JP2007057501A - Angle detector - Google Patents

Angle detector Download PDF

Info

Publication number
JP2007057501A
JP2007057501A JP2005246556A JP2005246556A JP2007057501A JP 2007057501 A JP2007057501 A JP 2007057501A JP 2005246556 A JP2005246556 A JP 2005246556A JP 2005246556 A JP2005246556 A JP 2005246556A JP 2007057501 A JP2007057501 A JP 2007057501A
Authority
JP
Japan
Prior art keywords
angle
wave
circuit
pulse signal
difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005246556A
Other languages
Japanese (ja)
Inventor
Junichi Nakaho
純一 仲保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Rika Co Ltd
Original Assignee
Tokai Rika Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Rika Co Ltd filed Critical Tokai Rika Co Ltd
Priority to JP2005246556A priority Critical patent/JP2007057501A/en
Publication of JP2007057501A publication Critical patent/JP2007057501A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an angle detector being manufactured through a simple process and moreover accurately detecting a wide range of angles. <P>SOLUTION: This angle detector is a detector for detecting an operation angle of a component such as a shift lever by utilizing a plurality of (e.g. four) of magnetoresistive elements. The magnetoresistive elements are mounted on a vehicle body, etc. at disposition intervals of 45°. Differences are severally obtained between outputs of magnetoresistive elements leaving disposition intervals of 90° from each other to calculate the voltage value of the sum of the differences. Subsequently, an AC wave W1 of the voltage value of the sum is converted into a pulse signal V1 by being half-wave rectified while sine wave current passed through the group of magnetoresistive elements is also converted into a pulse signal V2 by being likewise half-wave rectified to calculate an absolute value ¾V¾ of a difference between them. The absolute value ¾V¾ is smoothed during a half cycle T/2 of the sine wave current to output it as an angle signal corresponding to the direction θ of a magnetic field. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、操作部品を操作した際の角度を検出する角度検出装置に関する。   The present invention relates to an angle detection device that detects an angle when an operation component is operated.

従来、シフトレバー等の操作部品の操作角度(即ち、回転角度)を磁気抵抗素子を用いて検出する角度検出装置が広く使用されている。この角度検出装置においては、例えばシフトレバー等の操作部品に磁石を取り付け、その操作部品を支持するフレーム等に磁気抵抗素子を配置する。そして、操作部品が操作された際には、磁石と磁気抵抗素子との間の相対位置が変わることに伴い、図6に示すように磁石から磁気抵抗素子に加わる磁界の方向(以下、磁界向きθと記す)が変化するため、磁気抵抗素子がその磁界向きを検出して操作部品の回転角度を検出する。   Conventionally, an angle detection device that detects an operation angle (that is, a rotation angle) of an operation component such as a shift lever using a magnetoresistive element has been widely used. In this angle detection device, for example, a magnet is attached to an operation component such as a shift lever, and a magnetoresistive element is disposed on a frame or the like that supports the operation component. When the operating component is operated, the direction of the magnetic field applied from the magnet to the magnetoresistive element as shown in FIG. 6 (hereinafter referred to as the direction of the magnetic field) as the relative position between the magnet and the magnetoresistive element changes. Therefore, the magnetoresistive element detects the direction of the magnetic field and detects the rotation angle of the operation component.

ところで、磁気抵抗素子の抵抗特性(出力特性)は、磁気抵抗素子の抵抗値をR(θ)、磁気抵抗素子の出力基準(出力波形の振幅中心)をR、磁気抵抗素子が磁石から受ける磁界向きをθ、磁気抵抗素子の最大抵抗をΔRとした場合、次式(1) で与えられる。
R(θ)=R+ΔR・cos θ … (1)
By the way, the resistance characteristic (output characteristic) of the magnetoresistive element is such that the resistance value of the magnetoresistive element is R (θ), the output reference of the magnetoresistive element (the amplitude center of the output waveform) is R 0 , and the magnetoresistive element receives from the magnet. When the magnetic field direction is θ and the maximum resistance of the magnetoresistive element is ΔR, the following equation (1) is given.
R (θ) = R 0 + ΔR · cos 2 θ (1)

よって、磁気抵抗素子の抵抗特性は、図7に示すように横軸を磁界向きθ、縦軸を変数値(R(θ)−R)/ΔRとすると、磁界向きθが−90度及び+90度の時に変数値が最小値「0」をとり、磁界向きθが0度の時に変数値が最大値「1」をとる正弦波状の特性波形Sを満たすことになる。同図からも分かるように、1つの磁気抵抗素子を用いて回転角度検出を行なった場合、特性波形Sは磁界向きθが0度の時を中心にして左右対称波形をとるため、一意に検出できる角度検出範囲が0度〜90度の範囲に限定されてしまう。 Therefore, as shown in FIG. 7, the resistance characteristic of the magnetoresistive element is as follows. When the horizontal axis is the magnetic field direction θ and the vertical axis is the variable value (R (θ) −R 0 ) / ΔR, the magnetic field direction θ is −90 degrees. When the angle is +90 degrees, the variable value takes the minimum value “0”, and when the magnetic field direction θ is 0 degrees, the sinusoidal characteristic waveform S 0 where the variable value takes the maximum value “1” is satisfied. As can be seen from the figure, when the rotation angle is detected by using one magnetoresistive element, the characteristic waveform S 0 has a symmetrical waveform centering on the magnetic field direction θ of 0 degree. The detectable angle detection range is limited to a range of 0 degrees to 90 degrees.

また、特性波形Sの曲線性部分(即ち、磁界向きθが−90度、0度、+90度付近)においては、磁気抵抗素子の性能の関係上、角度検出する度に毎回必ず同じ値を出力する保証がない。従って、特性波形Sの曲線性部分を用いて回転角度の検出を行なうと、その曲線性部分において検出精度が悪くなる問題が生じてしまう。そこで、特性波形Sの直線性部分のみを用いて回転角度検出を行なうことも考えられるが、これを用いると角度検出範囲が更に小さくなり、実用に適さなくなる。 Further, in the curvilinear portion of the characteristic waveform S 0 (that is, the magnetic field direction θ is around −90 degrees, 0 degrees, and +90 degrees), the same value is always obtained every time the angle is detected due to the performance of the magnetoresistive element. There is no guarantee of output. Therefore, if the rotation angle is detected using the curvilinear portion of the characteristic waveform S 0 , there arises a problem that the detection accuracy is deteriorated in the curvilinear portion. Therefore, it is conceivable to perform the rotation angle detected by using only linear portion of the characteristic waveform S 0, the use of this angle detection range is further reduced, it is not suitable for practical use.

そこで、回転角度を広範囲に精度よく検出する技術が、例えば非特許文献1に開示されている。この技術においては、図8に示すように、2つのホール素子51,52を直交する向きに配置し、一方のホール素子51に余弦波電流I・cosωtを、他方のホール素子52に正弦波電流I・sinωtを各々流す。これらホール素子51,52に磁界Hが加わった場合、K をホール係数、B を磁束密度とすると、ホール素子51,52からは磁界Hの強さに応じたホール電圧kIB・cosωt・sinθ,kIB・sinωt・cosθが各々出力された状態となる。   Therefore, for example, Non-Patent Document 1 discloses a technique for accurately detecting a rotation angle over a wide range. In this technique, as shown in FIG. 8, two Hall elements 51 and 52 are arranged in an orthogonal direction, one Hall element 51 has a cosine wave current I · cosωt, and the other Hall element 52 has a sine wave current. Run I and sinωt respectively. When a magnetic field H is applied to these Hall elements 51 and 52, assuming that K is a Hall coefficient and B is a magnetic flux density, the Hall elements 51 and 52 have Hall voltages kIB · cosωt · sinθ, kIB corresponding to the strength of the magnetic field H.・ Sinωt and cosθ are output.

