JP2007057049A - Bearing with sensor - Google Patents

Bearing with sensor Download PDF

Info

Publication number
JP2007057049A
JP2007057049A JP2005244887A JP2005244887A JP2007057049A JP 2007057049 A JP2007057049 A JP 2007057049A JP 2005244887 A JP2005244887 A JP 2005244887A JP 2005244887 A JP2005244887 A JP 2005244887A JP 2007057049 A JP2007057049 A JP 2007057049A
Authority
JP
Japan
Prior art keywords
bearing
sensor
cage
permanent magnet
inner ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005244887A
Other languages
Japanese (ja)
Inventor
Akio Fujii
章雄 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2005244887A priority Critical patent/JP2007057049A/en
Publication of JP2007057049A publication Critical patent/JP2007057049A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Rolling Contact Bearings (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive bearing with a sensor, having superior rotation measuring accuracy with a simple constitution. <P>SOLUTION: In this bearing with the sensor comprising a pair of bearing rings 2, 4 relatively rotatably disposed in opposition to each other, a plurality of rolling elements 6 rollably incorporated between raceway surfaces 2b, 4b respectively formed on opposite faces 2a, 4a of the bearing rings, a cage 8 for rollably retaining the plurality of rolling elements, and a sensor 30 for measuring a rotating state of a bearing, the cage is made of a magnetic material, and the sensor is mounted on one of the bearing rings, and comprises a permanent magnet 34 axially magnetized, and a detecting element 32 disposed in opposition to the cage and detecting change of magnetic field. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、軸受の回転状態(例えば、回転数や回転速度など)を計測するためのセンサ機能を有するセンサ付き軸受に関する。   The present invention relates to a sensor-equipped bearing having a sensor function for measuring a rotation state (for example, a rotation speed, a rotation speed, etc.) of the bearing.

従来から、例えば自動車の電動式パワーステアリング装置や車輪支持装置などに使用される転がり軸受のように、軸受の回転状態(例えば、回転数や回転速度など)を計測するためのセンサ機能を有する各種のセンサ付き軸受が知られている(特許文献1参照)。   Conventionally, various types of sensor functions for measuring the rotation state of a bearing (for example, rotation speed, rotation speed, etc.) such as a rolling bearing used in an electric power steering device or a wheel support device of an automobile. A sensor-equipped bearing is known (see Patent Document 1).

センサ付き軸受の構成として、例えば図5に示すような軸受は、相対回転可能に対向して配置された一対の軌道輪(内輪2と外輪4)、各軌道輪の対向面2a,4aにそれぞれ形成された軌道面2b,4b間に転動自在に組み込まれた複数の転動体6と、複数の転動体6を1つずつ転動自在に保持する保持器8とを備えている。この場合、内輪2は軸受の回転軸(図示しない)とともに回転する回転輪であり、外輪4は常時非回転状態に維持される静止輪になっている。また、内輪2と外輪4との間には密封板10(例えば、シールド)が介在されており、これにより、軸受外部からの異物(例えば、水や塵埃)の侵入や軸受内部からの潤滑剤(例えば、潤滑油やグリース)の漏洩を防止している。   As a configuration of the sensor-equipped bearing, for example, a bearing as shown in FIG. 5 is provided on a pair of bearing rings (inner ring 2 and outer ring 4) opposed to each other so as to be relatively rotatable and opposed surfaces 2a and 4a of the respective bearing rings. There are provided a plurality of rolling elements 6 rotatably incorporated between the formed raceway surfaces 2b and 4b, and a holder 8 for holding the plurality of rolling elements 6 one by one so as to be freely rotatable. In this case, the inner ring 2 is a rotating wheel that rotates together with a rotating shaft (not shown) of the bearing, and the outer ring 4 is a stationary wheel that is always maintained in a non-rotating state. Further, a sealing plate 10 (for example, a shield) is interposed between the inner ring 2 and the outer ring 4, so that foreign matter (for example, water or dust) enters from the outside of the bearing or lubricant from the inside of the bearing. (For example, lubricating oil and grease) are prevented from leaking.

回転輪である内輪2には、多極着磁された環状を成す磁石20が設けられており、静止輪である外輪4には、磁界の変化(例えば、磁界の強弱や向き)を検出するセンサ24(例えば、ホール素子)が設けられている。磁石20は、芯金22を介して内輪2に取り付けられており、一方、センサ24は、センサケース26に格納された状態で、センサケース固定リング28を介して外輪4に取り付けられている。この場合、センサケース26には、磁石20と対向する部分に孔26aが形成されており、センサ24は、その検知部24aが当該孔26aを通して磁石20と対向している。なお、磁石20(多極着磁された環状磁石)としては、例えば周方向にN極とS極とが交互に着磁されたボンド磁石、N極とS極と極無しあるいはS極とN極と極無しとが交互に着磁されたボンド磁石などを用いることができる。   The inner ring 2 that is a rotating wheel is provided with a multi-pole magnetized ring-shaped magnet 20, and the outer ring 4 that is a stationary ring detects a change in magnetic field (for example, the strength or direction of the magnetic field). A sensor 24 (for example, a Hall element) is provided. The magnet 20 is attached to the inner ring 2 via a core bar 22, while the sensor 24 is attached to the outer ring 4 via a sensor case fixing ring 28 while being stored in the sensor case 26. In this case, a hole 26a is formed in the sensor case 26 at a portion facing the magnet 20, and the sensor 24 has a detecting portion 24a facing the magnet 20 through the hole 26a. As the magnet 20 (annular magnet magnetized with multiple poles), for example, a bonded magnet in which N poles and S poles are alternately magnetized in the circumferential direction, N poles and S poles and no poles, or S poles and N poles. A bond magnet in which poles and poles are alternately magnetized can be used.

この状態で内輪2が回転すると、これとともに磁石20も回転することで、センサ24に対する磁極(例えば、N極、S極)の位置が交互に連続して変化する。このときの磁界の変化(磁束密度の変化)をセンサ24で検出することで、軸受の回転輪(内輪2)の回転数や回転速度などを計測することができる。   When the inner ring 2 rotates in this state, the magnet 20 also rotates together with this, so that the positions of the magnetic poles (for example, N pole and S pole) with respect to the sensor 24 change alternately and continuously. By detecting the change in the magnetic field (change in the magnetic flux density) at this time by the sensor 24, it is possible to measure the rotation speed, rotation speed, and the like of the rotating wheel (inner ring 2) of the bearing.

