JP2007057276A - Material discrimination apparatus - Google Patents

Material discrimination apparatus Download PDF

Info

Publication number
JP2007057276A
JP2007057276A JP2005240478A JP2005240478A JP2007057276A JP 2007057276 A JP2007057276 A JP 2007057276A JP 2005240478 A JP2005240478 A JP 2005240478A JP 2005240478 A JP2005240478 A JP 2005240478A JP 2007057276 A JP2007057276 A JP 2007057276A
Authority
JP
Japan
Prior art keywords
voltage
identification device
measurement sample
waveform
surface member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005240478A
Other languages
Japanese (ja)
Other versions
JP4701394B2 (en
Inventor
Katsunori Shinoda
克規 信太
Akira Kimoto
晃 木本
Takeshi Ichinose
雄志 一ノ瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saga University NUC
Original Assignee
Saga University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saga University NUC filed Critical Saga University NUC
Priority to JP2005240478A priority Critical patent/JP4701394B2/en
Publication of JP2007057276A publication Critical patent/JP2007057276A/en
Application granted granted Critical
Publication of JP4701394B2 publication Critical patent/JP4701394B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a material discrimination apparatus simple in constitution and merely brought into contact with the material of a measuring sample and separated therefrom to certainly and rapidly discriminate the material of the measuring sample. <P>SOLUTION: The surface member 14 comprising a dielectric 13 mounted on the surface of a first metal electrode 11 is brought into contact with and separated from the measuring sample 100 to detect the voltage caused between the first and second metal electrodes 11 and 12 with a voltage detector 1, the waveform of the voltage is detected from the detected voltage in a voltage waveform detection part 2 and the material of either one of a plurality of the measuring samples 100 is discriminated in a material discrimination part 5. The material of the measuring sample is discriminated on the basis of the voltage waveform of the static electricity produced when the material discrimination apparatus is brought into contact with the measuring sample 100 and separated therefrom, and the material of the measuring sample 100 is certainly and rapidly discriminated by a simple constitution by merely bringing the material discrimination apparatus into contact with the measuring sample 100 and separating the same therefrom. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、測定試料の材質を識別する材質識別装置に関し、特に測定試料の表面に接触時に生じる電圧に基づいて測定試料の材質を識別する材質識別装置に関する。   The present invention relates to a material identification device that identifies a material of a measurement sample, and more particularly, to a material identification device that identifies a material of a measurement sample based on a voltage generated when contacting the surface of the measurement sample.

従来、この種の材質識別装置として触覚センサが特開2005−4933号公報に開示されるものがあり、これを図9に触覚センサの外観斜視図及び全体システム構成図として示す。   Conventionally, there is a touch sensor disclosed in Japanese Patent Application Laid-Open No. 2005-4933 as this type of material identification device. FIG. 9 shows an external perspective view of the touch sensor and an overall system configuration diagram.

同図において従来の触覚センサは、触覚センサ111は、媒体112と、媒体112中に分散されているセンサ素子113と、媒体112に電気的に接続されている一対の電極114とから構成されている。媒体112は、各センサ素子113同士を機械力学的に接続するとともに各センサ素子113同士並びに電極114及びセンサ素子113を電気的に接続し、誘電体により形成されキャパシタンス成分を有するものが好ましい。センサ素子113はコイル状炭素繊維113aにより構成され、微小バネとして作用するとともにLCR共振回路として作用する。センサ素子113は、各センサ素子113の相互間に存在する媒体112を介して接続され、機械力学的等価回路及び電気的等価回路として構成されている。   In the figure, a conventional tactile sensor 111 includes a medium 112, a sensor element 113 distributed in the medium 112, and a pair of electrodes 114 electrically connected to the medium 112. Yes. The medium 112 is preferably one that mechanically connects the sensor elements 113 to each other, and electrically connects the sensor elements 113 to each other, the electrodes 114 and the sensor elements 113, and is formed of a dielectric and has a capacitance component. The sensor element 113 is composed of a coiled carbon fiber 113a and functions as a micro spring and an LCR resonance circuit. The sensor elements 113 are connected via a medium 112 existing between the sensor elements 113 and configured as a mechanical mechanical equivalent circuit and an electrical equivalent circuit.

前記各電極114は媒体112に電気的に接続されるとともに導線115の一端がそれぞれ接続され、各導線115の他端には増幅回路116を介して電源117及びオシロスコープ等の測定器118が取付けられている。ここで、電極114が媒体112に電気的に接続されると、電流が電極114を介して媒体112に通電されるように電極114が媒体112に接続されることとなる。触覚センサ111、増幅回路116、電源117及び測定器118により触覚センサシステムを構成している。この構成に基づき構成が簡単であるとともに感度を向上させるようにできる。
特開2005−4933号公報
Each electrode 114 is electrically connected to the medium 112 and one end of a conducting wire 115 is connected to each other. A power source 117 and a measuring instrument 118 such as an oscilloscope are attached to the other end of each conducting wire 115 via an amplifier circuit 116. ing. Here, when the electrode 114 is electrically connected to the medium 112, the electrode 114 is connected to the medium 112 so that a current is passed through the medium 112 via the electrode 114. The tactile sensor 111, the amplifier circuit 116, the power source 117, and the measuring device 118 constitute a tactile sensor system. Based on this configuration, the configuration is simple and the sensitivity can be improved.
JP 2005-4933 A