ところで、ホール電圧kIB・cosωt・sinθと、ホール電圧kIB・sinωt・cosθとを加算して電圧信号を求めると、この電圧信号はkIB・cos(ωt−θ)となる。この電圧信号kIB・cos(ωt−θ)は、同式からも分かるように、正弦波電流I・sinωt(余弦波電流I・cosωt)に対して、磁界向きθと同じだけ位相がずれた波形をとる。よって、非特許文献1の技術では、この電圧信号kIB・cos(ωt−θ)を求め、その位相差を算出することによって磁界向きθを検出する。
G.Steinbaugh,「Hall compass points digitally to headings」,Electronics,米国,1980年,第53巻,第27号,p.112−114
By the way, when the Hall voltage kIB · cosωt · sinθ and the Hall voltage kIB · sinωt · cosθ are added to obtain a voltage signal, the voltage signal becomes kIB · cos (ωt−θ). This voltage signal kIB · cos (ωt−θ) has a waveform that is out of phase with the sine wave current I · sinωt (cosine wave current I · cosωt) as much as the magnetic field direction θ, as can be seen from the equation. Take. Therefore, in the technique of Non-Patent Document 1, the voltage signal kIB · cos (ωt−θ) is obtained, and the phase difference is calculated to detect the magnetic field direction θ.
G. Steinbaugh, “Hall compass points digitally to headings”, Electronics, USA, 1980, Vol. 53, No. 27, p. 112-114

ところで、この技術においては、ホール素子51,52を直交して配置しなければならないため、例えばスパッタ等を用いて同一基板上に同時製造する製造方法が採用できず、順にホール素子51,52を基板に製造する工程を経る製造方法を用いなければならない。このため、ホール素子51,52を正確な直交状態で配置することが難しく、ホール素子51,52間にバラツキが生じて充分な角度検出精度が得られない問題があった。また、高い製造精度でホール素子51,52を作製すれば、ホール素子51,52の直交配置の精度を確保することも可能であるが、製造効率や製造コスト面から考えると、これを採用するのは現状として難しい。   By the way, in this technique, since the Hall elements 51 and 52 must be arranged orthogonally, for example, a manufacturing method of simultaneous manufacturing on the same substrate using sputtering or the like cannot be adopted, and the Hall elements 51 and 52 are sequentially formed. A manufacturing method that goes through a process of manufacturing a substrate must be used. For this reason, it is difficult to arrange the Hall elements 51 and 52 in an accurate orthogonal state, and there is a problem that variations between the Hall elements 51 and 52 occur and sufficient angle detection accuracy cannot be obtained. In addition, if the Hall elements 51 and 52 are manufactured with high manufacturing accuracy, it is possible to ensure the accuracy of the orthogonal arrangement of the Hall elements 51 and 52, but this is adopted from the viewpoint of manufacturing efficiency and manufacturing cost. Is currently difficult.

本発明の目的は、簡単な工程を経て製造することができ、しかも広範囲の角度を精度よく検出することができる角度検出装置を提供することにある。   An object of the present invention is to provide an angle detection device that can be manufactured through a simple process and that can accurately detect a wide range of angles.

この発明によれば、操作部品を操作した際に、該操作部品を相対移動可能に支持する支持部品に対して前記操作部品の成す角度を検出する角度検出装置において、磁界を発生すべく前記操作部品及び前記支持部品の一方に設けられた磁界発生手段と、前記操作部品及び前記支持部品の他方に設けられ、前記磁界を検出すべく互いに一定角度の配置間隔を成した取付状態をとる複数の磁気抵抗素子と、前記一定角度の定数倍の配置間隔を成す磁気抵抗素子から成る各組に、各々位相が異なる交流電流を流す電流発生回路と、前記各組において同一組の中で前記磁気抵抗素子間の出力の差分をとる差動回路と、前記差動回路から組単位で出力された差分の和を算出する加算回路と、前記差動の和の交流波と前記交流電流の交流波との間の位相差を検出する位相差検出回路と、前記位相差を半周期単位で平滑化することによって、その平滑化した後の電圧値を前記角度に対応した値として求める平滑化回路とを備えたことを要旨とする。   According to the present invention, in the angle detection device that detects the angle formed by the operation component with respect to the support component that supports the operation component so as to be relatively movable when the operation component is operated, the operation to generate a magnetic field is performed. A plurality of magnetic field generating means provided on one of the component and the support component, and a plurality of mounting states provided on the other of the operation component and the support component and arranged at a predetermined angular interval to detect the magnetic field. A current generating circuit for supplying alternating currents having different phases to each set comprising a magnetoresistive element and a magnetoresistive element having an arrangement interval of a constant multiple of the constant angle; and the magnetoresistor in the same set in each set A differential circuit that takes an output difference between elements, an adder circuit that calculates a sum of differences output from the differential circuit in pairs, an AC wave of the differential sum, and an AC wave of the AC current The phase difference between And a smoothing circuit that obtains a voltage value after smoothing as a value corresponding to the angle by smoothing the phase difference in half-cycle units. To do.

この構成によれば、操作部品が操作された際には、操作部品が支持部品に対して相対移動するため、磁界発生手段から磁気抵抗素子に加わる磁界向きがその相対移動位置に応じて変化する。ところで、本発明の磁気抵抗素子は一定角度の配置間隔を成して配置され、これら磁気抵抗素子には、一定角度の定数倍の配置間隔を成す組ごとに各々位相が異なる交流電流が電流発生回路によって流される。従って、磁気抵抗素子は、その配置状態から決まる配置向きと、自身に流れる交流電流の波形とに基づく出力特性をとる。   According to this configuration, when the operation component is operated, the operation component relatively moves with respect to the support component. Therefore, the direction of the magnetic field applied from the magnetic field generating unit to the magnetoresistive element changes according to the relative movement position. . By the way, the magnetoresistive elements of the present invention are arranged at an arrangement interval of a constant angle, and an alternating current having a different phase is generated in each of the magnetoresistive elements at an arrangement interval of a constant multiple of a constant angle. Shed by the circuit. Therefore, the magnetoresistive element has output characteristics based on the arrangement direction determined from the arrangement state and the waveform of the alternating current flowing through the magnetoresistive element.

差動回路は、電流発生回路から流される電流が同位相の組の中で磁気抵抗素子の出力の差分をとり、その差分に応じた各出力信号を加算回路に出力する。加算回路は差分回路から差分を入力すると、これら差分の和を算出するとともに、この差分の和に応じた出力信号を位相差検出回路に出力する。位相差検出回路は、差分の和の交流波と、磁気抵抗素子に流す交流電流との間の位相差を検出し、その位相差に応じた出力信号を平滑化回路に出力する。   The differential circuit takes a difference between the outputs of the magnetoresistive elements in the group in which the currents flowing from the current generation circuit are in phase, and outputs each output signal corresponding to the difference to the adder circuit. When the difference circuit receives the difference from the difference circuit, the adder circuit calculates the sum of these differences and outputs an output signal corresponding to the difference sum to the phase difference detection circuit. The phase difference detection circuit detects a phase difference between the AC wave of the sum of the differences and the AC current that flows through the magnetoresistive element, and outputs an output signal corresponding to the phase difference to the smoothing circuit.

ところで、差分の和から求まる交流波は、各磁気抵抗素子に流される交流電流の波形に対して位相が変化した状態で出力されるが、この位相差(位相の変化量)を半周期で平滑化した値は、磁気抵抗素子に加わる磁界向きに応じた値となる。従って、差分の和の交流波と交流電流の交流波との間の位相差を平滑化した値を見れば磁界向きが分かるため、平滑化回路によってこの位相差を平滑化した値を算出し、この平滑化した後の値を基に、磁気抵抗素子に加わる磁界向き、つまり操作部品の操作角度を算出する。   By the way, the AC wave obtained from the sum of the differences is output with the phase changed with respect to the waveform of the AC current flowing through each magnetoresistive element. This phase difference (phase change amount) is smoothed in a half cycle. The converted value is a value corresponding to the direction of the magnetic field applied to the magnetoresistive element. Therefore, since the magnetic field direction can be understood by looking at the value obtained by smoothing the phase difference between the alternating current wave of the sum of the differences and the alternating current wave of the alternating current, a value obtained by smoothing this phase difference by the smoothing circuit is calculated, Based on this smoothed value, the direction of the magnetic field applied to the magnetoresistive element, that is, the operation angle of the operation component is calculated.

従って、本発明の構成によれば、位相差検出回路が算出する位相差は90度以上の範囲で磁界向きを検出可能な値として出力可能であるため、例えば1つの磁気抵抗素子のみを使用して角度検出を行なう場合に比べて、90度以上の広範囲の角度を精度よく検出することが可能である。また、本発明の構成においては、磁気抵抗素子の配置向きを変えるのではなく、磁気抵抗素子の配置角度間隔を変えて配置する構成であるため、スパッタ等により基板に磁気抵抗素子の同時製造が可能である。従って、面倒な製造工程を経なくとも、高い配置精度を有する磁気抵抗素子が製造可能である。   Therefore, according to the configuration of the present invention, the phase difference calculated by the phase difference detection circuit can be output as a value capable of detecting the direction of the magnetic field in a range of 90 degrees or more. For example, only one magnetoresistive element is used. Therefore, it is possible to accurately detect a wide range of angles of 90 degrees or more compared to the case where angle detection is performed. Further, in the configuration of the present invention, the arrangement of the magnetoresistive elements is not changed, but the arrangement angle interval of the magnetoresistive elements is changed, so that the magnetoresistive elements can be simultaneously manufactured on the substrate by sputtering or the like. Is possible. Therefore, it is possible to manufacture a magnetoresistive element having high placement accuracy without going through a troublesome manufacturing process.

