, and the wavelength. The object is to provide a wavelength conversion device using a conversion element, and a nonlinear wavelength conversion method that can be used for wavelength conversion in the wavelength conversion device and the wavelength conversion device.

本発明は前記の課題を解決せんとしてなされたものである。   The present invention has been made to solve the above problems.

前記課題を解決する手段として本発明で用いている技術の基本思想は、従来は、たとえば、PPLNのような分極反転素子の一端から入射光を入射させて分極反転素子内を前記図13のように進行させて波長変換を行い、従来は分極反転素子の他端に達した光を図13のようにそのまま分極反転素子から出力させていたのを、本発明では、分極反転素子の他端に反射体を配置して、分極反転素子の前記他端に達した光を前記反射体で反射させ、当該分極反転素子に、光路を変えて再入射させ、再び分極反転素子内を進行させて波長変換を行うことを基本とするものである。   The basic idea of the technique used in the present invention as means for solving the above-described problem has heretofore been, for example, that incident light is incident from one end of a polarization inversion element such as PPLN and the inside of the polarization inversion element is as shown in FIG. In the present invention, the light that has reached the other end of the polarization inversion element is output as it is from the polarization inversion element as shown in FIG. A reflector is arranged so that the light reaching the other end of the polarization inverting element is reflected by the reflector, re-enters the polarization inverting element by changing the optical path, and travels again in the polarization inverting element to change the wavelength. It is based on the conversion.

以下、本発明をさらに具体的に説明する。   Hereinafter, the present invention will be described more specifically.

本発明の第1の基本発明(以下、発明1ともいう)による波長変換素子は、後述の波長変換素子本体に入射される入射光に含まれる第1の波長λ1の光を第1の波長λ1とは異なる波長である第2の波長λ2の光へ波長変換を行うことができる素子自体を波長変換素子本体ということにし、波長変換素子本体の入射光を入射させる端部を入射端部と定義し、以下において、前記波長変換素子本体に後述の反射体を配置したものや前記波長変換素子本体等をケース等に実装したものを波長変換素子ということにして、波長変換素子本体の入射端部から前記波長変換素子本体に第1の波長λ1の光を含む光を入射光として入射させ、前記入射光を前記波長変換素子本体内を進行させることによって第1の波長λ1とは異なる第2の波長λ2の光を生成して前記波長変換素子本体から出射させることができる波長変換素子本体を有する波長変換素子において、前記波長変換素子本体に前記入射端部から入射された前記入射光が、前記波長変換素子本体内を進行して第1の波長λ1の光から第2の波長λ2の光への波長変換を受けた結果として第1の波長λ1の光と第2の波長λ2の光を含んだ光となって最初に到達する前記波長変換素子本体の前記入射端部とは異なる端部もしくは前記端部近傍(以下、前記波長変換素子本体内を波長変換を受けながら進行して第1の波長λ1の光と第2の波長λ2の光を含んだ光が到達する前記波長変換素子本体の端部もしくは前記端部近傍を波長変換素子本体の到達端部ともいう。また、前記波長変換素子本体内を進行して前記到達端部に到達する第1の波長λ1の光と第2の波長λ2の光を含んだ光を到達光ともいう。そして、前記波長変換素子本体に前記入射端部から入射された前記入射光が前記波長変換素子本体内を進行して前記到達光として最初に到達する前記波長変換素子本体の前記入射端部とは異なる端部もしくは前記端部近傍を第1の到達端部ともいう)に、前記第1の到達端部に到達した前記到達光のうちの少なくとも第1の波長λ1の光を反射させて前記波長変換素子本体に再入射させることができる反射体を配置したことを特徴とする波長変換素子である。   The wavelength conversion element according to the first basic invention of the present invention (hereinafter also referred to as the invention 1) converts the light of the first wavelength λ1 contained in the incident light incident on the wavelength conversion element body described later to the first wavelength λ1. An element capable of performing wavelength conversion to light of the second wavelength λ2, which is a wavelength different from that of the wavelength conversion element body, is referred to as a wavelength conversion element body, and an end portion of the wavelength conversion element body on which incident light is incident is defined as an incident end portion. In the following, the wavelength conversion element main body is a wavelength conversion element main body in which the wavelength conversion element main body is disposed with a reflector described later or the wavelength conversion element main body is mounted in a case or the like. From the first wavelength λ1 by making the light including the light of the first wavelength λ1 incident as incident light to the wavelength conversion element main body and causing the incident light to travel through the wavelength conversion element main body. Generates light of wavelength λ2 In the wavelength conversion element having a wavelength conversion element body that can be emitted from the wavelength conversion element body, the incident light incident on the wavelength conversion element body from the incident end travels in the wavelength conversion element body. As a result of receiving the wavelength conversion from the light of the first wavelength λ1 to the light of the second wavelength λ2, the light first including the light of the first wavelength λ1 and the light of the second wavelength λ2 is obtained. The wavelength conversion element main body that reaches the end different from the incident end or the vicinity of the end (hereinafter referred to as the first wavelength λ1 and the second light traveling in the wavelength conversion element main body while undergoing wavelength conversion) The end of the wavelength conversion element body to which the light including the light of the wavelength λ2 reaches or near the end is also referred to as the arrival end of the wavelength conversion element body. First wavelength λ reaching the reaching end The light including the first light and the light having the second wavelength λ2 is also referred to as reaching light, and the incident light incident on the wavelength conversion element body from the incident end travels in the wavelength conversion element body. The wavelength conversion element main body that first arrives as the reaching light is different from the incident end or the vicinity of the end is also referred to as a first reaching end) and reaches the first reaching end. The wavelength conversion element is characterized in that a reflector capable of reflecting at least the first wavelength λ1 of the reaching light and re-entering the wavelength conversion element main body is disposed.

本発明の前記発明1を展開した第2の発明(以下、発明2ともいう)は、発明1に記載の波長変換素子において、前記反射体が第2の波長λ2の光をも反射させて前記波長変換素子本体に再入射させることができることを特徴とする波長変換素子である。   According to a second invention (hereinafter also referred to as invention 2) in which the invention 1 of the present invention is developed, in the wavelength conversion element according to the invention 1, the reflector also reflects light having a second wavelength λ2. It is a wavelength conversion element characterized by being able to re-enter the wavelength conversion element main body.

本発明の前記発明1を展開した第3の発明(以下、発明3ともいう)は、発明1または2に記載の波長変換素子において、前記波長変換素子本体が分極反転領域を有する分極反転素子であることを特徴とする波長変換素子である。   A third invention (hereinafter also referred to as invention 3) of the invention 1 according to the present invention is a wavelength inverting element according to the invention 1 or 2, wherein the wavelength converting element body has a domain inversion region. It is a wavelength conversion element characterized by being.

本発明の前記発明1を展開した第4の発明(以下、発明4ともいう)は、発明1〜3のいずれかに記載の波長変換素子において、前記反射体によって反射されて前記波長変換素子本体に再入射した光ビームの光路と前記反射体によって反射される直前の前記到達光ビームの光路が前記波長変換素子本体内において平行でないことを特徴とする波長変換素子である。   A fourth invention (hereinafter also referred to as invention 4), which is the invention 1 of the present invention, is the wavelength conversion element according to any one of the inventions 1 to 3, wherein the wavelength conversion element body is reflected by the reflector. The wavelength conversion element is characterized in that the optical path of the light beam re-entering the light path and the optical path of the reaching light beam immediately before being reflected by the reflector are not parallel in the wavelength conversion element body.

本発明の前記発明1を展開した第5の発明(以下、発明5ともいう)は、発明1〜4のいずれかに記載の波長変換素子において、前記反射体の第1の波長λ1の光と第2の波長λ2の光のいずれか一方または双方に対する反射率が99%以上であることを特徴とする波長変換素子である。   A fifth invention (hereinafter, also referred to as an invention 5) obtained by developing the invention 1 of the present invention is the wavelength conversion element according to any one of the inventions 1 to 4, wherein the light having the first wavelength λ1 of the reflector is A wavelength conversion element having a reflectance of 99% or more with respect to one or both of lights having the second wavelength λ2.

本発明の前記発明1を展開した第6の発明(以下、発明6ともいう)は、発明1〜5のいずれかに記載の波長変換素子において、Nを1以上の整数とし、前記第1の到達端部で前記反射体で反射されて前記波長変換素子本体に再入射して前記波長変換素子本体内を進行した第1の波長λ1の光と第2の波長λ2の光を含んだ光が次に到達する到達端部を第2の到達端部ということにし、以下同様に、第Nの到達端部で反射体で反射されて前記波長変換素子本体に再入射して前記波長変換素子本体内を進行した第1の波長λ1の光と第2の波長λ2の光を含んだ到達光が次に到達する到達端部を第N+1の到達端部ということにして、前記第Nの到達端部に到達し前記反射体で反射されて前記波長変換素子本体に再入射して前記波長変換素子本体内を進行した第1の波長λ1の光と第2の波長λ2の光を含んだ到達光が次に到達する第N+1の到達端部に、前記到達光の第1の波長λ1の光と第2の波長λ2の光のいずれか一方または双方を反射させて前記波長変換素子本体に再入射させることができる反射体を配置したことを特徴とする波長変換素子である。   A sixth invention (hereinafter also referred to as invention 6) in which the invention 1 of the present invention is developed is the wavelength conversion element according to any one of the inventions 1 to 5, wherein N is an integer of 1 or more, and the first Light including the light of the first wavelength λ1 and the light of the second wavelength λ2 that has been reflected by the reflector at the reaching end, reentered the wavelength conversion element body, and traveled through the wavelength conversion element body. Next, the reaching end portion that reaches the second reaching end portion is referred to as a second reaching end portion. Similarly, the wavelength conversion element body is reflected by the reflector at the Nth reaching end portion and re-enters the wavelength conversion element body. The reaching end portion where the reaching light including the light of the first wavelength λ1 and the light of the second wavelength λ2 that has traveled through the inside reaches the next reaching end portion is referred to as the (N + 1) th reaching end portion. The wavelength conversion element main body reaches the part and is reflected by the reflector and re-enters the wavelength conversion element main body. , The light having the first wavelength λ1 and the light having the second wavelength λ2 and the light having the first wavelength λ1 and the second The wavelength conversion element is characterized in that a reflector capable of reflecting one or both of the light beams having the wavelength λ2 and re-entering the wavelength conversion element body is disposed.

本発明の前記発明1を展開した第7の発明(以下、発明7ともいう)は、発明1〜6のいずれかに記載の波長変換素子において、少なくとも1つの前記反射体が、あるいは前記反射体の少なくとも一部が、前記波長変換素子本体の前記到達端部の表面に形成された多層膜から成る反射膜であることを特徴とする波長変換素子である。   A seventh invention (hereinafter also referred to as an invention 7) obtained by developing the invention 1 of the present invention is the wavelength conversion element according to any one of the inventions 1 to 6, wherein at least one of the reflectors or the reflector is used. At least a part of the wavelength conversion element is a reflection film made of a multilayer film formed on the surface of the reaching end portion of the wavelength conversion element body.

本発明の前記発明1を展開した第8の発明(以下、発明8ともいう)は、発明7に記載の波長変換素子において、前記反射膜が、前記波長変換素子本体の複数箇所の前記到達端部の表面に連続した状態に形成された反射膜であることを特徴とする波長変換素子である。   An eighth invention (hereinafter also referred to as an invention 8) in which the invention 1 of the present invention is developed is the wavelength conversion element according to the invention 7, wherein the reflection film has the reaching ends at a plurality of locations of the wavelength conversion element body. It is a wavelength conversion element characterized by being a reflective film formed in a continuous state on the surface of the part.

本発明の前記発明1を展開した第9の発明(以下、発明9ともいう)は、発明7または8に記載の波長変換素子において、前記反射膜が前記波長λ1の光と前記波長λ2の光のいずれか一方または双方に対して99.8%以上の反射率を有する多層膜からなる反射膜であることを特徴とする波長変換素子である。   According to a ninth aspect (hereinafter, also referred to as invention 9) of the invention 1, the reflection film is a light having the wavelength λ1 and a light having the wavelength λ2, in the wavelength conversion element according to the invention 7 or 8. A wavelength conversion element characterized by being a reflective film composed of a multilayer film having a reflectance of 99.8% or more with respect to any one or both of the above.

本発明の前記発明1を展開した第10の発明(以下、発明10ともいう)は、発明1〜9のいずれかに記載の波長変換素子において、少なくとも1つの前記反射体が、あるいは前記反射体の少なくとも一部が、前記波長変換素子本体の前記到達端部の表面に対向して、前記波長変換素子本体の外部に配置された外部反射鏡であることを特徴とする波長変換素子である。   According to a tenth aspect (hereinafter also referred to as the tenth aspect) of the first aspect of the present invention, in the wavelength conversion element according to any one of the first to ninth aspects, at least one of the reflectors or the reflector At least a part of the wavelength conversion element is an external reflecting mirror disposed on the outside of the wavelength conversion element body so as to face the surface of the reaching end portion of the wavelength conversion element body.

本発明の前記発明1を展開した第11の発明(以下、発明11ともいう)は、発明10に記載の波長変換素子において、前記波長変換素子が、少なくとも1つの前記外部反射鏡のそこに入射する前記到達光に対する角度を調節する手段を有することを特徴とする波長変換素子である。   An eleventh invention (hereinafter also referred to as invention 11) in which the invention 1 of the present invention is developed is the wavelength conversion element according to the invention 10, wherein the wavelength conversion element is incident on at least one of the external reflecting mirrors. A wavelength conversion element comprising means for adjusting an angle with respect to the reaching light.

本発明の前記発明1を展開した第12の発明(以下、発明12ともいう)は、発明10または11に記載の波長変換素子において、前記波長変換素子本体の前記到達端部の表面と前記表面に対向して配置されている前記外部反射鏡の間にレンズを配置したことを特徴とする波長変換素子である。   A twelfth invention (hereinafter also referred to as invention 12) in which the invention 1 of the present invention is developed is the wavelength conversion element according to the invention 10 or 11, wherein the surface of the reaching end portion of the wavelength conversion element body and the surface The wavelength conversion element is characterized in that a lens is disposed between the external reflecting mirrors disposed to face each other.

本発明の前記発明1を展開した第13の発明(以下、発明13ともいう)は、発明12に記載の波長変換素子において、前記レンズ(以下、第1のレンズともいう)は、前記外部反射鏡で反射されて前記波長変換素子本体に再入射される少なくとも第1の波長λ1の光を含んだ光ビームを、当該波長変換素子において、前記再入射された再入射点から後段の光路で当該波長変換素子の出射端部までの間に集光レンズ(以下、第2のレンズともいう)が配置されている場合には前記第1のレンズの中心と前記第2のレンズの中心の間の全光路長の中間点に相当する位置あるいはその近傍に集光させるレンズであり、前記再入射された再入射点から後段の光路で当該波長変換素子の出射端部までの間に前記第2のレンズが配置されていない場合には前記第1のレンズの中心と当該波長変換素子の出射端部の間の全光路長の中間点に相当する位置あるいはその近傍に集光させるレンズであることを特徴とする波長変換素子である。   A thirteenth invention (hereinafter also referred to as invention 13) in which the invention 1 of the present invention is developed is the wavelength conversion element according to the invention 12, wherein the lens (hereinafter also referred to as first lens) is the external reflection. A light beam including light of at least the first wavelength λ1 reflected by a mirror and re-entering the wavelength conversion element main body is transmitted in the optical path downstream from the re-incident point of re-incidence in the wavelength conversion element. When a condensing lens (hereinafter also referred to as a second lens) is disposed between the wavelength conversion element and the emission end, it is between the center of the first lens and the center of the second lens. A lens for condensing light at a position corresponding to or near the intermediate point of the total optical path length, and between the re-incident point of re-incident and the second optical path to the emission end of the wavelength conversion element. When no lens is placed It is a wavelength conversion element which is a lens for position or condensed near its equivalent to the midpoint of the total optical path length between the emission end portion of the center and the wavelength conversion element of the first lens.

本発明の前記発明1を展開した第14の発明(以下、発明14ともいう)は、発明1〜13のいずれかに記載の波長変換素子において、前記波長変換素子本体の少なくとも前記入射端部になる表面と前記外部反射鏡に対向している表面と前記到達光を外部に取り出す到達端部になる表面に反射防止膜が形成されていることを特徴とする波長変換素子である。   A fourteenth invention (hereinafter also referred to as an invention 14) obtained by developing the invention 1 of the present invention is the wavelength conversion element according to any one of the inventions 1 to 13, wherein at least the incident end portion of the wavelength conversion element body is provided. The wavelength conversion element is characterized in that an antireflection film is formed on the surface, the surface facing the external reflecting mirror, and the surface serving as a reaching end portion for extracting the reaching light to the outside.

本発明の前記発明1を展開した第15の発明(以下、発明15ともいう)は、発明1〜14のいずれかに記載の波長変換素子において、前記波長変換素子本体の少なくとも1つの前記到達端部になる表面に対向して、前記到達端部から前記波長変換素子本体の外部に出た到達光を、前記到達光の前記到達端部から前記波長変換素子本体の外部に出る前の光路(以下、反射前光路ともいう)に平行でかつ前記波長変換素子本体内部の前記反射前光路から離れた位置を前記反射前光路と逆方向に進行する光路(以下、逆方向光路ともいう)になるように前記波長変換素子本体に再入射するように反射する反射体(以下、逆光路反射体ともいう)が配置されていることを特徴とする波長変換素子である。   According to a fifteenth aspect of the present invention, the fifteenth aspect of the present invention (hereinafter also referred to as the fifteenth aspect) is the wavelength conversion element according to any one of the first to fourteenth aspects, wherein at least one reaching end of the wavelength conversion element main body. Opposite the surface to be a part, the light reaching the outside of the wavelength conversion element body from the reaching end, the optical path before the light reaching the outside of the wavelength conversion element body from the reaching end of the reaching light ( (Hereinafter also referred to as an optical path before reflection) and a position away from the optical path before reflection inside the wavelength conversion element body is an optical path (hereinafter also referred to as a reverse optical path) that travels in a direction opposite to the optical path before reflection. In this way, the wavelength conversion element is characterized in that a reflector (hereinafter also referred to as a reverse optical path reflector) that reflects so as to re-enter the wavelength conversion element body is disposed.

本発明の前記発明1を展開した第16の発明(以下、発明16ともいう)は、発明15に記載の波長変換素子において、前記逆光路反射体と前記波長変換素子本体の表面の間にレンズ(以下、第7のレンズともいう)が配置されており、前記第7のレンズは、当該レンズを通り前記逆方向光路の入射点に入射させる入射光を、前記逆方向光路の入射点から、当該光路の後段の光路において、当該波長変換素子の出射端部までの間に集光レンズ(以下、第8のレンズともいう)が配置されている場合には前記第7のレンズの中心と前記第8のレンズの中心の間の全光路長の中間点に相当する位置あるいはその近傍に集光させるレンズであり、前記逆方向光路の入射点から、当該光路の後段の光路において、当該波長変換素子の出射端部までの間に前記第8のレンズが配置されていない場合には前記第7のレンズの中心と当該波長変換素子の出射端部の間の全光路長の中間点に相当する位置あるいはその近傍に集光させるレンズであることを特徴とする波長変換素子である。   A sixteenth invention (hereinafter also referred to as an invention 16) obtained by developing the invention 1 of the present invention is the wavelength conversion element according to the invention 15, wherein a lens is provided between the reverse optical path reflector and the surface of the wavelength conversion element body. (Hereinafter also referred to as a seventh lens) is disposed, and the seventh lens transmits incident light that enters the incident point of the reverse optical path through the lens from the incident point of the reverse optical path. When a condensing lens (hereinafter also referred to as an eighth lens) is disposed between the light path and the output end of the wavelength conversion element, the center of the seventh lens and the A lens that collects light at a position corresponding to or near the intermediate point of the total optical path length between the centers of the eighth lens, and the wavelength conversion in an optical path downstream from the incident point of the reverse optical path. Between the output end of the element When the eighth lens is not disposed, a lens that focuses light at a position corresponding to or near the midpoint of the total optical path length between the center of the seventh lens and the emission end of the wavelength conversion element. It is a wavelength conversion element characterized by being.

本発明の前記発明1を展開した第17の発明(以下、発明17ともいう)は、発明1〜16のいずれかに記載の波長変換素子において、前記波長変換素子本体の前記入射端部になる表面とそれと反対側の表面とが1分以内の開き角で互いに平行に形成されていることを特徴とする波長変換素子である。   A seventeenth invention (hereinafter also referred to as an invention 17) obtained by developing the invention 1 according to the present invention is the wavelength conversion element according to any one of the inventions 1 to 16, which is the incident end of the wavelength conversion element body. The wavelength conversion element is characterized in that the surface and the surface opposite to the surface are formed in parallel with each other with an opening angle within one minute.

本発明の前記発明1を展開した第18の発明(以下、発明18ともいう)は、発明3〜17のいずれかに記載の波長変換素子において、前記波長変換素子本体の表面と各分極反転領域の境界面とが1分以内の開き角で互いに平行であることを特徴とする波長変換素子である。   An eighteenth invention (hereinafter also referred to as an invention 18) in which the invention 1 of the present invention is developed is the wavelength conversion element according to any one of the inventions 3 to 17, wherein the surface of the wavelength conversion element body and each polarization inversion region The wavelength conversion element is characterized in that the boundary surface is parallel to each other with an opening angle within one minute.

本発明の前記発明1を展開した第19の発明(以下、発明19ともいう)は、発明3〜18のいずれかに記載の波長変換素子において、前記波長変換素子本体の分極反転領域の幅が、前記波長変換素子本体に最初に入射した入射光の光路に直交する方向でかつ前記光路とその次の再入射光の光路を含む面における幅において少なくとも2mmあることを特徴とする波長変換素子である。   The nineteenth invention (hereinafter also referred to as invention 19) in which the invention 1 of the present invention is developed is the wavelength conversion element according to any one of inventions 3 to 18, wherein the width of the domain-inverted region of the wavelength conversion element body is A wavelength conversion element characterized by being at least 2 mm in width in a direction perpendicular to the optical path of incident light first incident on the wavelength conversion element main body and including the optical path and the optical path of the next re-incident light is there.

本発明の前記発明1を展開した第20の発明(以下、発明20ともいう)は、発明3〜19のいずれかに記載の波長変換素子において、前記分極反転素子がPPLNであることを特徴とする波長変換素子である。   A twentieth invention (hereinafter also referred to as an invention 20) obtained by developing the invention 1 of the present invention is characterized in that, in the wavelength conversion element according to any one of inventions 3 to 19, the polarization inverting element is PPLN. This is a wavelength conversion element.

本発明の前記発明1を展開した第21の発明(以下、発明21ともいう)は、発明3〜19のいずれかに記載の波長変換素子において、前記分極反転素子がPPKTPであることを特徴とする波長変換素子である。   A twenty-first invention (hereinafter also referred to as invention 21) obtained by developing the invention 1 of the present invention is characterized in that, in the wavelength conversion element according to any one of inventions 3 to 19, the polarization inverting element is PPKTP. This is a wavelength conversion element.

PPLNやPPKTPは技術的にもデータが多く蓄積されており、安価に本発明の波長変換素子、波長変換装置、波長変換方法を実現するには好適なものということができる。   PPLN and PPKTP have technically accumulated a lot of data, and can be said to be suitable for realizing the wavelength conversion element, wavelength conversion device, and wavelength conversion method of the present invention at low cost.

つぎに、前記発明1〜21の如き波長変換素子を用いて構成した波長変換装置について説明する。   Next, a wavelength conversion device constituted by using the wavelength conversion element as in inventions 1 to 21 will be described.