前記従来技術に係る触覚センサ111は以上のように構成されていたことから、 単に触圧を検出することができても、測定試料の材質については何ら識別することができない。また、この従来技術によって触圧により材質を類推したとしても、一対の電極114間にセンサ素子113のコイル状炭素繊維113aを分散させた媒体112を配設しなければならず、この媒体112の製造工程で繁雑化し、製造コストを低減できないという課題を有していた。特に、前記触覚センサ111は、センサ素子113を媒体112全体に均一に分布させなければ検出精度が区々となり、検出感度を向上させることができないという課題を有していた。   Since the tactile sensor 111 according to the prior art is configured as described above, even if the tactile pressure can be simply detected, the material of the measurement sample cannot be identified at all. Even if the material is analogized by contact pressure according to this conventional technique, the medium 112 in which the coiled carbon fiber 113a of the sensor element 113 is dispersed must be disposed between the pair of electrodes 114. The manufacturing process is complicated and the manufacturing cost cannot be reduced. In particular, the tactile sensor 111 has a problem that unless the sensor elements 113 are evenly distributed over the entire medium 112, the detection accuracy varies and the detection sensitivity cannot be improved.

本発明は、前記課題を解消するためになされたもので、簡易な構成で測定試料の材質を単に接触・離反するのみで確実且つ迅速に識別する材質識別装置を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a material identification device that can reliably and quickly identify a material of a measurement sample by simply contacting and separating with a simple configuration.

本発明に係る材質識別装置は、第1及び第2の金属電極間に誘電体を介装し、当該第1の金属電極の表面に誘電体からなる表面部材を接着し、前記第2の金属電極を接地して形成され、前記表面部材を測定試料に接触・離反させて第1及び第2の金属電極間に生じる電圧を検出する電圧検出手段と、前記検出電圧に基づいて電圧の波形を検出する電圧波形検出手段と、前記検出された電圧波形及び複数の測定試料について予め得られた基準試料データに基づいて前記複数の測定試料のいずれかの材質を判別する材質判別手段とを備えるものである。   In the material identification device according to the present invention, a dielectric is interposed between the first and second metal electrodes, a surface member made of a dielectric is adhered to the surface of the first metal electrode, and the second metal A voltage detecting means for detecting a voltage generated between the first and second metal electrodes by bringing the surface member into contact with and separating from the measurement sample; and a waveform of the voltage based on the detected voltage. Voltage waveform detection means for detecting, and material discrimination means for discriminating any material of the plurality of measurement samples based on the detected voltage waveform and reference sample data obtained in advance for the plurality of measurement samples It is.

このように本発明においては、第1の金属電極の表面に装着される誘電体からなる表面部材を測定試料に接触・離反させて第1及び第2の金属電極間に生じる電圧を電圧検出手段で検出し、この検出電圧に基づいて電圧の波形を電圧波形検出手段で検出し、この検出された電圧波形及び複数の測定試料について予め得られた基準試料データに基づいて前記複数の測定試料のいずれかの材質を材質判別手段で判別するようにしているので測定試料に接触・離反する際に生じる静電気の電圧波形により区別できることとなり、簡易な構成で測定試料の材質を単に接触・離反するのみで確実且つ迅速に識別するという効果を有する。   As described above, in the present invention, the voltage generated between the first and second metal electrodes is obtained by bringing the surface member made of a dielectric attached to the surface of the first metal electrode into contact with or separated from the measurement sample. The voltage waveform detecting means detects the voltage waveform based on the detected voltage, and the plurality of measurement samples are detected based on the detected voltage waveform and reference sample data obtained in advance for the plurality of measurement samples. Since any material is discriminated by the material discriminating means, it can be distinguished by the voltage waveform of static electricity generated when it contacts or separates from the measurement sample, and the material of the measurement sample is simply contacted or separated by a simple configuration. It has the effect of reliably and quickly identifying.

また、本発明に係る材質識別装置は必要に応じて、材質判別手段が、電圧波形における最大電圧値及び当該最大電圧値に至るまでの立上がり時間に基づいて材質を判別するものである。   Further, in the material identifying device according to the present invention, the material determining means determines the material based on the maximum voltage value in the voltage waveform and the rising time until the maximum voltage value is reached, as necessary.

このように本発明においては、電圧波形における最大電圧値及び当該最大電圧値に至るまでの立上がり時間に基づいて材質を材質判別手段が判別するようにしているので、各材質の相違により生じる異なる静電気の電圧波形のうち最大値及び立上がり時間で区別できることとなり簡易な構成で測定試料の材質を単に接触・離反するのみで確実且つ迅速に識別するという効果を有する。   As described above, in the present invention, the material discriminating means discriminates the material based on the maximum voltage value in the voltage waveform and the rise time until the maximum voltage value is reached. Thus, the voltage waveform can be distinguished by the maximum value and the rise time, and the material of the measurement sample can be reliably and quickly identified by simply contacting and separating with a simple configuration.

また、本発明に係る材質識別装置は必要に応じて、電圧検出手段が、表面部材を測定試料に衝突させるものである。   Further, in the material identification device according to the present invention, the voltage detection means causes the surface member to collide with the measurement sample as necessary.

このように本発明においては、電圧検出手段が、表面部材を測定試料に衝突させるようにしているので、この衝突による一定の接触・離反で各測定試料から異なる静電気の電圧波形を発生できることとなり簡易な構成で測定試料の材質を単に接触・離反するのみで確実且つ迅速に識別するという効果を有する。   As described above, in the present invention, since the voltage detecting means collides the surface member with the measurement sample, different electrostatic voltage waveforms can be generated from each measurement sample by a constant contact / separation due to the collision. With a simple structure, the material of the measurement sample can be reliably and quickly identified simply by contacting / separating.