この発明によれば、前記位相差検出回路は、前記差分の和の交流波を半波整流して第1パルス信号を生成し、前記交流電流の交流波を同じく半波整流して第2パルス信号を生成し、前記第1パルス信号及び第2パルス信号の電圧差を前記位相差として求め、前記平滑化回路は、前記電圧差を半周期単位で平滑化し、その平滑化した電圧値を前記角度に対応した値として求めることを要旨とする。   According to the present invention, the phase difference detection circuit generates a first pulse signal by half-wave rectifying the alternating current wave of the difference, and secondly rectifies the alternating current wave of the alternating current. A signal is generated, a voltage difference between the first pulse signal and the second pulse signal is obtained as the phase difference, and the smoothing circuit smoothes the voltage difference in a half cycle unit, and the smoothed voltage value is The gist is to obtain the value corresponding to the angle.

この構成によれば、差分の和に基づく第1パルス信号の電圧値と、交流電流に基づく第2パルス信号の電圧値との間の電圧値をとって、それを平滑化するという簡単な手法で、操作部品の操作角度を算出することが可能となる。   According to this configuration, a simple method of taking the voltage value between the voltage value of the first pulse signal based on the sum of the differences and the voltage value of the second pulse signal based on the alternating current and smoothing it. Thus, the operation angle of the operation component can be calculated.

この発明によれば、前記位相差検出回路は、前記差分の和の交流波を半波整流して第1パルス信号を生成し、前記交流電流の交流波を同じく半波整流して第2パルス信号を生成し、前記第1パルス信号のエッジと前記第2パルス信号のエッジとの間の時間差を前記位相差として求め、前記平滑化回路は、前記時間差を半周期単位で平滑化し、その平滑化した平均時間を前記角度に対応した値として求めることを要旨とする。   According to the present invention, the phase difference detection circuit generates a first pulse signal by half-wave rectifying the alternating current wave of the difference, and secondly rectifies the alternating current wave of the alternating current. A signal is generated, a time difference between the edge of the first pulse signal and the edge of the second pulse signal is obtained as the phase difference, and the smoothing circuit smoothes the time difference in half-cycle units, The gist is to obtain the averaged time as a value corresponding to the angle.

この構成によれば、第1パルス信号及び第2パルス信号の電圧値を見て角度検出を行なうのではなく、第1パルス信号及び第2パルス信号のエッジ間の時間差に基づき、操作角度が算出される。従って、例えば温度変化等の外的要因によって第1パルス信号や第2パルス信号の電圧値が変動したとしても、これら電圧値は角度算出の際のパラメータとして用いていないので、角度算出には影響が及ばないことから、本発明の構成を採用すれば角度検出精度確保に効果がある。   According to this configuration, the operation angle is calculated based on the time difference between the edges of the first pulse signal and the second pulse signal, rather than performing the angle detection by looking at the voltage values of the first pulse signal and the second pulse signal. Is done. Therefore, even if the voltage value of the first pulse signal or the second pulse signal fluctuates due to an external factor such as a temperature change, these voltage values are not used as parameters for angle calculation. Therefore, if the configuration of the present invention is adopted, it is effective to ensure angle detection accuracy.

本発明によれば、簡単な工程を経て製造することができ、しかも広範囲の角度を精度よく検出することができる。   According to the present invention, it can be manufactured through a simple process, and a wide range of angles can be detected with high accuracy.

以下、本発明を具体化した角度検出装置の一実施形態を図1〜図5に従って説明する。
図1に示すように、自動変速機でギヤ変速が行なわれる車両(通称、オートマチック車)1には、自動変速機のギヤを切り換える際に操作するシフトレバー2が配設されている。シフトレバー2は、自身の基端を支点として回動可能な状態で車体3に支持されている。シフトレバー2には、シフトレバー2の操作角度Rθを検出する角度検出装置4が配設されている。角度検出装置4は、シフトレバー2がP位置、R位置、N位置、D位置、セカンド位置、L位置等の各位置にシフト操作された際、その操作位置を検出する。なお、シフトレバー2が操作部品に相当し、車体3が支持部品に相当する。
Hereinafter, an embodiment of an angle detection device embodying the present invention will be described with reference to FIGS.
As shown in FIG. 1, a shift lever 2 that is operated when a gear of an automatic transmission is switched is disposed in a vehicle (commonly referred to as an automatic vehicle) 1 in which gear shifting is performed by an automatic transmission. The shift lever 2 is supported by the vehicle body 3 so as to be rotatable about its base end as a fulcrum. The shift lever 2, the angle detection device 4 for detecting an operation angle of the shift lever 2 R theta is disposed. The angle detection device 4 detects the operation position when the shift lever 2 is shifted to each position such as the P position, the R position, the N position, the D position, the second position, and the L position. The shift lever 2 corresponds to an operation part, and the vehicle body 3 corresponds to a support part.

図2に示すように、車体3にはシフトレバー2の近傍に角度検出装置4の基板5が取着され、この基板5には複数の磁気抵抗素子6が実装されている。本例の磁気抵抗素子6は例えばNiCo(ニッケルコバルト)の強磁性体を材質としたものが使用され、本例においては4つ使用されている。これら磁気抵抗素子6a〜6dは、隣接する素子との間の配置間隔が45度をなした状態で車体3に取り付けられ、各々印加される磁界Hの方向(以下、磁界向きθと記す)に応じた素子電圧(出力信号)Va〜Vd(図3参照)を出力する。   As shown in FIG. 2, a substrate 5 of the angle detection device 4 is attached to the vehicle body 3 in the vicinity of the shift lever 2, and a plurality of magnetoresistive elements 6 are mounted on the substrate 5. The magnetoresistive element 6 of this example is made of, for example, a NiCo (nickel cobalt) ferromagnetic material, and four are used in this example. These magnetoresistive elements 6a to 6d are attached to the vehicle body 3 in a state where the arrangement interval between adjacent elements is 45 degrees, and each is applied in the direction of the applied magnetic field H (hereinafter referred to as the magnetic field direction θ). The corresponding element voltages (output signals) Va to Vd (see FIG. 3) are output.

一方、図2に示すように、シフトレバー2には磁気抵抗素子6a〜6dと向き合う位置に磁石7が取り付けられている。磁石7は、フェライト磁石等の一般的に使用される材質のものが用いられ、シフトレバー2が操作された際に、磁気抵抗素子6a〜6dに加わる磁界向きが順次変化する位置に配置されている。シフトレバー2が操作された際には、磁石7の移動に伴って、磁気抵抗素子6a〜6dの周囲の磁界Hの方向が変化するため、磁気抵抗素子6a〜6dがその磁界向きθを検出することで、シフトレバー2の操作角度Rθが検出される。なお、磁石7が磁界発生手段に相当する。 On the other hand, as shown in FIG. 2, a magnet 7 is attached to the shift lever 2 at a position facing the magnetoresistive elements 6 a to 6 d. The magnet 7 is made of a commonly used material such as a ferrite magnet, and is arranged at a position where the direction of the magnetic field applied to the magnetoresistive elements 6a to 6d sequentially changes when the shift lever 2 is operated. Yes. When the shift lever 2 is operated, the direction of the magnetic field H around the magnetoresistive elements 6a to 6d changes as the magnet 7 moves, so that the magnetoresistive elements 6a to 6d detect the magnetic field direction θ. by the operation angle of the shift lever 2 R theta it is detected. The magnet 7 corresponds to a magnetic field generating unit.