本発明の第2の基本発明(以下、発明22ともいう)による波長変換装置は、波長変換素子本体の入射端部から前記波長変換素子本体に第1の波長λ1の光を含む光を入射光として入射させ、前記入射光を前記波長変換素子本体内を進行させることによって前記第1の波長λ1とは異なる第2の波長λ2の光を生成して前記波長変換素子本体から出射させることができる波長変換素子本体を有する波長変換素子を少なくとも1つ用いた波長変換装置において、少なくとも1つの前記波長変換素子が、前記入射端部から波長変換素子本体に入射された前記入射光が、前記波長変換素子本体内を進行して第1の波長λ1の光から第2の波長λ2の光への波長変換を受けた結果として第1の波長λ1の光と第2の波長λ2の光を含んだ光となって前記第1の到達端部に到達した前記到達光のうちの少なくとも第1の波長λ1の光を反射させて前記波長変換素子本体に再入射させることができる反射体を配置した波長変換素子であることを特徴とする波長変換装置である。   The wavelength conversion device according to the second basic invention of the present invention (hereinafter also referred to as the invention 22) receives light including light of the first wavelength λ1 from the incident end of the wavelength conversion element body to the wavelength conversion element body. And the incident light travels in the wavelength conversion element main body, thereby generating light having a second wavelength λ2 different from the first wavelength λ1 and emitting the light from the wavelength conversion element main body. In a wavelength conversion device using at least one wavelength conversion element having a wavelength conversion element main body, at least one of the wavelength conversion elements is obtained by converting the incident light incident on the wavelength conversion element main body from the incident end. Light including light of the first wavelength λ1 and light of the second wavelength λ2 as a result of traveling through the element body and undergoing wavelength conversion from the light of the first wavelength λ1 to the light of the second wavelength λ2. Become the first The wavelength conversion element is provided with a reflector that can reflect at least the light having the first wavelength λ1 of the reaching light that has reached the arrival end of the light and re-enter the wavelength conversion element body. Is a wavelength conversion device.

本発明の前記発明22を展開した第23の発明(以下、発明23ともいう)は、発明22に記載の波長変換装置において、前記反射体が第2の波長λ2の光をも反射させて前記波長変換素子本体に再入射させることができることを特徴とする波長変換装置である。   According to a twenty-third aspect (hereinafter, also referred to as the twenty-third aspect) of the invention 22 according to the present invention, in the wavelength converter according to the twenty-second aspect, the reflector also reflects light having a second wavelength λ2. It is a wavelength conversion device characterized by being able to re-enter the wavelength conversion element body.

本発明の前記発明22を展開した第24の発明(以下、発明24ともいう)は、発明22または23に記載の波長変換装置において、前記波長変換素子本体が分極反転領域を有する分極反転素子であることを特徴とする波長変換装置である。   According to a twenty-fourth aspect of the present invention, the twenty-fourth aspect of the present invention (hereinafter also referred to as the twenty-fourth aspect) is a polarization reversal element in which the wavelength conversion element body has a polarization reversal region in the wavelength conversion device according to the invention 22 or 23. It is a wavelength converter characterized by being.

本発明の前記発明22を展開した第25の発明(以下、発明25ともいう)は、発明22〜24のいずれかに記載の波長変換装置において、前記反射体によって反射されて前記波長変換素子本体に再入射した光ビームの光路と前記反射体によって反射される直前の前記到達光ビームの光路が前記波長変換素子本体内において平行でないことを特徴とする波長変換装置である。   According to a twenty-fifth aspect of the present invention, the twenty-second aspect of the present invention (hereinafter also referred to as the twenty-fifth aspect) is the wavelength conversion device according to any one of the twenty-second to twenty-fourth aspects, wherein the wavelength conversion element body is reflected by the reflector. The wavelength conversion device is characterized in that the optical path of the light beam re-incident on the light beam and the optical path of the reaching light beam immediately before being reflected by the reflector are not parallel in the wavelength conversion element body.

本発明の前記発明22を展開した第26の発明(以下、発明26ともいう)は、発明22〜25のいずれかに記載の波長変換装置において、前記反射体の第1の波長λ1の光と第2の波長λ2の光のいずれか一方または双方に対する反射率が99%以上であることを特徴とする波長変換装置である。   According to a twenty-sixth aspect of the present invention, the twenty-second aspect of the present invention (hereinafter also referred to as the twenty-sixth aspect), in the wavelength conversion device according to any one of the twenty-second to twenty-fifth aspects, The wavelength conversion device is characterized in that the reflectance with respect to one or both of the light beams having the second wavelength λ2 is 99% or more.

本発明の前記発明22を展開した第27の発明(以下、発明27ともいう)は、発明22〜26のいずれかに記載の波長変換装置において、少なくとも1つの前記波長変換素子が、前記第Nの到達端部に到達し前記反射体で反射されて前記波長変換素子本体に再入射して前記波長変換素子本体内を進行した第1の波長λ1の光と第2の波長λ2の光を含んだ到達光が次に到達する第N+1の到達端部に、前記到達光の第1の波長λ1の光と第2の波長λ2の光のいずれか一方または双方を反射させて前記波長変換素子本体に再入射させることができる反射体を配置した波長変換素子であることを特徴とする波長変換装置である。   According to a twenty-seventh aspect of the present invention, which is the development of the twenty-second aspect of the present invention (hereinafter also referred to as the twenty-seventh aspect), in the wavelength conversion device according to any one of the twenty-second to twenty-sixth aspects, at least one of the wavelength conversion elements is the Nth. The light having the first wavelength λ1 and the light having the second wavelength λ2 that has been reflected by the reflector, re-entered the wavelength conversion element body, and traveled through the wavelength conversion element body. The wavelength conversion element main body is configured to reflect either one or both of the light having the first wavelength λ1 and the light having the second wavelength λ2 to the N + 1th arrival end where the arrival light reaches the next time. The wavelength conversion device is characterized in that it is a wavelength conversion element in which a reflector that can be re-incident on is disposed.

本発明の前記発明22を展開した第28の発明(以下、発明28ともいう)は、発明22〜27のいずれかに記載の波長変換装置において、少なくとも1つの前記反射体が、あるいは前記反射体の少なくとも一部が、前記波長変換素子本体の前記到達端部の表面に形成された多層膜から成る反射膜であることを特徴とする波長変換装置である。   According to a twenty-eighth aspect (hereinafter, also referred to as invention 28) of the invention 22, the at least one reflector or the reflector is the wavelength converter according to any one of the inventions 22 to 27. At least a part of which is a reflective film made of a multilayer film formed on the surface of the reaching end of the wavelength conversion element body.

本発明の前記発明22を展開した第29の発明(以下、発明29ともいう)は、発明28に記載の波長変換素子において、前記反射膜が、前記波長変換素子本体の複数箇所の前記到達端部の表面に連続した状態に形成された反射膜であることを特徴とする波長変換素子である。   According to a twenty-ninth aspect of the present invention, which is the development of the twenty-second aspect of the present invention (hereinafter also referred to as the thirty-ninth aspect), in the wavelength conversion element according to the twenty-eighth aspect, the reflective film has the reaching ends at a plurality of locations of the wavelength conversion element body. It is a wavelength conversion element characterized by being a reflective film formed in a continuous state on the surface of the part.

本発明の前記発明22を展開した第30の発明(以下、発明30ともいう)は、発明28または29に記載の波長変換装置において、前記反射膜が前記波長λ1の光と前記波長λ2の光のいずれか一方または双方に対して99.8%以上の反射率を有する多層膜からなる反射膜であることを特徴とする波長変換装置である。   A thirtieth invention (hereinafter also referred to as invention 30) according to the twenty-second aspect of the present invention is the wavelength converter according to the twenty-eighth or twenty-ninth aspect, wherein the reflective film is light having the wavelength λ1 and light having the wavelength λ2. A wavelength conversion device characterized by being a reflective film made of a multilayer film having a reflectance of 99.8% or more with respect to either or both of the above.

本発明の前記発明22を展開した第31の発明(以下、発明31ともいう)は、発明22〜30のいずれかに記載の波長変換装置において、少なくとも1つの前記反射体が、あるいは前記反射体の少なくとも一部が、前記波長変換素子本体の前記到達端部の表面に対向して、前記波長変換素子本体の外部に配置された外部反射鏡であることを特徴とする波長変換装置である。   The thirty-first invention (hereinafter also referred to as invention 31), in which the invention 22 of the present invention is developed, is the wavelength conversion device according to any one of the inventions 22 to 30, wherein at least one of the reflectors or the reflector is used. At least a part of the wavelength conversion device is an external reflecting mirror disposed on the outside of the wavelength conversion element body so as to face the surface of the reaching end of the wavelength conversion element body.

本発明の前記発明22を展開した第32の発明(以下、発明32ともいう)は、発明31に記載の波長変換装置において、前記波長変換素子が、少なくとも1つの前記外部反射鏡のそこに入射する前記到達光に対する角度を調節する手段を有することを特徴とする波長変換装置である。   According to a thirty-second invention (hereinafter also referred to as invention 32) in which the invention 22 of the present invention is developed, in the wavelength converter according to the invention 31, the wavelength conversion element is incident on at least one of the external reflecting mirrors. A wavelength conversion device comprising means for adjusting an angle with respect to the reaching light.

本発明の前記発明22を展開した第33の発明(以下、発明33ともいう)は、発明31または32に記載の波長変換装置において、前記波長変換素子本体の前記到達端部の表面と前記表面に対向して配置されている前記外部反射鏡の間にレンズを配置したことを特徴とする波長変換装置である。   A thirty-third invention (hereinafter also referred to as invention 33), in which the invention 22 of the present invention is developed, is the wavelength conversion device according to the invention 31 or 32, wherein the surface of the reaching end portion of the wavelength conversion element body and the surface A wavelength conversion device characterized in that a lens is arranged between the external reflecting mirrors arranged to face each other.

本発明の前記発明22を展開した第34の発明(以下、発明34ともいう)は、発明33に記載の波長変換装置において、前記レンズ(以下、第3のレンズともいう)は、前記外部反射鏡で反射されて前記波長変換素子本体に再入射される少なくとも第1の波長λ1の光を含んだ光ビームを、当該波長変換素子において、前記再入射された再入射点から後段の光路で当該波長変換素子の出射端部までの間に集光レンズ(以下、第4のレンズともいう)が配置されている場合には前記第3のレンズの中心と前記第4のレンズの中心の間の全光路長の中間点に相当する位置あるいはその近傍に集光させるレンズであり、前記再入射された再入射点から後段の光路で当該波長変換素子の出射端部までの間に前記第4のレンズが配置されていない場合には前記第3のレンズの中心と当該波長変換素子の出射端部の間の全光路長の中間点に相当する位置あるいはその近傍に集光させるレンズであることを特徴とする波長変換装置である。   A thirty-fourth invention (hereinafter also referred to as invention 34) in which the invention 22 of the present invention is developed is the wavelength converter according to the invention 33, wherein the lens (hereinafter also referred to as third lens) is the external reflection. A light beam including light of at least the first wavelength λ1 reflected by a mirror and re-entering the wavelength conversion element main body is transmitted in the optical path downstream from the re-incident point of re-incidence in the wavelength conversion element. When a condensing lens (hereinafter also referred to as a fourth lens) is disposed between the output end of the wavelength conversion element, it is between the center of the third lens and the center of the fourth lens. A lens that collects light at a position corresponding to or near an intermediate point of the total optical path length, and the fourth optical path between the re-entered re-incident point and the output end of the wavelength conversion element in a subsequent optical path. When no lens is placed Is a lens for condensing light at a position corresponding to or near the midpoint of the total optical path length between the center of the third lens and the emission end of the wavelength conversion element. .

本発明の前記発明22を展開した第35の発明(以下、発明35ともいう)は、発明22〜34のいずれかに記載の波長変換装置において、少なくとも1つの前記波長変換素子本体の少なくとも前記入射端部になる表面と前記外部反射鏡に対向している表面と前記到達光を外部に取り出す到達端部になる表面に反射防止膜が形成されていることを特徴とする波長変換装置である。   According to a thirty-fifth aspect of the present invention, the thirty-fifth aspect of the present invention (hereinafter also referred to as the thirty-fifth aspect), in the wavelength conversion device according to any one of the twenty-second to thirty-fourth aspects, An antireflection film is formed on a surface serving as an end, a surface facing the external reflecting mirror, and a surface serving as a reaching end for extracting the reaching light to the outside.

本発明の前記発明22を展開した第36の発明(以下、発明36ともいう)は、発明22〜35のいずれかに記載の波長変換装置において、少なくとも1つの前記波長変換素子本体の少なくとも1つの前記到達端部になる表面に対向して、前記到達端部から前記波長変換素子本体の外部に出た到達光を、前記到達光の前記到達端部から前記波長変換素子本体の外部に出る前の前記反射前光路に平行でかつ前記波長変換素子本体内部の前記反射前光路から離れた位置を前記反射前光路と逆方向に進行する前記逆方向光路になるように前記波長変換素子本体に再入射するように反射する前記逆光路反射体が配置されていることを特徴とする波長変換装置である。   According to a thirty-sixth aspect of the present invention, which is the development of the twenty-second aspect of the present invention (hereinafter also referred to as the thirty-sixth aspect), in the wavelength conversion device according to any one of the inventions 22 to 35, at least one of the at least one wavelength conversion element body. Before reaching the surface of the wavelength conversion element body from the reaching end portion of the reaching light, the reaching light exiting the outside of the wavelength conversion element body from the reaching end portion is opposed to the surface that becomes the reaching end portion. The wavelength conversion element main body is re-adjusted so that a position parallel to the pre-reflection optical path and away from the pre-reflection optical path inside the wavelength conversion element main body becomes the reverse optical path traveling in the direction opposite to the pre-reflection optical path. The wavelength conversion device is characterized in that the reverse optical path reflector that reflects so as to be incident is disposed.

本発明の前記発明22を展開した第37の発明(以下、発明37ともいう)は、発明36に記載の波長変換装置において、前記逆光路反射体と前記波長変換素子本体の表面の間にレンズ(以下、第9のレンズともいう)が配置されており、前記第9のレンズは、当該レンズを通り前記逆方向光路の入射点に入射させる入射光を、前記逆方向光路の入射点から、当該光路の後段の光路において、当該波長変換素子の出射端部までの間に集光レンズ(以下、第10のレンズともいう)が配置されている場合には前記第9のレンズの中心と前記第10のレンズの中心の間の全光路長の中間点に相当する位置あるいはその近傍に集光させるレンズであり、前記逆方向光路の入射点から、当該光路の後段の光路において、当該波長変換素子の出射端部までの間に前記第10のレンズが配置されていない場合には前記第9のレンズの中心と当該波長変換素子の出射端部の間の全光路長の中間点に相当する位置あるいはその近傍に集光させるレンズであることを特徴とする波長変換装置である。   According to a thirty-seventh aspect of the present invention, which is the development of the twenty-second aspect of the present invention (hereinafter also referred to as the thirty-seventh aspect), in the wavelength converter according to the thirty-sixth aspect, a lens is provided between the reverse optical path reflector and the surface of the wavelength conversion element body. (Hereinafter also referred to as a ninth lens) is arranged, and the ninth lens transmits incident light that enters the incident point of the reverse optical path through the lens from the incident point of the reverse optical path. When a condensing lens (hereinafter also referred to as a tenth lens) is disposed in the optical path following the optical path between the output end of the wavelength conversion element and the center of the ninth lens, A lens that collects light at a position corresponding to or near the intermediate point of the total optical path length between the centers of the tenth lens, and the wavelength conversion in an optical path downstream from the incident point of the reverse optical path To the output end of the element When the tenth lens is not disposed between the center of the ninth lens and the position corresponding to the intermediate point of the total optical path length between the center of the ninth lens and the emission end of the wavelength conversion element, or the vicinity thereof. It is a wavelength conversion device characterized by being a lens that emits light.

本発明の前記発明22を展開した第38の発明(以下、発明38ともいう)は、発明22〜37のいずれかに記載の波長変換装置において、少なくとも1つの前記波長変換素子本体が、前記波長変換素子本体の前記入射端部が形成されている表面とそれと反対側の表面とが1分以内の開き角で互いに平行に形成されている波長変換素子本体であることを特徴とする波長変換装置である。   According to a thirty-eighth aspect of the present invention, the thirty-eighth aspect (hereinafter also referred to as the thirty-eighth aspect) is the wavelength conversion device according to any one of the twenty-second to thirty-seventh aspects, wherein at least one of the wavelength conversion element main bodies has the wavelength. A wavelength conversion device comprising a wavelength conversion element body in which a surface on which the incident end of the conversion element body is formed and a surface opposite to the surface are formed in parallel with each other with an opening angle of less than 1 minute It is.

本発明の前記発明22を展開した第39の発明(以下、発明39ともいう)は、発明24〜38のいずれかに記載の波長変換装置において、前記波長変換素子本体の表面と各分極反転領域の境界面とが1分以内の開き角で互いに平行であることを特徴とする波長変換装置である。   A thirty-ninth invention (hereinafter also referred to as invention 39) in which the invention 22 of the present invention is developed is the wavelength conversion device according to any of the inventions 24-38, wherein the surface of the wavelength conversion element body and each polarization inversion region The wavelength conversion device is characterized in that the boundary surface is parallel to each other with an opening angle within one minute.

本発明の前記発明22を展開した第40の発明(以下、発明40ともいう)は、発明24〜39のいずれかに記載の波長変換装置において、前記波長変換素子本体の分極反転領域の幅が、前記波長変換素子本体に最初に入射した入射光の光路に直交する方向でかつ前記光路とその次の再入射光の光路を含む面における幅において少なくとも2mmあることを特徴とする波長変換装置である。   The 40th invention of the present invention 22 (hereinafter also referred to as invention 40) is the wavelength conversion device according to any one of inventions 24 to 39, wherein the width of the domain-inverted region of the wavelength conversion element body is the 40th invention of the invention. A wavelength conversion device characterized by being at least 2 mm in width in a direction perpendicular to the optical path of incident light first incident on the wavelength conversion element body and including the optical path and the optical path of the next re-incident light is there.

本発明の前記発明22を展開した第41の発明(以下、発明41ともいう)は、発明24〜40のいずれかに記載の波長変換装置において、前記分極反転素子がPPLNであることを特徴とする波長変換装置である。   According to a forty-first aspect of the present invention that develops the invention 22 (hereinafter also referred to as the invention 41), in the wavelength conversion device according to any one of the inventions 24 to 40, the polarization inverting element is a PPLN. This is a wavelength conversion device.

本発明の前記発明22を展開した第42の発明(以下、発明42ともいう)は、発明24〜40のいずれかに記載の波長変換装置において、前記分極反転素子がPPKTPであることを特徴とする波長変換装置である。   A forty-second invention (hereinafter also referred to as invention 42), which is a development of the invention 22 of the present invention, is characterized in that, in the wavelength converter according to any one of inventions 24 to 40, the polarization inverting element is PPKTP. This is a wavelength conversion device.

本発明の前記発明22を展開した第43の発明(以下、発明43ともいう)は、発明22〜42のいずれかに記載の波長変換装置において、前記波長変換装置が、前記光ビームの光路において前記波長変換素子を少なくとも2つ直列に配置して構成されている装置であることを特徴とする波長変換装置である。   A forty-third invention (hereinafter also referred to as invention 43) in which the invention 22 of the present invention is developed is the wavelength converter according to any one of inventions 22 to 42, wherein the wavelength converter is in the optical path of the light beam. A wavelength conversion device characterized in that the device is configured by arranging at least two wavelength conversion elements in series.

本発明の前記発明22を展開した第44の発明(以下、発明44ともいう)は、発明43に記載の波長変換装置において、前記光ビームの光路において、少なくとも1組の直列に接続されている2つの前記波長変換素子の間にレンズが配置されていることを特徴とする波長変換装置である。   A forty-fourth invention (hereinafter also referred to as invention 44) in which the invention 22 of the present invention is developed is the wavelength converter according to the invention 43, wherein at least one set is connected in series in the optical path of the light beam. A wavelength conversion device, wherein a lens is disposed between the two wavelength conversion elements.

本発明の前記発明22を展開した第45の発明(以下、発明45ともいう)は、発明44に記載の波長変換装置において、前記レンズ(以下、第11のレンズともいう)が、入射光を、当該レンズの後段の光路において、後段の波長変換素子の出射端部までの間に集光レンズ(以下、第12のレンズともいう)が配置されている場合には前記第11のレンズの中心と前記第12のレンズの中心の間の全光路長の中間点に相当する位置あるいはその近傍に集光させるレンズであり、後段の波長変換素子の出射端部までの間に前記第12のレンズが配置されていない場合には前記第11のレンズの中心と後段の波長変換素子の出射端部の間の全光路長の中間点に相当する位置あるいはその近傍に集光させるレンズであることを特徴とする波長変換装置である。   According to a forty-fifth aspect (hereinafter also referred to as invention 45) of the invention 22 according to the present invention, in the wavelength converter according to the invention 44, the lens (hereinafter also referred to as eleventh lens) When a condensing lens (hereinafter also referred to as a twelfth lens) is disposed in the optical path at the rear stage of the lens and up to the exit end of the wavelength conversion element at the rear stage, the center of the eleventh lens And the center of the twelfth lens at a position corresponding to or near the midpoint of the total optical path length, and the twelfth lens between the output end of the subsequent wavelength conversion element. When the lens is not disposed, it is a lens that focuses light at a position corresponding to or near the midpoint of the total optical path length between the center of the eleventh lens and the output end of the subsequent wavelength conversion element. Characteristic wavelength conversion It is the location.

本発明の前記発明22を展開した第46の発明(以下、発明46ともいう)は、発明22〜45のいずれかに記載の波長変換装置において、前記波長変換装置が、波長変換された出力光を、前記入射端部の近傍において、前記入射光の入射位置から所定距離離れた位置で取り出すことができることを特徴とする波長変換装置である。   A forty-sixth aspect of the present invention, which is the development of the twenty-second aspect of the present invention (hereinafter also referred to as the forty-sixth aspect), is the wavelength conversion device according to any one of the inventions 22 to 45, wherein the wavelength conversion device is wavelength-converted output light. Can be extracted at a position away from the incident position of the incident light by a predetermined distance in the vicinity of the incident end.

次に、本発明の波長変換方法について説明する。   Next, the wavelength conversion method of the present invention will be described.

本発明の第3の基本発明(以下、発明47ともいう)による波長変換方法は、波長変換素子本体の入射端部から前記波長変換素子本体に第1の波長λ1の光を含む光を入射光として入射させ、前記入射光を前記波長変換素子本体内を進行させることによって前記第1の波長λ1とは異なる第2の波長λ2の光を生成して前記波長変換素子本体から出射させることができる波長変換素子本体を有する波長変換素子あるいは前記波長変換素子を有する波長変換装置を少なくとも1つ用いて波長変換を行う波長変換方法において、前記波長変換方法に用いる少なくとも1つの前記波長変換素子が、前記入射端部から波長変換素子本体に入射された前記入射光が、前記波長変換素子本体内を進行して第1の波長λ1の光から第2の波長λ2の光への波長変換を受けた結果として第1の波長λ1の光と第2の波長λ2の光を含んだ光となって前記第1の到達端部に到達した前記到達光のうちの少なくとも第1の波長λ1の光を反射させて前記波長変換素子本体に再入射させることができる反射体を配置した波長変換素子であることを特徴とする波長変換方法である。   In the wavelength conversion method according to the third basic invention of the present invention (hereinafter also referred to as the invention 47), the light including the light of the first wavelength λ1 is incident on the wavelength conversion element body from the incident end of the wavelength conversion element body. And the incident light travels in the wavelength conversion element main body, thereby generating light having a second wavelength λ2 different from the first wavelength λ1 and emitting the light from the wavelength conversion element main body. In a wavelength conversion method for performing wavelength conversion using at least one wavelength conversion element having a wavelength conversion element body or a wavelength conversion device having the wavelength conversion element, at least one of the wavelength conversion elements used in the wavelength conversion method is The incident light incident on the wavelength conversion element main body from the incident end travels in the wavelength conversion element main body and changes the wavelength from the light having the first wavelength λ1 to the light having the second wavelength λ2. As a result of the conversion, at least the first wavelength λ1 of the reaching light that has reached the first reaching end portion becomes light including light of the first wavelength λ1 and light of the second wavelength λ2. The wavelength conversion method is characterized in that it is a wavelength conversion element in which a reflector capable of reflecting the light and making it re-enter the wavelength conversion element main body is disposed.