しかしながら、従来のセンサ付き軸受では、内輪2に磁石20を取り付けるとともに、外輪4にセンサ24をそれぞれ取り付けなければならず、手間がかかるとともに、取り付けのための部品点数が増加するため、軸受の製造コストが上昇してしまう。また、軸受の回転輪(内輪2)の回転数や回転速度などを正確に計測するためには、磁界の変化をより細分化して検出する必要がある。このため、内輪2に設ける磁石20は多極着磁させることが好ましいが、磁石20を多極着磁させるためには、例えば2極着磁の場合と比較して加工コストも余計に発生してしまう。   However, in the conventional bearing with a sensor, the magnet 20 must be attached to the inner ring 2 and the sensor 24 must be attached to the outer ring 4, which is troublesome and increases the number of parts for attachment. Cost will rise. Further, in order to accurately measure the rotation speed and rotation speed of the rotating wheel (inner ring 2) of the bearing, it is necessary to detect the change in the magnetic field more finely. For this reason, it is preferable to magnetize the magnet 20 provided on the inner ring 2, but in order to magnetize the magnet 20, extra processing costs are generated compared to, for example, the case of two-pole magnetization. End up.

また、センサ付き軸受の構成としては、上述した図5に示すような構成の軸受の他にも以下のような軸受も一例として挙げられる。かかる軸受において、静止輪である一方の軌道輪(例えば、外輪)には、センサと単極着磁された磁石が設けられており、回転輪である他方の軌道輪(例えば、内輪)は、軸方向に延伸されており、その延伸部分に鋸歯状のセレーション部が形成されている。   Moreover, as a structure of a bearing with a sensor, the following bearings are mentioned as an example other than the bearing of a structure as shown in FIG. 5 mentioned above. In such a bearing, one bearing ring (e.g., outer ring) that is a stationary ring is provided with a sensor and a magnet with a single pole magnetized, and the other bearing ring (e.g., inner ring) that is a rotating ring is It extends in the axial direction, and a serrated serrated portion is formed in the extended portion.

この状態で内輪が回転すると、鋸歯状のセレーション部の凹凸が回転方向に連続して交互に変化することで磁界の変化(磁束密度の変化)が生じる。この磁界の変化をセンサで検出することで、軸受の回転輪(内輪)の回転数や回転速度などを計測することができる。   When the inner ring rotates in this state, the unevenness of the serrated serrations changes alternately and continuously in the rotation direction, resulting in a change in magnetic field (change in magnetic flux density). By detecting this change in the magnetic field with a sensor, the rotational speed or rotational speed of the rotating wheel (inner ring) of the bearing can be measured.

このようなセンサ付き軸受は、センサと磁石を一方の軌道輪(例えば、外輪)のみに設けているため、これらの部品の取付コストを抑えることはできるが、他方の軌道輪(例えば、内輪)を軸方向に延伸させ、当該延伸部分(セレーション部)を鋸歯状に形成する必要があり、このための加工コストが余計に発生してしまう。
特開2002−40037号公報
Such a bearing with a sensor is provided with a sensor and a magnet only on one of the race rings (for example, the outer ring), so that the mounting cost of these parts can be reduced, but the other race ring (for example, the inner ring) Is stretched in the axial direction, and the stretched portion (serration portion) needs to be formed in a sawtooth shape, which causes an extra processing cost.
JP 2002-40037 A

本発明は、このような課題を解決するためになされており、その目的は、簡単な構成で回転計測精度に優れた安価なセンサ付き軸受を提供することにある。   The present invention has been made to solve such problems, and an object thereof is to provide an inexpensive sensor-equipped bearing with a simple configuration and excellent rotational measurement accuracy.

このような目的を達成するために、本発明に係るセンサ付き軸受は、相対回転可能に対向して配置された一対の軌道輪と、各軌道輪の対向面にそれぞれ形成された軌道面間に転動自在に組み込まれた複数の転動体と、複数の転動体を転動自在に保持する保持器と、軸受の回転状態を計測するセンサとを備えたセンサ付き軸受であって、保持器は磁性材で形成されており、センサは一方の軌道輪に設けられ、軸方向に着磁された永久磁石と、保持器に対向配置され且つ磁界の変化を検出する検出素子とを備えている。   In order to achieve such an object, the sensor-equipped bearing according to the present invention is provided between a pair of race rings arranged to face each other so as to be relatively rotatable, and raceway surfaces respectively formed on opposing surfaces of the race rings. A sensor-equipped bearing comprising a plurality of rolling elements incorporated in a freely rotatable manner, a cage for holding the plurality of rolling elements in a freely rotatable manner, and a sensor for measuring a rotation state of the bearing. The sensor is formed of a magnetic material, and includes a permanent magnet that is provided on one of the races and is magnetized in the axial direction, and a detection element that is disposed to face the cage and detects a change in the magnetic field.

また、本発明に係るセンサ付き軸受は、相対回転可能に対向して配置された一対の軌道輪と、各軌道輪の対向面にそれぞれ形成された軌道面間に転動自在に組み込まれた複数の転動体と、複数の転動体を転動自在に保持する保持器と、軸受の回転状態を計測するセンサとを備えたセンサ付き軸受であって、保持器は非磁性材で形成されているとともに、各転動体は磁性材で形成されており、センサは一方の軌道輪に設けられ、軸方向に着磁された永久磁石と、転動体に対向配置され且つ磁界の変化を検出する検出素子とを備えている。   Further, the sensor-equipped bearing according to the present invention includes a pair of bearing rings arranged to face each other so as to be relatively rotatable, and a plurality of rolling rings incorporated between the raceways formed on the facing surfaces of the respective bearing rings. A bearing with a sensor comprising a rolling element, a cage that holds a plurality of rolling elements in a freely rolling manner, and a sensor that measures the rotational state of the bearing, wherein the cage is made of a non-magnetic material. In addition, each rolling element is formed of a magnetic material, and a sensor is provided on one of the race rings, and a permanent magnet that is magnetized in the axial direction and a detection element that is disposed facing the rolling element and detects a change in the magnetic field. And.

本発明によれば、簡単な構成で回転計測精度に優れた安価なセンサ付き軸受を提供することができる。   According to the present invention, it is possible to provide an inexpensive sensor bearing with a simple configuration and excellent rotation measurement accuracy.

以下、本発明の実施形態に係るセンサ付き軸受について、添付図面を参照して説明する。
なお、軸受としては、例えばスラスト軸受やラジアル軸受を適用することができるが、ここでは一例として、ラジアル軸受を想定する。また、転動体としては、例えばころや玉を適用することができるが、ここでは一例として、玉を想定する。
なお、その際、従来のセンサ付き軸受(図5)と同一の構成には図面上で同一符号を付して、その説明を省略する。
Hereinafter, a sensor-equipped bearing according to an embodiment of the present invention will be described with reference to the accompanying drawings.
In addition, although a thrust bearing and a radial bearing can be applied as a bearing, for example, a radial bearing is assumed as an example here. Moreover, as a rolling element, although a roller and a ball | bowl can be applied, a ball | bowl is assumed as an example here.
In this case, the same components as those of the conventional sensor-equipped bearing (FIG. 5) are denoted by the same reference numerals in the drawing, and the description thereof is omitted.