図3に示すように、互いに90度の配置間隔を成す組である磁気抵抗素子6a,6cは電源側から6c、6aの順で直列に接続されている。この磁気抵抗素子群には、角度検出装置4の稼働時に同素子群に余弦波電流I0・cosωt を流す第1の定電流回路8が接続されている。また、もう1つの互いに90度の配置間隔を成す組である磁気抵抗素子6b,6dは電源側から6d,6bの順で直列に接続されている。この磁気抵抗素子群には、角度検出装置4の稼働時に同素子群に正弦波電流I0・sinωt を流す第2の定電流回路9が接続されている。なお、I0は磁気抵抗素子群を流れる最大電流である。また、第1の定電流回路8と第2の定電流回路9が電流発生回路に相当し、余弦波電流I0・cosωt 及び正弦波電流I0・sinωt が交流電流に相当する。 As shown in FIG. 3, the magnetoresistive elements 6a and 6c, which form a set having an arrangement interval of 90 degrees from each other, are connected in series from the power source side in the order of 6c and 6a. The magnetoresistive element group is connected to a first constant current circuit 8 for flowing a cosine wave current I 0 · cosωt to the element group when the angle detection device 4 is operated. Further, another magnetoresistive element 6b, 6d, which is a set having an arrangement interval of 90 degrees, is connected in series in the order of 6d, 6b from the power source side. The magnetoresistive element group is connected to a second constant current circuit 9 for flowing a sine wave current I 0 · sinωt to the element group when the angle detection device 4 is operated. I 0 is the maximum current flowing through the magnetoresistive element group. The first constant current circuit 8 and the second constant current circuit 9 correspond to a current generation circuit, and the cosine wave current I 0 · cosωt and the sine wave current I 0 · sinωt correspond to an alternating current.

各磁気抵抗素子6a〜6dには、磁気抵抗素子6a〜6dに生じる電圧を各々検出する差動増幅回路10〜13が接続されている。これら差動増幅回路10〜13は、例えばオペアンプや抵抗から成り、高入力インピーダンス差動増幅回路等が使用される。差動増幅回路10〜13は、磁気抵抗素子6a〜6dのうち組を成す素子において、一方の入力端子が磁気抵抗素子の入力端子に接続され、他方の入力端子が磁気抵抗素子の出力端子に接続され、磁気抵抗素子にそれぞれ生じる素子電圧(電圧信号)Va〜Vdを各々出力する。   Each of the magnetoresistive elements 6a to 6d is connected to a differential amplifier circuit 10 to 13 for detecting a voltage generated in the magnetoresistive elements 6a to 6d. These differential amplifier circuits 10 to 13 are composed of, for example, an operational amplifier or a resistor, and a high input impedance differential amplifier circuit or the like is used. In the differential amplifier circuits 10 to 13, of the magnetoresistive elements 6 a to 6 d, one input terminal is connected to the input terminal of the magnetoresistive element, and the other input terminal is connected to the output terminal of the magnetoresistive element. The device voltages (voltage signals) Va to Vd that are respectively connected and generated in the magnetoresistive elements are output.

差動増幅回路10,12には、これら差動増幅回路10,12の出力の差分を検出する差動増幅回路14が接続されている。この差動増幅回路14もオペアンプや抵抗等から成り、高入力インピーダンス差動増幅回路等が使用される。差動増幅回路14は、一方の入力端子が下段の差動増幅回路10の出力端子に接続され、他方の入力端子が下段の差動増幅回路12の出力端子に接続され、差動増幅回路10から入力する素子電圧Vaと差動増幅回路12から入力する素子電圧Vcの差分をとって、その差分に応じた差分電圧V13を出力する。 The differential amplifier circuits 10 and 12 are connected to a differential amplifier circuit 14 that detects a difference between outputs of the differential amplifier circuits 10 and 12. The differential amplifier circuit 14 is also composed of an operational amplifier, a resistor, and the like, and a high input impedance differential amplifier circuit or the like is used. The differential amplifier circuit 14 has one input terminal connected to the output terminal of the lower differential amplifier circuit 10 and the other input terminal connected to the output terminal of the lower differential amplifier circuit 12. The difference between the element voltage Va input from the element and the element voltage Vc input from the differential amplifier circuit 12 is taken, and a difference voltage V 13 corresponding to the difference is output.

差動増幅回路11,13には、これら差動増幅回路11,13の出力の差分を検出する差動増幅回路15が接続されている。この差動増幅回路15もオペアンプや抵抗等から成り、高入力インピーダンス差動増幅回路等が使用される。差動増幅回路15は、一方の入力端子が下段の差動増幅回路11の出力端子に接続され、他方の入力端子が下段の差動増幅回路13の出力端子に接続され、差動増幅回路11から入力する電圧信号Vbと差動増幅回路13から入力する電圧信号Vdの差分をとって、その差分に応じた差分電圧V24を出力する。なお、差動増幅回路10〜15が差動回路に相当する。 The differential amplifier circuits 11 and 13 are connected to a differential amplifier circuit 15 that detects a difference between outputs of the differential amplifier circuits 11 and 13. The differential amplifier circuit 15 is also composed of an operational amplifier, a resistor, and the like, and a high input impedance differential amplifier circuit or the like is used. The differential amplifier circuit 15 has one input terminal connected to the output terminal of the lower differential amplifier circuit 11 and the other input terminal connected to the output terminal of the lower differential amplifier circuit 13. The difference between the voltage signal Vb input from the signal Vb and the voltage signal Vd input from the differential amplifier circuit 13 is taken, and a difference voltage V 24 corresponding to the difference is output. The differential amplifier circuits 10 to 15 correspond to differential circuits.

差動増幅回路14,15には、これら差動増幅回路14,15の出力の和を検出する加算回路16が接続されている。加算回路16は、一方の入力端子が下段の差動増幅回路14の出力端子に接続され、他方の入力端子が下段の差動増幅回路15の出力端子に接続され、差動増幅回路14から入力する差分電圧V13と差動増幅回路15から入力する差分電圧24の和をとって、その和に応じた加算電圧Vout を出力する。 An adder circuit 16 for detecting the sum of the outputs of the differential amplifier circuits 14 and 15 is connected to the differential amplifier circuits 14 and 15. The adder circuit 16 has one input terminal connected to the output terminal of the lower differential amplifier circuit 14 and the other input terminal connected to the output terminal of the lower differential amplifier circuit 15. taking the sum of the differential voltage V 13 and the differential voltage 24 input from the differential amplifier circuit 15 which outputs the addition voltage Vout corresponding to the sum.

ここで、加算電圧Vout は、次式(2) 〜(7) から求まる式(8) を満たす値として算出される。まず、本例における4つの磁気抵抗素子6a〜6dは、隣接する素子同士の間隔が45度となるように配置されている。このため、各磁気抵抗素子6a〜6dの各抵抗値(特性値)R〜Rは、磁気抵抗素子6a〜6dの出力基準(出力波形の振幅中心)をR、磁気抵抗素子6a〜6dの最大抵抗(抵抗の最大変化値)をΔR、磁気抵抗素子6a〜6dに印加される磁界向きをθとすると、次式(2) 〜(5) を満たす値をとる。
=R+ΔR・cos (θ−45) … (2)
=R+ΔR・cos (θ) … (3)
=R+ΔR・cos (θ+45) … (4)
=R+ΔR・cos (θ+90) … (5)
Here, the addition voltage Vout is calculated as a value satisfying the equation (8) obtained from the following equations (2) to (7). First, the four magnetoresistive elements 6a to 6d in this example are arranged so that the interval between adjacent elements is 45 degrees. Therefore, the resistance values (characteristic values) R 1 to R 4 of the magnetoresistive elements 6 a to 6 d are R 0 and the magnetoresistive elements 6 a to 6 are the output reference (the amplitude center of the output waveform) of the magnetoresistive elements 6 a to 6 d. When the maximum resistance of 6d (maximum change value of resistance) is ΔR and the direction of the magnetic field applied to the magnetoresistive elements 6a to 6d is θ, values satisfying the following expressions (2) to (5) are obtained.
R 1 = R 0 + ΔR · cos 2 (θ−45) (2)
R 2 = R 0 + ΔR · cos 2 (θ) (3)
R 3 = R 0 + ΔR · cos 2 (θ + 45) (4)
R 4 = R 0 + ΔR · cos 2 (θ + 90) (5)

図4に示すように、抵抗値R〜Rの特性波形S〜Sは振幅が「1」の交流波形をとっており、磁気抵抗素子6a〜6dの配置間隔が45度を成しているため、隣接する磁気抵抗素子間の波形においては位相が45度ずつ変位している。即ち、磁気抵抗素子6bの特性波形Sは磁気抵抗素子6aの特性波形Sに対して位相が−45度ずれ、磁気抵抗素子6cの特性波形Sは磁気抵抗素子6bの特性波形Sに対して位相が−45度ずれ、磁気抵抗素子6dの特性波形Sは磁気抵抗素子6cの特性波形Sに対して位相が−45度ずれている。 As shown in FIG. 4, the characteristic waveforms S 1 to S 4 of the resistance values R 1 to R 4 have an alternating waveform with an amplitude of “1”, and the arrangement interval of the magnetoresistive elements 6a to 6d forms 45 degrees. Therefore, in the waveform between adjacent magnetoresistive elements, the phase is displaced by 45 degrees. That is, phase shifted -45 degrees relative to the characteristic waveform S 1 characteristic waveform S 2 of the magnetoresistive element 6b magnetoresistive element 6a, characteristic waveform S 3 of the magnetoresistive element 6c magnetoresistive element 6b characteristic waveform S 2 phase shifted -45 degrees relative to the characteristic waveform S 4 of the magnetoresistive element 6d phase is shifted -45 degrees relative characteristic waveform S 3 of the magnetoresistive element 6c.