また、本発明に係る材質識別装置は必要に応じて、電圧検出手段が、表面部材を測定試料に衝突させる速度及び/又は圧力を変化させるものである。   Further, in the material identification device according to the present invention, the voltage detection means changes the speed and / or pressure at which the surface member collides with the measurement sample as necessary.

このように本発明においては、電圧検出手段が、表面部材を測定試料に衝突させる速度及び/又は圧力を変化させるようにしていることから、この衝突の速度及び/又は圧力を変化させて各測定試料における特徴的(ピーク的)な静電気の電圧波形を検出できることとなり、この特徴的な電圧波形に基づき簡易な構成で測定試料の材質を単に接触・離反するのみで確実且つ迅速に識別するという効果を有する。   As described above, in the present invention, since the voltage detection means changes the speed and / or pressure at which the surface member collides with the measurement sample, the measurement is performed by changing the speed and / or pressure of the collision. The characteristic (peak-like) electrostatic voltage waveform in the sample can be detected. Based on this characteristic voltage waveform, the material of the measurement sample can be reliably and quickly identified by simply contacting and separating with a simple configuration. Have

また、本発明に係る材質識別装置は必要に応じて、電圧検出手段が、第1及び第2の金属電極間に介装される誘電体を複数の異なる種類で各々形成し、前記材質判別手段が、前記複数の異なる種類の誘電体に対応して予め得られた各基準試料データに基づいて材質を判別するものである。   Further, in the material identification device according to the present invention, the voltage detection means forms a plurality of different types of dielectrics interposed between the first and second metal electrodes, as necessary, and the material identification means However, the material is discriminated based on each reference sample data obtained in advance corresponding to the plurality of different types of dielectrics.

このように本発明においては、電圧検出手段が、第1及び第2の金属電極間に介装される誘電体を複数の異なる種類で各々形成し、前記材質判別手段が、前記複数の異なる種類の誘電体に対応して予め得られた各基準試料データに基づいて材質を判別することから、誘電体の種類の相違により生じる異なる静電気の電圧波形のうち最大値及び立上がり時間で区別できることとなり簡易な構成で測定試料の材質を単に接触・離反するのみで確実且つ迅速に識別するという効果を有する。   As described above, in the present invention, the voltage detection unit forms the dielectrics interposed between the first and second metal electrodes in a plurality of different types, respectively, and the material discrimination unit has the plurality of different types. Since the material is discriminated based on the reference sample data obtained in advance corresponding to the dielectric material, it can be distinguished by the maximum value and the rise time among the different electrostatic voltage waveforms caused by the difference in the dielectric type. With a simple structure, the material of the measurement sample can be reliably and quickly identified simply by contacting / separating.

また、本発明に係る材質識別装置は必要に応じて、電圧検出手段が、圧電セラミックスを用い、当該圧電セラミックスの一側の電極を接地すると共に、他側電極に誘電体からなる表面部材を接着して形成されるものである。   In the material identification device according to the present invention, if necessary, the voltage detection means uses piezoelectric ceramics, grounds one electrode of the piezoelectric ceramics, and adheres a surface member made of a dielectric to the other electrode. Is formed.

このように本発明においては、圧電セラミックスを用いて電圧検出手段を形成しているので、測定試料に対する接触・離反の際に生じる電圧を各測定試料に応じて均一に発生させることができることとなり、簡易な構成で測定試料の材質を単に接触・離反するのみで確実且つ迅速に識別するという効果を有する。   As described above, in the present invention, since the voltage detection means is formed using piezoelectric ceramics, the voltage generated at the time of contact / separation with respect to the measurement sample can be uniformly generated according to each measurement sample, With a simple configuration, the material of the measurement sample can be reliably and quickly identified simply by contacting / separating.

(本発明の第1の実施形態)
以下、本発明の第1の実施形態に係る材質識別装置を図1ないし図4に基づいて説明する。図1は本実施形態に係る材質識別装置の全体ブロック構成図、図2は図1記載の材質識別装置における電圧検出部の拡大斜視図、図3は図1に記載の材質識別装置における電圧検出部の検出電圧出力図、図4は図3に記載の検出電圧に基づく電圧波形検出部による電圧波形図を示す。
(First embodiment of the present invention)
Hereinafter, a material identifying apparatus according to a first embodiment of the present invention will be described with reference to FIGS. 1 is an overall block diagram of the material identification device according to the present embodiment, FIG. 2 is an enlarged perspective view of a voltage detection unit in the material identification device shown in FIG. 1, and FIG. 3 is a voltage detection in the material identification device shown in FIG. FIG. 4 shows a voltage waveform diagram of the voltage waveform detector based on the detected voltage shown in FIG.