図1(a),(b)には、本発明の第1実施形態に係るセンサ付き軸受が示されている。
かかるセンサ付き軸受は、相対回転可能に対向して配置された一対の軌道輪(内輪2と外輪4)と、各軌道輪の対向面2a,4aにそれぞれ形成された軌道面2b,4b間に転動自在に組み込まれた複数の転動体6と、複数の転動体6を1つずつ転動自在に保持する保持器8と、軸受の回転状態を計測するセンサ30とを備えている。この場合、内輪2は、軸受の回転軸(図示しない)とともに回転する回転輪となっているのに対し、外輪4は、常時非回転状態に維持される静止輪となっている。
FIGS. 1A and 1B show a sensor-equipped bearing according to a first embodiment of the present invention.
Such a sensor-equipped bearing is provided between a pair of race rings (an inner ring 2 and an outer ring 4) arranged to face each other so as to be relatively rotatable, and raceway surfaces 2b and 4b formed on opposing surfaces 2a and 4a of the raceways. A plurality of rolling elements 6 incorporated so as to be capable of rolling, a cage 8 that holds the plurality of rolling elements 6 one by one so as to freely roll, and a sensor 30 that measures the rotational state of the bearing are provided. In this case, the inner ring 2 is a rotating wheel that rotates together with a rotating shaft (not shown) of the bearing, whereas the outer ring 4 is a stationary wheel that is always maintained in a non-rotating state.

このような構成において、保持器8は、磁性材(例えば、軟鋼材やS〜C材(機械構造用炭素鋼材)など)で形成されており、センサ30は、外輪4に設けられ、軸方向に着磁された永久磁石34と、保持器8に対向配置され且つ磁界の変化を検出する検出素子(例えば、ホールIC)32とを備えている。なお、センサ30は、軸受外部の制御・演算装置(図示しない)及び電源装置(図示しない)とそれぞれケーブル38によって接続され、当該電源装置からホールIC32へ電源の供給を受けるとともに、検出した信号をホールIC32から当該制御・演算装置へ送信している。   In such a configuration, the cage 8 is formed of a magnetic material (for example, a mild steel material or an S to C material (carbon steel material for mechanical structure)), and the sensor 30 is provided on the outer ring 4 and is axially And a detection element (for example, Hall IC) 32 that is disposed opposite to the cage 8 and detects a change in the magnetic field. The sensor 30 is connected to a control / arithmetic device (not shown) and a power supply device (not shown) outside the bearing by cables 38, receives power from the power supply device to the Hall IC 32, and detects the detected signal. The data is transmitted from the Hall IC 32 to the control / arithmetic apparatus.

本実施形態において、外輪4は、その端部4c,4dのうち一端側4cが他端側4dよりも軸方向に延伸して形成された突出部40を有し、当該突出部40が対向する内輪2の端部2cよりも軸方向に突出するように配置されるとともに、当該突出部40にはセンサ30が設けられている。なお、内輪2の両端部2c,2dには突出部は設けられておらず、内輪2には、例えば従来と同様の軸受幅を持つリング(軌道輪)を用いることができる。   In the present embodiment, the outer ring 4 has a protruding portion 40 formed by extending one end side 4c of the end portions 4c and 4d in the axial direction from the other end side 4d, and the protruding portion 40 faces the outer ring 4. It is arranged so as to protrude in the axial direction from the end portion 2 c of the inner ring 2, and a sensor 30 is provided on the protruding portion 40. Note that no projecting portions are provided at both end portions 2c and 2d of the inner ring 2, and for the inner ring 2, for example, a ring having a bearing width similar to that of a conventional one (track ring) can be used.

この場合、外輪4の突出部40には、内輪2との対向面4aの端部に周方向に沿って溝40aが設けられており、環状を成す取付板(ホルダ)36が、その外径を当該溝40aに例えば嵌合されることにより取り付けられているとともに、永久磁石34がその磁極面を軸方向へ向けて、当該ホルダ36の内面(軸受内側を向く面)の周方向の1箇所に取り付けられ(例えば、接着され)ている。また、ホールIC32は、検知部32aが保持器10と対向するように、当該永久磁石34のホルダ36に対する取付面とは反対側の面に取り付けられ(例えば、接着され)ている。このように、ホールIC32は、永久磁石34よりも軸受の内側に位置付けられて配置されている。
なお、永久磁石34は、多極着磁された永久磁石である必要はなく、例えば軸方向に2極着磁した永久磁石を用いることができ、本実施形態においては、一例として、2極着磁した永久磁石をホールIC32側にS極、ホルダ36側にN極を位置付けて配置している。
In this case, the protrusion 40 of the outer ring 4 is provided with a groove 40a along the circumferential direction at the end of the surface 4a facing the inner ring 2, and an annular mounting plate (holder) 36 has an outer diameter. Is attached by, for example, fitting into the groove 40a, and the permanent magnet 34 has one circumferential position on the inner surface of the holder 36 (the surface facing the bearing inside) with its magnetic pole surface facing the axial direction. Attached (for example, glued). Further, the Hall IC 32 is attached (for example, bonded) to the surface opposite to the attachment surface of the permanent magnet 34 with respect to the holder 36 so that the detection unit 32a faces the cage 10. As described above, the Hall IC 32 is positioned and arranged on the inner side of the bearing than the permanent magnet 34.
The permanent magnet 34 does not need to be a multi-pole magnetized permanent magnet. For example, a permanent magnet magnetized with two poles in the axial direction can be used. In the present embodiment, as an example, a two-pole magnet is used. The magnetized permanent magnet is arranged with the S pole on the Hall IC 32 side and the N pole on the holder 36 side.

また、本実施形態において、保持器8は、各転動体6を保持するポケット8aと、隣り合うポケット8aを連結する平坦部8bとが周方向に沿って交互に配置されるように鋼板をプレス成形して成る2つの保持器半体が、対向して平坦部8bでリベット止めされ、形成されている(いわゆる波型プレス保持器)。   Further, in the present embodiment, the cage 8 presses the steel plate so that the pockets 8a that hold the rolling elements 6 and the flat portions 8b that connect the adjacent pockets 8a are alternately arranged along the circumferential direction. Two cage halves formed by molding are riveted and formed at the flat portion 8b so as to face each other (so-called corrugated press cage).

ここで、かかる軸受の回転状態(例えば、回転数や回転速度など)を計測する場合について以下、考察する。本実施形態において、内輪2が回転すると、これとともに保持器8も回転し、回転中、保持器8は、そのポケット8aの外周部と平坦部8bとが交互にホールIC32を介して永久磁石34と対向する。この場合、保持器8のポケット8aの外周部は、転動体6の半径分だけ平坦部8bよりも軸受の外側方向に突出しているため、保持器8と永久磁石34との間の距離は一定せず、繰り返し変動する。   Here, the case of measuring the rotation state (for example, the rotation speed and the rotation speed) of the bearing will be considered below. In the present embodiment, when the inner ring 2 rotates, the retainer 8 also rotates together with the inner ring 2, and during the rotation, the retainer 8 has a permanent magnet 34 with the outer peripheral portion of the pocket 8 a and the flat portion 8 b alternately through the Hall IC 32. Opposite. In this case, since the outer peripheral portion of the pocket 8a of the cage 8 protrudes more outwardly of the bearing than the flat portion 8b by the radius of the rolling element 6, the distance between the cage 8 and the permanent magnet 34 is constant. Without repeated.