但し、本例においては磁気抵抗素子6a〜6dの抵抗特性が全て同じものとする。ここで、抵抗特性が揃った磁気抵抗素子6a〜6dを製造する一例として、例えば磁気抵抗素子6a〜6dの材料をスパッタ等で4個を同時に基板5に着ける製造方法が採用される。また、この製造方法を用いた場合には、磁気抵抗素子6a〜6dの抵抗特性が揃うだけでなく、磁気抵抗素子6a〜6dのパターンが極めて小さいものとなり、角度検出装置4のサイズの小型化にも効果がある。   However, in this example, the resistance characteristics of the magnetoresistive elements 6a to 6d are all the same. Here, as an example of manufacturing the magnetoresistive elements 6a to 6d having uniform resistance characteristics, for example, a manufacturing method in which four materials of the magnetoresistive elements 6a to 6d are simultaneously attached to the substrate 5 by sputtering or the like is employed. Further, when this manufacturing method is used, not only the resistance characteristics of the magnetoresistive elements 6a to 6d are uniform, but also the patterns of the magnetoresistive elements 6a to 6d become extremely small, and the size of the angle detection device 4 is reduced. Is also effective.

続いて、互いに90度間隔をなす組である磁気抵抗素子6a,6cにおいて、その抵抗値R,Rの差分R13(=R−R)を求め、同じく互いに90度間隔をなす組である磁気抵抗素子6b,6dにおいて、その抵抗値R,Rの差分R24(=R−R)を同様にして求める。これら差分R13,R24は、次式(6) ,(7) を満たす値をとる。
13=R−R=ΔR・sin 2θ … (6)
24=R−R=ΔR・cos 2θ … (7)
Subsequently, a difference R 13 (= R 1 −R 3 ) between the resistance values R 1 and R 3 is obtained in the magnetoresistive elements 6a and 6c which are a set having a 90 ° interval, and the 90 ° interval is also obtained. set a is magnetoresistive element 6b, in 6d, obtains a difference R 24 of the resistance value R 2, R 4 a (= R 2 -R 4) in a similar manner. These differences R 13 and R 24 take values that satisfy the following expressions (6) and (7).
R 13 = R 1 −R 3 = ΔR · sin 2θ (6)
R 24 = R 2 −R 4 = ΔR · cos 2θ (7)

図4に示すように、差分R13,R24の特性波形S13,S24は、振幅の範囲が「−1」〜「+1」の交流波形をとっており、互いに位相が45度ずれた波形となる。即ち、差分R13の特性波形S13が正弦波をとり、差分R24の特性波形S24が余弦波をとっている。 As shown in FIG. 4, the characteristic waveforms S 13 and S 24 of the differences R 13 and R 24 are AC waveforms having amplitude ranges of “−1” to “+1”, and their phases are shifted by 45 degrees from each other. It becomes a waveform. That is, characteristics waveform S 13 of the differential R 13 takes the sine wave characteristic waveform S 24 of the differential R 24 is taking the cosine wave.

ここで、磁気抵抗素子6a,6cには余弦波電流I0・cosωt が流され、磁気抵抗素子6b,6dには正弦波電流I0・sinωt が流されているので、差分電圧V13はR13I0・cosωt の値をとり、差分電圧V24はR24I0・sinωt の値をとる。よって、差分電圧V13と差分電圧V24との和である加算電圧Vout は次式(8) を満たす値をとる。 Here, the magnetoresistive element 6a, the cosine wave current I 0 · cos .omega.t flows to 6c, the magnetoresistive element 6b, since the sinusoidal current I 0 · sin .omega.t are flowed to 6d, the differential voltage V 13 is R The value of 13 I 0 · cosωt is taken, and the differential voltage V 24 takes the value of R 24 I 0 · sinωt. Thus, addition voltage Vout is the sum of the differential voltage V 13 and the differential voltage V 24 takes a value that satisfies the following equation (8).

Figure 2007057501
従って、式(8) からも分かるように、加算電圧Vout の電圧波形は、正弦波電流I0・sinωt の電流波形に対して位相が2θずれた状態となる。即ち、図5(a)に示すように、加算電圧Vout の交流波Wは、正弦波電流I0・sinωt の交流波Wに対して位相が2θずれた波形をとる。
Figure 2007057501
Therefore, as can be seen from the equation (8), the voltage waveform of the added voltage Vout is in a state where the phase is shifted by 2θ with respect to the current waveform of the sine wave current I 0 · sinωt. That is, as shown in FIG. 5A, the AC wave W 1 of the added voltage Vout takes a waveform whose phase is shifted by 2θ with respect to the AC wave W 2 of the sine wave current I 0 · sinωt.

図3に示すように、第2の定電流回路9及び加算回路16には、加算電圧Vout の交流波Wと正弦波電流I0・sinωt の交流波Wとに基づき角度信号Dθを生成する角度信号生成回路17が接続されている。角度信号生成回路17は、加算電圧Vout 及び正弦波電流I0・sinωt の各交流波W,Wをそれぞれ半波整流することにより、電圧値が0以上の時にHレベル信号を出力するパルス信号V,V(図5(b),(c)参照)に各々変換する。 As shown in FIG. 3, the second constant current circuit 9 and the adding circuit 16, an angle signal D theta based on the AC wave W 2 of the AC wave W 1 and sinusoidal current I 0 · sin .omega.t the addition voltage Vout An angle signal generation circuit 17 to be generated is connected. The angle signal generation circuit 17 performs a half-wave rectification on each of the AC waves W 1 and W 2 of the addition voltage Vout and the sine wave current I 0 · sinωt, so that a pulse that outputs an H level signal when the voltage value is 0 or more. The signals are converted into signals V 1 and V 2 (see FIGS. 5B and 5C), respectively.

角度信号生成回路17はパルス信号変換後、これらパルス信号V,Vの差の絶対値|V|(=|V−V|:図5(d)参照)を位相差として算出する。そして、角度信号生成回路17は、この絶対値|V|を正弦波電流I0・sinωt の交流波W(加算電圧Vout の交流波W)の半周期T/2で平滑化(平均化)し、その平滑化した後の電圧値Vrを角度信号Dθとして出力する。 After the pulse signal conversion, the angle signal generation circuit 17 calculates the absolute value | V | (= | V 1 −V 2 |: refer to FIG. 5D) of the difference between the pulse signals V 1 and V 2 as a phase difference. . Then, the angle signal generation circuit 17 smoothes (averages) the absolute value | V | with the half cycle T / 2 of the AC wave W 2 of the sine wave current I 0 · sinωt (AC wave W 1 of the added voltage Vout). ), and it outputs a voltage value Vr after the smoothing as the angle signal D theta.

ところで、平滑化した後の電圧値Vrは磁界向きθに対応した値をとることから、この電圧値Vrを見れば、磁気抵抗素子群に加わる磁界向きθ、つまりシフトレバー2の操作角度Rθが検出可能である。従って、角度信号生成回路17から出力される角度信号Dθを見れば、シフトレバー2の操作角度Rθが検出可能である。なお、本例においては位相差が「2θ」で算出されるため、交流波の1周期は360度であることから、「2θ=360度」の関係により角度検出範囲は0度〜180度となる。なお、角度信号生成回路17が位相差検出回路及び平滑化回路を構成する。 By the way, since the smoothed voltage value Vr takes a value corresponding to the magnetic field direction θ, the magnetic field direction θ applied to the magnetoresistive element group, that is, the operation angle R θ of the shift lever 2 can be seen from the voltage value Vr. Can be detected. Therefore, the operation angle R θ of the shift lever 2 can be detected by looking at the angle signal D θ output from the angle signal generation circuit 17. In this example, since the phase difference is calculated as “2θ”, one cycle of the AC wave is 360 degrees, and therefore the angle detection range is 0 degrees to 180 degrees due to the relationship of “2θ = 360 degrees”. Become. The angle signal generation circuit 17 constitutes a phase difference detection circuit and a smoothing circuit.