本発明の前記発明47を展開した第48の発明(以下、発明48ともいう)は、発明47に記載の波長変換方法において、前記反射体が第2の波長λ2の光をも反射させて前記波長変換素子本体に再入射させることができることを特徴とする波長変換方法である。   A forty-eighth aspect of the present invention, which is the development of the invention 47 (hereinafter also referred to as the invention 48), is the wavelength conversion method according to the aspect 47, wherein the reflector also reflects light having a second wavelength λ2. It is a wavelength conversion method characterized by being able to re-enter the wavelength conversion element main body.

本発明の前記発明47を展開した第49の発明(以下、発明49ともいう)は、発明47または48に記載の波長変換方法において、前記波長変換素子本体が分極反転領域を有する分極反転素子であることを特徴とする波長変換方法である。   A forty-ninth aspect of the present invention, which is the development of the invention 47 (hereinafter also referred to as the invention 49), is a polarization reversal element in which the wavelength conversion element body has a polarization reversal region in the wavelength conversion method according to the invention 47 or 48. It is a wavelength conversion method characterized by being.

本発明の前記発明47を展開した第50の発明(以下、発明50ともいう)は、発明47〜49のいずれかに記載の波長変換方法において、前記反射体として、前記反射体によって反射されて前記波長変換素子本体に再入射した光ビームの光路と前記反射体によって反射される直前の前記到達光ビームの光路が前記波長変換素子本体内において平行でないような反射体を用いることを特徴とする波長変換方法である。   A fifty-th invention of the present invention 47 (hereinafter also referred to as invention 50) is reflected by the reflector as the reflector in the wavelength conversion method according to any one of inventions 47 to 49. A reflector is used in which the optical path of the light beam re-incident on the wavelength conversion element body and the optical path of the reaching light beam immediately before being reflected by the reflector are not parallel in the wavelength conversion element body. This is a wavelength conversion method.

本発明の前記発明47を展開した第51の発明(以下、発明51ともいう)は、発明47〜50のいずれかに記載の波長変換方法において、前記反射体として、第1の波長λ1の光と第2の波長λ2の光のいずれか一方または双方に対する反射率が99%以上である反射体を用いることを特徴とする波長変換方法である。   The fifty-first invention (hereinafter also referred to as invention 51), in which the invention 47 of the present invention is developed, is the wavelength conversion method according to any one of the inventions 47 to 50, wherein the light having the first wavelength λ1 is used as the reflector. And a reflector having a reflectivity of 99% or more for either or both of the light having the second wavelength λ2 and the wavelength conversion method.

本発明の前記発明47を展開した第52の発明(以下、発明52ともいう)は、発明47〜51のいずれかに記載の波長変換方法において、少なくとも1つの前記波長変換素子が、前記第Nの到達端部に到達し前記反射体で反射されて前記波長変換素子本体に再入射して前記波長変換素子本体内を進行した第1の波長λ1の光と第2の波長λ2の光を含んだ到達光が次に到達する第N+1の到達端部に、前記到達光の第1の波長λ1の光と第2の波長λ2の光のいずれか一方または双方を反射させて前記波長変換素子本体に再入射させることができる反射体を配置した波長変換素子であることを特徴とする波長変換方法である。   A fifty-second invention (hereinafter also referred to as invention 52) obtained by developing the invention 47 of the present invention is the wavelength conversion method according to any one of the inventions 47 to 51, wherein at least one of the wavelength conversion elements is the Nth product. The light having the first wavelength λ1 and the light having the second wavelength λ2 that has been reflected by the reflector, re-entered the wavelength conversion element body, and traveled through the wavelength conversion element body. The wavelength conversion element main body is configured to reflect either one or both of the light having the first wavelength λ1 and the light having the second wavelength λ2 to the N + 1th arrival end where the arrival light reaches the next time. The wavelength conversion method is characterized in that it is a wavelength conversion element in which a reflector that can be re-incident on is disposed.

本発明の前記発明47を展開した第53の発明(以下、発明53ともいう)は、発明47〜52のいずれかに記載の波長変換方法において、少なくとも1つの前記反射体が、あるいは前記反射体の少なくとも一部が、前記波長変換素子本体の前記到達端部の表面に形成された多層膜から成る反射膜であることを特徴とする波長変換方法である。   A fifty-third invention (hereinafter also referred to as invention 53) in which the invention 47 of the present invention is developed is the wavelength conversion method according to any one of the inventions 47 to 52, wherein at least one of the reflectors or the reflector is used. The wavelength conversion method is characterized in that at least a part of the reflection film is a reflective film made of a multilayer film formed on the surface of the reaching end portion of the wavelength conversion element body.

本発明の前記発明47を展開した第54の発明(以下、発明54ともいう)は、発明53に記載の波長変換方法において、前記反射膜が、前記波長変換素子本体の複数箇所の前記到達端部の表面に連続した状態に形成された反射膜であることを特徴とする波長変換方法である。   The fifty-fourth invention (hereinafter also referred to as invention 54), which is the development of the invention 47 of the present invention, is the wavelength conversion method according to the invention 53, wherein the reflective film has the reaching ends at a plurality of locations of the wavelength conversion element body. It is a wavelength conversion method characterized by being a reflective film formed in a continuous state on the surface of the part.

本発明の前記発明47を展開した第55の発明(以下、発明55ともいう)は、発明53または54に記載の波長変換方法において、前記反射膜が前記波長λ1の光と前記波長λ2の光のいずれか一方または双方に対して99.8%以上の反射率を有する多層膜からなる反射膜であることを特徴とする波長変換方法である。   According to a fifty-fifth aspect of the present invention, the fifteenth aspect of the present invention (hereinafter also referred to as the fifty-fifth aspect), in the wavelength conversion method according to the thirty-third or fifty-fourth aspect, A wavelength conversion method characterized by being a reflective film composed of a multilayer film having a reflectance of 99.8% or more with respect to one or both of the above.

本発明の前記発明47を展開した第56の発明(以下、発明56ともいう)は、発明47〜55のいずれかに記載の波長変換方法において、少なくとも1つの前記反射体が、あるいは前記反射体の少なくとも一部が、前記波長変換素子本体の前記到達端部の表面に対向して、前記波長変換素子本体の外部に配置された外部反射鏡であることを特徴とする波長変換方法である。   According to a fifty-sixth aspect of the present invention, the fifty-seventh aspect of the present invention (hereinafter also referred to as the fifty-sixth aspect) is the wavelength conversion method according to any one of the aspects 47 to 55, wherein at least one of the reflectors or the reflector The wavelength conversion method is characterized in that at least a part of the external reflection mirror is disposed outside the wavelength conversion element body so as to face the surface of the reaching end portion of the wavelength conversion element body.

本発明の前記発明47を展開した第57の発明(以下、発明57ともいう)は、発明56に記載の波長変換方法において、前記波長変換素子が、少なくとも1つの前記外部反射鏡のそこに入射する前記到達光に対する角度を調節する手段を有することを特徴とする波長変換方法である。   The fifty-seventh invention (hereinafter also referred to as invention 57), which is the development of the invention 47 of the present invention, is the wavelength conversion method according to the invention 56, wherein the wavelength conversion element is incident on at least one of the external reflecting mirrors. And a means for adjusting an angle with respect to the reaching light.

本発明の前記発明47を展開した第58の発明(以下、発明58ともいう)は、発明56または57に記載の波長変換方法において、前記波長変換素子本体の前記到達端部の表面と前記表面に対向して配置されている前記外部反射鏡の間にレンズを配置したことを特徴とする波長変換方法である。   The 58th invention (hereinafter also referred to as invention 58), in which the invention 47 of the present invention is developed, is the wavelength conversion method according to the invention 56 or 57, wherein the surface of the reaching end portion of the wavelength conversion element body and the surface The wavelength conversion method is characterized in that a lens is arranged between the external reflecting mirrors arranged to face each other.

本発明の前記発明47を展開した第59の発明(以下、発明59ともいう)は、発明58に記載の波長変換方法において、前記レンズ(以下、第5のレンズともいう)は、前記外部反射鏡で反射されて前記波長変換素子本体に再入射される少なくとも第1の波長λ1の光を含んだ光ビームを、当該波長変換素子において、前記再入射された再入射点から後段の光路で当該波長変換素子の出射端部までの間に集光レンズ(以下、第6のレンズともいう)が配置されている場合には前記第5のレンズの中心と前記第6のレンズの中心の間の全光路長の中間点に相当する位置あるいはその近傍に集光させるレンズであり、前記再入射された再入射点から後段の光路で当該波長変換素子の出射端部までの間に前記第6のレンズが配置されていない場合には前記第5のレンズの中心と当該波長変換素子の出射端部の間の全光路長の中間点に相当する位置あるいはその近傍に集光させるレンズであることを特徴とする波長変換方法である。   A fifty-ninth invention (hereinafter also referred to as invention 59) in which the invention 47 of the present invention is developed is the wavelength conversion method according to the invention 58, wherein the lens (hereinafter also referred to as fifth lens) is the external reflection. A light beam including light of at least the first wavelength λ1 reflected by a mirror and re-entering the wavelength conversion element main body is transmitted in the optical path downstream from the re-incident point of re-incidence in the wavelength conversion element. When a condensing lens (hereinafter also referred to as a sixth lens) is disposed between the output end of the wavelength conversion element, it is between the center of the fifth lens and the center of the sixth lens. A lens for condensing light at a position corresponding to or near the intermediate point of the total optical path length, and the sixth optical path between the re-entered re-incident point and the output end of the wavelength conversion element in the subsequent optical path. When no lens is placed Is a lens for condensing light at a position corresponding to or near the midpoint of the total optical path length between the center of the fifth lens and the emission end of the wavelength conversion element. .

本発明の前記発明47を展開した第60の発明(以下、発明60ともいう)は、発明47〜59のいずれかに記載の波長変換方法において、少なくとも1つの前記波長変換素子本体の少なくとも前記入射端部になる表面と前記外部反射鏡に対向している表面と前記到達光を外部に取り出す到達端部になる表面に反射防止膜が形成されていることを特徴とする波長変換方法である。   A 60th invention (hereinafter also referred to as invention 60) in which the invention 47 of the present invention is developed is the wavelength conversion method according to any one of inventions 47 to 59, wherein at least the incidence of at least one of the wavelength conversion element main bodies is performed. The wavelength conversion method is characterized in that an antireflection film is formed on a surface that becomes an end portion, a surface that faces the external reflecting mirror, and a surface that becomes the reaching end portion that extracts the reaching light to the outside.

本発明の前記発明47を展開した第61の発明(以下、発明61ともいう)は、発明47〜60のいずれかに記載の波長変換方法において、少なくとも1つの前記波長変換素子本体の少なくとも1つの前記到達端部になる表面に対向して、前記到達端部から前記波長変換素子本体の外部に出た到達光を、前記到達光の前記到達端部から前記波長変換素子本体の外部に出る前の前記反射前光路に平行でかつ前記波長変換素子本体内部の前記反射前光路から離れた位置を前記反射前光路と逆方向に進行する前記逆方向光路になるように前記波長変換素子本体に再入射するように反射する前記逆光路反射体が配置されていることを特徴とする波長変換方法である。   A sixty-first invention (hereinafter also referred to as invention 61) in which the invention 47 of the present invention is developed is the wavelength conversion method according to any one of the inventions 47 to 60, wherein at least one of the at least one wavelength conversion element main body. Before reaching the surface of the wavelength conversion element body from the reaching end portion of the reaching light, the reaching light exiting the outside of the wavelength conversion element body from the reaching end portion is opposed to the surface that becomes the reaching end portion. The wavelength conversion element main body is re-adjusted so that a position parallel to the pre-reflection optical path and away from the pre-reflection optical path inside the wavelength conversion element main body becomes the reverse optical path traveling in the direction opposite to the pre-reflection optical path. The wavelength conversion method is characterized in that the reverse optical path reflector that reflects so as to enter is disposed.

本発明の前記発明47を展開した第62の発明(以下、発明62ともいう)は、発明61に記載の波長変換方法において、前記逆光路反射体と前記波長変換素子本体の表面の間にレンズ(以下、第13のレンズともいう)が配置されており、前記第13のレンズは、当該レンズを通り前記逆方向光路の入射点に入射させる入射光を、前記逆方向光路の入射点から、当該光路の後段の光路において、当該波長変換素子の出射端部までの間に集光レンズ(以下、第14のレンズともいう)が配置されている場合には前記第13のレンズの中心と前記第14のレンズの中心の間の全光路長の中間点に相当する位置あるいはその近傍に集光させるレンズであり、前記逆方向光路の入射点から、当該光路の後段の光路において、当該波長変換素子の出射端部までの間に前記第14のレンズが配置されていない場合には前記第13のレンズの中心と当該波長変換素子の出射端部の間の全光路長の中間点に相当する位置あるいはその近傍に集光させるレンズであることを特徴とする波長変換方法である。   According to a 62nd aspect of the present invention, which is the development of the invention 47 (hereinafter also referred to as the invention 62), in the wavelength conversion method of the invention 61, a lens is provided between the reverse optical path reflector and the surface of the wavelength conversion element body. (Hereinafter also referred to as a thirteenth lens) is arranged, and the thirteenth lens transmits incident light that enters the incident point of the reverse optical path through the lens from the incident point of the reverse optical path. When a condensing lens (hereinafter also referred to as a fourteenth lens) is disposed in the optical path following the optical path between the output end of the wavelength conversion element and the center of the thirteenth lens, A lens that collects light at a position corresponding to or near the intermediate point of the total optical path length between the centers of the fourteenth lenses, and from the incident point of the reverse optical path, in the optical path downstream of the optical path, Element exit If the fourteenth lens is not disposed between the center of the thirteenth lens and the exit end of the wavelength conversion element, the position corresponding to the intermediate point of the total optical path length or the vicinity thereof This is a wavelength conversion method characterized by being a lens for condensing light.

本発明の前記発明47を展開した第63の発明(以下、発明63ともいう)は、発明47〜62のいずれかに記載の波長変換方法において、少なくとも1つの前記波長変換素子本体が、前記波長変換素子本体の前記入射端部が形成されている表面とそれと反対側の表面とが1分以内の開き角で互いに平行に形成されている波長変換素子本体であることを特徴とする波長変換方法である。   According to a 63rd aspect of the present invention, which is the development of the invention 47 (hereinafter also referred to as the invention 63), in the wavelength conversion method according to any one of the inventions 47 to 62, at least one of the wavelength conversion element main bodies has the wavelength. A wavelength conversion method characterized in that the surface of the conversion element body on which the incident end is formed and the surface opposite to the surface are formed in parallel with each other with an opening angle of less than 1 minute. It is.

本発明の前記発明47を展開した第64の発明(以下、発明64ともいう)は、発明49〜63のいずれかに記載の波長変換方法において、前記波長変換素子本体の表面と各分極反転領域の境界面とが1分以内の開き角で互いに平行であることを特徴とする波長変換方法である。   A sixty-fourth invention (hereinafter also referred to as an invention 64) in which the invention 47 of the present invention is developed is the wavelength conversion method according to any one of the inventions 49 to 63, wherein the surface of the wavelength conversion element body and each polarization inversion region The wavelength conversion method is characterized in that the boundary surface is parallel to each other with an opening angle within one minute.

本発明の前記発明47を展開した第65の発明(以下、発明65ともいう)は、発明49〜64のいずれかに記載の波長変換方法において、前記波長変換素子本体の分極反転領域の幅が、前記波長変換素子本体に最初に入射した入射光の光路に直交する方向でかつ前記光路とその次の再入射光の光路を含む面における幅において少なくとも2mmあることを特徴とする波長変換方法である。   According to a 65th aspect of the present invention, which is the development of the invention 47 (hereinafter also referred to as the invention 65), in the wavelength conversion method according to any one of the inventions 49 to 64, the width of the domain-inverted region of the wavelength conversion element body is A wavelength conversion method characterized in that the width is at least 2 mm in a direction perpendicular to the optical path of incident light first incident on the wavelength conversion element body and in a plane including the optical path and the optical path of the next re-incident light. is there.

本発明の前記発明47を展開した第66の発明(以下、発明66ともいう)は、発明49〜65のいずれかに記載の波長変換方法において、前記分極反転素子がPPLNであることを特徴とする波長変換方法である。   A 66th aspect of the present invention, which is the development of the aspect 47 of the present invention (hereinafter also referred to as the invention 66), is characterized in that, in the wavelength conversion method according to any one of the aspects 49 to 65, the polarization inverting element is PPLN. This is a wavelength conversion method.

本発明の前記発明47を展開した第67の発明(以下、発明67ともいう)は、発明49〜65のいずれかに記載の波長変換方法において、前記分極反転素子がPPKTPであることを特徴とする波長変換方法である。   A 67th aspect of the present invention, which is the development of the invention 47 (hereinafter also referred to as the invention 67), is characterized in that, in the wavelength conversion method according to any of the inventions 49 to 65, the polarization inverting element is PPKTP. This is a wavelength conversion method.

本発明の前記発明47を展開した第68の発明(以下、発明68ともいう)は、発明47〜67のいずれかに記載の波長変換方法において、前記波長変換方法に用いる波長変換素子が、前記光ビームの光路において前記波長変換素子を少なくとも2つ直列に配置して構成されている波長変換素子であることを特徴とする波長変換方法である。   The 68th invention of the present invention 47 (hereinafter also referred to as invention 68) is the wavelength conversion method according to any one of inventions 47 to 67, wherein the wavelength conversion element used in the wavelength conversion method is the The wavelength conversion method is a wavelength conversion element configured by arranging at least two wavelength conversion elements in series in an optical path of a light beam.

本発明の前記発明47を展開した第69の発明(以下、発明69ともいう)は、発明68に記載の波長変換方法において、前記光ビームの光路において、少なくとも1組の直列に接続されている2つの前記波長変換素子の間にレンズが配置されていることを特徴とする波長変換方法である。   According to a 69th aspect of the present invention, which is the development of the invention 47 (hereinafter also referred to as the invention 69), in the wavelength conversion method according to the aspect 68, at least one set is connected in series in the optical path of the light beam. A wavelength conversion method characterized in that a lens is disposed between the two wavelength conversion elements.

本発明の前記発明47を展開した第70の発明(以下、発明70ともいう)は、発明69に記載の波長変換方法において、前記レンズ(以下、第15のレンズともいう)が、入射光を、当該レンズの後段の光路において、後段の波長変換素子の出射端部までの間に集光レンズ(以下、第16のレンズともいう)が配置されている場合には前記第15のレンズの中心と前記第16のレンズの中心の間の全光路長の中間点に相当する位置あるいはその近傍に集光させるレンズであり、後段の波長変換素子の出射端部までの間に前記第16のレンズが配置されていない場合には前記第15のレンズの中心と後段の波長変換素子の出射端部の間の全光路長の中間点に相当する位置あるいはその近傍に集光させるレンズであることを特徴とする波長変換方法である。   The 70th invention (hereinafter also referred to as invention 70) in which the invention 47 of the present invention is developed is the wavelength conversion method according to invention 69, wherein the lens (hereinafter also referred to as 15th lens) When a condensing lens (hereinafter also referred to as the sixteenth lens) is disposed in the optical path at the rear stage of the lens and up to the emission end of the wavelength conversion element at the rear stage, the center of the fifteenth lens And the center of the sixteenth lens at a position corresponding to or near the midpoint of the total optical path length, and the sixteenth lens between the output end of the subsequent wavelength conversion element. Is not arranged, it is a lens that focuses light at a position corresponding to or near the midpoint of the total optical path length between the center of the fifteenth lens and the output end of the subsequent wavelength conversion element. Characteristic wavelength conversion It is the law.

本発明の前記発明47を展開した第71の発明(以下、発明71ともいう)は、発明47〜70のいずれかに記載の波長変換方法において、前記波長変換方法に用いる波長変換素子が、波長変換された出力光を、前記入射端部の近傍において、前記入射光の入射位置から所定距離離れた位置で取り出すことができる波長変換素子であることを特徴とする波長変換方法である。   According to a seventy-first aspect of the present invention 47 (hereinafter also referred to as the invention 71), the wavelength conversion element used in the wavelength conversion method according to any one of the aspects 47 to 70 is a wavelength conversion element according to the present invention. In this wavelength conversion method, the converted output light is a wavelength conversion element that can extract the converted output light at a position away from the incident position of the incident light in the vicinity of the incident end.

以上説明したように、本発明による波長変換方法、波長変換素子ならびに波長変換装置は、従来のように共振器を構成したりフィードバック制御をしたりせずに、素子長が短い波長変換素子を使用して実質的な相互作用長を長くすることができ、波長変換効率を高めることができるため、構成が簡単で、小型で、高出力にすることができ、波長変換効率を高くすることができる波長変換素子や波長変換装置を安価に提供することができ、それらを用いたコヒーレント光源を安価に提供することができるという多大な効果を奏するものである。   As described above, the wavelength conversion method, the wavelength conversion element, and the wavelength conversion apparatus according to the present invention use a wavelength conversion element having a short element length without configuring a resonator or performing feedback control as in the past. Since the substantial interaction length can be increased and the wavelength conversion efficiency can be increased, the structure is simple, the size can be reduced, the output can be increased, and the wavelength conversion efficiency can be increased. The wavelength conversion element and the wavelength conversion device can be provided at a low cost, and a coherent light source using them can be provided at a low cost.

以下、図面を参照して本発明の実施の形態の例について説明する。なお、説明に用いる各図は本発明の例を理解できる程度に各構成成分の寸法、形状、配置関係などを概略的に示してある。そして本発明の説明の都合上、部分的に拡大率を変えて図示する場合もあり、本発明の例の説明に用いる図は、必ずしも実施例などの実物や記述と相似形でない場合もある。また、各図において、同様な構成成分については同一の番号を付けて示し、重複する説明を省略することもある。   Examples of embodiments of the present invention will be described below with reference to the drawings. The drawings used for the description schematically show the dimensions, shapes, arrangement relationships, and the like of each component to the extent that an example of the present invention can be understood. For convenience of explanation of the present invention, there may be cases where the enlargement ratio is partially changed for illustration, and the drawings used for explanation of the examples of the present invention may not necessarily be similar to the actual objects and descriptions of the embodiments. Moreover, in each figure, about the same component, it attaches and shows the same number, The overlapping description may be abbreviate | omitted.

前記のように、本発明の波長変換素子、波長変換装置ならびに波長変換方法に用いている技術の基本思想は、従来は、波長λ1のコヒーレント光を、入射光として、たとえば、PPLNのような分極反転素子の一端から入射させて、分極反転素子内を図13のように進行させて前記波長λ1とは異なる波長λ2の光に波長変換を行い、分極反転素子の他端に達した光を図13のようにそのまま分極反転素子から出力させていたのを、本発明では、分極反転素子の他端に反射体を配置して、分極反転素子の前記他端に達した光を前記反射体で反射させ、当該分極反転素子に光路を変えて再入射させ、再び分極反転素子内を進行させて波長変換を行うことを基本とするものである。   As described above, the basic idea of the technology used in the wavelength conversion element, the wavelength conversion device, and the wavelength conversion method of the present invention is that conventionally, coherent light of wavelength λ1 is used as incident light, for example, polarization such as PPLN. The light is incident from one end of the inverting element and travels in the polarization inverting element as shown in FIG. 13 to perform wavelength conversion to light having a wavelength λ2 different from the wavelength λ1, and shows the light reaching the other end of the polarization inverting element. In the present invention, a reflector is disposed at the other end of the polarization inverting element so that the light reaching the other end of the polarization inverting element is reflected by the reflector. Basically, the light is reflected, re-incident on the polarization inverting element after changing the optical path, and again travels in the polarization inverting element to perform wavelength conversion.