前記各図において本実施形態に係る材質識別装置は、第1及び第2の金属電極11、12間に誘電体13を介装し、この第1の金属電極11の表面に誘電体13からなる表面部材14を接着し、この第2の金属電極12を接地して形成され、前記表面部材14を測定試料100に接触・離反させて第1及び第2の金属電極11、12間に生じる電圧を検出する電圧検出部1と、この検出電圧に基づいて電圧の波形(以下、「検出電圧波形」という。)を検出する電圧波形検出部2と、この検出電圧波形から検出電圧の最大電圧値を検出する最大電圧検出部3と、この検出電圧波形における最大電圧値の1/10の電圧値から最大電圧値に至る時間(以下「電圧立上がり時間」という。)を検出する電圧立上がり時間検出部4と、この検出された最大電圧値及び電圧立上がり時間が複数の測定試料100について予め得られた基準試料データに適合するか否かにより前記複数の測定試料100のいずれかの材質を判別する材質判別部5とを備える構成である。   In each of the drawings, the material identification device according to this embodiment includes a dielectric 13 between the first and second metal electrodes 11 and 12, and the dielectric 13 is formed on the surface of the first metal electrode 11. A voltage generated between the first and second metal electrodes 11 and 12 by bonding the surface member 14 and grounding the second metal electrode 12 and bringing the surface member 14 into contact with and separating from the measurement sample 100. A voltage detector 1 for detecting the voltage, a voltage waveform detector 2 for detecting a voltage waveform (hereinafter referred to as “detected voltage waveform”) based on the detected voltage, and a maximum voltage value of the detected voltage from the detected voltage waveform. And a voltage rise time detector for detecting a time from a voltage value 1/10 of the maximum voltage value to the maximum voltage value (hereinafter referred to as “voltage rise time”). 4 and this is detected A material discriminating unit 5 that discriminates any material of the plurality of measurement samples 100 according to whether or not the maximum voltage value and the voltage rise time match the reference sample data obtained in advance for the plurality of measurement samples 100; It is.

前記電圧検出部1は、駆動装置6におけるロボットアーム63の先端に取り付けられたアクリル容器62内に表面部材14を露出された状態で収納される構成である。この駆動装置6は、電圧検出部1を測定試料100に対して所定条件で衝突させる動作を制御する衝突動作制御部61と、この衝突動作制御部61の制御に基づきアクリル容器62に収納された電圧検出部1を測定試料100に矢印方向に回動して衝突させるロボットアーム63とを備える構成である。   The voltage detector 1 is configured such that the surface member 14 is exposed in an acrylic container 62 attached to the tip of the robot arm 63 in the driving device 6. The driving device 6 is housed in an acrylic container 62 based on the control of the collision operation control unit 61 that controls the operation of causing the voltage detection unit 1 to collide with the measurement sample 100 under a predetermined condition. The voltage detection unit 1 includes a robot arm 63 that rotates and collides with the measurement sample 100 in the arrow direction.

前記材質判別部5は、この基準試料データが複数材質からなる各測定試料100を予め試験的に試験(材質判別時と同一の条件で実行される)して得られる検出電圧に基づき最大電圧値及び電圧立ち上がり時間を各材質の測定試料100毎にデータベース化して形成され、メモリ(図示を省略する。)に格納されるものである。また、この材質判別部5で判別された材質の判別結果が表示装置7に出力され、この表示装置7は材質の種類と共に、測定試料100の表面形状を画像として表示することもできる。   The material discriminating unit 5 has a maximum voltage value based on a detection voltage obtained by experimentally testing each measurement sample 100 of which the reference sample data is made of a plurality of materials (executed under the same conditions as in material discrimination). The voltage rise time is formed as a database for each measurement sample 100 of each material, and is stored in a memory (not shown). In addition, the determination result of the material determined by the material determination unit 5 is output to the display device 7. The display device 7 can also display the surface shape of the measurement sample 100 as an image together with the type of material.

次に、前記構成に基づく本実施形態に係る材質識別装置の材質判別動作について説明する。まず、駆動装置6を起動させて所定の衝突状態(例えば、測定試料100に対して電圧検出部1の表面部材14が直角に衝突する状態)となるように衝突動作制御部61で制御され、ロボットアーム63が矢印A方向へ回動する。   Next, the material discriminating operation of the material discriminating apparatus according to this embodiment based on the above configuration will be described. First, the driving device 6 is activated and controlled by the collision operation control unit 61 so as to be in a predetermined collision state (for example, a state in which the surface member 14 of the voltage detection unit 1 collides at a right angle with respect to the measurement sample 100). The robot arm 63 rotates in the direction of arrow A.

このロボットアーム63の回動に伴ってアクリル容器62に収納された電圧検出部1は、所定の速度で測定試料100に衝突する。この測定試料100への衝突に際して、電圧検出部1の表面部材14と測定試料100との間での摩擦により静電気が生じ、この静電気が誘電体13に絶縁される第1及び第2の金属電極11、12に分極され、この分極された正電荷が金属電極11から電圧波形検出部2へ入力される。   As the robot arm 63 rotates, the voltage detector 1 housed in the acrylic container 62 collides with the measurement sample 100 at a predetermined speed. At the time of collision with the measurement sample 100, static electricity is generated due to friction between the surface member 14 of the voltage detection unit 1 and the measurement sample 100, and the first and second metal electrodes are insulated from the dielectric 13 by the static electricity. The polarized positive charges are input from the metal electrode 11 to the voltage waveform detector 2.

この正電荷の電圧が入力された電圧波形検出部2は、図3に示す入力電圧から10Hzないし30Hzの間の信号のみをバンドパスフィルタ(図示を省略する。)にてフィルタリング処理して図4に示す検出電圧波形を検出する。この検出電圧波形に基づいて最大電圧検出部3は、検出電圧波形における検出電圧の最大電圧値を検出する。他方、電圧立上がり時間検出部4は、前記検出電圧波形に基づいて最大電圧値の1/10の電圧から最大電圧値に至るまでの時間を電圧立上がり時間として検出する。   The voltage waveform detector 2 to which the positive charge voltage is input filters only a signal between 10 Hz and 30 Hz from the input voltage shown in FIG. 3 by a band-pass filter (not shown), and FIG. The detected voltage waveform shown in FIG. Based on this detected voltage waveform, the maximum voltage detector 3 detects the maximum voltage value of the detected voltage in the detected voltage waveform. On the other hand, the voltage rise time detection unit 4 detects the time from the voltage 1/10 of the maximum voltage value to the maximum voltage value as the voltage rise time based on the detected voltage waveform.