次に、本例の角度検出装置4の動作について説明する。
例えば、駐車中の車両にエンジンをかけてブレーキペダルを踏むと、P位置にあるシフトレバー2の操作が可能となる。このとき、シフトレバー2が例えばP位置からD位置等に操作されたとすると、このレバー操作に伴って、磁気抵抗素子群に加わる磁界向きθがシフトレバー2のD位置に応じた方向に変化する。
Next, the operation of the angle detection device 4 of this example will be described.
For example, when the engine is applied to a parked vehicle and the brake pedal is depressed, the shift lever 2 at the P position can be operated. At this time, if the shift lever 2 is operated, for example, from the P position to the D position, the magnetic field direction θ applied to the magnetoresistive element group changes in a direction corresponding to the D position of the shift lever 2 with this lever operation. .

このとき、差動増幅回路10が出力する素子電圧Vaは、その時の磁界向きθによって決まる磁気抵抗素子6aの抵抗値Rと、磁気抵抗素子6aに流れる余弦波電流I0・cosωt とに基づく値をとる。また、同様に差動増幅回路11〜13が出力する素子電圧Vb〜Vdも、その時の磁界向きθによって決まる各抵抗値R〜Rと、磁気抵抗素子6b〜6cのそれぞれに流れる交流波電流(磁気抵抗素子6cは余弦波電流I0・cosωt 、磁気抵抗素子6b,6dは正弦波電流I0・sinωt )とに基づく値をとる。 In this case, the device voltage Va output from the differential amplifier circuit 10 includes a resistance R 1 of the magnetoresistance element 6a which is determined by the magnetic field direction θ at that time, based on the cosine wave current I 0 · cos .omega.t flowing through the magneto-resistive element 6a Takes a value. Similarly, the element voltages Vb to Vd output from the differential amplifier circuits 11 to 13 are also AC waves flowing through the resistance values R 2 to R 4 determined by the magnetic field direction θ and the magnetoresistive elements 6 b to 6 c, respectively. It takes a value based on the current (the magnetoresistive element 6c is a cosine wave current I 0 · cosωt, and the magnetoresistive elements 6b and 6d are sine wave currents I 0 · sinωt).

差動増幅回路10,12の素子電圧Va,Vcは差動増幅回路14に入力され、これら素子電圧Va,Vcの差分電圧V13が差動増幅回路14によって算出される。また、差動増幅回路11,13の素子電圧Vb,Vdは差動増幅回路15に入力され、これら素子電圧Vb,Vdの差分電圧V24が差動増幅回路15によって算出される。差動増幅回路14,15の差分電圧V13,V24は加算回路16に入力され、これら差分電圧V13,V24を足した加算電圧Vout が加算回路16によって算出される。 The element voltages Va and Vc of the differential amplifier circuits 10 and 12 are input to the differential amplifier circuit 14, and a differential voltage V 13 between these element voltages Va and Vc is calculated by the differential amplifier circuit 14. The element voltages Vb and Vd of the differential amplifier circuits 11 and 13 are input to the differential amplifier circuit 15, and a differential voltage V 24 between these element voltages Vb and Vd is calculated by the differential amplifier circuit 15. The differential voltages V 13 and V 24 of the differential amplifier circuits 14 and 15 are input to the adder circuit 16, and an adder voltage Vout obtained by adding the differential voltages V 13 and V 24 is calculated by the adder circuit 16.

加算回路16の加算電圧Vout と、第2の定電流回路9の正弦波電流I0・sinωt とは角度信号生成回路17に入力され、この角度信号生成回路17によって、加算電圧Vout の交流波Wが半波状のパルス信号Vに、正弦波電流I0・sinωt の交流波Wが半波状のパルス信号Vに各々変換される。そして、これらパルス信号V,Vの差の絶対値|V|が角度信号生成回路17によって算出される。 The addition voltage Vout of the addition circuit 16 and the sine wave current I 0 · sinωt of the second constant current circuit 9 are input to the angle signal generation circuit 17, and the angle signal generation circuit 17 causes the AC wave W of the addition voltage Vout to be added. 1 is converted into a half-wave pulse signal V 1 , and an AC wave W 2 of a sine wave current I 0 · sinωt is converted into a half-wave pulse signal V 2 . Then, the absolute value | V | of the difference between these pulse signals V 1 and V 2 is calculated by the angle signal generation circuit 17.

この絶対値|V|は、角度信号生成回路17によって正弦波電流I0・sinωt の半周期T/2で平滑化され、その平滑化後の電圧値が磁界向きθに対応する電圧値Vrとして算出される。ここでは、位相差2θの時の電圧が絶対値|V|であるため、この関係を用いて半周期T/2の時の電圧値を求めれば、それが平滑化後の電圧値Vrとして算出される。この電圧値Vrは角度信号生成回路17から角度信号Sθとして出力される。よって、角度信号生成回路17から出力される角度信号Sθを見れば、操作角度Rθを算出することが可能となる。 This absolute value | V | is smoothed by the angle signal generation circuit 17 in a half cycle T / 2 of the sine wave current I 0 · sinωt, and the smoothed voltage value is a voltage value Vr corresponding to the magnetic field direction θ. Calculated. Here, since the voltage at the phase difference 2θ is the absolute value | V |, if the voltage value at the half cycle T / 2 is obtained using this relationship, it is calculated as the smoothed voltage value Vr. Is done. The voltage value Vr is output from the angle signal generation circuit 17 as an angle signal . Therefore, the operation angle can be calculated by looking at the angle signal output from the angle signal generation circuit 17.

従って、本例においては、磁界向きθに応じて値が比例的に変化する電位差|V|を見ることで、磁界向きθ(シフトレバー2の操作角度Rθ)を一義的に算出する。よって、本例の算出方法を用いて角度検出を行なえば、加算電圧Vout の交流波Wと正弦波電流I0・sinωt の交流波Wとの間の位相差の項(本例は2θ)にもよるが、例えば磁気抵抗素子を1つ使用する場合に比べて、広範囲(本例は0度〜180度)の角度検出を精度よく行なうことが可能となる。 Therefore, in this example, the magnetic field direction θ (the operating angle R θ of the shift lever 2) is uniquely calculated by looking at the potential difference | V | whose value changes proportionally according to the magnetic field direction θ. Therefore, by performing angle detection using the calculation method of this embodiment, section (the example of the phase difference between the AC wave W 1 and sinusoidal current I 0 · sin .omega.t AC wave W 2 of the addition voltage Vout is 2θ However, it is possible to accurately detect a wide range of angles (in this example, 0 degrees to 180 degrees) as compared with, for example, the case of using one magnetoresistive element.

また、本例においては磁気検出素子としてホール素子ではなく磁気抵抗素子6a〜6dを使用しているため、磁性材料をスパッタ等によって基板に付着する製造方法を用いて磁気抵抗素子6a〜6dが製造可能であることから、磁気抵抗素子6a〜6dが同時製造可能となる。従って、磁気抵抗素子6a〜6dは同時製造されると、その抵抗特性にずれが生じ難くなるため、面倒な製造工程を経ずに磁気抵抗素子の抵抗特性をほぼ揃えることが可能となり、高い磁気検出精度を確保することが可能となる。   In this example, since the magnetoresistive elements 6a to 6d are used as the magnetic detection elements instead of the Hall elements, the magnetoresistive elements 6a to 6d are manufactured using a manufacturing method in which a magnetic material is attached to the substrate by sputtering or the like. Since it is possible, the magnetoresistive elements 6a to 6d can be manufactured simultaneously. Accordingly, when the magnetoresistive elements 6a to 6d are simultaneously manufactured, it is difficult for the resistance characteristics to be shifted, so that the resistance characteristics of the magnetoresistive elements can be substantially uniform without a troublesome manufacturing process. It becomes possible to ensure detection accuracy.

本実施形態の角度検出装置4によれば、以下に記載の効果を得ることができる。
(1)磁界向きθに応じて値が比例的に変化する電位差|V|を見ることで磁界向きθを算出するので、90度以上の広範囲の角度を精度よく検出することができる。また、本例は磁気抵抗素子6a〜6dを用いているため、スパッタ等により基板に磁気抵抗素子6a〜6dを同時製造する製造方法を用いることが可能となる。よって、磁気抵抗素子6a〜6dの抵抗特性がほぼ揃った状態となり、これによっても高い角度検出精度を確保することができる。
According to the angle detection device 4 of the present embodiment, the following effects can be obtained.
(1) Since the magnetic field direction θ is calculated by observing the potential difference | V | whose value changes proportionally according to the magnetic field direction θ, a wide range of angles of 90 ° or more can be detected with high accuracy. Moreover, since this example uses the magnetoresistive elements 6a to 6d, it is possible to use a manufacturing method in which the magnetoresistive elements 6a to 6d are simultaneously manufactured on the substrate by sputtering or the like. Therefore, the resistance characteristics of the magnetoresistive elements 6a to 6d are almost uniform, and this also ensures high angle detection accuracy.