例えば、図1(a)に示す状態では、保持器8は、そのポケット8aの外周部が永久磁石34と距離d1を保ちながら対向し、永久磁石34と最も近づいた状態となっている。一方、図1(b)に示す状態では、保持器8は、その平坦部8bが永久磁石34と距離d2を保ちながら対向し、永久磁石34と最も離れた状態となっている。すなわち、内輪2(保持器8)の回転中、保持器8と永久磁石34との間の距離は、最小値d1と最大値d2との間で繰り返し変動する。   For example, in the state shown in FIG. 1A, the retainer 8 is in a state where the outer peripheral portion of the pocket 8a faces the permanent magnet 34 while maintaining the distance d1, and is closest to the permanent magnet 34. On the other hand, in the state shown in FIG. 1 (b), the retainer 8 is in a state in which the flat portion 8 b faces the permanent magnet 34 while maintaining the distance d 2 and is farthest from the permanent magnet 34. That is, during the rotation of the inner ring 2 (the cage 8), the distance between the cage 8 and the permanent magnet 34 repeatedly varies between the minimum value d1 and the maximum value d2.

本実施形態においては、保持器8が磁性材で形成されているため、保持器8と永久磁石34との間に磁界が生じる。しかしながら、内輪2(保持器8)の回転によって、保持器8と永久磁石34との間の距離が最小値d1と最大値d2との間で繰り返し変動すると、これに伴って、保持器8と永久磁石34との間に生じている磁界の強さ(磁束密度の大きさ)も繰り返し変動する。例えば、図4には、センサ付き軸受(軸受内径d:φ8(mm)、軸受外径D:φ22(mm)、軸受幅B:7(mm))に7個の転動体(玉)を組み込んだ場合において、保持器が1回転する間の磁束密度の変化(パルス信号の変化)が一例として示されている。   In the present embodiment, since the cage 8 is formed of a magnetic material, a magnetic field is generated between the cage 8 and the permanent magnet 34. However, if the distance between the cage 8 and the permanent magnet 34 is repeatedly changed between the minimum value d1 and the maximum value d2 due to the rotation of the inner ring 2 (the cage 8), the cage 8 The strength of the magnetic field (magnitude of magnetic flux density) generated between the permanent magnet 34 also fluctuates repeatedly. For example, in FIG. 4, seven rolling elements (balls) are incorporated in a bearing with a sensor (bearing inner diameter d: φ8 (mm), bearing outer diameter D: φ22 (mm), bearing width B: 7 (mm)). In this case, a change in magnetic flux density (change in pulse signal) during one rotation of the cage is shown as an example.

したがって、この際の磁界の変化(磁束密度の変化)をホールIC32で検出することで、軸受の回転輪(内輪2)の回転数や回転速度などを計測することができる。なお、保持器8の回転数(転動体6の公転数)ncは、回転輪(内輪2)の回転数nとは一致しないが、例えば内輪回転の場合、両者には以下のような関係があり、この関係を用いて保持器8の回転数nを回転輪(内輪2)の回転数nに換算することができる。
=(1−γ)・(n/2)(ただし、γ=D・cosα/D
(D:転動体(玉)の直径、D:玉のピッチ円径(PCD:Pitch Circle Diameter)、α:玉の接触角)
Therefore, by detecting the change in magnetic field (change in magnetic flux density) at this time by the Hall IC 32, the rotational speed, rotational speed, etc. of the rotating wheel (inner ring 2) of the bearing can be measured. Incidentally, nc (revolution speed of the rolling elements 6) the rotational speed of the cage 8 is not coincident with the rotational speed n i of the rotary wheel (inner ring 2), for example, in the case of the inner ring rotation, the both following relationship There are, it is possible to convert the rotational speed n c of the cage 8 to the rotational speed n i of the rotary wheel (inner ring 2) by using this relation.
n c = (1−γ) · (n i / 2) (where γ = D a · cos α / D p )
(D a : diameter of rolling element (ball), D p : pitch circle diameter of the ball (PCD: Pitch Circle Diameter), α: contact angle of the ball)

以上、本実施形態のセンサ付き軸受によれば、センサ30(ホールIC32と単極(2極)着磁された永久磁石34)を一方の軌道輪(外輪4)に取り付け、他方の軌道輪(内輪2)には従来と同様の軸受幅を持つリング(軌道輪)を用いることで、簡単な構成でありながら、回転計測精度に優れた安価なセンサ付き軸受を提供することができる。
また、保持器8を磁性材で形成したことで、保持器8の形状や大きさなどの製作上の自由度が高く、任意の形状や大きさの保持器8であっても、保持器8の回転中における永久磁石34との間の磁界の変化(磁束密度の変化)を容易に大きくすることができる。このため、センサ30(ホールIC32)での磁界変化の検出エラー(パルス信号の読み取りエラー)の少ない、信頼性に優れたセンサ付き軸受を提供することができる。
As described above, according to the sensor-equipped bearing of the present embodiment, the sensor 30 (the Hall IC 32 and the single pole (two poles) magnetized permanent magnet 34) is attached to one of the race rings (outer ring 4), and the other race ring ( By using a ring (orbital ring) having a bearing width similar to the conventional one for the inner ring 2), it is possible to provide an inexpensive sensor-equipped bearing that has a simple configuration and excellent rotational measurement accuracy.
Further, since the cage 8 is formed of a magnetic material, the degree of freedom in production such as the shape and size of the cage 8 is high, and the cage 8 can be of any shape and size. The magnetic field change (change in magnetic flux density) with the permanent magnet 34 during the rotation of the magnetic field can be easily increased. For this reason, it is possible to provide a sensor-equipped bearing having excellent reliability with few detection errors (pulse signal reading errors) of magnetic field change in the sensor 30 (Hall IC 32).

なお、上述した本実施形態においては、一方の軌道輪(外輪4)のみ、その端部4c,4dのうち一端側4cが他端側4dよりも軸方向に延伸して形成された突出部40を有し、軸受幅の異なる2つの軌道輪(内輪2と外輪4)を用いたが、これに代えて、図2に示すようなセンサ付き軸受(変形例)の構成としても同様の効果を得ることができる。
本変形例において、内輪2は、その端部2c,2dのうち一端側2cが他端側2dよりも軸方向に延伸して形成された突出部42を有している。この際、外輪4の一端側4cと同じだけ軸方向に延伸して突出部42を形成することで、内輪2と外輪4の軸受幅を同一にしている。
In the present embodiment described above, only one of the race rings (outer ring 4) has a protruding portion 40 formed by extending one end side 4c of the end portions 4c, 4d in the axial direction from the other end side 4d. The two bearing rings (inner ring 2 and outer ring 4) having different bearing widths are used. However, the same effect can be obtained by using a sensor bearing (modified example) as shown in FIG. Obtainable.
In this modification, the inner ring 2 has a protruding portion 42 formed by extending one end side 2c of the end portions 2c, 2d in the axial direction from the other end side 2d. At this time, the inner ring 2 and the outer ring 4 have the same bearing width by extending in the axial direction as much as the one end side 4 c of the outer ring 4 to form the protruding portion 42.