この検出された最大電圧値及び電圧立ち上がり時間が材質判別部5へ入力され、この材質判別部5は基準試料データをメモリから順次読出して最大電圧値及び電圧立上がり時間が一致する測定試料100の材質を検索し、この検索結果に基づいて材質を判別する。この判別結果は表示装置7の表示画面に表示され、測定試料100がどのような材質であるかを知ることができることとなる。
(本発明の他の実施形態)
本発明の他の実施形態に係る材質識別装置は、前記第1の実施形態が測定試料100の材質判別を電圧波形の最大電圧値及び電圧立上がり時間に基づいて判別する構成としたのに対し、電圧波形検出部2で検出した電圧波形自体で材質判別部5が材質を判別する構成とすることもできる。この材質判別部5は、基準試料データとして複数の測定試料100毎に予め求められた電圧波形を画像データとしてメモリに格納し、この画像データをパターンマッチングにより一致を検出し、この一致検出により材質の判別を行う。なお、本実施形態の場合には、電圧波形検出部2での検出された電圧波形が材質判別部5に直接入力されることから、最大電圧検出部3、電圧立上がり時間検出部4を省略した回路構成とすることができる。
The detected maximum voltage value and voltage rise time are input to the material discriminating unit 5. The material discriminating unit 5 sequentially reads the reference sample data from the memory, and the material of the measurement sample 100 having the same maximum voltage value and voltage rise time. The material is discriminated based on the search result. This discrimination result is displayed on the display screen of the display device 7, and it is possible to know what kind of material the measurement sample 100 is made of.
(Other embodiments of the present invention)
In the material identification device according to another embodiment of the present invention, the first embodiment is configured to determine the material determination of the measurement sample 100 based on the maximum voltage value of the voltage waveform and the voltage rise time. The material discriminating unit 5 may discriminate the material from the voltage waveform itself detected by the voltage waveform detecting unit 2. The material discriminating unit 5 stores a voltage waveform obtained in advance for each of the plurality of measurement samples 100 as reference sample data in a memory as image data, detects coincidence of the image data by pattern matching, and detects the material by the coincidence detection. To determine. In the case of the present embodiment, the voltage waveform detected by the voltage waveform detector 2 is directly input to the material discriminator 5, so that the maximum voltage detector 3 and the voltage rise time detector 4 are omitted. A circuit configuration can be obtained.

また、他の実施形態に係る材質識別装置は、駆動装置6が電圧検出部1を測定試料100へ衝突又は接触(若しくは当接)させる速度及び/又は圧力を変化させて電圧検出を行う構成とすることもできる。特に、この速度及び/又は圧力を変化させた衝突又は接触(若しくは当接)は、測定試料100の材質の相違により検出電圧又は電圧波形が特徴的に出現する条件で実行されることが望ましい。従って、材質が異なる毎に異なる速度及び/又は圧力で衝突又は接触が実行されて基準試料データが作成されると共に、この作成時と同一の条件で電圧検出動作が実行されることとなる。   In addition, the material identification device according to another embodiment has a configuration in which voltage detection is performed by changing the speed and / or pressure at which the driving device 6 collides or contacts (or abuts) the voltage detection unit 1 with the measurement sample 100. You can also In particular, it is desirable that the collision or contact (or contact) with changing the speed and / or pressure is performed under the condition that the detection voltage or the voltage waveform appears characteristically due to the difference in the material of the measurement sample 100. Accordingly, collision or contact is performed at different speeds and / or pressures for different materials to create reference sample data, and a voltage detection operation is performed under the same conditions as at the time of creation.

さらに、前記各実施形態においては電圧検出部1の誘電体13に単一種類のみ介装する構成としたが、複数種類の誘電体13を各々介装した複数の誘電体13を形成し、この複数種類の誘電体13を用いた複数の電圧検出部1で各々基準試料データを予め作成して構成することもできる。この複数種類の誘電体13は、例えばアクリル、シリコン、セラミックス等の形状等が容易に変化しない各種誘電体で構成することもできる。   Furthermore, in each said embodiment, it was set as the structure which interposed only the dielectric material 13 of the voltage detection part 1, However, The several dielectric material 13 which respectively interposed the multiple types of dielectric material 13 is formed, and this Reference sample data can also be created and configured in advance by a plurality of voltage detectors 1 using a plurality of types of dielectrics 13, respectively. The plurality of types of dielectrics 13 can be made of various dielectrics whose shapes such as acrylic, silicon, and ceramics do not easily change.

このように電圧検出部1の誘電体13を各種異なる誘電体で形成することにより、各種の測定試料100に対して特徴的(ピーク的)な検出結果が得られる最適な組合わせで電圧検出動作を実行できることとなり、より高い精度で材質の判別が可能となる。   In this manner, by forming the dielectric 13 of the voltage detection unit 1 with various different dielectrics, the voltage detection operation is performed with an optimal combination that can obtain characteristic (peak) detection results for various measurement samples 100. Therefore, the material can be discriminated with higher accuracy.