(2)差分電圧V13,V24の和である加算電圧Vout に基づくパルス信号Vと、正弦波電流I0・sinωt に基づくパルス信号Vとの間の差の絶対値|V|をとり、それを平滑化するという簡単な手法で、磁界向きθを算出することができる。 (2) The absolute value | V | of the difference between the pulse signal V 1 based on the addition voltage Vout which is the sum of the differential voltages V 13 and V 24 and the pulse signal V 2 based on the sine wave current I 0 · sinωt The magnetic field direction θ can be calculated by a simple method of smoothing it.

なお、本実施形態は上記構成に限定されず、以下の態様に変更してもよい。
・ 角度検出に際してパルス信号V,Vを求めた後に行なう処理は、パルス信号V,Vの差の絶対値|V|を平滑化する処理に限定されない。例えば、パルス信号Vの立ち下がりのエッジと、パルス信号Vの立ち下がりのエッジとの間の時間tをカウントし、この時間tを正弦波電流I0・sinωt の半周期T/2で平滑化して、この平滑化後の時間tave を用いて角度検出を行ってもよい。この時間tave も磁界向きθに応じた値として出力されるため、この時間tave を見れば磁界向きθを検出することができる。また、時間tを用いて角度検出を行なえば、例えば温度変化等の外的要因によってパルス信号V,Vの電圧値が変動したとしても、これら電圧値を角度算出の際のパラメータとして用いていないので、この外的要因が角度算出に影響を及ばさずに済み、角度検出精度確保に効果が高い。
In addition, this embodiment is not limited to the said structure, You may change into the following aspects.
The processing performed after obtaining the pulse signals V 1 and V 2 for angle detection is not limited to the processing for smoothing the absolute value | V | of the difference between the pulse signals V 1 and V 2 . For example, the time t between the falling edge of the pulse signal V 1 and the falling edge of the pulse signal V 2 is counted, and this time t is calculated by a half cycle T / 2 of the sine wave current I 0 · sinωt. The angle may be detected by using the time tave after smoothing. Since this time tave is also output as a value corresponding to the magnetic field direction θ, the magnetic field direction θ can be detected by looking at this time tave. If the angle is detected using the time t, even if the voltage values of the pulse signals V 1 and V 2 fluctuate due to an external factor such as a temperature change, these voltage values are used as parameters for angle calculation. Therefore, this external factor does not affect the angle calculation, which is highly effective in ensuring the angle detection accuracy.

・ 磁気抵抗素子6の個数は、本例のように4つに限らず、例えば6つや8つ用いた構成でもよい。この場合も、これら磁気抵抗素子6,…を45度の配置間隔で取り付け、互いに90度の配置間隔を成すもの同士の差分をとり、その差分の特性波形から直線性部分を切り取って直線式を算出する手法をとる。   The number of the magnetoresistive elements 6 is not limited to four as in the present example, and a configuration using, for example, six or eight may be used. Also in this case, these magnetoresistive elements 6,... Are attached at an arrangement interval of 45 degrees, the difference between the elements forming the arrangement interval of 90 degrees is taken, and the linearity portion is cut out from the characteristic waveform of the difference to obtain a linear equation. Take the calculation method.

・ 磁気抵抗素子6及び磁石7の取付箇所は、磁気抵抗素子6が車体3側、磁石7がシフトレバー2側であることに限定されず、この組み合わせが逆であってもよい。
・ 磁界発生手段は磁石7に限らず、磁界を発生できるものであれば、特に限定されない。
The attachment location of the magnetoresistive element 6 and the magnet 7 is not limited to the magnetoresistive element 6 being on the vehicle body 3 side and the magnet 7 being on the shift lever 2 side, and this combination may be reversed.
The magnetic field generation means is not limited to the magnet 7 as long as it can generate a magnetic field.

・ 本例の角度検出装置4は搭載対象がシフトレバー2であることに限らず、例えばシートの背もたれの傾き量を検出するシート傾角検出装置等でもよく、角度検出装置4の搭載対象は特に限定されない。   The angle detection device 4 of this example is not limited to the shift lever 2 but may be a seat inclination detection device that detects the amount of inclination of the seat back, for example, and the installation target of the angle detection device 4 is particularly limited. Not.

次に、上記実施形態及び別例から把握できる技術的思想について、それらの効果とともに以下に追記する。
(1)操作部品を操作した際に、該操作部品を相対移動可能に支持する支持部品に対して前記操作部品の成す角度を検出する角度検出装置において、磁界を発生すべく前記操作部品及び前記支持部品の一方に設けられた磁気発生手段と、前記操作部品及び前記支持部品の他方に設けられ、前記磁界を検出すべく45度の配置間隔で取付けられた複数の磁界抵抗素子と、互いに90度の配置間隔を成す磁気抵抗素子から成る組に、第1交流電流を流す第1の電流発生回路と、前記組とは別の互いに90度の配置間隔を成す前記磁気抵抗素子から成る組に、前記第1交流電流とは位相が45度異なる第2交流電流を流す第2の電流発生回路と、同一組の中で前記磁気抵抗素子間の出力の差分をとる差動回路と、前記差動回路から組単位で出力された差分の和を算出する加算回路と、前記差分の和の交流波と、前記第1交流電流及び前記第2交流電流のうち一方の交流波との間の位相差を検出する位相差検出回路と、前記位相差を半周期単位で平滑化することによって、その平滑化した後の電圧値を前記角度に対応した値として求める平滑化回路とを備えたことを特徴とする角度検出装置。
Next, technical ideas that can be grasped from the above-described embodiment and other examples will be described below together with their effects.
(1) In an angle detection device that detects an angle formed by the operation component with respect to a support component that supports the operation component so as to be relatively movable when the operation component is operated, the operation component and the A magnetism generating means provided on one of the support parts, and a plurality of magnetic field resistance elements provided on the other of the operation part and the support part and attached at an arrangement interval of 45 degrees to detect the magnetic field, and 90 A set of magnetoresistive elements having an arrangement interval of degrees, a first current generating circuit for passing a first alternating current, and a set of magnetoresistive elements having an arrangement interval of 90 degrees apart from the set A second current generating circuit for passing a second alternating current whose phase is 45 degrees different from that of the first alternating current, a differential circuit for taking a difference in output between the magnetoresistive elements in the same set, and the difference Output from the dynamic circuit in pairs. An addition circuit for calculating a sum of differences; a phase difference detection circuit for detecting a phase difference between the alternating current wave of the difference and one of the first alternating current and the second alternating current; An angle detection apparatus comprising: a smoothing circuit that smoothes the phase difference in units of half cycles to obtain a voltage value after the smoothing as a value corresponding to the angle.

(2)前記技術的思想(1)において、前記第1の電流発生回路は前記第1交流電流を余弦波の信号で流し、前記第2の電流発生回路は前記第2交流電流を正弦波の信号で流し、前記位相差検出回路は、前記差分の和の交流波と、前記第2の電流発生回路が出力する前記正弦波との間の差を前記位相差として算出する。この場合、差分の和の交流波は正弦波の式として算出されるので、位相差の計算が正弦波同士の式を用いて行なうことが可能となり、位相差算出の計算が簡単になる。   (2) In the technical idea (1), the first current generation circuit passes the first alternating current as a cosine wave signal, and the second current generation circuit passes the second alternating current to a sine wave. The phase difference detection circuit calculates a difference between the sum AC wave of the difference and the sine wave output from the second current generation circuit as the phase difference. In this case, since the AC wave of the sum of differences is calculated as a sine wave equation, the phase difference can be calculated using the sine wave equation, and the calculation of the phase difference can be simplified.