本発明によって、素子長が30mmの波長変換素子に、波長λ1が1120nmの4W(ワット)の入射光を入射角を1°で入射させ、後述の到達端部における反射体により反射させて波長変換素子に再入射させることを5回行い(すなわち、波長変換素子の入射端部から次の到達端部までの光路を1パスとし、光路として6パスとり)波長変換を行わせた結果、波長λ2が560nmの約1Wの出射光をることができた。この例での波長変換効率は20%を大きく超えるものであり、従来のバルクタイプの波長変換素子では到底期待できなかったものである。入射光量をさらに大きくすると、さらに大きな出力の変換光を得ることができる。   According to the present invention, a wavelength conversion element having an element length of 30 mm is incident on 4 W (watt) incident light having a wavelength λ1 of 1120 nm at an incident angle of 1 °, and reflected by a reflector at a reaching end, which will be described later, for wavelength conversion. As a result of performing wavelength conversion, the light is re-incident on the element five times (that is, the optical path from the incident end of the wavelength conversion element to the next arrival end is one path and the optical path is six paths), and wavelength conversion is performed. Was able to emit about 1 W of emitted light having a wavelength of 560 nm. The wavelength conversion efficiency in this example greatly exceeds 20%, which cannot be expected with conventional bulk type wavelength conversion elements. When the amount of incident light is further increased, converted light with a larger output can be obtained.

また、このような特徴を有する本発明の波長変換素子を用いて構成した波長変換装置、前記の特徴を有する本発明の波長変換方法については、その特徴を本発明の波長変換素子を説明することによって、容易に理解することができるまでに明らかにすることができるので、以下において、いくつかの実施例を説明しながら、本発明の波長変換素子を中心に本発明の実施の形態例を説明する。   In addition, the wavelength conversion device configured using the wavelength conversion element of the present invention having such characteristics and the wavelength conversion method of the present invention having the above characteristics will be described with reference to the wavelength conversion element of the present invention. Therefore, in the following, embodiments of the present invention will be described focusing on the wavelength conversion element of the present invention while describing some embodiments. To do.

図1と図2は本発明の実施例としての波長変換素子を説明する図で、波長変換を受ける光の光路を含む断面について説明する図である。図1は後述の分極反転領域を図示せずに示した図、図2は分極反転領域の例を記入して示した図である。   FIG. 1 and FIG. 2 are diagrams illustrating a wavelength conversion element as an embodiment of the present invention, and are diagrams illustrating a cross section including an optical path of light subjected to wavelength conversion. FIG. 1 is a diagram showing a domain-inverted region (not shown) shown below, and FIG. 2 is a diagram showing examples of domain-inverted regions.

図1と図2で、符号20aは本発明の実施例としての波長変換素子、21はレーザ光源(図示せず)からの第1の波長λ1のコヒーレント光で波長変換を行うために波長変換素子20aに入射させる入射光ビーム、22は波長変換素子20aを構成する波長変換素子本体としての分極反転非線形波長変換素子本体、33は波長変換素子本体22の分極反転領域、71a〜71cは光路、11aは波長変換素子本体22に入射光ビーム21が入射する入射端部、12a〜12cは入射光が波長変換素子本体22に入射(再入射も特に区別しないときは入射ともいう)して波長変換を受けながら進行して波長変換素子本体端部(表面)に到達する到達端部、13aは光路71cを波長変換を受けながら進行してきた信号光が出射する出射端部、23と26は反射防止膜、24と25は反射体としての反射膜、27は出射光ビームである。   1 and 2, reference numeral 20a denotes a wavelength conversion element as an embodiment of the present invention, and 21 denotes a wavelength conversion element for performing wavelength conversion with coherent light having a first wavelength λ1 from a laser light source (not shown). An incident light beam to be incident on 20a, 22 is a polarization inversion nonlinear wavelength conversion element body as a wavelength conversion element body constituting the wavelength conversion element 20a, 33 is a polarization inversion region of the wavelength conversion element body 22, 71a to 71c are optical paths, 11a Is the incident end where the incident light beam 21 is incident on the wavelength conversion element main body 22, and 12a to 12c are the incident light incident on the wavelength conversion element main body 22 (also referred to as incident when re-incidence is not particularly distinguished) for wavelength conversion. An arrival end that reaches the end (surface) of the wavelength conversion element main body while receiving it, 13a is an exit end from which signal light that has advanced while receiving wavelength conversion in the optical path 71c is emitted; When 26 the antireflection film, 24 and 25 reflecting film as the reflector, 27 is the emitted light beam.

反射防止膜23,26には従来光学素子に用いられている反射防止膜を用いることができる。   As the antireflection films 23 and 26, the antireflection films conventionally used in optical elements can be used.

反射膜24,25には、波長がλ1の光に対する反射率と波長がλ2の光に対する反射率がともに90%以上の反射特性を有する多層膜を用いることができる。前記反射率を99%以上、特に99.8%以上にすることが特に好ましい。   As the reflection films 24 and 25, a multilayer film having reflection characteristics in which the reflectance for light having a wavelength of λ1 and the reflectance for light having a wavelength of λ2 are both 90% or more can be used. It is particularly preferable that the reflectance is 99% or more, particularly 99.8% or more.

99.9%以上の反射率の多層膜を用いることによって特に好ましい効果を発揮できる。   A particularly preferable effect can be exhibited by using a multilayer film having a reflectance of 99.9% or more.

図2で、入射端部11aから波長変換素子本体22に入射した入射光は分極反転領域33を第1の波長λ1から第2の波長λ2への波長変換を受けながら進行して波長変換素子本体22の到達端部12aに到達光として到達する。   In FIG. 2, the incident light that has entered the wavelength conversion element body 22 from the incident end 11a travels through the polarization inversion region 33 while undergoing wavelength conversion from the first wavelength λ1 to the second wavelength λ2, and the wavelength conversion element body. 22 reaches the reaching end portion 12a as reaching light.

波長が第1の波長λ1である入射光ビーム21が入射端部11aから波長変換素子本体22に入射して光路71aを進行して、その一部が、分極反転領域33を通ることによって第2の波長λ2の光に変換され、残りの部分は波長変換されずに波長が第1の波長λ1の光として到達端部12aに到達する。   The incident light beam 21 whose wavelength is the first wavelength λ1 is incident on the wavelength conversion element body 22 from the incident end 11a and travels on the optical path 71a. Is converted into light having the wavelength λ2, and the remaining portion reaches the end 12a as light having the first wavelength λ1 without being wavelength-converted.

すなわち、到達端部12a(第1の到達端部)に到達した前記到達光には前記波長変換を受けた結果としての第2の波長λ2の光と未変換のままで残っている第1の波長λ1の光が混在している。   That is, the first light that has remained unconverted with the light of the second wavelength λ2 as a result of the wavelength conversion in the reaching light that has reached the reaching end 12a (first reaching end). Light of wavelength λ1 is mixed.

第1の到達端部12aに到達した前記到達光は、多層膜から成る反射膜24によって反射され、分極反転領域33の光路71aとは異なる光路71bを進行するように波長変換素子本体22に再入射されて、第2の到達端部12bに到達光として到達する。   The reaching light that has reached the first reaching end 12a is reflected by the reflective film 24 made of a multilayer film, and re-appears in the wavelength conversion element body 22 so as to travel on an optical path 71b different from the optical path 71a of the domain-inverted region 33. Incident light reaches the second reaching end 12b as reaching light.

図からも明らかなように、光路71aと光路71bは互いに平行でない光路である。   As is apparent from the drawing, the optical path 71a and the optical path 71b are optical paths that are not parallel to each other.

前記反射膜24によって反射されて波長変換素子本体22に再入射された光のうちの、光路71aにおいて波長がλ2の光へと波長変換された光は波長がλ2の光として光路71bを進行し、波長がλ1のままの光の一部は、光路71bを進行することによって前記と同様に波長がλ2の光へと波長変換され、残りの部分は波長変換されずに波長が第1の波長λ1の光として到達端部12bに到達する。   Of the light reflected by the reflective film 24 and re-incident on the wavelength conversion element body 22, the light converted into light having the wavelength λ2 in the optical path 71a travels on the optical path 71b as light having the wavelength λ2. A part of the light whose wavelength remains λ1 is wavelength-converted into light having the wavelength λ2 in the same manner as described above by traveling on the optical path 71b, and the remaining part is wavelength-converted to the first wavelength without being wavelength-converted. It reaches the reaching end 12b as light of λ1.

すなわち、第2の到達端部12bに到達した前記到達光には前記波長変換を受けた結果としての第2の波長λ2の光と未変換のままで残っている第1の波長λ1の光が混在しているが、第1の到達端部12aに到達した前記到達光に比較して、全光量に対する第2の波長λ2の光の割合が増加している。   That is, the reaching light that has reached the second reaching end 12b includes the light having the second wavelength λ2 as a result of the wavelength conversion and the light having the first wavelength λ1 that remains unconverted. Although mixed, the ratio of the light of the second wavelength λ2 to the total light quantity is increased as compared with the reaching light reaching the first reaching end 12a.

第2の到達端部12bに到達した前記到達光は、多層膜から成る反射膜25によって反射され、分極反転領域33の光路71bとは異なる光路71cを進行するように波長変換素子本体22に再入射されて、第3の到達端部12cに到達光として到達する。   The reaching light that has reached the second reaching end portion 12b is reflected by the reflective film 25 made of a multilayer film and re-enters the wavelength conversion element body 22 so as to travel on an optical path 71c different from the optical path 71b of the domain-inverted region 33. Incident light reaches the third reaching end 12c as reaching light.

図からも明らかなように、光路71bと光路71cは互いに平行でない光路である。   As is apparent from the figure, the optical path 71b and the optical path 71c are optical paths that are not parallel to each other.

前記反射膜25によって反射されて波長変換素子本体22に再入射された光のうちの、光路71aと71bにおいて波長がλ2の光へと波長変換された光は波長がλ2の光として光路71cを進行し、波長がλ1の光の一部は、光路71cを進行することによって前記と同様に波長がλ2の光へと波長変換され、残りの部分は波長変換されずに波長が第1の波長λ1の光として第3の到達端部12cに到達し、到達端部12cから反射防止膜26を通り、出射光ビーム27として波長変換素子本体22の外部へ出力される。   Of the light reflected by the reflective film 25 and re-entered into the wavelength conversion element body 22, the light converted into light having the wavelength λ2 in the optical paths 71a and 71b passes through the optical path 71c as light having the wavelength λ2. A part of the light having a wavelength of λ1 is wavelength-converted into light having a wavelength of λ2 in the same manner as described above by traveling on the optical path 71c, and the remaining part is wavelength-converted to the first wavelength without being wavelength-converted. The light reaches the third reaching end portion 12c as λ1 light, passes through the antireflection film 26 from the reaching end portion 12c, and is output to the outside of the wavelength conversion element body 22 as an emitted light beam 27.

すなわち、第3の到達端部12cに到達した前記到達光には前記波長変換を受けた結果としての第2の波長λ2の光と未変換のままで残っている第1の波長λ1の光が混在しているが、第2の到達端部12bに到達した前記到達光に比較して、全光量に対する第2の波長λ2の光の割合が増加している。   That is, the reaching light that has reached the third reaching end portion 12c includes the light having the second wavelength λ2 and the light having the first wavelength λ1 remaining unconverted as a result of the wavelength conversion. Although mixed, the ratio of the light having the second wavelength λ2 to the total light amount is increased as compared with the reaching light reaching the second reaching end 12b.

このように、従来のように、第1の到達端部12aに反射膜24の代わりに反射防止膜を形成しておき、入射光を入射端部11aから波長変換素子本体22に入射させて、第1の到達端部12aに到達した到達光を反射させずに波長λ2の光を含む光を出射光ビームとして第1の到達端部12aから波長変換素子本体22の外に取り出した場合の波長λ2の光の光量に比べて、前記のようにして、図1と図2を用いて説明した本発明の波長変換素子20aの到達端部12cから反射防止膜26を通り、波長λ2の光を含む光を出射光ビーム27として波長変換素子本体22の外部へ出力させた場合の波長λ2の光の光量はおおむね3倍になっている。   Thus, as in the prior art, an antireflection film is formed instead of the reflection film 24 at the first reaching end 12a, and incident light is incident on the wavelength conversion element body 22 from the incident end 11a. Wavelength when light including light of wavelength λ2 is extracted from the first reaching end 12a to the outside of the wavelength conversion element body 22 as an outgoing light beam without reflecting the reaching light reaching the first reaching end 12a Compared with the amount of light of λ2, the light of wavelength λ2 passes through the antireflection film 26 from the arrival end 12c of the wavelength conversion element 20a of the present invention described with reference to FIGS. 1 and 2 as described above. When the included light is output to the outside of the wavelength conversion element body 22 as the outgoing light beam 27, the amount of light of wavelength λ2 is approximately three times.

出射光ビーム27は、図示していないが、たとえば波長選択フィルタに入射させ、波長λ2の光を選択出力させて、顕微鏡用光源など目的の用途に用いることができる。   Although not shown, the emitted light beam 27 can be incident on a wavelength selection filter and selectively output light of wavelength λ2, for use in a purpose such as a light source for a microscope.

すなわち、以上の説明から、図1、図2の構成の本発明の波長変換素子によって、同じ厚さの波長変換素子本体22を用いて波長λ1の光から波長λ2の光への波長変換効率を従来のおおむね3倍に向上させることができることが容易に理解される。   That is, from the above explanation, the wavelength conversion element of the present invention having the configuration of FIGS. 1 and 2 can be used to increase the wavelength conversion efficiency from the light of wavelength λ1 to the light of wavelength λ2 using the wavelength conversion element body 22 having the same thickness. It can be easily understood that the conventional improvement can be approximately three times.

このような本発明の波長変換素子を少なくとも1つ光路に配置して構成した波長変換装置が本発明の実施例としての波長変換装置の例である。   A wavelength conversion device configured by arranging at least one wavelength conversion element of the present invention in the optical path is an example of a wavelength conversion device as an embodiment of the present invention.

そして、図1、図2を用いて説明した本発明の波長変換素子におけるように、前記到達光を前記反射体によって反射させ波長変換素子本体に再入射させ、入射させた光の波長変換を行う光路長を実質的に長くするという波長変換の方法が本発明の実施例としての波長変換方法の例である。   Then, as in the wavelength conversion element of the present invention described with reference to FIGS. 1 and 2, the reaching light is reflected by the reflector, re-enters the wavelength conversion element body, and wavelength conversion of the incident light is performed. The wavelength conversion method of substantially increasing the optical path length is an example of the wavelength conversion method as an embodiment of the present invention.

前記入射光と波長変換された結果としての出力光の波長の例として、第1の波長λ1が1120nmで第2の波長λ2が560nmの波長変換素子と、第1の波長λ1が1160nmで第2の波長λ2が580nmの波長変換素子について、それぞれの波長変換素子における各波長λ1とλ2に対する高反射率を有する前記反射膜を形成した各波長変換素子を作成したところ、極めて良好な波長変換効率を有する波長変換素子を得ることができた。   Examples of the wavelength of the incident light and the wavelength of the output light as a result of wavelength conversion include a wavelength conversion element having a first wavelength λ1 of 1120 nm and a second wavelength λ2 of 560 nm, and a second wavelength λ1 of 1160 nm and a second wavelength λ1. For each wavelength conversion element having a wavelength λ2 of 580 nm, each wavelength conversion element in which the reflection film having a high reflectance with respect to each wavelength λ1 and λ2 in each wavelength conversion element is formed. The wavelength conversion element which has was able to be obtained.

良好な波長変換効率を有する波長変換素子を得るのに、前記のことに加えて、種々の工夫をすることにより、一層顕著な効果をもたらすことができる。前記工夫としては、たとえば、各到達端部における素子表面の平行度、分極反転領域の境界と素子表面の平行度などを高めることをあげることができる。   In addition to the above, in order to obtain a wavelength conversion element having good wavelength conversion efficiency, a more remarkable effect can be brought about by various measures. Examples of the device include increasing the parallelism of the element surface at each reaching end, the parallelism between the boundary of the domain-inverted region and the element surface, and the like.

このための一つの特に好ましい方法は、波長変換素子本体の入射端部、到達端部、出射端部の該当する端部が位置する互いに対向する関係にある素子表面同士の平行度を高めることが好ましい。   One particularly preferred method for this purpose is to increase the parallelism between the element surfaces that are in an opposing relationship where the corresponding end portions of the incident end portion, the arrival end portion, and the emission end portion of the wavelength conversion element body are located. preferable.

これらの平行度は1分以内にすることが特に好ましい。   These parallelisms are particularly preferably within 1 minute.

図3と図4は、図1と図2を用いて説明した本発明の波長変換素子20aについてさらに詳しく説明する図で、図3は波長変換素子本体として平行平板の素子を用いた場合における素子の反射体を配置している対向する表面の到達端部近傍の平行度について説明する断面図、図4は図3の波長変換素子本体の分極反転領域の境界と素子表面の平行度について説明する断面図である。   FIGS. 3 and 4 are diagrams for explaining the wavelength conversion element 20a of the present invention described in detail with reference to FIGS. 1 and 2 in more detail. FIG. 3 shows an element when a parallel plate element is used as the wavelength conversion element body. FIG. 4 is a cross-sectional view for explaining the parallelism in the vicinity of the reaching end of the opposing surface on which the reflector is disposed, and FIG. 4 explains the parallelism between the boundary of the polarization inversion region of the wavelength conversion element body of FIG. It is sectional drawing.

図3と図4で、符号34aは波長変換素子本体22の入射端部11aと到達端部12bが含まれる表面を延長した線、34bは波長変換素子本体22の到達端部12aと出射端部13aとなる到達端部12cが含まれる表面を延長した線、35a1と35b1は分極反転領域の境界面を延長した線、34は線34aと線34bの平行度を表す符号、35aは線34aと線35a1の平行度を表す符号、35bは線35b1と線34bの平行度を表す符号、39は分極反転領域の幅を説明する符号である。   3 and 4, reference numeral 34 a is a line extending from the surface including the incident end 11 a and the arrival end 12 b of the wavelength conversion element body 22, and 34 b is the arrival end 12 a and the emission end of the wavelength conversion element body 22. A line extending the surface including the reaching end 12c to be 13a, 35a1 and 35b1 are lines extending the boundary surface of the domain-inverted region, 34 is a symbol indicating the parallelism between the lines 34a and 34b, and 35a is a line 34a. Reference numeral 35 represents a parallelism of the line 35a1, reference numeral 35b represents a parallelism of the lines 35b1 and 34b, and reference numeral 39 represents a width of the domain-inverted region.

図3と図4を用いて説明する波長変換素子本体22は、入射端部11aおよび到達端部12bを含む表面34aと到達端部12aおよび入射端部13aを含む表面34bとが互いに平行な平面に形成されている。   The wavelength conversion element body 22 described with reference to FIGS. 3 and 4 is a plane in which a surface 34a including the incident end portion 11a and the reaching end portion 12b and a surface 34b including the reaching end portion 12a and the incident end portion 13a are parallel to each other. Is formed.

図3と図4において、表面34aと表面34bの両表面に交わる法線に対して直交し、図の上下方向になる分極反転領域33の寸法を分極反転領域の幅といい、表面34aと表面34bの両表面に交わる法線方向になる波長変換素子本体22の寸法を波長変換素子本体22の素子長ということにする。素子長を30mmにしたときに、符号34,符号35a,符号35bで示したところの平行度をおおむね1分以内に構成することが前記の理由で好ましい。   3 and 4, the dimension of the domain-inverted region 33 perpendicular to the normal line intersecting both surfaces 34a and 34b and in the vertical direction in the figure is called the width of the domain-inverted region. The dimension of the wavelength conversion element body 22 in the normal direction intersecting both surfaces of 34b is referred to as the element length of the wavelength conversion element body 22. When the element length is set to 30 mm, it is preferable for the above reason that the parallelism indicated by reference numeral 34, reference numeral 35a, and reference numeral 35b is set within approximately one minute.

符号39を付した矢印で示した分極反転領域33の当該光路を含む面における幅は、前記到達光を反射して波長変換素子本体に再入射させる反射体を配置した到達端部が1つの場合、すなわち、波長変換素子本体に入射した光路(パス)の折り返しが1回(2パス)の場合、少なくとも2mmに構成することが好ましい。図3と図4に示した例は光路の折り返しが2回の場合であり、分極反転領域33の当該光路を含む面における幅を3mm以上になるように構成した。この分極反転領域の当該光路を含む面における幅は、前記面内における前記波長変換素子本体に最初に入射した入射光の光路に直交する方向で近似して表現することもできる。   The width in the plane including the optical path of the domain-inverted region 33 indicated by the arrow with reference numeral 39 is the case where there is one reaching end where a reflector that reflects the reaching light and re-enters the wavelength conversion element body is disposed. In other words, when the return of the optical path (path) incident on the wavelength conversion element main body is one time (two paths), it is preferable to configure at least 2 mm. The example shown in FIGS. 3 and 4 is the case where the optical path is folded twice, and the width of the polarization inversion region 33 on the surface including the optical path is 3 mm or more. The width in the plane including the optical path of the domain-inverted region can also be expressed by approximating in the direction orthogonal to the optical path of the incident light first incident on the wavelength conversion element body in the plane.

このような構成にすることにより、小型で波長変換効率が高く、ハイパワー応用も可能な、本発明の波長変換素子を実現することができた。   By adopting such a configuration, it was possible to realize the wavelength conversion element of the present invention that is small in size, has high wavelength conversion efficiency, and can be applied to high power.

図5は本発明の実施例としての波長変換素子を説明する図で、波長変換を受ける光の光路を含む断面について説明する図である。   FIG. 5 is a diagram illustrating a wavelength conversion element as an embodiment of the present invention, and is a diagram illustrating a cross section including an optical path of light subjected to wavelength conversion.

図5で、符号20bは本発明の実施例としての波長変換素子、12d〜12fは到達光が到達する到達端部、13bは出射光が出力される出射端部で到達端部12fと同じ端部、28は反射防止膜、29は反射体としての外部反射鏡、71d〜71fは光路である。   In FIG. 5, reference numeral 20 b is a wavelength conversion element as an embodiment of the present invention, 12 d to 12 f are arrival end portions where arrival light reaches, 13 b is an emission end portion where emission light is output, and is the same end as the arrival end portion 12 f. , 28 is an antireflection film, 29 is an external reflecting mirror as a reflector, and 71d to 71f are optical paths.

図5で、説明の都合上、外部反射鏡29の近傍における到達端部とその近傍における再入射点が同じ点に見えるような図になっているが、すなわち、光路の折り返しが到達端部で行われているように見えるような図になっているが、実際には到達光が当該到達端部に到達して、そこから出射し、当該外部反射鏡の反射面に到り、外部反射鏡の反射面で反射されて折り返し、到達端部に極めて近い位置から波長変換素子本体22に再入射している。後述の図6の場合も同様である。   In FIG. 5, for convenience of explanation, the reaching end in the vicinity of the external reflecting mirror 29 and the re-incident point in the vicinity thereof appear to be the same point. That is, the return of the optical path is at the reaching end. Although it is a figure that seems to be done, actually the reaching light reaches the reaching end, exits from it, reaches the reflecting surface of the external reflecting mirror, and the external reflecting mirror The light is reflected by the reflecting surface of the light and is turned back, and reenters the wavelength conversion element body 22 from a position very close to the reaching end. The same applies to FIG. 6 described later.

図5で、入射端部11aから波長変換素子本体22に入射した入射光は、実施例1の場合と同様に、分極反転領域33を第1の波長λ1から第2の波長λ2への波長変換を受けながら光路71dを進行して波長変換素子本体22の到達端部12dに到達光として到達する。   In FIG. 5, the incident light incident on the wavelength conversion element main body 22 from the incident end 11a is converted into the wavelength inversion region 33 from the first wavelength λ1 to the second wavelength λ2, as in the first embodiment. Then, the light travels along the optical path 71d and reaches the reaching end 12d of the wavelength conversion element body 22 as reaching light.

すなわち、実施例1の場合と同様に、波長が第1の波長λ1である入射光ビーム21が入射端部11aから波長変換素子本体22に入射して光路71dを進行して、その一部が、分極反転領域33を通ることによって第2の波長λ2の光に変換され、残りの部分は波長変換されずに波長が第1の波長λ1の光として第1の到達端部12dに到達する。   That is, as in the case of the first embodiment, the incident light beam 21 having the first wavelength λ1 is incident on the wavelength conversion element main body 22 from the incident end portion 11a and travels through the optical path 71d, and a part thereof. Then, the light is converted into light having the second wavelength λ2 by passing through the domain-inverted region 33, and the remaining portion reaches the first reaching end 12d as light having the first wavelength λ1 without being wavelength-converted.