実施例1として、測定試料100としてアルミニウム、木、アクリル、スポンジの材質を判別する動作を、電圧検出部1の誘電体13がセラミックス(圧電素子)、アクリル及びシリコンを各々用いて構成した場合である。この測定試料100のアルミニウム、木、アクリル、スポンジの形状は、20×20×10mmの寸法で形成される。   As Example 1, the operation of discriminating materials of aluminum, wood, acrylic, and sponge as the measurement sample 100 is performed when the dielectric 13 of the voltage detection unit 1 is configured using ceramics (piezoelectric element), acrylic, and silicon, respectively. is there. The shape of aluminum, wood, acrylic, and sponge of the measurement sample 100 is formed with a size of 20 × 20 × 10 mm.

測定条件は、セラミックス、アクリル及びシリコンの各電圧検出部1により各10回づつ接触させて、この接触3回目以降の波形の測定を行い、この測定値で駆動装置6が各電圧検出部1を同じ30cm/secの速度で測定試料100へ衝突させ、この衝突による圧力及び接触状態を総て同一の条件で行った。この測定条件により得られた数値データを表に示す。   The measurement condition is that each voltage detection unit 1 of ceramics, acrylic and silicon is contacted 10 times each, and the waveform after the third contact is measured, and the drive device 6 uses each measured value to determine each voltage detection unit 1. The measurement sample 100 was made to collide at the same speed of 30 cm / sec, and the pressure and contact state due to this collision were all performed under the same conditions. Numerical data obtained under these measurement conditions are shown in the table.

Figure 2007057276
この表に示す各測定データは、衝突の3回目以降について測定された波形で計測10回目までについて電圧検出部1より電圧を検出し、この各電圧の各波形をアルミニウム、木、アクリル、スポンジ毎に重畳した検出電圧に基づく電圧特性図を図5ないし図7に示す。
Figure 2007057276
Each measurement data shown in this table is a waveform measured for the third and subsequent collisions, and the voltage is detected by the voltage detection unit 1 for the tenth measurement, and each waveform of each voltage is detected for each of aluminum, wood, acrylic, and sponge. FIG. 5 to FIG. 7 show voltage characteristic diagrams based on the detected voltage superimposed on.

前記図5ないし図7の各図において、縦軸の電圧[mV]における正側への大きな出力波形は測定試料100への電圧検出部1が衝突当初に発生する静電気の波形であり、その後の負側への大きな出力波形は測定試料100から電圧検出部1が離反する際に発生する静電気の波形である。また、この正及び負の各大きな出力波形の中間で小さく振動する出力波形は、測定試料100の表面に電圧検出部1の表面部材14が押圧されて静電気がほとんど生じない状態の出力波形である。   5 to 7, the large output waveform to the positive side in the voltage [mV] on the vertical axis is a waveform of static electricity generated at the beginning of the collision of the voltage detection unit 1 to the measurement sample 100, and thereafter. A large output waveform toward the negative side is a waveform of static electricity generated when the voltage detection unit 1 is separated from the measurement sample 100. Further, the output waveform that vibrates slightly in the middle of each of the large positive and negative output waveforms is an output waveform in a state where the surface member 14 of the voltage detection unit 1 is pressed against the surface of the measurement sample 100 and hardly generates static electricity. .

前記各々重畳された各電圧特性から電圧波形検出部2が電圧波形を検出し、この電圧波形を図5ないし図7中に各々破線で示す。この破線で示す各電圧波形から最大電圧検出部3が各最大電圧値を検出すると共に、電圧立上がり時間検出部4が各電圧立上がり時間を検出した。この検出された各最大電圧値及び電圧立上がり時間を各々図8(A)、(B)に重畳して表示した。   The voltage waveform detector 2 detects a voltage waveform from the respective superimposed voltage characteristics, and this voltage waveform is indicated by a broken line in FIGS. The maximum voltage detector 3 detects each maximum voltage value from each voltage waveform indicated by the broken line, and the voltage rise time detector 4 detects each voltage rise time. The detected maximum voltage values and voltage rise times are displayed superimposed on FIGS. 8A and 8B, respectively.

まず、図8(A)において各最大電圧値に基づいてアルミニウム、木、アクリル、スポンジの測定試料100の判別を行う。このアルミニウム、木、アクリルの材質はセラミックス、アクリル、シリコンのいずれの電圧検出部1であっても明らかに判別することができる。アクリルとスポンジの材質については、セラミックス及びシリコンの電圧検出部1の場合に近似して判断が若干難しいが、アクリルの電圧検出部1の場合に明らかに判別することができる。   First, in FIG. 8A, the measurement sample 100 of aluminum, wood, acrylic, and sponge is determined based on each maximum voltage value. The material of aluminum, wood, and acrylic can be clearly discriminated regardless of the voltage detection unit 1 of ceramics, acrylic, or silicon. The material of the acrylic and sponge is somewhat difficult to judge by approximating the case of the voltage detector 1 made of ceramic and silicon, but can be clearly discriminated in the case of the voltage detector 1 of acrylic.

次に、図8(B)において各電圧立上がり時間に基づいてアルミニウム、木、アクリル、スポンジの測定試料100の判別を行う。このアルミニウムと木とはセラミックス、アクリル、シリコンのいずれの電圧検出部1であっても極めて近似して判別が困難である。このアルミニウム、木に対してアクリル及びスポンジは、セラミックス、アクリル、シリコンのいずれの電圧検出部1であっても明確に判別することができる。   Next, in FIG. 8B, determination of the measurement sample 100 of aluminum, wood, acrylic, and sponge is performed based on each voltage rise time. The aluminum and wood are extremely close to each other and difficult to discriminate regardless of the voltage detector 1 of ceramic, acrylic, or silicon. Acrylic and sponge for aluminum and wood can be clearly discriminated regardless of the voltage detector 1 of ceramic, acrylic or silicon.