一実施形態における車室内を示す斜視図。The perspective view which shows the vehicle interior in one Embodiment. 角度検出装置を構成する磁気抵抗素子及び磁石の取付状態を示す平面図。The top view which shows the attachment state of the magnetoresistive element and magnet which comprise an angle detection apparatus. 角度検出装置の電気構成を示すブロック図。The block diagram which shows the electric constitution of an angle detection apparatus. 磁気抵抗素子の特性波形を示す波形図。The wave form diagram which shows the characteristic waveform of a magnetoresistive element. (a)は加算電圧及び正弦波電流の交流波を示す波形図、(b)は加算電圧のパルス信号を示す波形図、(c)は正弦波電流のパルス信号を示す波形図、(d)はパルス信号の差の絶対値を示す波形図。(A) is a waveform diagram showing an AC wave of an addition voltage and a sine wave current, (b) is a waveform diagram showing a pulse signal of the addition voltage, (c) is a waveform diagram showing a pulse signal of a sine wave current, (d). Is a waveform diagram showing the absolute value of the difference between pulse signals. 従来における磁気抵抗素子に所定向きの磁界がかかった状態を示す平面図。The top view which shows the state in which the magnetic field of the predetermined direction was applied to the conventional magnetoresistive element. 磁気抵抗素子の特性波形を示す波形図。The wave form diagram which shows the characteristic waveform of a magnetoresistive element. ホール素子を用いた角度検出装置の原理を示す説明図。Explanatory drawing which shows the principle of the angle detection apparatus using a Hall element.

符号の説明Explanation of symbols

2…操作部品としてのシフトレバー、3…支持部品としての車体、4…角度検出装置、6(6a〜6d)…磁気抵抗素子、7…磁界発生手段としての磁石、8,9…電流発生回路としての定電流回路、10〜15…差動回路としての差動増幅回路、16…加算回路、17…位相差検出回路及び平滑化回路を構成する角度信号生成回路、H…磁界、I0・cosωt …交流電流を構成する余弦波電流、I0・sinωt …交流電流を構成する正弦波電流、W,W…交流波、2θ…位相差、T/2…半周期、Vr…電圧値、差分R13,R24DESCRIPTION OF SYMBOLS 2 ... Shift lever as operation component, 3 ... Vehicle body as support component, 4 ... Angle detection device, 6 (6a-6d) ... Magnetoresistive element, 7 ... Magnet as magnetic field generation means, 8, 9 ... Current generation circuit Constant current circuit as 10-15 ... differential amplifier circuit as differential circuit, 16 ... adder circuit, 17 ... angle signal generation circuit constituting phase difference detection circuit and smoothing circuit, H ... magnetic field, I 0. cosωt: cosine wave current constituting AC current, I 0 · sinωt: sine wave current constituting AC current, W 1 , W 2 : AC wave, 2θ: phase difference, T / 2: half cycle, Vr: voltage value , Differences R 13 , R 24 .

Claims (3)

操作部品を操作した際に、該操作部品を相対移動可能に支持する支持部品に対して前記操作部品の成す角度を検出する角度検出装置において、
磁界を発生すべく前記操作部品及び前記支持部品の一方に設けられた磁界発生手段と、
前記操作部品及び前記支持部品の他方に設けられ、前記磁界を検出すべく互いに一定角度の配置間隔を成した取付状態をとる複数の磁気抵抗素子と、
前記一定角度の定数倍の配置間隔を成す磁気抵抗素子から成る各組に、各々位相が異なる交流電流を流す電流発生回路と、
前記各組において同一組の中で前記磁気抵抗素子間の出力の差分をとる差動回路と、
前記差動回路から組単位で出力された差分の和を算出する加算回路と、
前記差動の和の交流波と前記交流電流の交流波との間の位相差を検出する位相差検出回路と、
前記位相差を半周期単位で平滑化することによって、その平滑化した後の電圧値を前記角度に対応した値として求める平滑化回路と
を備えたことを特徴とする角度検出装置。
In an angle detection device that detects an angle formed by the operation component with respect to a support component that supports the operation component so as to be relatively movable when the operation component is operated,
Magnetic field generating means provided on one of the operating component and the support component to generate a magnetic field;
A plurality of magnetoresistive elements that are provided on the other of the operation component and the support component and have a mounting state at a certain angle from each other to detect the magnetic field;
A current generation circuit for supplying alternating currents having different phases to each set of magnetoresistive elements having an arrangement interval of a constant multiple of the constant angle;
A differential circuit that takes a difference in output between the magnetoresistive elements in the same set in each set;
An adder circuit for calculating a sum of differences output from the differential circuit in units of sets;
A phase difference detection circuit for detecting a phase difference between the AC wave of the differential sum and the AC wave of the AC current;
An angle detection apparatus comprising: a smoothing circuit that obtains a voltage value after smoothing as a value corresponding to the angle by smoothing the phase difference in half-cycle units.
前記位相差検出回路は、前記差分の和の交流波を半波整流して第1パルス信号を生成し、前記交流電流の交流波を同じく半波整流して第2パルス信号を生成し、前記第1パルス信号及び第2パルス信号の電圧差を前記位相差として求め、前記平滑化回路は、前記電圧差を半周期単位で平滑化し、その平滑化した電圧値を前記角度に対応した値として求めることを特徴とする請求項1に記載の角度検出装置。   The phase difference detection circuit generates a first pulse signal by half-wave rectifying the AC wave of the sum of the differences, and generates a second pulse signal by similarly half-wave rectifying the AC wave of the AC current, The voltage difference between the first pulse signal and the second pulse signal is obtained as the phase difference, and the smoothing circuit smoothes the voltage difference in half-cycle units, and sets the smoothed voltage value as a value corresponding to the angle. The angle detection device according to claim 1, wherein the angle detection device is obtained. 前記位相差検出回路は、前記差分の和の交流波を半波整流して第1パルス信号を生成し、前記交流電流の交流波を同じく半波整流して第2パルス信号を生成し、前記第1パルス信号のエッジと前記第2パルス信号のエッジとの間の時間差を前記位相差として求め、前記平滑化回路は、前記時間差を半周期単位で平滑化し、その平滑化した平均時間を前記角度に対応した値として求めることを特徴とする請求項1に記載の角度検出装置。   The phase difference detection circuit generates a first pulse signal by half-wave rectifying the AC wave of the sum of the differences, and generates a second pulse signal by similarly half-wave rectifying the AC wave of the AC current, The time difference between the edge of the first pulse signal and the edge of the second pulse signal is obtained as the phase difference, and the smoothing circuit smoothes the time difference in half-cycle units, and calculates the smoothed average time as the time difference. The angle detection device according to claim 1, wherein the angle detection device is obtained as a value corresponding to the angle.
JP2005246556A 2005-08-26 2005-08-26 Angle detector Pending JP2007057501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005246556A JP2007057501A (en) 2005-08-26 2005-08-26 Angle detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005246556A JP2007057501A (en) 2005-08-26 2005-08-26 Angle detector

Publications (1)

Publication Number Publication Date
JP2007057501A true JP2007057501A (en) 2007-03-08

Family

ID=37921118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005246556A Pending JP2007057501A (en) 2005-08-26 2005-08-26 Angle detector

Country Status (1)

Country Link
JP (1) JP2007057501A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3211381A1 (en) * 2016-02-25 2017-08-30 Senis AG Angle sensor and method of measuring an angle of a magnetic field

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3211381A1 (en) * 2016-02-25 2017-08-30 Senis AG Angle sensor and method of measuring an angle of a magnetic field
US9995797B2 (en) 2016-02-25 2018-06-12 Senis Ag Angle sensor and method of measuring an angle of a magnetic field

Similar Documents

Publication Publication Date Title
US7049924B2 (en) Electromagnetic induction type position sensor
JP4411319B2 (en) Magnetoresistive sensor for angle or position determination
JP5105201B2 (en) Angle detection apparatus and angle detection method
US8564283B2 (en) Rotation-angle-detecting apparatus, rotating machine and rotation-angle-detecting method
US20170038227A1 (en) Position Detecting System
US9429632B2 (en) Magnetic position detection device
JP2010044046A (en) Angle detecting apparatus and angle detecting method
CA2759017A1 (en) Method for inductive generating an electrical measurement signal and related sensor device
US20120153947A1 (en) Magnetoresistive angle sensors
JP6536632B2 (en) Angle sensor and angle sensor system
US20040012389A1 (en) Method and system for determining the orientation of magnetic fields by means of gmr sensors
JP2007057501A (en) Angle detector
CN100504306C (en) AMR sensor element for angle measurement
CN114838655B (en) Multicycle bipolar electromagnetic induction type angle sensor
US20120209562A1 (en) Assembly and method for determining an angular position
JP2015049046A (en) Angle detector
JP6548357B2 (en) Position detection device
JP2009244044A (en) Magnetic rotational position detection device
JP6041959B1 (en) Magnetic detector
JP2007057500A (en) Angle detector
JP2020085573A (en) Magnetism detector and mobile body detector
JP3749955B2 (en) Inductive two-dimensional position detector
JP6121657B2 (en) Differential magnetic field applying apparatus and differential magnetic field applying method
JP2020537152A (en) Electromagnetic measurement system for measuring distances and angles using the magnetic impedance effect
JP6131601B2 (en) Magnetic sensor