すなわち、第1の到達端部12dに到達した前記到達光には前記波長変換を受けた結果としての第2の波長λ2の光と未変換のままで残っている第1の波長λ1の光が混在している。   That is, the reaching light that has reached the first reaching end 12d includes the light having the second wavelength λ2 as a result of the wavelength conversion and the light having the first wavelength λ1 that remains unconverted. It is mixed.

第1の到達端部12dには反射防止膜28が形成されているので、第1の到達端部12dに到達した前記到達光は、反射防止膜28を通り波長変換素子本体22の外に出て外部反射鏡29に到り、外部反射鏡29によって反射され、再び反射防止膜28を通り、第1の到達端部12dあるいはその近傍から波長変換素子本体22の分極反転領域33の光路71dとは異なる光路71eを進行するように波長変換素子本体22に再入射されて、第2の到達端部12eに到達光として到達する。   Since the antireflection film 28 is formed on the first reaching end 12d, the reaching light that has reached the first reaching end 12d passes through the antireflection film 28 and goes out of the wavelength conversion element body 22. And reaches the external reflecting mirror 29, is reflected by the external reflecting mirror 29, passes through the antireflection film 28 again, and passes from the first reaching end 12d or its vicinity to the optical path 71d of the polarization inversion region 33 of the wavelength conversion element body 22. Is re-incident on the wavelength conversion element main body 22 so as to travel on different optical paths 71e, and reaches the second reaching end 12e as reaching light.

外部反射鏡29によって反射されて波長変換素子本体22に再入射された光のうちの、光路71dにおいて波長がλ2の光へと波長変換された光は波長がλ2の光として光路71eを進行し、波長がλ1の光の一部は、光路71eを進行することによって前記と同様に波長がλ2の光へと波長変換され、残りの部分は波長変換されずに第1の波長λ1の光として到達端部12eに到達する。   Of the light reflected by the external reflecting mirror 29 and re-entered into the wavelength conversion element body 22, the light whose wavelength is converted into light having the wavelength λ2 in the optical path 71d travels on the optical path 71e as light having the wavelength λ2. A part of the light with the wavelength λ1 is wavelength-converted into the light with the wavelength λ2 in the same manner as described above by traveling through the optical path 71e, and the remaining part is converted into the light with the first wavelength λ1 without being wavelength-converted. The reaching end 12e is reached.

すなわち、第2の到達端部12eに到達した前記到達光には前記波長変換を受けた結果としての第2の波長λ2の光と未変換のままで残っている第1の波長λ1の光が混在しているが、第1の到達端部12dに到達した前記到達光に比較して、全光量に対する第2の波長λ2の光の割合が増加している。   That is, the reaching light that has reached the second reaching end 12e includes the light having the second wavelength λ2 as a result of the wavelength conversion and the light having the first wavelength λ1 that remains unconverted. Although mixed, the ratio of the light having the second wavelength λ2 to the total light amount is increased as compared with the reaching light reaching the first reaching end 12d.

第2の到達端部12eには反射防止膜28が形成されているので、第2の到達端部12eに到達した前記到達光は、反射防止膜28を通り波長変換素子本体22の外に出て外部反射鏡29に到り、外部反射鏡29によって反射され、再び反射防止膜28を通り、第2の到達端部12eあるいはその近傍から波長変換素子本体22の分極反転領域33の光路71eとは異なる光路71fを進行するように波長変換素子本体22に再入射されて、出射端部13bでもある第3の到達端部12fに到達光として到達する。   Since the antireflection film 28 is formed on the second reaching end portion 12e, the reaching light reaching the second reaching end portion 12e passes through the antireflection film 28 and goes out of the wavelength conversion element body 22. And reaches the external reflecting mirror 29, is reflected by the external reflecting mirror 29, passes through the antireflection film 28 again, and passes through the second reaching end portion 12e or its vicinity to the optical path 71e of the polarization inversion region 33 of the wavelength conversion element body 22. Is re-incident on the wavelength conversion element main body 22 so as to travel through different optical paths 71f, and reaches the third reaching end 12f, which is also the emission end 13b, as reaching light.

前記外部反射鏡29によって反射されて波長変換素子本体22に再入射された光のうちの、光路71dと71eにおいて波長がλ2の光へと波長変換された光は波長がλ2の光として光路71fを進行し、波長がλ1の光の一部は、光路71fを進行することによって前記と同様に波長がλ2の光へと波長変換され、残りの部分は波長変換されずに第1の波長λ1の光として第3の到達端部12fに到達し、到達端部12fから反射防止膜28を通り、波長λ2の光を含む光を出射光ビーム27として波長変換素子本体22の外部へ出力される。   Of the light reflected by the external reflecting mirror 29 and re-entered into the wavelength conversion element main body 22, the light converted into light having the wavelength λ2 in the optical paths 71d and 71e is converted into light having the wavelength λ2 as the light path 71f. A part of the light having the wavelength λ1 is converted into the light having the wavelength λ2 in the same manner as described above by traveling on the optical path 71f, and the remaining part is not converted to the first wavelength λ1. Light reaches the third reaching end portion 12f, passes through the antireflection film 28 from the reaching end portion 12f, and is output to the outside of the wavelength conversion element body 22 as the outgoing light beam 27 including light having the wavelength λ2. .

すなわち、第3の到達端部12fに到達した前記到達光には前記波長変換を受けた結果としての第2の波長λ2の光と未変換のままで残っている第1の波長λ1の光が混在しているが、第2の到達端部12bに到達した前記到達光に比較して、全光量に対する第2の波長λ2の光の割合が増加している。   That is, the reaching light that has reached the third reaching end 12f includes the light having the second wavelength λ2 and the light having the first wavelength λ1 that remains unconverted as a result of the wavelength conversion. Although mixed, the ratio of the light having the second wavelength λ2 to the total light amount is increased as compared with the reaching light reaching the second reaching end 12b.

出射光ビーム27は、図示していないが、たとえば波長選択フィルタに入射させ、波長λ2の光を選択出力させて、顕微鏡用光源など目的の用途に用いることができる。   Although not shown, the emitted light beam 27 can be incident on a wavelength selection filter and selectively output light of wavelength λ2, for use in a purpose such as a light source for a microscope.

図6は、図5を用いて説明した本発明の波長変換素子20bについてさらに詳しく説明する図で、波長変換素子本体の分極反転領域の境界と外部反射鏡の表面の平行度について説明する図である。   FIG. 6 is a diagram for explaining in more detail the wavelength conversion element 20b of the present invention described with reference to FIG. is there.

図6で、符号37aと37bは外部反射鏡29の反射面を延長した線、36aと36bは外部反射鏡29の反射面と分極反転領域の境界の平行度を説明する符号である。   In FIG. 6, reference numerals 37a and 37b denote lines obtained by extending the reflecting surface of the external reflecting mirror 29, and 36a and 36b denote the parallelism of the boundary between the reflecting surface of the external reflecting mirror 29 and the polarization inversion region.

図6を用いて説明する波長変換素子本体22は、入射端部11aおよび到達端部12eを含む表面と到達端部12dおよび入射端部13bを含む表面とが互いに平行な平面に形成されている。   In the wavelength conversion element main body 22 described with reference to FIG. 6, the surface including the incident end portion 11a and the reaching end portion 12e and the surface including the reaching end portion 12d and the incident end portion 13b are formed in parallel planes. .

図6において、符号37a,符号37bで示したところの平行度をおおむね1分以内に構成することが前記と同様の理由で好ましい。   In FIG. 6, it is preferable to configure the parallelism indicated by the reference numerals 37a and 37b within approximately one minute for the same reason as described above.

入射端部近傍と到達端部近傍の素子表面の平行度、分極反転領域の境界と前記素子表面の表面の平行度についても、おおむね1分以内に構成することが前記と同様の理由で好ましい。   For the same reason as described above, the parallelism of the element surface in the vicinity of the incident end and the arrival end, and the parallelism of the boundary between the domain-inverted region and the surface of the element surface are preferably within one minute.

図5と図6で、入射端部11aの部分の反射防止膜28と到達端部12eの部分の反射防止膜28は連続した一体の反射防止膜として形成されており、到達端部12dの部分の反射防止膜28と出射端部13b(到達端部12f)の部分の反射防止膜28も連続した一体の反射防止膜として形成されている。   In FIGS. 5 and 6, the antireflection film 28 at the incident end 11a and the antireflection film 28 at the reaching end 12e are formed as a continuous integral antireflection film, and the portion at the reaching end 12d. The antireflection film 28 and the antireflection film 28 at the exit end portion 13b (the reaching end portion 12f) are also formed as a continuous and integral antireflection film.

このような構成にすることにより、小型で波長変換効率が高く、ハイパワー応用も可能な、本発明の波長変換素子を実現することができた。   By adopting such a configuration, it was possible to realize the wavelength conversion element of the present invention that is small in size, has high wavelength conversion efficiency, and can be applied to high power.

図7は本発明の実施例としての波長変換素子を説明する図で、波長変換を受ける光の光路を含む断面について説明する図である。   FIG. 7 is a diagram illustrating a wavelength conversion element as an embodiment of the present invention, and is a diagram illustrating a cross section including an optical path of light subjected to wavelength conversion.

図7で、符号20cは本発明の実施例としての波長変換素子、30はレンズ、50a〜50cは当該光路の光路長としての中心点である。   In FIG. 7, reference numeral 20 c is a wavelength conversion element as an embodiment of the present invention, 30 is a lens, and 50 a to 50 c are center points as optical path lengths of the optical path.

実施例2の波長変換素子20bとの違いは、反射体としての外部反射鏡を配置している到達端部と外部反射鏡との間にレンズ30を配置したことである。各レンズ30の焦点は、その後段の光路において次の集光レンズが配置されている場合には、当該レンズ30の中心と前記次の集光レンズの中心との間の全光路長の中間点に当たる位置になり、その後段の光路において次の集光レンズが配置されていない場合には、当該レンズ30の中心と当該波長変換素子本体の出射端部との中間点に当たる位置になるようになっている。   The difference from the wavelength conversion element 20b of the second embodiment is that the lens 30 is arranged between the reaching end where the external reflecting mirror as the reflector is arranged and the external reflecting mirror. The focal point of each lens 30 is an intermediate point of the total optical path length between the center of the lens 30 and the center of the next condenser lens when the next condenser lens is arranged in the optical path of the subsequent stage. If the next condenser lens is not disposed in the optical path of the subsequent stage, the position becomes the intermediate point between the center of the lens 30 and the emission end of the wavelength conversion element body. ing.

各外部反射鏡とレンズは各到達端部において同じ条件で配置されているので、各レンズ30は、外部反射鏡29で反射されて波長変換素子本体22に再入射された光を、符号50bや50cで示した前記当該光路の光路長としての中心点に集光するようになっている。これにより、波長変換素子本体22に再入射された光の広がりの悪影響を防いで、波長変換素子本体内部での光密度をより高め、変換効率をより高めることができるという大きな効果をもたらしている。   Since each external reflecting mirror and the lens are arranged under the same conditions at each reaching end, each lens 30 converts the light reflected by the external reflecting mirror 29 and re-entered to the wavelength conversion element body 22 with reference numeral 50b or The light is condensed at the center point as the optical path length of the optical path indicated by 50c. Thereby, the adverse effect of the spread of the light re-incident on the wavelength conversion element body 22 can be prevented, and the light density inside the wavelength conversion element body can be further increased and the conversion efficiency can be further increased. .

レンズ30を挿入することにより必然的に変わること以外の構成と作用に関しては実施例2の構成に準じるので、説明の重複を避けることにする。   Since the configuration and operation other than that inevitably changed by inserting the lens 30 are the same as the configuration of the second embodiment, repeated description will be avoided.

前記素子の各表面と外部反射鏡の平行度を前記のようにすることによって、簡単な構造の波長変換素子によって高効率で良質の波長変換を行う波長変換素子を安価に提供することができる。
また、出力光の品質の調整や、波長変換素子本体の表面の状況や、使用上の都合や、小型化などの事情などに応じて、外部反射鏡とレンズを前記平行に関する条件とは別に、それらの位置や角度を調整することができる手段を設けることもできる。
By setting the parallelism between each surface of the element and the external reflecting mirror as described above, a wavelength conversion element that performs high-quality and high-quality wavelength conversion with a wavelength conversion element having a simple structure can be provided at low cost.
In addition, according to the adjustment of the quality of the output light, the condition of the surface of the wavelength conversion element body, the convenience of use, the circumstances such as miniaturization, etc. Means capable of adjusting the position and the angle thereof can also be provided.

図7を用いて説明した構成の波長変換素子20cにおいて、使用目的に応じて、少なくとも1つの外部反射鏡29を波長λ2の光を透過し、波長λ1の光を反射する外部反射鏡に置換して、適宜必要な位置から波長λ2の光を取り出すように構成することもできる。   In the wavelength conversion element 20c having the configuration described with reference to FIG. 7, at least one external reflection mirror 29 is replaced with an external reflection mirror that transmits light of wavelength λ2 and reflects light of wavelength λ1, depending on the purpose of use. Thus, it is also possible to take out light having a wavelength λ2 from a necessary position as appropriate.

図8は本発明の実施例としての波長変換素子を説明する図で、波長変換を受ける光の光路を含む断面について説明する図である。図8で(A)は入射光ビーム21が波長変換素子本体22に入射し、波長変換を受けて出射光ビーム27aとして出射するまでの波長変換素子本体内での光路を含む面の真上から見た図で、(B)は、波長変換素子の主要部分を前記(A)の矢印100の方向から見た図である。   FIG. 8 is a diagram illustrating a wavelength conversion element as an embodiment of the present invention, and is a diagram illustrating a cross section including an optical path of light subjected to wavelength conversion. In FIG. 8A, the incident light beam 21 is incident on the wavelength conversion element main body 22, is subjected to the wavelength conversion, and is directly above the surface including the optical path in the wavelength conversion element main body until it is emitted as the outgoing light beam 27a. FIG. 5B is a view of the main part of the wavelength conversion element as viewed from the direction of the arrow 100 in FIG.

図8で、符号20dは本発明の実施例としての波長変換素子、11bは再入射端部、12g〜12lは到達端部、13cと13dは出射端部、27a,53a,53bは出射光ビーム、27bは再入射光になる入射光ビーム、61,62,72a〜72c,73a〜73cは入射光ビームが波長変換素子本体22に入射してからの波長変換素子本体22内における光路、21a,31,51,52,53a1,100は矢印、32は出射光ビーム取り出しミラーである。   In FIG. 8, reference numeral 20d is a wavelength conversion element as an embodiment of the present invention, 11b is a re-incidence end, 12g to 12l are arrival ends, 13c and 13d are exit ends, and 27a, 53a and 53b are outgoing light beams. 27b is an incident light beam that becomes re-incident light, 61, 62, 72a to 72c, and 73a to 73c are optical paths in the wavelength conversion element body 22 after the incident light beam is incident on the wavelength conversion element body 22, 21a, 31, 51, 52, 53 a 1, 100 are arrows, and 32 is an outgoing light beam extraction mirror.

図8(A)で、11a〔13d(12l)〕のように〔〕をつけて示した符号は、〔〕の前の符号が図8(A)で見えている部分の符号を表しており、〔〕内の符号が図8(A)で〔〕の前の符号で示した部分の下にあるために見えない部分の符号を表している。したがって、12g〔12k〕は、12gが図8(A)で見えている到達端部、12kが図8(A)で到達端部12gの下に位置しているために見えていない到達端部を示している。その他の符号も同様である。   In FIG. 8 (A), the reference numerals indicated with [] such as 11a [13d (12l)] indicate the reference numerals where the reference numerals before [] are visible in FIG. 8 (A). , [] Represents a part that cannot be seen because it is below the part indicated by the sign before [] in FIG. Therefore, 12g [12k] is a reaching end portion where 12g is visible in FIG. 8A, and 12g is a reaching end portion that is not visible because 12k is located below the reaching end portion 12g in FIG. 8A. Is shown. The same applies to other symbols.

また、図8(A)で、13c(12i)や13d(12l)のように()をつけて示した符号は、()の前の符号で示した名称と()の中の符号で示した名称とが同一のものを示している。したがって、13c(12i)は出射端部13cすなわち到達端部12iということになる。以下同様である。   In FIG. 8A, the reference numerals indicated by (), such as 13c (12i) and 13d (12l), are indicated by the names indicated by the reference numerals before () and the reference numerals in (). Indicates the same name. Accordingly, 13c (12i) is the emission end portion 13c, that is, the reaching end portion 12i. The same applies hereinafter.

図8(A)で、反射防止膜23は入射端部11aおよびその周辺と出射端部13dおよびその周辺を含む1つの連続した反射防止膜として形成されており、反射防止膜26は出射端部13cおよびその周辺と入射端部(再入射端部)11bおよびその周辺を含む1つの連続した反射防止膜として形成されており、反射膜24は到達端部12gおよびその周辺と到達端部12kおよびその周辺を含む1つの連続した反射膜として形成されており、反射膜25は到達端部12hおよびその周辺と到達端部12jおよびその周辺を含む1つの連続した反射膜として形成されている。   In FIG. 8A, the antireflection film 23 is formed as one continuous antireflection film including the incident end portion 11a and its periphery and the emission end portion 13d and its periphery, and the antireflection film 26 is formed as the emission end portion. 13c and the periphery thereof and the incident end portion (re-incident end portion) 11b and one continuous antireflection film including the periphery thereof, and the reflection film 24 includes the reaching end portion 12g and the periphery thereof and the reaching end portion 12k and The reflective film 25 is formed as one continuous reflective film including the periphery thereof, and the reflective film 25 is formed as one continuous reflective film including the reaching end portion 12h and the periphery thereof and the reaching end portion 12j and the periphery thereof.

波長変換素子20dは、図8の(A)と図8の(B)に図示したように、波長変換素子本体22内に入射した入射光ビームが波長変換を受けながら波長変換素子本体22内を進行して出射端部13cから出射した出射光を外部反射鏡29で折り返し、図8(A)で出射端部13cの真下にある再入射端部となる入射端部11bから波長変換素子本体22内に入射し、波長変換を受けながら波長変換素子本体22内を進行して入射端部11aの真下になる出射端部13dから出射し、出射光ビーム取り出しミラー32によって取り出されるように構成されている。出射光ビーム取り出しミラー32は入射光ビーム11aが通る位置にはなく、出射光ビームが通る位置に出射光ビームを図8(A)で下方に反射することができるように配置されている。   As shown in FIGS. 8A and 8B, the wavelength conversion element 20d is formed in the wavelength conversion element body 22 while the incident light beam incident on the wavelength conversion element body 22 undergoes wavelength conversion. The outgoing light that travels and exits from the exit end 13c is folded back by the external reflecting mirror 29, and the wavelength conversion element main body 22 from the entrance end 11b that becomes the re-incident end immediately below the exit end 13c in FIG. And is emitted from the exit end 13d that is directly under the entrance end 11a while being subjected to wavelength conversion, and is extracted by the exit light beam extraction mirror 32. Yes. The outgoing light beam extraction mirror 32 is not located at the position where the incident light beam 11a passes, but is arranged at the position where the outgoing light beam passes so that the outgoing light beam can be reflected downward in FIG.

すなわち、図8において、入射光ビーム21は、矢印21aの方向に進行して入射端部11aから波長変換素子本体22に入射し、光路72aを通り到達端部12gに達し、反射膜24により反射されて光路72aとは異なる方向に進行する光路72bに進行し、到達端部12hで反射膜25により反射されて光路72bとは異なる方向に進行する光路72cに進行し、出射端部13cである到達端部12iから出射光ビーム27aとして出射し、レンズ30を経て外部反射鏡29にいたり、外部反射鏡29により反射されて出射光ビーム27aの光路とは異なる光路である入射光ビーム27bとして図示した光路へと進み、再入射端部である入射端部11bから波長変換素子本体22に入射して光路73a(前記のように、図8(A)では光路72cの下側にある)へと進み、波長がλ1の成分が波長変換を受けながら到達端部12jに到り、反射膜25によって反射されて波長変換素子本体22に再入射して光路73b(前記のように、図8(A)では光路72bの下側にある)へと進み、波長がλ1の成分が波長変換を受けながら到達端部12kに到り、反射膜24によって反射されて波長変換素子本体22に再入射して光路73c(前記のように、図8(A)では光路72aの下側にある)へと進み、波長がλ1の成分が波長変換を受けながら出射端部13dである到達端部12lに到り、出射端部13dから図8(A)と図8(B)に示した出射光ビーム53aとして出射し、出射光ビーム取り出しミラー32により出射光ビーム53bとして取り出される。   That is, in FIG. 8, the incident light beam 21 travels in the direction of the arrow 21a, enters the wavelength conversion element body 22 from the incident end portion 11a, reaches the reaching end portion 12g through the optical path 72a, and is reflected by the reflecting film 24. The optical path 72b travels in a direction different from the optical path 72a, is reflected by the reflection film 25 at the reaching end 12h, travels to the optical path 72c that travels in a direction different from the optical path 72b, and is the exit end 13c. Illustrated as an incident light beam 27b that is emitted from the reaching end 12i as an outgoing light beam 27a, enters the external reflecting mirror 29 through the lens 30, or is reflected by the external reflecting mirror 29 and has a different optical path from the optical path of the outgoing light beam 27a. And enters the wavelength conversion element main body 22 from the incident end 11b, which is the re-incident end, and enters the optical path 73a (as described above, in FIG. 8A). The component having the wavelength λ1 reaches the end 12j while undergoing wavelength conversion, is reflected by the reflective film 25, and reenters the wavelength conversion element main body 22 to enter the optical path 73b. (As described above, the component is located on the lower side of the optical path 72b in FIG. 8A), and the component having the wavelength λ1 reaches the reaching end 12k while being subjected to wavelength conversion, and is reflected by the reflection film 24. Reentering the wavelength conversion element main body 22 and proceeding to the optical path 73c (as described above, it is below the optical path 72a in FIG. 8A), and the emission end while receiving the wavelength conversion of the component having the wavelength λ1 It reaches the reaching end portion 12l which is 13d, and exits from the exit end portion 13d as the exit light beam 53a shown in FIGS. 8A and 8B, and the exit light beam extraction mirror 32 produces the exit light beam 53b. It is taken out.

このような構成の本発明の波長変換素子20dの出射光ビーム53bは、出射光ビーム27aのおおむね2倍の割合の波長がλ2の光を含んでおり、従来の波長変換による出射光ビーム中のおおむね6倍の割合の波長がλ2の光を含んでいることが容易に理解されるところである。   The outgoing light beam 53b of the wavelength conversion element 20d of the present invention having such a configuration includes light having a wavelength λ2, which is approximately twice the ratio of the outgoing light beam 27a. It is easily understood that the wavelength of approximately 6 times contains light of λ2.

出射光ビーム53bは、図示していないが、たとえば多層膜から成る波長選択フィルタに入射し、波長がλ2の光だけが取り出されて、たとえば、顕微鏡などの光源として使用される。   Although not shown, the emitted light beam 53b is incident on a wavelength selection filter made of, for example, a multilayer film, and only light having a wavelength of λ2 is taken out and used as a light source such as a microscope.

図9は本発明の実施例としての波長変換装置の要部を説明する断面図である。   FIG. 9 is a cross-sectional view for explaining a main part of a wavelength conversion device as an embodiment of the present invention.

図9で、符号20eは本発明の実施例としての波長変換装置、20e1と20e2は本発明の実施の形態例としての波長変換素子、27cと27dは出射光ビーム、27c1は入射光ビームである。   In FIG. 9, reference numeral 20e is a wavelength conversion device as an embodiment of the present invention, 20e1 and 20e2 are wavelength conversion elements as embodiments of the present invention, 27c and 27d are outgoing light beams, and 27c1 is an incident light beam. .