この場合、外輪4の突出部40と内輪2の突出部42との間には、密封板44(例えば、シールやシールド)が介在されており、当該密封板44は、その外径が外輪4の突出部40に支持され、その内径が内輪2の突出部42に向けて延出している。なお、密封板44は、転動体6を挟んで突出部40,42とは反対側の内外輪間にも介在している。
本変形例において、密封板44は、軸受外部からの異物(例えば、水や塵埃)の侵入や軸受内部からの潤滑剤(例えば、潤滑油やグリース)の漏洩を防止するだけでなく、センサ30を外輪4の突出部40に取り付けるための取付板(ホルダ)としての役目も果たしており、永久磁石34が、その磁極面を軸方向へ向けて、当該密封板44の内面(軸受内側を向く面)の周方向の1箇所に取り付けられ(例えば、接着され)ているとともに、ホールIC32が、検知部32aを保持器10と対向させて、永久磁石34の密封板44に対する取付面とは反対側の面に取り付けられ(例えば、接着され)ている。
In this case, a sealing plate 44 (for example, a seal or a shield) is interposed between the protruding portion 40 of the outer ring 4 and the protruding portion 42 of the inner ring 2, and the outer diameter of the sealing plate 44 is the outer ring 4. The inner diameter of the inner ring 2 extends toward the protrusion 42 of the inner ring 2. The sealing plate 44 is also interposed between the inner and outer rings on the opposite side of the protruding portions 40 and 42 with the rolling element 6 interposed therebetween.
In this modified example, the sealing plate 44 not only prevents intrusion of foreign matters (for example, water and dust) from the outside of the bearing and leakage of lubricant (for example, lubricating oil and grease) from the inside of the bearing, but also the sensor 30. Also serves as an attachment plate (holder) for attaching the outer ring 4 to the projecting portion 40 of the outer ring 4, and the permanent magnet 34 faces the inner surface of the sealing plate 44 (the surface facing the inner side of the bearing) with its magnetic pole surface facing in the axial direction. ) Is attached (for example, adhered) in one circumferential direction, and the Hall IC 32 is opposite to the attachment surface of the permanent magnet 34 with respect to the sealing plate 44 with the detection unit 32a facing the retainer 10. Are attached (eg, bonded) to the surface.

なお、密封板44は、強度を考慮すれば金属製であることが望ましいが、密封板44に微弱でも通電すると、ホールIC32に影響を及ぼす(例えば、磁界変化の検出精度の低下や検出信号の送信乱れなど)ため、非導電性(絶縁性)に優れた材料(例えば、樹脂など)を用いることで、ホールIC32への影響を抑制することができる。例えば、センサ30の取付部分のみ樹脂で形成し、残りの部分は金属で形成することにより、強度と絶縁性を併せ持った密封板とすることができる。   The sealing plate 44 is preferably made of metal in consideration of strength. However, if the sealing plate 44 is weak even if it is energized, it affects the Hall IC 32 (for example, the detection accuracy of the magnetic field change is reduced or the detection signal is detected). Therefore, the influence on the Hall IC 32 can be suppressed by using a material (for example, resin) having excellent non-conductivity (insulation). For example, by forming only the mounting portion of the sensor 30 with resin and forming the remaining portion with metal, a sealing plate having both strength and insulation can be obtained.

以上、本変形例のセンサ付き軸受によれば、上述した効果に加えて、異なる軸受幅の軌道輪を用意する必要がなく、単一の軸受幅の軌道輪のみを用意すれば済むとともに、センサ30(ホールIC32と永久磁石34)を軸受内部に格納でき、これらを軸受と一体化できるため、軸受の取り回しを容易にすることができるという効果も得ることができる。   As described above, according to the sensor-equipped bearing of the present modification, in addition to the above-described effects, it is not necessary to prepare a bearing ring with a different bearing width, and only a bearing ring with a single bearing width can be prepared. 30 (Hall IC 32 and permanent magnet 34) can be stored inside the bearing, and these can be integrated with the bearing, so that the bearing can be easily handled.

なお、上述した第1実施形態及び変形例において、転動体6の材質については特に限定しなかったが、例えば高炭素クロム軸受鋼等の合金やセラミックなど任意の材質の転動体6を適用することができる。また、上述した第1実施形態及び変形例において、センサ30は、静止輪である外輪4に1つのみ設けた(対向面4aの周方向の1箇所に設けた)が、これに代えて複数のセンサ30を設けてもよく、例えば2つのセンサ30を周方向の2箇所に所定の位相を持って設け、2つのセンサ30(ホールIC32)が検出する磁界変化(パルス信号)の位相差を読み取ることで、軸受の回転状態(例えば、回転数や回転速度など)をさらに精度良く計測することができる。   In the first embodiment and the modification described above, the material of the rolling element 6 is not particularly limited. However, for example, the rolling element 6 of any material such as an alloy such as high carbon chromium bearing steel or ceramic is applied. Can do. Further, in the first embodiment and the modification described above, only one sensor 30 is provided on the outer ring 4 that is a stationary wheel (provided at one place in the circumferential direction of the facing surface 4a). For example, two sensors 30 are provided at two locations in the circumferential direction with a predetermined phase, and the phase difference between magnetic field changes (pulse signals) detected by the two sensors 30 (Hall IC 32) is detected. By reading, the rotation state of the bearing (for example, the rotation speed, the rotation speed, etc.) can be measured with higher accuracy.

また、上述した第1実施形態及び変形例において、ホルダ36又は密封板44は、静止輪(外輪4)の回転輪(内輪2)との対向面4aにそれぞれ取り付けたが、その取付位置は特に限定されず、例えば静止輪(外輪4)の端部4c側の側面に取り付けてもよい。また、上述した第1実施形態において、内外輪間に密封板は介在させなかったが、例えば、転動体6を挟んでホルダ36とは反対側の内外輪間に密封板を介在させてもよい。また、上述した変形例において、センサ30(ホールIC32と永久磁石34)は、密封板44に取り付けたが、これに代えて、例えば上述した第1実施形態と同様のホルダ36に取り付けてもよい。   In the first embodiment and the modification described above, the holder 36 or the sealing plate 44 is attached to the surface 4a of the stationary wheel (outer ring 4) facing the rotating wheel (inner ring 2). It is not limited, For example, you may attach to the side surface by the side of the edge part 4c of a stationary ring (outer ring | wheel 4). In the first embodiment described above, the sealing plate is not interposed between the inner and outer rings. However, for example, the sealing plate may be interposed between the inner and outer rings opposite to the holder 36 with the rolling element 6 interposed therebetween. . Further, in the above-described modification, the sensor 30 (Hall IC 32 and permanent magnet 34) is attached to the sealing plate 44. However, instead of this, for example, the sensor 30 may be attached to the same holder 36 as in the first embodiment. .