以上のように最大電圧値ではアルミニウムと木との材質を区別し、電圧立上がり時間でアクリルとスポンジとの材質を区別できることから、いずれの材質であっても正確に判別できることが解る。   As described above, the maximum voltage value can distinguish the materials of aluminum and wood, and the voltage rise time can distinguish the materials of acrylic and sponge. Therefore, it can be understood that any material can be accurately discriminated.

本発明の第1の実施形態に係る材質識別装置の全体ブロック構成図である。1 is an overall block configuration diagram of a material identification device according to a first embodiment of the present invention. 図1記載の材質識別装置における電圧検出部の拡大斜視図である。It is an expansion perspective view of the voltage detection part in the material identification device of FIG. 図1に記載の材質識別装置における電圧検出部の検出電圧出力図である。It is a detection voltage output figure of the voltage detection part in the material identification device of FIG. 図3に記載の検出電圧に基づく電圧波形検出部による電圧波形図である。。It is a voltage waveform diagram by the voltage waveform detection part based on the detection voltage of FIG. . 本発明の実施例1における誘電体をアクリルとした測定データに基づく電圧特性図を示す。The voltage characteristic figure based on the measurement data which used the dielectric material in Example 1 of this invention as the acrylics is shown. 本発明の実施例1における誘電体をシリコンとした測定データに基づく電圧特性図を示す。The voltage characteristic figure based on the measurement data which used the dielectric material in Example 1 of this invention as silicon is shown. 本発明の実施例1における誘電体をセラミックスとした測定データに基づく電圧特性図を示す。The voltage characteristic figure based on the measurement data which used the dielectric material in Example 1 of this invention as ceramics is shown. 本発明の実施例1における図5ないし図7に基づく各最大電圧値及び電圧立上がり時間の重畳特性図を示す。FIG. 8 shows superimposed characteristics of maximum voltage values and voltage rise times based on FIGS. 5 to 7 in Embodiment 1 of the present invention. 従来の材質識別装置の一例である触覚センサの外観斜視図及び全体システム構成図である。It is the external appearance perspective view of the tactile sensor which is an example of the conventional material identification apparatus, and a whole system block diagram.

符号の説明Explanation of symbols

1 電圧検出部
2 電圧波形検出部
3 最大電圧検出部
4 電圧立上がり時間検出部
5 材質判別部
6 駆動装置
61 衝突動作制御部
62 アクリル容器
63 ロボットアーム
7 表示装置
11、12 金属電極
13 誘電体
14 表面部材
100 測定試料
111 触覚センサ
112 媒体
113 センサ素子
113a コイル状炭素繊維
114 電極
115 導線
116 増幅回路
117 電源
118 測定器
DESCRIPTION OF SYMBOLS 1 Voltage detection part 2 Voltage waveform detection part 3 Maximum voltage detection part 4 Voltage rise time detection part 5 Material discrimination | determination part 6 Drive apparatus 61 Collision motion control part 62 Acrylic container 63 Robot arm 7 Display apparatus 11, 12 Metal electrode 13 Dielectric 14 Surface member 100 Measurement sample 111 Tactile sensor 112 Medium 113 Sensor element 113a Coiled carbon fiber 114 Electrode 115 Conductor 116 Amplifying circuit 117 Power source 118 Measuring instrument

Claims (6)

第1及び第2の金属電極間に誘電体を介装し、当該第1の金属電極の表面に誘電体からなる表面部材を接着し、前記第2の金属電極を接地して形成され、前記表面部材を測定試料に接触・離反させて第1及び第2の金属電極間に生じる電圧を検出する電圧検出手段と、
前記検出電圧に基づいて電圧の波形を検出する電圧波形検出手段と、
前記検出された電圧波形及び複数の測定試料について予め得られた基準試料データに基づいて前記複数の測定試料のいずれかの材質を判別する材質判別手段とを備えることを
特徴とする材質識別装置。
A dielectric is interposed between the first and second metal electrodes, a surface member made of a dielectric is adhered to the surface of the first metal electrode, the second metal electrode is grounded, Voltage detecting means for detecting a voltage generated between the first and second metal electrodes by bringing the surface member into contact with or separated from the measurement sample;
Voltage waveform detecting means for detecting a voltage waveform based on the detected voltage;
A material identification device, comprising: a material discrimination means for discriminating a material of any of the plurality of measurement samples based on the detected voltage waveform and reference sample data obtained in advance for the plurality of measurement samples.
前記請求項1に記載の材質識別装置において、
前記材質判別手段が、電圧波形における最大電圧値及び当該最大電圧値に至るまでの立上がり時間に基づいて材質を判別することを
特徴とする材質識別装置。
In the material identification device according to claim 1,
The material identifying device, wherein the material identifying means determines a material based on a maximum voltage value in a voltage waveform and a rising time until the maximum voltage value is reached.
前記請求項1又は2に記載の材質識別装置において、
前記電圧検出手段が、表面部材を測定試料に衝突させることを
特徴とする材質識別装置。
In the material identification device according to claim 1 or 2,
The material identification device, wherein the voltage detection means causes a surface member to collide with a measurement sample.
前記請求項3に記載の材質識別装置において、
前記電圧検出手段が、表面部材を測定試料に衝突させる速度及び/又は圧力を変化させることを
特徴とする材質識別装置。
In the material identification device according to claim 3,
The material identification device characterized in that the voltage detection means changes the speed and / or pressure at which the surface member collides with the measurement sample.
前記請求項1ないし4のいずれかに記載の材質識別装置において、
前記電圧検出手段が、第1及び第2の金属電極間に介装される誘電体を複数の異なる種類で各々形成し、
前記材質判別手段が、前記複数の異なる種類の誘電体に対応して予め得られた各基準試料データに基づいて材質を判別することを
特徴とする材質識別装置。
In the material identification device according to any one of claims 1 to 4,
The voltage detecting means is formed of a plurality of different types of dielectrics interposed between the first and second metal electrodes,
The material identifying device, wherein the material determining means determines a material based on each reference sample data obtained in advance corresponding to the plurality of different types of dielectrics.
前記請求項1ないし5のいずれかに記載の材質識別装置において、
前記電圧検出手段が、圧電セラミックスを用い、当該圧電セラミックスの一側の電極を接地すると共に、他側電極に誘電体からなる表面部材を接着して形成されることを
特徴とする材質識別装置。
In the material identification device according to any one of claims 1 to 5,
The material identification device according to claim 1, wherein the voltage detecting means is formed by using piezoelectric ceramics, grounding one electrode of the piezoelectric ceramics, and bonding a surface member made of a dielectric to the other electrode.
JP2005240478A 2005-08-22 2005-08-22 Material identification device Active JP4701394B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005240478A JP4701394B2 (en) 2005-08-22 2005-08-22 Material identification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005240478A JP4701394B2 (en) 2005-08-22 2005-08-22 Material identification device