レンズ30の焦点は、出射光ビーム27cを波長変換素子本体22内における全光路の中間点すなわち光路71bの光路長としての中心点50dに結像するような焦点になっている。   The focal point of the lens 30 is such that the emitted light beam 27c forms an image at an intermediate point of all the optical paths in the wavelength conversion element body 22, that is, a central point 50d as the optical path length of the optical path 71b.

波長変換装置20eは、その主要部に波長変換素子20e1と波長変換素子20e2を間にレンズを介して直列に接続したセットを用いており、図示していないが、入射光ビーム21の前段にはレーザ光源と入射光を図示のところに導く光学系が配置されており、出射光ビーム27dの後段にはたとえば多層膜から成る波長選択フィルタが配置されており、さらに、このような構成のセットで、波長の異なる出射光を複数波長取り出せるように構成されている。   The wavelength conversion device 20e uses a set in which the wavelength conversion element 20e1 and the wavelength conversion element 20e2 are connected in series via a lens between the main parts thereof, which is not shown in the figure. A laser light source and an optical system that guides incident light to the illustrated position are arranged, and a wavelength selection filter made of, for example, a multilayer film is arranged after the outgoing light beam 27d. , It is configured such that a plurality of wavelengths of outgoing light having different wavelengths can be extracted.

このような主要部分を有する本発明の波長変換装置20eは、構成が簡単で、小型で、波長変換効率が高く、高品質で、ハイパワーのコヒーレント光源として安価に製造することができ、使用目的によって、波長可変光源としても構成することができるという多大な効果を奏するものである。   The wavelength conversion device 20e of the present invention having such a main part is simple in structure, small in size, high in wavelength conversion efficiency, high quality, can be manufactured at low cost as a high-power coherent light source, and is intended for use. As a result, a great effect is achieved that it can also be configured as a wavelength tunable light source.

以上の説明から容易に推察できるが、本発明の波長変換方法は、前記例のような波長変換素子本体に入射した光を、到達端部で反射体により反射して、波長変換素子本体に再入射させることによって、波長変換素子の長さを長くせずに、波長変換を行う光路を実質的に長くすることによって、同じ寸法の波長変換素子を用いた従来の変換方法では得られなかった高い波長変換効率を得ることができるものである。そして、素子の長さ(厚さ)を短くできることにより、素子の均一性を容易に高めることができるという大きな利点を有する。   As can be easily inferred from the above description, the wavelength conversion method of the present invention reflects the light incident on the wavelength conversion element body as in the above example by the reflector at the arrival end, and re-appears on the wavelength conversion element body. Increasing the length of the wavelength conversion element without causing the wavelength conversion element to be lengthened by making the light incident substantially increases the length of the optical path for wavelength conversion, which was not obtained by a conventional conversion method using wavelength conversion elements of the same size. Wavelength conversion efficiency can be obtained. And since the length (thickness) of an element can be shortened, it has the big advantage that the uniformity of an element can be improved easily.

以上、図面を参照しながら本発明の実施の形態例を説明したが、本発明はこれに狭く限定されるものではなく、多くのバリエーションを可能とするものである。   The embodiment of the present invention has been described above with reference to the drawings. However, the present invention is not limited to this, and many variations are possible.

たとえば、波長変換素子に外部反射鏡やレンズの位置や角度や反射条件などを変える手段を備えることにより精密に調整できるようにしたり小型化したり使用環境に合わせた構造にすることもできる。   For example, by providing the wavelength conversion element with means for changing the position, angle, reflection condition, etc. of an external reflector or lens, the wavelength conversion element can be adjusted precisely, downsized, or structured according to the use environment.

以上説明したように、本発明により、良質で、小型で、ハイパワーを実現できる、安価なコヒーレント光源として光通信分野、医療分野、顕微鏡、計測分野など広い分野において用いることができる光源を提供することができる。   As described above, the present invention provides a light source that can be used in a wide range of fields such as an optical communication field, a medical field, a microscope, and a measurement field as a low-cost coherent light source that can be realized with high quality, small size, and high power. be able to.

本発明の実施例としての波長変換素子を説明する図である。It is a figure explaining the wavelength conversion element as an Example of this invention. 本発明の実施例としての波長変換素子を説明する図である。It is a figure explaining the wavelength conversion element as an Example of this invention. 本発明の実施例としての波長変換素子本体の表面の平行度について説明する図である。It is a figure explaining the parallelism of the surface of the wavelength conversion element main body as an Example of this invention. 図3の波長変換素子本体の分極反転領域の境界と素子表面の平行度について説明する図である。It is a figure explaining the parallelism of the boundary of the polarization inversion area | region of the wavelength conversion element main body of FIG. 3, and an element surface. 本発明の実施例としての波長変換素子を説明する図である。It is a figure explaining the wavelength conversion element as an Example of this invention. 図5の波長変換素子20bをさらに詳しく説明する図で、波長変換素子本体の分極反転領域の境界と外部反射鏡の表面の平行度について説明する図である。It is a figure explaining the wavelength conversion element 20b of FIG. 5 in more detail, and is a figure explaining the parallelism of the boundary of the polarization inversion area | region of the wavelength conversion element main body, and the surface of an external reflective mirror. 本発明の実施例としての波長変換素子を説明する図である。It is a figure explaining the wavelength conversion element as an Example of this invention. 本発明の実施例としての波長変換素子を説明する図である。It is a figure explaining the wavelength conversion element as an Example of this invention. 本発明の実施例としての波長変換装置の要部を説明する図である。It is a figure explaining the principal part of the wavelength converter as an Example of this invention. 特許文献1に記載の従来のSHG素子である光導波路デバイスを用いた波長変換の例を説明する図である。It is a figure explaining the example of the wavelength conversion using the optical waveguide device which is the conventional SHG element of patent document 1. FIG. 特許文献2に記載の従来の分極反転領域を有する非線形光学結晶を用いたSHG素子を説明する図である。It is a figure explaining the SHG element using the nonlinear optical crystal which has the conventional domain inversion area | region described in patent document 2. FIG. 特許文献3に記載の従来の光パラメトリック発振器を説明する図である。It is a figure explaining the conventional optical parametric oscillator of patent document 3. FIG. 従来のバルクタイプの分極反転素子の疑似位相整合を利用した波長変換を説明する図である。It is a figure explaining wavelength conversion using the quasi phase matching of the conventional bulk type polarization inversion element.

符号の説明Explanation of symbols

11a,11b:入射端部
12a〜12l:到達端部
13a〜13d:出射端部
20a〜20d,20e1,20e2:波長変換素子
20e:波長変換装置
21,27b,27c1:入射光ビーム
21a,31,51,52,53a1,100:は矢印
22:波長変換素子本体
23,26,28:反射防止膜
24,25:反射体としての反射膜
27,27a,27c,27d,53a,53b:出射光ビーム
29:外部反射鏡
30:レンズ
32:出射光ビーム取り出しミラー
33:分極反転領域
34,35a,35b:平行度を表す符号
34a,34b:波長変換素子本体の表面を延長した線
35a1,35b1:分極反転領域の境界面を延長した線
36a,36b:外部反射鏡の反射面と分極反転領域の境界の平行度を説明する符号
37a,37b:外部反射鏡の反射面を延長した線
39:分極反転領域の幅を説明する符号
50a〜50d:光路の光路長としての中心点
61,62,71a〜71f,72a〜72c,73a〜73c:光路
11a, 11b: incident end portions 12a-12l: reaching end portions 13a-13d: emitting end portions 20a-20d, 20e1, 20e2: wavelength conversion elements 20e: wavelength conversion devices 21, 27b, 27c1: incident light beams 21a, 31, 51, 52, 53a1, 100: Arrow 22: Wavelength conversion element body 23, 26, 28: Antireflection film 24, 25: Reflection film as reflector 27, 27a, 27c, 27d, 53a, 53b: Outgoing light beam 29: External reflecting mirror 30: Lens 32: Emitted light beam extraction mirror 33: Polarization inversion region 34, 35a, 35b: Symbols indicating parallelism 34a, 34b: Lines extending from the surface of the wavelength conversion element body 35a1, 35b1: Polarization Lines 36a, 36b obtained by extending the boundary surface of the inversion region Explain the parallelism of the boundary between the reflection surface of the external reflector and the polarization inversion region Reference numerals 37a and 37b: lines obtained by extending the reflection surface of the external reflecting mirror 39: reference numerals 50a to 50d for explaining the width of the domain-inverted regions 50a to 50d: center points 61, 62, 71a to 71f, 72a to 72c as optical path lengths of the optical paths 73a-73c: Optical path

Claims (71)