また、図3(a)〜(c)には、本発明の第2実施形態に係るセンサ付き軸受が示されている。なお、以下の説明において、上述した第1実施形態に係るセンサ付き軸受(図1(a),(b))と同一の構成については、図面上で同一符号を付して、その説明を省略する。
かかるセンサ付き軸受は、保持器8が非磁性材(例えば、合成樹脂やセラミックなど)で形成されており、転動体10が磁性材(例えば、軸受鋼やマルテンサイト系ステンレスなど)で形成されている。
FIGS. 3A to 3C show a sensor-equipped bearing according to the second embodiment of the present invention. In the following description, the same components as those of the sensor-equipped bearing according to the first embodiment (FIGS. 1A and 1B) are denoted by the same reference numerals in the drawings, and the description thereof is omitted. To do.
In such a sensor-equipped bearing, the cage 8 is made of a nonmagnetic material (for example, synthetic resin or ceramic), and the rolling element 10 is made of a magnetic material (for example, bearing steel or martensitic stainless steel). Yes.

本実施形態において、保持器8には、各転動体6を保持するポケット8aと、隣り合うポケット8aを連結する柱部8cとが周方向に沿って交互に設けられている。この場合、保持器8は、一方側に各転動体6をポケット8aに挿入するための開口kを有し、他方側が閉塞された冠型を成している(いわゆる冠型保持器)。なお、保持器8の柱部8cには、開口kを一部覆うように突出した一対の爪部tが設けられており、各ポケット8aに挿入された転動体6は、これら爪部tにより挟持された状態で当該ポケット8a内に保持される。   In the present embodiment, the cage 8 is alternately provided with pockets 8a for holding the rolling elements 6 and column portions 8c for connecting adjacent pockets 8a along the circumferential direction. In this case, the cage 8 has a crown shape in which one side has an opening k for inserting each rolling element 6 into the pocket 8a and the other side is closed (a so-called crown-shaped cage). Note that a pair of claw portions t protruding so as to partially cover the opening k are provided on the column portion 8c of the cage 8, and the rolling elements 6 inserted into the pockets 8a are separated by the claw portions t. It is held in the pocket 8a in a sandwiched state.

ここで、かかる軸受の回転状態(例えば、回転数や回転速度など)を計測する場合について以下、考察する。本実施形態において、内輪2が回転すると、これとともに保持器8及び転動体6も回転し、回転中、転動体6と保持器8の柱部8cとが交互にホールIC32を介して永久磁石34と対向する。この場合、図3(c)に示すように、転動体6は所定の間隔を空けて保持器8のポケット8a内に保持されているため、転動体6と永久磁石34とは所定の周期を持って対向し、両者は対向状態と非対向状態とを繰り返す。   Here, the case of measuring the rotation state (for example, the rotation speed and the rotation speed) of the bearing will be considered below. In the present embodiment, when the inner ring 2 rotates, the cage 8 and the rolling element 6 also rotate together with this, and during the rotation, the rolling element 6 and the column portion 8c of the cage 8 alternately pass through the Hall IC 32 and the permanent magnet 34. Opposite. In this case, as shown in FIG. 3C, since the rolling elements 6 are held in the pockets 8a of the cage 8 with a predetermined interval, the rolling elements 6 and the permanent magnet 34 have a predetermined period. They are opposed to each other, and both repeat a facing state and a non-facing state.

例えば、図3(a)に示す状態では、転動体6は、その外表面が永久磁石34と距離d3を保ちながら対向し、永久磁石34と最も近づいた状態(対向状態)となっている。一方、図3(b)に示す状態では、保持器8の柱部8cが永久磁石34と距離d4を保ちながら対向しているため、転動体6は永久磁石34とは対向しない状態(非対向状態)となっている。すなわち、内輪2(転動体6)の回転中、転動体6と永久磁石34とは、最小距離d3で対向する状態から全く対向しない状態まで、その相対的な位置関係が繰り返し変動する。   For example, in the state shown in FIG. 3A, the rolling element 6 faces the permanent magnet 34 while maintaining the distance d3 and is closest to the permanent magnet 34 (opposed state). On the other hand, in the state shown in FIG. 3B, since the column portion 8c of the cage 8 faces the permanent magnet 34 while maintaining the distance d4, the rolling element 6 does not face the permanent magnet 34 (non-facing). State). That is, during the rotation of the inner ring 2 (the rolling element 6), the relative positional relationship between the rolling element 6 and the permanent magnet 34 repeatedly varies from a state where they face each other at a minimum distance d3 to a state where they do not face each other at all.

本実施形態においては、転動体6が磁性材で形成されているため、転動体6と永久磁石34との間に磁界が生じる。しかしながら、内輪2(転動体6)の回転によって、転動体6と永久磁石34との相対的な位置関係が繰り返し変動すると、これに伴って、転動体6と永久磁石34との間に生じている磁界の強さ(磁束密度の大きさ)も繰り返し変動する。したがって、この際の磁界の変化(磁束密度の変化)をホールIC32で検出することで、軸受の回転輪(内輪2)の回転数や回転速度などを計測することができる。なお、転動体6の公転数(保持器8の回転数)は、回転輪(内輪2)の回転数とは一致しないが、上述した第1実施形態の場合と同様に、転動体6の公転数を回転輪(内輪2)の回転数に換算することができる。   In the present embodiment, since the rolling element 6 is made of a magnetic material, a magnetic field is generated between the rolling element 6 and the permanent magnet 34. However, when the relative positional relationship between the rolling element 6 and the permanent magnet 34 repeatedly fluctuates due to the rotation of the inner ring 2 (the rolling element 6), this occurs between the rolling element 6 and the permanent magnet 34. The strength of the magnetic field (the magnitude of the magnetic flux density) also fluctuates repeatedly. Therefore, by detecting the change in magnetic field (change in magnetic flux density) at this time by the Hall IC 32, the rotational speed, rotational speed, etc. of the rotating wheel (inner ring 2) of the bearing can be measured. The revolution number of the rolling element 6 (the number of rotations of the cage 8) does not match the revolution number of the rotating wheel (inner ring 2), but the revolution number of the rolling element 6 is the same as in the case of the first embodiment described above. The number can be converted into the number of rotations of the rotating wheel (inner ring 2).