Publications (2)

Publication Number Publication Date
JP2007057276A true JP2007057276A (en) 2007-03-08
JP4701394B2 JP4701394B2 (en) 2011-06-15

Family

ID=37920909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005240478A Active JP4701394B2 (en) 2005-08-22 2005-08-22 Material identification device

Country Status (1)

Country Link
JP (1) JP4701394B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008203220A (en) * 2007-02-22 2008-09-04 Saga Univ Hardness and wetness identifying device
WO2020147447A1 (en) * 2019-01-16 2020-07-23 清华大学 Material identification and classification method and system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0393761U (en) * 1989-10-06 1991-09-25
JPH08193935A (en) * 1995-01-19 1996-07-30 Dainippon Printing Co Ltd Method and apparatus for determining hardness of article
JP2002257700A (en) * 2001-02-27 2002-09-11 Mitsubishi Heavy Ind Ltd Apparatus for diagnosing deterioration of lumber and method for the same
JP2003075316A (en) * 2001-08-31 2003-03-12 National Institute Of Advanced Industrial & Technology Hardness sensor and hardness measurement method using it
JP2005049332A (en) * 2003-07-14 2005-02-24 Seiji Motojima Tactile sensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0393761U (en) * 1989-10-06 1991-09-25
JPH08193935A (en) * 1995-01-19 1996-07-30 Dainippon Printing Co Ltd Method and apparatus for determining hardness of article
JP2002257700A (en) * 2001-02-27 2002-09-11 Mitsubishi Heavy Ind Ltd Apparatus for diagnosing deterioration of lumber and method for the same
JP2003075316A (en) * 2001-08-31 2003-03-12 National Institute Of Advanced Industrial & Technology Hardness sensor and hardness measurement method using it
JP2005049332A (en) * 2003-07-14 2005-02-24 Seiji Motojima Tactile sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008203220A (en) * 2007-02-22 2008-09-04 Saga Univ Hardness and wetness identifying device
WO2020147447A1 (en) * 2019-01-16 2020-07-23 清华大学 Material identification and classification method and system

Also Published As

Publication number Publication date
JP4701394B2 (en) 2011-06-15

Similar Documents

Publication Publication Date Title
US5618989A (en) Acceleration sensor and measurement method
JPS63140320A (en) Position detection for power sensing type data input unit
JP2005351890A (en) Omnidirectional eddy current probe and inspection system
JP2889196B2 (en) DC level change detection circuit for sensor signal
JP2001046344A (en) Skin character measuring probe
JP4701394B2 (en) Material identification device
US6328934B1 (en) Device for detection of when a test probe gets into contact with a liquid surface
US4397033A (en) Device for measuring characteristic parameters of the speed of handwriting
JP4830111B2 (en) Hardness and wetness identification device
CN108292582A (en) Arcing detection device for corona treatment
US20170277351A1 (en) Integral sensing apparatus for touch and force sensing and method for the same
TW546477B (en) Drop impact determination system and acceleration sensing element used in the drop impact determination system
JP6418803B2 (en) Sensor signal detection circuit
JP2006178925A (en) Sensor head of code reader
JP2005114440A (en) Acceleration sensor of capacitance detection type capable of diagnosing malfunction
JP6160917B2 (en) MEMS sensor
WO2010002056A1 (en) Device for sensing minuteness matter
JP3392341B2 (en) Level sudden fluctuation detection method and circuit
JP3524049B2 (en) Wiring pattern inspection method
JP2002071301A (en) Capacitive displacement sensor
JP3320470B2 (en) Liquid level detector
CN105997068A (en) Microarray myoelectricity surface electrode
JPH0666673A (en) Method and circuit for observing vibration
JPH07900Y2 (en) Vibration meter
JP2857597B2 (en) Digitizer and input pen

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080704

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101115

A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20110208

Free format text: JAPANESE INTERMEDIATE CODE: A01