本発明において、後述の波長変換素子本体に入射される入射光に含まれる第1の波長λ1の光を第1の波長λ1とは異なる波長である第2の波長λ2の光へ波長変換を行うことができる素子自体を波長変換素子本体ということにし、波長変換素子本体の入射光を入射させる端部を入射端部と定義し、以下において、波長変換素子本体に後述の反射体を配置したものや波長変換素子本体等をケース等に実装したものを波長変換素子ということにして、波長変換素子本体の入射端部から前記波長変換素子本体に第1の波長λ1の光を含む光を入射光として入射させ、前記入射光を前記波長変換素子本体内を進行させることによって第1の波長λ1とは異なる第2の波長λ2の光を生成して前記波長変換素子本体から出射させることができる波長変換素子本体を有する波長変換素子において、前記波長変換素子本体に入射端部から入射された入射光が、前記波長変換素子本体内を進行して第1の波長λ1の光から第2の波長λ2の光への波長変換を受けた結果として第1の波長λ1の光と第2の波長λ2の光を含んだ光となって最初に到達する前記波長変換素子本体の前記入射端部とは異なる端部もしくは前記端部近傍(以下、前記波長変換素子本体に入射し前記波長変換素子本体内を波長変換を受けながら進行した第1の波長λ1の光と第2の波長λ2の光を含んだ光が到達する前記波長変換素子本体の端部もしくは前記端部近傍を波長変換素子本体の到達端部ともいう。また、前記波長変換素子本体内を進行して前記到達端部に到達する第1の波長λ1の光と第2の波長λ2の光を含んだ光を到達光ともいう。そして、前記波長変換素子本体に前記入射端部から入射された前記入射光が前記波長変換素子本体内を進行して前記到達光として最初に到達する前記波長変換素子本体の前記入射端部とは異なる端部もしくは前記端部近傍を第1の到達端部ともいう)に、前記第1の到達端部に到達した前記到達光のうちの少なくとも第1の波長λ1の光を反射させて前記波長変換素子本体に再入射させることができる反射体を配置したことを特徴とする波長変換素子。   In the present invention, wavelength conversion is performed on light having a first wavelength λ1 included in incident light incident on a wavelength conversion element body, which will be described later, to light having a second wavelength λ2, which is a wavelength different from the first wavelength λ1. The element itself that can be used is called the wavelength conversion element main body, the end of the wavelength conversion element main body where the incident light is incident is defined as the incident end, and the reflector described later is arranged on the wavelength conversion element main body below. Or a wavelength conversion element body mounted on a case or the like is referred to as a wavelength conversion element, and light including light of the first wavelength λ1 is incident on the wavelength conversion element body from the incident end of the wavelength conversion element body. A wavelength that allows the incident light to travel through the wavelength conversion element body to generate light having a second wavelength λ2 different from the first wavelength λ1 and to emit the light from the wavelength conversion element body. Transformation element In the wavelength conversion element having a main body, incident light incident on the wavelength conversion element main body from an incident end travels in the wavelength conversion element main body and travels from the light having the first wavelength λ1 to the light having the second wavelength λ2. As a result of receiving the wavelength conversion to, an end portion different from the incident end portion of the wavelength conversion element main body that first reaches the light including the light of the first wavelength λ1 and the light of the second wavelength λ2. Alternatively, near the end (hereinafter, light including the light of the first wavelength λ1 and the light of the second wavelength λ2 that has entered the wavelength conversion element body and traveled while undergoing wavelength conversion in the wavelength conversion element body) The end of the wavelength conversion element body that reaches or the vicinity of the end is also referred to as the arrival end of the wavelength conversion element body, and the first wavelength that travels through the wavelength conversion element body and reaches the arrival end. The light including the light of λ1 and the light of the second wavelength λ2 The incident light of the wavelength conversion element main body, which is incident on the wavelength conversion element main body from the incident end, travels through the wavelength conversion element main body and first arrives as the reaching light. An end portion different from the end portion or the vicinity of the end portion is also referred to as a first reaching end portion), and reflects at least the first wavelength λ1 of the reaching light reaching the first reaching end portion And a reflector capable of being re-incident on the wavelength conversion element main body. 請求項1に記載の波長変換素子において、前記反射体が第2の波長λ2の光をも反射させて前記波長変換素子本体に再入射させることができることを特徴とする波長変換素子。   2. The wavelength conversion element according to claim 1, wherein the reflector also reflects the light having the second wavelength λ <b> 2 and allows the light to enter the wavelength conversion element main body again. 3. 請求項1または2に記載の波長変換素子において、前記波長変換素子本体が分極反転領域を有する分極反転素子であることを特徴とする波長変換素子。   3. The wavelength conversion element according to claim 1, wherein the wavelength conversion element body is a polarization reversal element having a polarization reversal region. 請求項1〜3のいずれかに記載の波長変換素子において、前記反射体によって反射されて前記波長変換素子本体に再入射した光ビームの光路と前記反射体によって反射される直前の前記到達光ビームの光路が前記波長変換素子本体内において平行でないことを特徴とする波長変換素子。   4. The wavelength conversion element according to claim 1, wherein an optical path of a light beam reflected by the reflector and re-entered the wavelength conversion element body and the reaching light beam immediately before being reflected by the reflector. 5. The wavelength conversion element is characterized in that the optical path is not parallel in the wavelength conversion element body. 請求項1〜4のいずれかに記載の波長変換素子において、前記反射体の前記第1の波長λ1の光と前記第2の波長λ2の光のいずれか一方または双方に対する反射率が99%以上であることを特徴とする波長変換素子。   5. The wavelength conversion element according to claim 1, wherein the reflectance of the reflector with respect to one or both of the light having the first wavelength λ1 and the light having the second wavelength λ2 is 99% or more. The wavelength conversion element characterized by being. 請求項1〜5のいずれかに記載の波長変換素子において、Nを1以上の整数とし、前記第1の到達端部で前記反射体で反射されて前記波長変換素子本体に再入射して前記波長変換素子本体内を進行した第1の波長λ1の光と第2の波長λ2の光を含んだ光が次に到達する到達端部を第2の到達端部ということにし、以下同様に、第Nの到達端部で反射体で反射されて前記波長変換素子本体に再入射して前記波長変換素子本体内を進行した第1の波長λ1の光と第2の波長λ2の光を含んだ到達光が次に到達する到達端部を第N+1の到達端部ということにして、前記第Nの到達端部に到達し前記反射体で反射されて前記波長変換素子本体に再入射して前記波長変換素子本体内を進行した第1の波長λ1の光と第2の波長λ2の光を含んだ到達光が次に到達する第N+1の到達端部に、前記到達光の第1の波長λ1の光と第2の波長λ2の光のいずれか一方または双方を反射させて前記波長変換素子本体に再入射させることができる反射体を配置したことを特徴とする波長変換素子。   The wavelength conversion element according to any one of claims 1 to 5, wherein N is an integer of 1 or more, is reflected by the reflector at the first reaching end, and re-enters the wavelength conversion element body. A reaching end where the light including the light of the first wavelength λ1 and the light of the second wavelength λ2 that has traveled in the wavelength conversion element main body will be referred to as a second reaching end, and so on. The light having the first wavelength λ1 and the light having the second wavelength λ2 that has been reflected by the reflector at the Nth arrival end, reentered the wavelength conversion element body, and traveled through the wavelength conversion element body was included. The reaching end portion where the reaching light reaches next is referred to as the (N + 1) th reaching end portion, reaches the Nth reaching end portion, is reflected by the reflector, and re-enters the wavelength conversion element main body. The reaching light including the light of the first wavelength λ1 and the light of the second wavelength λ2 traveling in the wavelength conversion element body Reflecting one or both of the light having the first wavelength λ1 and the light having the second wavelength λ2 at the (N + 1) th arrival end that reaches the first wavelength λ1 and re-entering the wavelength conversion element main body. A wavelength conversion element characterized in that a reflector capable of performing the above is disposed. 請求項1〜6のいずれかに記載の波長変換素子において、少なくとも1つの前記反射体が、あるいは前記反射体の少なくとも一部が、前記波長変換素子本体の前記到達端部の表面に形成された多層膜から成る反射膜であることを特徴とする波長変換素子。   The wavelength conversion element according to claim 1, wherein at least one of the reflectors or at least a part of the reflector is formed on a surface of the reaching end portion of the wavelength conversion element body. A wavelength conversion element characterized by being a reflective film composed of a multilayer film. 請求項7に記載の波長変換素子において、前記反射膜が、前記波長変換素子本体の複数箇所の前記到達端部の表面に連続した状態に形成された反射膜であることを特徴とする波長変換素子。   The wavelength conversion element according to claim 7, wherein the reflection film is a reflection film formed in a state continuous with the surfaces of the reaching end portions at a plurality of locations of the wavelength conversion element body. element. 請求項7または8に記載の波長変換素子において、前記反射膜が前記波長λ1の光と前記波長λ2の光のいずれか一方または双方に対して99.8%以上の反射率を有する多層膜からなる反射膜であることを特徴とする波長変換素子。   The wavelength conversion element according to claim 7 or 8, wherein the reflective film is a multilayer film having a reflectance of 99.8% or more with respect to one or both of the light with the wavelength λ1 and the light with the wavelength λ2. A wavelength conversion element characterized by being a reflective film. 請求項1〜9のいずれかに記載の波長変換素子において、少なくとも1つの前記反射体が、あるいは前記反射体の少なくとも一部が、前記波長変換素子本体の前記到達端部の表面に対向して、前記波長変換素子本体の外部に配置された外部反射鏡であることを特徴とする波長変換素子。   The wavelength conversion element according to any one of claims 1 to 9, wherein at least one of the reflectors or at least a part of the reflector is opposed to a surface of the reaching end portion of the wavelength conversion element body. A wavelength conversion element, wherein the wavelength conversion element is an external reflecting mirror disposed outside the wavelength conversion element body. 請求項10に記載の波長変換素子において、前記波長変換素子が、少なくとも1つの前記外部反射鏡のそこに入射する前記到達光に対する角度を調節する手段を有することを特徴とする波長変換素子。   11. The wavelength conversion element according to claim 10, wherein the wavelength conversion element has means for adjusting an angle with respect to the reaching light incident thereon of at least one of the external reflection mirrors. 請求項10または11に記載の波長変換素子において、前記波長変換素子本体の前記到達端部の表面と前記表面に対向して配置されている前記外部反射鏡の間にレンズを配置したことを特徴とする波長変換素子。   12. The wavelength conversion element according to claim 10, wherein a lens is disposed between a surface of the reaching end portion of the wavelength conversion element main body and the external reflecting mirror disposed to face the surface. And a wavelength conversion element. 請求項12に記載の波長変換素子において、前記レンズ(以下、第1のレンズともいう)は、前記外部反射鏡で反射されて前記波長変換素子本体に再入射される少なくとも第1の波長λ1の光を含んだ光ビームを、当該波長変換素子において、前記再入射された再入射点から後段の光路で当該波長変換素子の出射端部までの間に集光レンズ(以下、第2のレンズともいう)が配置されている場合には前記第1のレンズの中心と前記第2のレンズの中心の間の全光路長の中間点に相当する位置あるいはその近傍に集光させるレンズであり、前記再入射された再入射点から後段の光路で当該波長変換素子の出射端部までの間に前記第2のレンズが配置されていない場合には前記第1のレンズの中心と当該波長変換素子の出射端部の間の全光路長の中間点に相当する位置あるいはその近傍に集光させるレンズであることを特徴とする波長変換素子。   13. The wavelength conversion element according to claim 12, wherein the lens (hereinafter also referred to as a first lens) has a wavelength of at least a first wavelength λ1 that is reflected by the external reflecting mirror and reenters the wavelength conversion element body. A light beam including light is collected in the wavelength conversion element between the re-incident point of re-incidence and the emission end portion of the wavelength conversion element in a subsequent optical path in the wavelength conversion element (hereinafter also referred to as a second lens). Is arranged at a position corresponding to or near the midpoint of the total optical path length between the center of the first lens and the center of the second lens, When the second lens is not disposed between the re-incident point of re-incidence and the output end of the wavelength conversion element in the subsequent optical path, the center of the first lens and the wavelength conversion element Of the total optical path length between the output ends The wavelength conversion element which is a position or a lens for condensing in the vicinity corresponding to the midpoint. 請求項1〜13のいずれかに記載の波長変換素子において、前記波長変換素子本体の少なくとも前記入射端部になる表面と前記外部反射鏡に対向している表面と前記到達光を外部に取り出す到達端部になる表面に反射防止膜が形成されていることを特徴とする波長変換素子。   14. The wavelength conversion element according to claim 1, wherein at least a surface of the wavelength conversion element main body that becomes the incident end, a surface that faces the external reflecting mirror, and an arrival light that extracts the reaching light to the outside. A wavelength conversion element, wherein an antireflection film is formed on a surface which becomes an end. 請求項1〜14のいずれかに記載の波長変換素子において、前記波長変換素子本体の少なくとも1つの前記到達端部になる表面に対向して、前記到達端部から前記波長変換素子本体の外部に出た到達光を、前記到達光の前記到達端部から前記波長変換素子本体の外部に出る前の光路(以下、反射前光路ともいう)に平行でかつ前記波長変換素子本体内部の前記反射前光路から離れた位置を前記反射前光路と逆方向に進行する光路(以下、逆方向光路ともいう)になるように前記波長変換素子本体に再入射するように反射する反射体(以下、逆光路反射体ともいう)が配置されていることを特徴とする波長変換素子。   The wavelength conversion element according to any one of claims 1 to 14, wherein the wavelength conversion element is opposed to at least one surface of the wavelength conversion element main body, which is the arrival end, and from the arrival end to the outside of the wavelength conversion element main body. The emitted reaching light is parallel to an optical path (hereinafter also referred to as an optical path before reflection) from the reaching end portion of the reaching light to the outside of the wavelength conversion element body, and before the reflection inside the wavelength conversion element body. A reflector (hereinafter referred to as a reverse optical path) that reflects so as to reenter the wavelength conversion element body so that a position away from the optical path becomes an optical path (hereinafter also referred to as a reverse direction optical path) that travels in a direction opposite to the optical path before reflection. A wavelength conversion element characterized in that it is also referred to as a reflector. 請求項15に記載の波長変換素子において、前記逆光路反射体と前記波長変換素子本体の表面の間にレンズ(以下、第7のレンズともいう)が配置されており、前記第7のレンズは、当該レンズを通り前記逆方向光路の入射点に入射させる入射光を、前記逆方向光路の入射点から、当該光路の後段の光路において、当該波長変換素子の出射端部までの間に集光レンズ(以下、第8のレンズともいう)が配置されている場合には前記第7のレンズの中心と前記第8のレンズの中心の間の全光路長の中間点に相当する位置あるいはその近傍に集光させるレンズであり、前記逆方向光路の入射点から、当該光路の後段の光路において、当該波長変換素子の出射端部までの間に前記第8のレンズが配置されていない場合には前記第7のレンズの中心と当該波長変換素子の出射端部の間の全光路長の中間点に相当する位置あるいはその近傍に集光させるレンズであることを特徴とする波長変換素子。   The wavelength conversion element according to claim 15, wherein a lens (hereinafter also referred to as a seventh lens) is disposed between the reverse optical path reflector and the surface of the wavelength conversion element main body, and the seventh lens is The incident light passing through the lens and incident on the incident point of the reverse optical path is condensed from the incident point of the reverse optical path to the output end of the wavelength conversion element in the optical path after the optical path. When a lens (hereinafter also referred to as an eighth lens) is disposed, a position corresponding to an intermediate point of the total optical path length between the center of the seventh lens and the center of the eighth lens or the vicinity thereof When the eighth lens is not disposed between the incident point of the reverse optical path and the output end of the wavelength conversion element in the optical path downstream of the optical path. The center of the seventh lens; The wavelength conversion element which is a position or a lens for condensing in the vicinity thereof corresponding to the midpoint of the total optical path length between the emission end portion of the wavelength conversion element. 請求項1〜16のいずれかに記載の波長変換素子において、前記波長変換素子本体の前記入射端部になる表面とそれと反対側の表面とが1分以内の開き角で互いに平行に形成されていることを特徴とする波長変換素子。   The wavelength conversion element according to any one of claims 1 to 16, wherein a surface that becomes the incident end of the wavelength conversion element body and a surface on the opposite side thereof are formed in parallel with each other with an opening angle of within 1 minute. A wavelength conversion element characterized by comprising: 請求項3〜17のいずれかに記載の波長変換素子において、前記波長変換素子本体の表面と各分極反転領域の境界面とが1分以内の開き角で互いに平行であることを特徴とする波長変換素子。   The wavelength conversion element according to any one of claims 3 to 17, wherein a surface of the wavelength conversion element body and a boundary surface of each polarization inversion region are parallel to each other with an opening angle within 1 minute. Conversion element. 請求項3〜18のいずれかに記載の波長変換素子において、前記波長変換素子本体の分極反転領域の幅が、前記波長変換素子本体に最初に入射した入射光の光路に直交する方向でかつ前記光路とその次の再入射光の光路を含む面における幅において少なくとも2mmあることを特徴とする波長変換素子。   The wavelength conversion element according to any one of claims 3 to 18, wherein a width of a domain-inverted region of the wavelength conversion element body is in a direction orthogonal to an optical path of incident light first incident on the wavelength conversion element body, and A wavelength conversion element having a width of at least 2 mm in a plane including an optical path and an optical path of the next re-incident light. 請求項3〜19のいずれかに記載の波長変換素子において、前記分極反転素子がPPLN(Periodically Poled LiNbO3)であることを特徴とする波長変換素子。   20. The wavelength conversion element according to claim 3, wherein the polarization inverting element is PPLN (Periodically Poled LiNbO 3). 請求項3〜19のいずれかに記載の波長変換素子において、前記分極反転素子がPPKTP(Periodically Poled KTiOPO4)であることを特徴とする波長変換素子。   20. The wavelength conversion element according to claim 3, wherein the polarization inverting element is PPKTP (Periodically Poled KTiOPO 4). 本発明において、後述の波長変換素子本体に入射される入射光に含まれる第1の波長λ1の光を第1の波長λ1とは異なる波長である第2の波長λ2の光へ波長変換を行うことができる素子自体を波長変換素子本体ということにし、波長変換素子本体の入射光を入射させる端部を入射端部と定義し、以下において、波長変換素子本体に後述の反射体を配置したものや波長変換素子本体等をケース等に実装したものを波長変換素子ということにして、波長変換素子本体の入射端部から前記波長変換素子本体に第1の波長λ1の光を含む光を入射光として入射させ、前記入射光を前記波長変換素子本体内を進行させることによって第1の波長λ1とは異なる第2の波長λ2の光を生成して前記波長変換素子本体から出射させることができる波長変換素子本体を有する波長変換素子を少なくとも1つ用いた波長変換装置において、少なくとも1つの前記波長変換素子が、前記入射端部から波長変換素子本体に入射された前記入射光が、前記波長変換素子本体内を進行して第1の波長λ1の光から第2の波長λ2の光への波長変換を受けた結果として第1の波長λ1の光と第2の波長λ2の光を含んだ光となって最初に到達する前記波長変換素子本体の前記入射端部とは異なる端部もしくは前記端部近傍(以下、前記波長変換素子本体に入射し前記波長変換素子本体内を波長変換を受けながら進行した第1の波長λ1の光と第2の波長λ2の光を含んだ光が到達する前記波長変換素子本体の端部もしくは前記端部近傍を波長変換素子本体の到達端部ともいう。また、前記波長変換素子本体内を進行して前記到達端部に到達する第1の波長λ1の光と第2の波長λ2の光を含んだ光を到達光ともいう。そして、前記波長変換素子本体に前記入射端部から入射された前記入射光が前記波長変換素子本体内を進行して前記到達光として最初に到達する前記波長変換素子本体の前記入射端部とは異なる端部もしくは前記端部近傍を第1の到達端部ともいう)に、前記第1の到達端部に到達した前記到達光のうちの少なくとも第1の波長λ1の光を反射させて前記波長変換素子本体に再入射させることができる反射体を配置した波長変換素子であることを特徴とする波長変換装置。   In the present invention, wavelength conversion is performed on light having a first wavelength λ1 included in incident light incident on a wavelength conversion element body, which will be described later, to light having a second wavelength λ2, which is a wavelength different from the first wavelength λ1. The element itself that can be used is called the wavelength conversion element main body, the end of the wavelength conversion element main body where the incident light is incident is defined as the incident end, and the reflector described later is arranged on the wavelength conversion element main body below. Or a wavelength conversion element body mounted on a case or the like is referred to as a wavelength conversion element, and light including light of the first wavelength λ1 is incident on the wavelength conversion element body from the incident end of the wavelength conversion element body. A wavelength that allows the incident light to travel through the wavelength conversion element body to generate light having a second wavelength λ2 different from the first wavelength λ1 and to emit the light from the wavelength conversion element body. Transformation element In a wavelength conversion device using at least one wavelength conversion element having a main body, at least one of the wavelength conversion elements has the incident light incident on the wavelength conversion element main body from the incident end portion in the wavelength conversion element main body. As a result of the wavelength conversion from the light having the first wavelength λ1 to the light having the second wavelength λ2, the light including the light having the first wavelength λ1 and the light having the second wavelength λ2 is obtained. The end of the wavelength conversion element body that reaches first is different from or near the end (hereinafter referred to as being incident on the wavelength conversion element body and undergoing wavelength conversion in the wavelength conversion element body. The end of the wavelength conversion element main body or the vicinity of the end where the light including the light of the first wavelength λ1 and the light of the second wavelength λ2 reaches is also referred to as the arrival end of the wavelength conversion element main body. In the body of the conversion element The light including the light having the first wavelength λ1 and the light having the second wavelength λ2 reaching the reaching end is also referred to as reaching light, and the incident light incident on the wavelength conversion element main body from the incident end. The end different from the incident end of the wavelength conversion element main body where the incident light travels in the wavelength conversion element main body and first reaches as the reaching light or the vicinity of the end is also referred to as a first arrival end) Further, a wavelength conversion element in which a reflector capable of reflecting at least the light of the first wavelength λ1 out of the arrival light reaching the first arrival end and re-entering the wavelength conversion element main body is disposed. The wavelength converter characterized by being. 請求項22に記載の波長変換装置において、前記反射体が第2の波長λ2の光をも反射させて前記波長変換素子本体に再入射させることができることを特徴とする波長変換装置。   23. The wavelength conversion device according to claim 22, wherein the reflector can also reflect light having the second wavelength [lambda] 2 and re-enter the wavelength conversion element body. 請求項22または23に記載の波長変換装置において、前記波長変換素子本体が分極反転領域を有する分極反転素子であることを特徴とする波長変換装置。   The wavelength conversion device according to claim 22 or 23, wherein the wavelength conversion element body is a polarization reversal element having a polarization reversal region. 請求項22〜24のいずれかに記載の波長変換装置において、前記反射体によって反射されて前記波長変換素子本体に再入射した光ビームの光路と前記反射体によって反射される直前の前記到達光ビームの光路が前記波長変換素子本体内において平行でないことを特徴とする波長変換装置。   25. The wavelength conversion device according to claim 22, wherein an optical path of a light beam reflected by the reflector and re-entered the wavelength conversion element main body and the reaching light beam immediately before being reflected by the reflector. The wavelength conversion device is characterized in that the optical path is not parallel in the wavelength conversion element body. 請求項22〜25のいずれかに記載の波長変換装置において、前記反射体の前記第1の波長λ1の光と前記第2の波長λ2の光のいずれか一方または双方に対する反射率が99%以上であることを特徴とする波長変換装置。   26. The wavelength conversion device according to claim 22, wherein a reflectance of the reflector with respect to one or both of the light having the first wavelength λ1 and the light having the second wavelength λ2 is 99% or more. The wavelength converter characterized by being. 請求項22〜26のいずれかに記載の波長変換装置において、Nを1以上の整数とし、前記第1の到達端部で前記反射体で反射されて前記波長変換素子本体に再入射して前記波長変換素子本体内を進行した第1の波長λ1の光と第2の波長λ2の光を含んだ光が次に到達する到達端部を第2の到達端部ということにし、以下同様に、第Nの到達端部で反射体で反射されて前記波長変換素子本体に再入射して前記波長変換素子本体内を進行した第1の波長λ1の光と第2の波長λ2の光を含んだ到達光が次に到達する到達端部を第N+1の到達端部ということにして、少なくとも1つの前記波長変換素子が、前記第Nの到達端部に到達し前記反射体で反射されて前記波長変換素子本体に再入射して前記波長変換素子本体内を進行した第1の波長λ1の光と第2の波長λ2の光を含んだ到達光が次に到達する第N+1の到達端部に、前記到達光の第1の波長λ1の光と第2の波長λ2の光のいずれか一方または双方を反射させて前記波長変換素子本体に再入射させることができる反射体を配置した波長変換素子であることを特徴とする波長変換装置。   The wavelength conversion device according to any one of claims 22 to 26, wherein N is an integer of 1 or more, is reflected by the reflector at the first reaching end, and reenters the wavelength conversion element body. A reaching end where the light including the light of the first wavelength λ1 and the light of the second wavelength λ2 that has traveled in the wavelength conversion element main body will be referred to as a second reaching end, and so on. The light having the first wavelength λ1 and the light having the second wavelength λ2 that has been reflected by the reflector at the Nth arrival end, reentered the wavelength conversion element body, and traveled through the wavelength conversion element body was included. The reaching end where the reaching light reaches next is referred to as the (N + 1) th reaching end, and at least one of the wavelength conversion elements reaches the Nth reaching end and is reflected by the reflector so as to have the wavelength. A first wavelength λ1 re-entering the conversion element body and traveling through the wavelength conversion element body Of the first and second wavelengths λ1 and λ2 at the (N + 1) th arrival end where the arrival light including the second light and the second wavelength λ2 reaches next. 1. A wavelength conversion device comprising: a wavelength conversion element on which a reflector capable of reflecting one or both of them and re-entering the wavelength conversion element main body is disposed. 請求項22〜27のいずれかに記載の波長変換装置において、少なくとも1つの前記反射体が、あるいは前記反射体の少なくとも一部が、前記波長変換素子本体の前記到達端部の表面に形成された多層膜から成る反射膜であることを特徴とする波長変換装置。   The wavelength conversion device according to any one of claims 22 to 27, wherein at least one of the reflectors or at least a part of the reflector is formed on a surface of the reaching end portion of the wavelength conversion element body. A wavelength conversion device characterized by being a reflective film made of a multilayer film. 請求項28に記載の波長変換素子において、前記反射膜が、前記波長変換素子本体の複数箇所の前記到達端部の表面に連続した状態に形成された反射膜であることを特徴とする波長変換素子。   29. The wavelength conversion element according to claim 28, wherein the reflection film is a reflection film formed in a state continuous with the surfaces of the reaching end portions at a plurality of locations of the wavelength conversion element body. element. 請求項28または29に記載の波長変換装置において、前記反射膜が前記波長λ1の光と前記波長λ2の光のいずれか一方または双方に対して99.8%以上の反射率を有する多層膜からなる反射膜であることを特徴とする波長変換装置。   30. The wavelength conversion device according to claim 28, wherein the reflective film is a multilayer film having a reflectance of 99.8% or more with respect to one or both of the light with the wavelength λ1 and the light with the wavelength λ2. A wavelength conversion device characterized by being a reflective film. 請求項22〜30のいずれかに記載の波長変換装置において、少なくとも1つの前記反射体が、あるいは前記反射体の少なくとも一部が、前記波長変換素子本体の前記到達端部の表面に対向して、前記波長変換素子本体の外部に配置された外部反射鏡であることを特徴とする波長変換装置。   The wavelength converter according to any one of claims 22 to 30, wherein at least one of the reflectors or at least a part of the reflector is opposed to a surface of the reaching end portion of the wavelength conversion element body. A wavelength conversion device, wherein the wavelength conversion device is an external reflecting mirror disposed outside the wavelength conversion element body. 請求項31に記載の波長変換装置において、前記波長変換素子が、少なくとも1つの前記外部反射鏡のそこに入射する前記到達光に対する角度を調節する手段を有することを特徴とする波長変換装置。   32. The wavelength conversion device according to claim 31, wherein the wavelength conversion element has means for adjusting an angle with respect to the reaching light incident on at least one of the external reflecting mirrors. 請求項31または32に記載の波長変換装置において、前記波長変換素子本体の前記到達端部の表面と前記表面に対向して配置されている前記外部反射鏡の間にレンズを配置したことを特徴とする波長変換装置。   33. The wavelength conversion device according to claim 31 or 32, wherein a lens is disposed between a surface of the reaching end portion of the wavelength conversion element body and the external reflecting mirror disposed to face the surface. And a wavelength converter. 請求項33に記載の波長変換装置において、前記レンズ(以下、第3のレンズともいう)は、前記外部反射鏡で反射されて前記波長変換素子本体に再入射される少なくとも第1の波長λ1の光を含んだ光ビームを、当該波長変換素子において、前記再入射された再入射点から後段の光路で当該波長変換素子の出射端部までの間に集光レンズ(以下、第4のレンズともいう)が配置されている場合には前記第3のレンズの中心と前記第4のレンズの中心の間の全光路長の中間点に相当する位置あるいはその近傍に集光させるレンズであり、前記再入射された再入射点から後段の光路で当該波長変換素子の出射端部までの間に前記第4のレンズが配置されていない場合には前記第3のレンズの中心と当該波長変換素子の出射端部の間の全光路長の中間点に相当する位置あるいはその近傍に集光させるレンズであることを特徴とする波長変換装置。   34. The wavelength conversion device according to claim 33, wherein the lens (hereinafter also referred to as a third lens) has a wavelength of at least a first wavelength λ1 that is reflected by the external reflecting mirror and reenters the wavelength conversion element body. A light beam containing light is collected in the wavelength conversion element between the re-incident point of re-incidence and the emission end of the wavelength conversion element in a subsequent optical path in the wavelength conversion element (hereinafter also referred to as a fourth lens). Is arranged at a position corresponding to or near the midpoint of the total optical path length between the center of the third lens and the center of the fourth lens, When the fourth lens is not disposed between the re-incident point of re-incident and the output end of the wavelength conversion element in the subsequent optical path, the center of the third lens and the wavelength conversion element Of the total optical path length between the output ends Wavelength converter which is a position or a lens for condensing in the vicinity corresponding to the midpoint. 請求項22〜34のいずれかに記載の波長変換装置において、少なくとも1つの前記波長変換素子本体の少なくとも前記入射端部になる表面と前記外部反射鏡に対向している表面と前記到達光を外部に取り出す到達端部になる表面に反射防止膜が形成されていることを特徴とする波長変換装置。   The wavelength conversion device according to any one of claims 22 to 34, wherein at least one surface of the wavelength conversion element main body serving as the incident end, a surface facing the external reflecting mirror, and the reaching light are externally transmitted. A wavelength conversion device, wherein an antireflection film is formed on a surface that becomes a reaching end portion to be extracted. 請求項22〜35のいずれかに記載の波長変換装置において、少なくとも1つの前記波長変換素子本体の少なくとも1つの前記到達端部になる表面に対向して、前記到達端部から前記波長変換素子本体の外部に出た到達光を、前記到達光の前記到達端部から前記波長変換素子本体の外部に出る前の光路(以下、反射前光路ともいう)に平行でかつ前記波長変換素子本体内部の前記反射前光路から離れた位置を前記反射前光路と逆方向に進行する光路(以下、逆方向光路ともいう)になるように前記波長変換素子本体に再入射するように反射する反射体(以下、逆光路反射体ともいう)が配置されていることを特徴とする波長変換装置。   36. The wavelength conversion device according to any one of claims 22 to 35, wherein the wavelength conversion element main body extends from the reaching end portion to face at least one of the reaching end portions of the at least one wavelength conversion element main body. Reaching the outside of the wavelength conversion element body from the arrival end of the reaching light is parallel to an optical path before coming out of the wavelength conversion element body (hereinafter also referred to as a pre-reflection optical path) and inside the wavelength conversion element body A reflector (hereinafter referred to as “reflective”) that reenters the wavelength conversion element main body so that a position away from the pre-reflection optical path becomes an optical path (hereinafter also referred to as a reverse direction optical path) that travels in a direction opposite to the pre-reflection optical path. , Also called a reverse optical path reflector). 請求項36に記載の波長変換装置において、前記逆光路反射体と前記波長変換素子本体の表面の間にレンズ(以下、第9のレンズともいう)が配置されており、前記第7のレンズは、当該レンズを通り前記逆方向光路の入射点に入射させる入射光を、前記逆方向光路の入射点から、当該光路の後段の光路において、当該波長変換素子の出射端部までの間に集光レンズ(以下、第10のレンズともいう)が配置されている場合には前記第9のレンズの中心と前記第10のレンズの中心の間の全光路長の中間点に相当する位置あるいはその近傍に集光させるレンズであり、前記逆方向光路の入射点から、当該光路の後段の光路において、当該波長変換素子の出射端部までの間に前記第10のレンズが配置されていない場合には前記第9のレンズの中心と当該波長変換素子の出射端部の間の全光路長の中間点に相当する位置あるいはその近傍に集光させるレンズであることを特徴とする波長変換装置。   37. The wavelength converter according to claim 36, wherein a lens (hereinafter also referred to as a ninth lens) is disposed between the reverse optical path reflector and the surface of the wavelength conversion element main body, and the seventh lens is The incident light passing through the lens and incident on the incident point of the reverse optical path is condensed from the incident point of the reverse optical path to the output end of the wavelength conversion element in the optical path after the optical path. When a lens (hereinafter also referred to as a tenth lens) is disposed, a position corresponding to an intermediate point of the total optical path length between the center of the ninth lens and the center of the tenth lens or the vicinity thereof When the tenth lens is not disposed between the incident point of the reverse optical path and the output end of the wavelength conversion element in the optical path subsequent to the optical path. Of the ninth lens Wavelength converter which is a position or a lens for condensing in the vicinity corresponding to an intermediate point of the total optical path length between the emission end portion of the heart and the wavelength conversion element. 請求項22〜37のいずれかに記載の波長変換装置において、少なくとも1つの前記波長変換素子本体が、前記波長変換素子本体の前記入射端部が形成されている表面とそれと反対側の表面とが1分以内の開き角で互いに平行に形成されている波長変換素子本体であることを特徴とする波長変換装置。   The wavelength conversion device according to any one of claims 22 to 37, wherein at least one of the wavelength conversion element main bodies includes a surface on which the incident end of the wavelength conversion element main body is formed and a surface opposite to the surface. A wavelength conversion device comprising wavelength conversion element bodies formed in parallel with each other with an opening angle within one minute. 請求項24〜38のいずれかに記載の波長変換装置において、前記波長変換素子本体の表面と各分極反転領域の境界面とが1分以内の開き角で互いに平行であることを特徴とする波長変換装置。   The wavelength conversion device according to any one of claims 24 to 38, wherein a surface of the wavelength conversion element body and a boundary surface of each polarization inversion region are parallel to each other with an opening angle within 1 minute. Conversion device. 請求項24〜39のいずれかに記載の波長変換装置において、前記波長変換素子本体の分極反転領域の幅が、前記波長変換素子本体に最初に入射した入射光の光路に直交する方向でかつ前記光路とその次の再入射光の光路を含む面における幅において少なくとも2mmあることを特徴とする波長変換装置。   The wavelength conversion device according to any one of claims 24 to 39, wherein a width of a polarization inversion region of the wavelength conversion element body is in a direction orthogonal to an optical path of incident light first incident on the wavelength conversion element body, and A wavelength conversion device having a width of at least 2 mm in a plane including an optical path and an optical path of the next re-incident light. 請求項24〜40のいずれかに記載の波長変換装置において、前記分極反転素子がPPLN(Periodically Poled LiNbO3)であることを特徴とする波長変換装置。   41. The wavelength conversion device according to claim 24, wherein the polarization inverting element is PPLN (Periodically Poled LiNbO3). 請求項24〜40のいずれかに記載の波長変換装置において、前記分極反転素子がPPKTP(Periodically Poled KTiOPO4)であることを特徴とする波長変換装置。   41. The wavelength converter according to claim 24, wherein the polarization inverting element is PPKTP (Periodically Poled KTiOPO4). 請求項22〜42のいずれかに記載の波長変換装置において、前記波長変換装置が、前記光ビームの光路において前記波長変換素子を少なくとも2つ直列に配置して構成されている装置であることを特徴とする波長変換装置。   The wavelength conversion device according to any one of claims 22 to 42, wherein the wavelength conversion device is a device configured by arranging at least two wavelength conversion elements in series in an optical path of the light beam. A featured wavelength converter. 請求項43に記載の波長変換装置において、前記光ビームの光路において、少なくとも1組の直列に接続されている2つの前記波長変換素子の間にレンズが配置されていることを特徴とする波長変換装置。   44. The wavelength conversion device according to claim 43, wherein a lens is disposed between at least one pair of the wavelength conversion elements connected in series in the optical path of the light beam. apparatus. 請求項44に記載の波長変換装置において、前記レンズ(以下、第11のレンズともいう)が、入射光を、当該レンズの後段の光路において、後段の波長変換素子の出射端部までの間に集光レンズ(以下、第12のレンズともいう)が配置されている場合には前記第11のレンズの中心と前記第12のレンズの中心の間の全光路長の中間点に相当する位置あるいはその近傍に集光させるレンズであり、後段の波長変換素子の出射端部までの間に前記第12のレンズが配置されていない場合には前記第11のレンズの中心と後段の波長変換素子の出射端部の間の全光路長の中間点に相当する位置あるいはその近傍に集光させるレンズであることを特徴とする波長変換装置。   45. The wavelength conversion device according to claim 44, wherein the lens (hereinafter also referred to as an eleventh lens) transmits incident light between an incident end of the wavelength conversion element at a subsequent stage in an optical path at the rear stage of the lens. When a condenser lens (hereinafter also referred to as a twelfth lens) is disposed, a position corresponding to an intermediate point of the total optical path length between the center of the eleventh lens and the center of the twelfth lens or If the twelfth lens is not arranged between the output end of the latter wavelength conversion element and the center of the eleventh lens and the latter wavelength conversion element. A wavelength conversion device characterized by being a lens that focuses light at a position corresponding to an intermediate point of the total optical path length between emission ends or in the vicinity thereof. 請求項22〜45のいずれかに記載の波長変換装置において、前記波長変換装置が、波長変換された出力光を、前記入射端部の近傍において、前記入射光の入射位置から所定距離離れた位置で取り出すことができることを特徴とする波長変換装置。   The wavelength conversion device according to any one of claims 22 to 45, wherein the wavelength conversion device is configured to position the wavelength-converted output light at a predetermined distance from the incident position of the incident light in the vicinity of the incident end. The wavelength converter characterized by being able to take out by. 本発明において、後述の波長変換素子本体に入射される入射光に含まれる第1の波長λ1の光を第1の波長λ1とは異なる波長である第2の波長λ2の光へ波長変換を行うことができる素子自体を波長変換素子本体ということにし、波長変換素子本体の入射光を入射させる端部を入射端部と定義し、以下において、波長変換素子本体に後述の反射体を配置したものや波長変換素子本体等をケース等に実装したものを波長変換素子ということにして、波長変換素子本体の入射端部から前記波長変換素子本体に第1の波長λ1の光を含む光を入射光として入射させ、前記入射光を前記波長変換素子本体内を進行させることによって第1の波長λ1とは異なる第2の波長λ2の光を生成して前記波長変換素子本体から出射させることができる波長変換素子本体を有する波長変換素子あるいは前記波長変換素子を有する波長変換装置を少なくとも1つ用いて波長変換を行う波長変換方法において、前記波長変換方法に用いる少なくとも1つの前記波長変換素子が、前記入射端部から波長変換素子本体に入射された前記入射光が、前記波長変換素子本体内を進行して第1の波長λ1の光から第2の波長λ2の光への波長変換を受けた結果として第1の波長λ1の光と第2の波長λ2の光を含んだ光となって最初に到達する前記波長変換素子本体の前記入射端部とは異なる端部もしくは前記端部近傍(以下、前記波長変換素子本体に入射し前記波長変換素子本体内を波長変換を受けながら進行した第1の波長λ1の光と第2の波長λ2の光を含んだ光が到達する前記波長変換素子本体の端部もしくは前記端部近傍を波長変換素子本体の到達端部ともいう。また、前記波長変換素子本体内を進行して前記到達端部に到達する第1の波長λ1の光と第2の波長λ2の光を含んだ光を到達光ともいう。そして、前記波長変換素子本体に前記入射端部から入射された前記入射光が前記波長変換素子本体内を進行して前記到達光として最初に到達する前記波長変換素子本体の前記入射端部とは異なる端部もしくは前記端部近傍を第1の到達端部ともいう)に、前記第1の到達端部に到達した前記到達光のうちの少なくとも第1の波長λ1の光を反射させて前記波長変換素子本体に再入射させることができる反射体を配置した波長変換素子であることを特徴とする波長変換方法。   In the present invention, wavelength conversion is performed on light having a first wavelength λ1 included in incident light incident on a wavelength conversion element body, which will be described later, to light having a second wavelength λ2, which is a wavelength different from the first wavelength λ1. The element itself that can be used is called the wavelength conversion element main body, the end of the wavelength conversion element main body where the incident light is incident is defined as the incident end, and the reflector described later is arranged on the wavelength conversion element main body below. Or a wavelength conversion element body mounted on a case or the like is referred to as a wavelength conversion element, and light including light of the first wavelength λ1 is incident on the wavelength conversion element body from the incident end of the wavelength conversion element body. A wavelength that allows the incident light to travel through the wavelength conversion element body to generate light having a second wavelength λ2 different from the first wavelength λ1 and to emit the light from the wavelength conversion element body. Transformation element In the wavelength conversion method for performing wavelength conversion using at least one wavelength conversion element having a main body or a wavelength conversion device having the wavelength conversion element, at least one of the wavelength conversion elements used in the wavelength conversion method includes the incident end. As a result of the incident light incident on the wavelength conversion element body from 1, traveling through the wavelength conversion element body and undergoing wavelength conversion from light of the first wavelength λ1 to light of the second wavelength λ2 The wavelength conversion element main body that first reaches as the light including the light of the wavelength λ1 and the light of the second wavelength λ2 is different from the incident end of the wavelength conversion element body or near the end (hereinafter, the wavelength conversion). An end of the wavelength conversion element main body to which light including the light of the first wavelength λ1 and the light of the second wavelength λ2 that has entered the element main body and traveled while undergoing wavelength conversion in the wavelength conversion element main body reaches Said The vicinity of the portion is also referred to as a reaching end portion of the wavelength conversion element body, and includes light having the first wavelength λ1 and light having the second wavelength λ2 that travels in the wavelength conversion element body and reaches the reaching end portion. The wavelength conversion element that the incident light incident on the wavelength conversion element main body from the incident end travels in the wavelength conversion element main body and first reaches the wavelength conversion element main body as the arrival light. At least the first wavelength λ1 of the reaching light that has reached the first reaching end portion at an end portion different from the incident end portion of the main body or the vicinity of the end portion is also referred to as a first reaching end portion). The wavelength conversion method is characterized in that it is a wavelength conversion element in which a reflector capable of reflecting the light and allowing it to enter the wavelength conversion element main body again. 請求項47に記載の波長変換方法において、前記反射体が第2の波長λ2の光をも反射させて前記波長変換素子本体に再入射させることができることを特徴とする波長変換方法。   48. The wavelength conversion method according to claim 47, wherein the reflector also reflects the light having the second wavelength [lambda] 2 so as to re-enter the wavelength conversion element body. 請求項47または48に記載の波長変換方法において、前記波長変換素子本体が分極反転領域を有する分極反転素子であることを特徴とする波長変換方法。   49. The wavelength conversion method according to claim 47 or 48, wherein the wavelength conversion element body is a polarization reversal element having a polarization reversal region. 請求項47〜49のいずれかに記載の波長変換方法において、前記反射体として、前記反射体によって反射されて前記波長変換素子本体に再入射した光ビームの光路と前記反射体によって反射される直前の前記到達光ビームの光路が前記波長変換素子本体内において平行でないような反射体を用いることを特徴とする波長変換方法。   50. The wavelength conversion method according to claim 47, wherein, as the reflector, an optical path of a light beam reflected by the reflector and re-entered the wavelength conversion element main body and immediately before being reflected by the reflector. A wavelength conversion method characterized by using a reflector whose optical path of the reaching light beam is not parallel in the wavelength conversion element body. 請求項47〜50のいずれかに記載の波長変換方法において、前記反射体として、前記第1の波長λ1の光と前記第2の波長λ2の光のいずれか一方または双方に対する反射率が99%以上である反射体を用いることを特徴とする波長変換方法。   51. The wavelength conversion method according to claim 47, wherein the reflector has a reflectivity of 99% for one or both of the light having the first wavelength [lambda] 1 and the light having the second wavelength [lambda] 2. The wavelength conversion method characterized by using the reflector which is the above. 請求項47〜51のいずれかに記載の波長変換方法において、Nを1以上の整数とし、前記第1の到達端部で前記反射体で反射されて前記波長変換素子本体に再入射して前記波長変換素子本体内を進行した第1の波長λ1の光と第2の波長λ2の光を含んだ光が次に到達する到達端部を第2の到達端部ということにし、以下同様に、第Nの到達端部で反射体で反射されて前記波長変換素子本体に再入射して前記波長変換素子本体内を進行した第1の波長λ1の光と第2の波長λ2の光を含んだ到達光が次に到達する到達端部を第N+1の到達端部ということにして、少なくとも1つの前記波長変換素子が、前記第Nの到達端部に到達し前記反射体で反射されて前記波長変換素子本体に再入射して前記波長変換素子本体内を進行した第1の波長λ1の光と第2の波長λ2の光を含んだ到達光が次に到達する第N+1の到達端部に、前記到達光の第1の波長λ1の光と第2の波長λ2の光のいずれか一方または双方を反射させて前記波長変換素子本体に再入射させることができる反射体を配置した波長変換素子であることを特徴とする波長変換方法。   52. The wavelength conversion method according to claim 47, wherein N is an integer of 1 or more, is reflected by the reflector at the first reaching end, and reenters the wavelength conversion element body. A reaching end where the light including the light of the first wavelength λ1 and the light of the second wavelength λ2 that has traveled in the wavelength conversion element main body will be referred to as a second reaching end, and so on. The light having the first wavelength λ1 and the light having the second wavelength λ2 that has been reflected by the reflector at the Nth arrival end, reentered the wavelength conversion element body, and traveled through the wavelength conversion element body was included. The reaching end where the reaching light reaches next is referred to as the (N + 1) th reaching end, and at least one of the wavelength conversion elements reaches the Nth reaching end and is reflected by the reflector so as to have the wavelength. A first wavelength λ1 re-entering the conversion element body and traveling through the wavelength conversion element body Of the first and second wavelengths λ1 and λ2 at the (N + 1) th arrival end where the arrival light including the second light and the second wavelength λ2 reaches next. A wavelength conversion method comprising: a wavelength conversion element in which a reflector capable of reflecting one or both of them and re-entering the wavelength conversion element main body is disposed. 請求項47〜52のいずれかに記載の波長変換方法において、少なくとも1つの前記反射体が、あるいは前記反射体の少なくとも一部が、前記波長変換素子本体の前記到達端部の表面に形成された多層膜から成る反射膜であることを特徴とする波長変換方法。   53. The wavelength conversion method according to claim 47, wherein at least one of the reflectors or at least a part of the reflector is formed on a surface of the reaching end portion of the wavelength conversion element body. A wavelength conversion method characterized by being a reflective film comprising a multilayer film. 請求項53に記載の波長変換方法において、前記反射膜が、前記波長変換素子本体の複数箇所の前記到達端部の表面に連続した状態に形成された反射膜であることを特徴とする波長変換方法。   54. The wavelength conversion method according to claim 53, wherein the reflection film is a reflection film formed in a state continuous with the surfaces of the reaching end portions at a plurality of locations of the wavelength conversion element body. Method. 請求項53または54に記載の波長変換方法において、前記反射膜が前記波長λ1の光と前記波長λ2の光のいずれか一方または双方に対して99.8%以上の反射率を有する多層膜からなる反射膜であることを特徴とする波長変換方法。   55. The wavelength conversion method according to claim 53 or 54, wherein the reflective film is a multilayer film having a reflectance of 99.8% or more with respect to one or both of the light with the wavelength λ1 and the light with the wavelength λ2. The wavelength conversion method characterized by being a reflective film. 請求項47〜55のいずれかに記載の波長変換方法において、少なくとも1つの前記反射体が、あるいは前記反射体の少なくとも一部が、前記波長変換素子本体の前記到達端部の表面に対向して、前記波長変換素子本体の外部に配置された外部反射鏡であることを特徴とする波長変換方法。   The wavelength conversion method according to any one of claims 47 to 55, wherein at least one of the reflectors or at least a part of the reflector faces the surface of the reaching end of the wavelength conversion element body. A wavelength conversion method comprising: an external reflector disposed outside the wavelength conversion element body. 請求項56に記載の波長変換方法において、前記波長変換素子が、少なくとも1つの前記外部反射鏡のそこに入射する前記到達光に対する角度を調節する手段を有することを特徴とする波長変換方法。   57. The wavelength conversion method according to claim 56, wherein the wavelength conversion element includes means for adjusting an angle with respect to the reaching light incident thereon of at least one of the external reflecting mirrors. 請求項56または57に記載の波長変換方法において、前記波長変換素子本体の前記到達端部の表面と前記表面に対向して配置されている前記外部反射鏡の間にレンズを配置したことを特徴とする波長変換方法。   58. The wavelength conversion method according to claim 56, wherein a lens is disposed between a surface of the reaching end portion of the wavelength conversion element body and the external reflecting mirror disposed to face the surface. Wavelength conversion method. 請求項58に記載の波長変換方法において、前記レンズ(以下、第5のレンズともいう)は、前記外部反射鏡で反射されて前記波長変換素子本体に再入射される少なくとも第1の波長λ1の光を含んだ光ビームを、当該波長変換素子において、前記再入射された再入射点から後段の光路で当該波長変換素子の出射端部までの間に集光レンズ(以下、第6のレンズともいう)が配置されている場合には前記第5のレンズの中心と前記第6のレンズの中心の間の全光路長の中間点に相当する位置あるいはその近傍に集光させるレンズであり、前記再入射された再入射点から後段の光路で当該波長変換素子の出射端部までの間に前記第6のレンズが配置されていない場合には前記第5のレンズの中心と当該波長変換素子の出射端部の間の全光路長の中間点に相当する位置あるいはその近傍に集光させるレンズであることを特徴とする波長変換方法。   59. The wavelength conversion method according to claim 58, wherein the lens (hereinafter also referred to as a fifth lens) has at least a first wavelength λ1 that is reflected by the external reflecting mirror and re-enters the wavelength conversion element body. A light beam including light is collected in the wavelength conversion element between the re-incident point of re-incidence and the emission end of the wavelength conversion element in the subsequent optical path. Is arranged at a position corresponding to or near the midpoint of the total optical path length between the center of the fifth lens and the center of the sixth lens, When the sixth lens is not disposed between the re-incident point of re-incidence and the output end of the wavelength conversion element in the subsequent optical path, the center of the fifth lens and the wavelength conversion element Of the total optical path length between the output ends Wavelength conversion method which is a position or a lens for condensing in the vicinity corresponding to the midpoint. 請求項47〜59のいずれかに記載の波長変換方法において、少なくとも1つの前記波長変換素子本体の少なくとも前記入射端部になる表面と前記外部反射鏡に対向している表面と前記到達光を外部に取り出す到達端部になる表面に反射防止膜が形成されていることを特徴とする波長変換方法。   60. The wavelength conversion method according to any one of claims 47 to 59, wherein at least one surface of the wavelength conversion element main body serving as the incident end, a surface facing the external reflecting mirror, and the reaching light are externally transmitted. A wavelength conversion method, wherein an antireflection film is formed on a surface that becomes a reaching end portion to be extracted. 請求項47〜60のいずれかに記載の波長変換方法において、少なくとも1つの前記波長変換素子本体の少なくとも1つの前記到達端部になる表面に対向して、前記到達端部から前記波長変換素子本体の外部に出た到達光を、前記到達光の前記到達端部から前記波長変換素子本体の外部に出る前の光路(以下、反射前光路ともいう)に平行でかつ前記波長変換素子本体内部の前記反射前光路から離れた位置を前記反射前光路と逆方向に進行する光路(以下、逆方向光路ともいう)になるように前記波長変換素子本体に再入射するように反射する反射体(以下、逆光路反射体ともいう)が配置されていることを特徴とする波長変換方法。   The wavelength conversion method according to any one of claims 47 to 60, wherein the wavelength conversion element body faces the surface that becomes at least one arrival end of at least one of the wavelength conversion element bodies from the arrival end. Reaching the outside of the wavelength conversion element body from the arrival end of the reaching light is parallel to an optical path before coming out of the wavelength conversion element body (hereinafter also referred to as a pre-reflection optical path) and inside the wavelength conversion element body A reflector (hereinafter referred to as “reflective”) that reenters the wavelength conversion element main body so that a position away from the pre-reflection optical path becomes an optical path (hereinafter also referred to as a reverse direction optical path) that travels in a direction opposite to the pre-reflection optical path. And a reverse optical path reflector). 請求項61に記載の波長変換方法において、前記逆光路反射体と前記波長変換素子本体の表面の間にレンズ(以下、第13のレンズともいう)が配置されており、前記第13のレンズは、当該レンズを通り前記逆方向光路の入射点に入射させる入射光を、前記逆方向光路の入射点から、当該光路の後段の光路において、当該波長変換素子の出射端部までの間に集光レンズ(以下、第14のレンズともいう)が配置されている場合には前記第13のレンズの中心と前記第14のレンズの中心の間の全光路長の中間点に相当する位置あるいはその近傍に集光させるレンズであり、前記逆方向光路の入射点から、当該光路の後段の光路において、当該波長変換素子の出射端部までの間に前記第14のレンズが配置されていない場合には前記第13のレンズの中心と当該波長変換素子の出射端部の間の全光路長の中間点に相当する位置あるいはその近傍に集光させるレンズであることを特徴とする波長変換方法。   The wavelength conversion method according to claim 61, wherein a lens (hereinafter also referred to as a thirteenth lens) is disposed between the reverse optical path reflector and the surface of the wavelength conversion element main body, and the thirteenth lens is The incident light passing through the lens and incident on the incident point of the reverse optical path is condensed from the incident point of the reverse optical path to the output end of the wavelength conversion element in the optical path after the optical path. When a lens (hereinafter also referred to as a fourteenth lens) is disposed, a position corresponding to the middle point of the total optical path length between the center of the thirteenth lens and the center of the fourteenth lens or the vicinity thereof When the fourteenth lens is not disposed between the incident point of the reverse optical path and the output end of the wavelength conversion element in the optical path subsequent to the optical path. The thirteenth Wavelength conversion method which is a lens and the center of the position or the lens to be condensed near its equivalent to the midpoint of the total optical path length between the emission end portion of the wavelength conversion element. 請求項47〜62のいずれかに記載の波長変換方法において、少なくとも1つの前記波長変換素子本体が、前記波長変換素子本体の前記入射端部が形成されている表面とそれと反対側の表面とが1分以内の開き角で互いに平行に形成されている波長変換素子本体であることを特徴とする波長変換方法。   The wavelength conversion method according to any one of claims 47 to 62, wherein at least one of the wavelength conversion element main bodies includes a surface on which the incident end portion of the wavelength conversion element main body is formed and a surface opposite to the surface. A wavelength conversion method comprising wavelength conversion element bodies formed in parallel with each other with an opening angle of less than 1 minute. 請求項49〜63のいずれかに記載の波長変換方法において、前記波長変換素子本体の表面と各分極反転領域の境界面とが1分以内の開き角で互いに平行であることを特徴とする波長変換方法。   The wavelength conversion method according to any one of claims 49 to 63, wherein a surface of the wavelength conversion element body and a boundary surface of each polarization inversion region are parallel to each other with an opening angle within one minute. Conversion method. 請求項49〜64のいずれかに記載の波長変換方法において、前記波長変換素子本体の分極反転領域の幅が、前記波長変換素子本体に最初に入射した入射光の光路に直交する方向でかつ前記光路とその次の再入射光の光路を含む面における幅において少なくとも2mmあることを特徴とする波長変換方法。   The wavelength conversion method according to any one of claims 49 to 64, wherein a width of a polarization inversion region of the wavelength conversion element body is in a direction orthogonal to an optical path of incident light first incident on the wavelength conversion element body, and A wavelength conversion method characterized by having a width of at least 2 mm in the plane including the optical path and the optical path of the next re-incident light. 請求項49〜65のいずれかに記載の波長変換方法において、前記分極反転素子がPPLN(Periodically Poled LiNbO3)であることを特徴とする波長変換方法。   66. The wavelength conversion method according to claim 49, wherein the polarization inverting element is PPLN (Periodically Poled LiNbO3). 請求項49〜65のいずれかに記載の波長変換方法において、前記分極反転素子がPPKTP(Periodically Poled KTiOPO4)であることを特徴とする波長変換方法。   The wavelength conversion method according to any one of claims 49 to 65, wherein the polarization inverting element is PPKTP (Periodically Poled KTiOPO4). 請求項47〜67のいずれかに記載の波長変換方法において、前記波長変換方法に用いる波長変換素子が、前記光ビームの光路において前記波長変換素子を少なくとも2つ直列に配置して構成されている波長変換素子であることを特徴とする波長変換方法。   68. The wavelength conversion method according to claim 47, wherein the wavelength conversion element used in the wavelength conversion method is configured by arranging at least two wavelength conversion elements in series in the optical path of the light beam. A wavelength conversion method, which is a wavelength conversion element. 請求項68に記載の波長変換方法において、前記光ビームの光路において、少なくとも1組の直列に接続されている2つの前記波長変換素子の間にレンズが配置されていることを特徴とする波長変換方法。   69. The wavelength conversion method according to claim 68, wherein a lens is disposed between at least one pair of the wavelength conversion elements connected in series in the optical path of the light beam. Method. 請求項69に記載の波長変換方法において、前記レンズ(以下、第15のレンズともいう)が、入射光を、当該レンズの後段の光路において、後段の波長変換素子の出射端部までの間に集光レンズ(以下、第16のレンズともいう)が配置されている場合には前記第15のレンズの中心と前記第16のレンズの中心の間の全光路長の中間点に相当する位置あるいはその近傍に集光させるレンズであり、後段の波長変換素子の出射端部までの間に前記第16のレンズが配置されていない場合には前記第15のレンズの中心と後段の波長変換素子の出射端部の間の全光路長の中間点に相当する位置あるいはその近傍に集光させるレンズであることを特徴とする波長変換方法。   70. The wavelength conversion method according to claim 69, wherein the lens (hereinafter also referred to as a fifteenth lens) transmits incident light between an emission end of a subsequent wavelength conversion element in an optical path of the latter stage of the lens. When a condenser lens (hereinafter also referred to as a sixteenth lens) is disposed, a position corresponding to the midpoint of the total optical path length between the center of the fifteenth lens and the center of the sixteenth lens or If the sixteenth lens is not disposed between the lens and the output end of the latter wavelength conversion element, the center of the fifteenth lens and the latter wavelength conversion element A wavelength conversion method characterized by being a lens that focuses light at a position corresponding to an intermediate point of the total optical path length between emission ends or in the vicinity thereof. 請求項47〜70のいずれかに記載の波長変換方法において、前記波長変換方法に用いる波長変換素子が、波長変換された出力光を、前記入射端部の近傍において、前記入射光の入射位置から所定距離離れた位置で取り出すことができる波長変換素子であることを特徴とする波長変換方法。
The wavelength conversion method according to any one of claims 47 to 70, wherein the wavelength conversion element used in the wavelength conversion method converts the wavelength-converted output light from the incident position of the incident light in the vicinity of the incident end. A wavelength conversion method characterized by being a wavelength conversion element that can be taken out at a position separated by a predetermined distance.
JP2005019184A 2005-01-27 2005-01-27 Wavelength conversion element, wavelength converter and wavelength conversion method Pending JP2006208629A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005019184A JP2006208629A (en) 2005-01-27 2005-01-27 Wavelength conversion element, wavelength converter and wavelength conversion method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005019184A JP2006208629A (en) 2005-01-27 2005-01-27 Wavelength conversion element, wavelength converter and wavelength conversion method