以上、本実施形態のセンサ付き軸受によれば、センサ30(ホールIC32と単極(2極)着磁された永久磁石34)を一方の軌道輪(外輪4)に取り付け、他方の軌道輪(内輪2)には従来と同様の軸受幅を持つリング(軌道輪)を用いることで、簡単な構成でありながら、回転計測精度に優れた安価なセンサ付き軸受を提供することができる。
また、保持器8のポケット8a内に保持されて転動する転動体6の遊び(例えば、ガタつき)は、内外輪間で回転する保持器8の遊び(例えば、ガタつき)と比較して格段に少ないため、転動体6を磁性材で形成し、保持器8を非磁性体で形成したことで、軸受の回転中、磁界を安定した周期で変化(パルス信号の間隔が安定)させることができる。このため、センサ30(ホールIC32)での磁界変化の検出エラー(パルス信号の読み取りエラー)の少ない、信頼性に優れたセンサ付き軸受を提供することができる。
As described above, according to the sensor-equipped bearing of the present embodiment, the sensor 30 (the Hall IC 32 and the single pole (two poles) magnetized permanent magnet 34) is attached to one of the race rings (outer ring 4), and the other race ring ( By using a ring (orbital ring) having a bearing width similar to the conventional one for the inner ring 2), it is possible to provide an inexpensive sensor-equipped bearing that has a simple configuration and excellent rotational measurement accuracy.
Further, the play (for example, rattling) of the rolling element 6 that rolls while being held in the pocket 8a of the cage 8 is compared with the play (for example, rattling) of the cage 8 that rotates between the inner and outer rings. Because the rolling element 6 is made of a magnetic material and the cage 8 is made of a non-magnetic material, the magnetic field can be changed with a stable cycle (stable pulse signal interval) during the rotation of the bearing. Can do. For this reason, it is possible to provide a sensor-equipped bearing having excellent reliability with few detection errors (pulse signal reading errors) of magnetic field change in the sensor 30 (Hall IC 32).

さらに、本実施形態においては、保持器には冠型の保持器8を用いており、保持器8の開口側(例えば、図3(a),(b)に示す保持器の右側)には、軸受内のスペースを確保することができるため、センサ30(ホールIC32、永久磁石34)が取り付けられている側に、当該保持器8の開口側を位置付けることで、センサ付き軸受をコンパクト化することができる。また、転動体6は、保持器8の爪部tにより挟持された状態でポケット8a内に保持されているため、ガタつくことがなく、センサ30(ホールIC32、永久磁石34)を極めて転動体6の近くに配置しても、センサ30が転動体6と干渉(接触)することがない。このため、センサ付き軸受をさらにコンパクト化することができる。   Further, in the present embodiment, a crown-shaped cage 8 is used as the cage, and the cage 8 has an opening side (for example, on the right side of the cage shown in FIGS. 3A and 3B). Since the space in the bearing can be secured, the bearing with sensor is made compact by positioning the opening side of the cage 8 on the side where the sensor 30 (Hall IC 32, permanent magnet 34) is attached. be able to. Further, since the rolling element 6 is held in the pocket 8a while being held by the claw portion t of the cage 8, the rolling element 6 is not rattled, and the sensor 30 (Hall IC 32, permanent magnet 34) is extremely rolled. The sensor 30 does not interfere (contact) with the rolling element 6 even if the sensor 30 is disposed near the roller 6. For this reason, the sensor-equipped bearing can be further downsized.

なお、上述した第2実施形態において、センサ30は、静止輪である外輪4に1つのみ設けた(対向面4aの周方向の1箇所に設けた)が、これに代えて複数のセンサ30を設けてもよく、例えば2つのセンサ30を周方向の2箇所に所定の位相を持って設け、2つのセンサ30(ホールIC32)が検出する磁界変化(パルス信号)の位相差を読み取ることで、軸受の回転状態(例えば、回転数や回転速度など)をさらに精度良く計測することができる。また、上述した第2実施形態において、ホルダ36は、静止輪(外輪4)の回転輪(内輪2)との対向面4aに取り付けたが、その取付位置は特に限定されず、例えば静止輪(外輪4)の端部4c側の側面に取り付けてもよい。また、上述した第2実施形態において、軌道輪(内輪2と外輪4)には、突出部42,40は形成しなかったが、これに代えて、例えば一方の軌道輪(外輪4)にのみ突出部40を形成してもよく、双方の軌道輪(内輪2と外輪4)に突出部40,42を形成してもよい(図1(a),(b)及び図2参照)。また、上述した第2実施形態において、内外輪間に密封板は介在させなかったが、例えば、転動体6を挟んでホルダ36とは反対側の内外輪間に密封板を介在させてもよい。さらに、上述した第2実施形態において、センサ30(ホールIC32と永久磁石34)は、ホルダ36に取り付けたが、これに代えて、例えば上述した変形例と同様の密封板44(図2参照)に取り付けてもよい。   In the second embodiment described above, only one sensor 30 is provided on the outer ring 4 that is a stationary wheel (provided at one place in the circumferential direction of the facing surface 4a), but instead, a plurality of sensors 30 are provided. For example, two sensors 30 are provided at two locations in the circumferential direction with a predetermined phase, and the phase difference between magnetic field changes (pulse signals) detected by the two sensors 30 (Hall IC 32) is read. The rotation state of the bearing (for example, the number of rotations and the rotation speed) can be measured with higher accuracy. In the second embodiment described above, the holder 36 is mounted on the surface 4a of the stationary wheel (outer ring 4) facing the rotating wheel (inner ring 2), but the mounting position is not particularly limited. You may attach to the side surface by the side of the edge part 4c of the outer ring | wheel 4). In the second embodiment described above, the projecting portions 42 and 40 are not formed on the race rings (the inner race 2 and the outer race 4). Instead, for example, only one race race (the outer race 4) is provided. The protrusions 40 may be formed, and the protrusions 40 and 42 may be formed on both race rings (the inner ring 2 and the outer ring 4) (see FIGS. 1A, 1B, and 2). In the second embodiment described above, the sealing plate is not interposed between the inner and outer rings. However, for example, the sealing plate may be interposed between the inner and outer rings on the opposite side of the holder 36 with the rolling element 6 interposed therebetween. . Further, in the second embodiment described above, the sensor 30 (Hall IC 32 and permanent magnet 34) is attached to the holder 36, but instead of this, for example, a sealing plate 44 similar to the above-described modification (see FIG. 2). You may attach to.