Publications (1)

Publication Number Publication Date
JP2006208629A true JP2006208629A (en) 2006-08-10

Family

ID=36965579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005019184A Pending JP2006208629A (en) 2005-01-27 2005-01-27 Wavelength conversion element, wavelength converter and wavelength conversion method

Country Status (1)

Country Link
JP (1) JP2006208629A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009044517A1 (en) 2007-10-01 2009-04-09 Panasonic Corporation Wavelength conversion laser device and image display device using the same
WO2009066450A1 (en) 2007-11-21 2009-05-28 Panasonic Corporation Wavelength conversion device and image display device using same
US8339697B2 (en) 2009-02-26 2012-12-25 Panasonic Corporation Wavelength conversion laser light source and image display device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009044517A1 (en) 2007-10-01 2009-04-09 Panasonic Corporation Wavelength conversion laser device and image display device using the same
US8068274B2 (en) 2007-10-01 2011-11-29 Panasonic Corporation Wavelength conversion laser device and image display device using the same
WO2009066450A1 (en) 2007-11-21 2009-05-28 Panasonic Corporation Wavelength conversion device and image display device using same
US8294979B2 (en) 2007-11-21 2012-10-23 Panasonic Corporation Wavelength conversion device and image display apparatus using the same
US8339697B2 (en) 2009-02-26 2012-12-25 Panasonic Corporation Wavelength conversion laser light source and image display device

Similar Documents

Publication Publication Date Title
Schreiber et al. Nonlinear integrated optical frequency converters with periodically poled Ti: LiNbO3 waveguides
JP2007086108A (en) Method of generating deep ultraviolet laser light and deep ultraviolet laser device
JPWO2005099054A1 (en) Coherent light source and optical device
WO2007026510A1 (en) Fiber laser and optical device
JP5330261B2 (en) Wavelength converter and image display device using the same
JP2006208629A (en) Wavelength conversion element, wavelength converter and wavelength conversion method
US8369366B2 (en) Semiconductor laser excited solid-state laser device
JP2008040301A (en) Wavelength converting element, wavelength converter, and wavelength converting method
JP2009222963A (en) Harmonics generating devices
JP2008040293A (en) Wavelength variable wavelength converter and wavelength variable wavelength converting method
JP5814183B2 (en) Wavelength conversion device
JP5361897B2 (en) Optical wavelength conversion element, wavelength conversion laser device, and image display device
JP2007058191A (en) Element, device, and method for wavelength conversion
JP4111076B2 (en) Wavelength conversion laser device
JP2003270686A (en) Structure for ld fiber pigtail second harmonic output laser resonator
JP4719198B2 (en) Semiconductor laser module and laser light source
JP2001024264A5 (en)
JP5507874B2 (en) Wavelength conversion laser device
JPH01312529A (en) Nonlinear optical element
JP4111075B2 (en) Wavelength conversion laser device
JP7510101B2 (en) Wavelength conversion device
JP2007322695A (en) Wavelength conversion element
KR101075695B1 (en) Second harmonic generator and apparatus of laser light source using the same
JP2005148390A (en) Optical frequency com generator and optical modulator
JP2006292942A (en) Second higher harmonic generator