また、上述した第1実施形態及び変形例、第2実施形態において、センサ30は、永久磁石34をホルダ36若しくは密封板44に取り付け、ホールIC32を永久磁石34に取り付けると共に、保持器10若しくは転動体6と対向させたが、ホールIC32と永久磁石34の取付位置は、逆であってもよい。すなわち、ホールIC32をホルダ36若しくは密封板44に取り付け、永久磁石34をホールIC32に取り付けると共に、保持器10若しくは転動体6と対向させてもよい。
この場合、永久磁石34から、保持器10(転動体6)、ホルダ36(密封板44)、ホールIC32をそれぞれ経由し、永久磁石34へと戻る磁気回路が形成される(永久磁石34と保持器10若しくは転動体6との間に磁界が生じる)。この状態で、軸受の回転輪(内輪2)が回転すると、回転中、保持器8(転動体6)と永久磁石34との間の距離(相対的な位置関係)が繰り返し変動し、保持器8(転動体6)と永久磁石34との間の磁界(磁束密度)が変化するため、当該磁界の変化(磁束密度の変化)をホールIC32で検出することができる。
In the first embodiment, the modified example, and the second embodiment described above, the sensor 30 has the permanent magnet 34 attached to the holder 36 or the sealing plate 44, the Hall IC 32 attached to the permanent magnet 34, and the cage 10 or the rolling plate. Although it was made to oppose the moving body 6, the attachment position of Hall IC32 and the permanent magnet 34 may be reverse. That is, the Hall IC 32 may be attached to the holder 36 or the sealing plate 44, and the permanent magnet 34 may be attached to the Hall IC 32, and may be opposed to the cage 10 or the rolling element 6.
In this case, a magnetic circuit returning from the permanent magnet 34 to the permanent magnet 34 through the cage 10 (rolling element 6), the holder 36 (sealing plate 44), and the Hall IC 32 is formed (permanent magnet 34 and holding). A magnetic field is generated between the container 10 and the rolling element 6). In this state, when the rotating wheel (inner ring 2) of the bearing rotates, the distance (relative positional relationship) between the cage 8 (rolling element 6) and the permanent magnet 34 repeatedly fluctuates during the rotation. 8 (rolling element 6) and the permanent magnet 34 change the magnetic field (magnetic flux density), so that the change in the magnetic field (change in magnetic flux density) can be detected by the Hall IC 32.

本発明の第1実施形態に係るセンサ付き軸受の構成例を示す図であって、(a)は、保持器と永久磁石とが最も近づいた状態を示す断面図、(b)は、保持器と永久磁石とが最も離れた状態を示す断面図。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows the structural example of the bearing with a sensor which concerns on 1st Embodiment of this invention, Comprising: (a) is sectional drawing which shows the state which the holder | retainer and the permanent magnet approached most, (b) is a holder | retainer Sectional drawing which shows the state from which the magnet and the permanent magnet were most separated. 本発明の変形例に係るセンサ付き軸受の構成例を示す断面図。Sectional drawing which shows the structural example of the bearing with a sensor which concerns on the modification of this invention. 本発明の第2実施形態に係るセンサ付き軸受の構成例を示す図であって、(a)は、転動体と永久磁石とが最も近づいた状態を示す断面図、(b)は、転動体と永久磁石とが最も離れた状態を示す断面図、(c)は、センサと転動体との位置関係を示す平面図。It is a figure which shows the structural example of the bearing with a sensor which concerns on 2nd Embodiment of this invention, Comprising: (a) is sectional drawing which shows the state which the rolling element and the permanent magnet approached most, (b) is a rolling element. Sectional drawing which shows the state in which the magnet and the permanent magnet were most separated, (c) is a top view which shows the positional relationship of a sensor and a rolling element. 軸受が1回転する間の磁束密度の変化例を示す図。The figure which shows the example of a change of the magnetic flux density during one rotation of a bearing. 従来のセンサ付き軸受の構成例を示す断面図。Sectional drawing which shows the structural example of the conventional bearing with a sensor.

符号の説明Explanation of symbols

2 内輪
4 外輪
6 転動体
8 保持器
8a ポケット部
8b 平坦部
8c 柱部
30 センサ
32 検出素子(ホールIC)
32a 検知部
34 永久磁石
36 取付板(ホルダ)
38 ケーブル
40,42 突出部
44 密封板
d1,d2,d4 保持器・永久磁石間距離
d3 転動体・永久磁石間距離
2 Inner ring 4 Outer ring 6 Rolling element 8 Cage 8a Pocket part 8b Flat part 8c Pillar part 30 Sensor 32 Detection element (Hall IC)
32a detector 34 permanent magnet 36 mounting plate (holder)
38 Cable 40, 42 Protrusion 44 Sealing plate d1, d2, d4 Distance between cage and permanent magnet d3 Distance between rolling element and permanent magnet

Claims (2)

相対回転可能に対向して配置された一対の軌道輪と、各軌道輪の対向面にそれぞれ形成された軌道面間に転動自在に組み込まれた複数の転動体と、複数の転動体を転動自在に保持する保持器と、軸受の回転状態を計測するセンサとを備えたセンサ付き軸受であって、
保持器は磁性材で形成されており、センサは一方の軌道輪に設けられ、軸方向に着磁された永久磁石と、保持器に対向配置され且つ磁界の変化を検出する検出素子とを備えていることを特徴とするセンサ付き軸受。
A pair of race rings arranged to face each other so as to be rotatable relative to each other, a plurality of rolling elements rotatably incorporated between race surfaces formed on the opposed surfaces of the respective race rings, and a plurality of rolling elements. A sensor-equipped bearing comprising a cage that is movably held and a sensor that measures a rotation state of the bearing,
The cage is made of a magnetic material, and the sensor is provided on one of the race rings, and includes a permanent magnet that is magnetized in the axial direction, and a detection element that is disposed opposite to the cage and detects a change in the magnetic field. A sensor-equipped bearing.
相対回転可能に対向して配置された一対の軌道輪と、各軌道輪の対向面にそれぞれ形成された軌道面間に転動自在に組み込まれた複数の転動体と、複数の転動体を転動自在に保持する保持器と、軸受の回転状態を計測するセンサとを備えたセンサ付き軸受であって、
保持器は非磁性材で形成されているとともに、各転動体は磁性材で形成されており、センサは一方の軌道輪に設けられ、軸方向に着磁された永久磁石と、転動体に対向配置され且つ磁界の変化を検出する検出素子とを備えていることを特徴とするセンサ付き軸受。
A pair of race rings arranged to face each other so as to be rotatable relative to each other, a plurality of rolling elements rotatably incorporated between race surfaces formed on the opposed surfaces of the respective race rings, and a plurality of rolling elements. A sensor-equipped bearing comprising a cage that is movably held and a sensor that measures a rotation state of the bearing,
The cage is made of a non-magnetic material, and each rolling element is made of a magnetic material. The sensor is provided on one of the race rings, and is opposed to the permanent magnet magnetized in the axial direction and the rolling element. A sensor-equipped bearing comprising: a detecting element that is disposed and detects a change in a magnetic field.
JP2005244887A 2005-08-25 2005-08-25 Bearing with sensor Pending JP2007057049A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005244887A JP2007057049A (en) 2005-08-25 2005-08-25 Bearing with sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005244887A JP2007057049A (en) 2005-08-25 2005-08-25 Bearing with sensor

Publications (1)

Publication Number Publication Date
JP2007057049A true JP2007057049A (en) 2007-03-08

Family

ID=37920700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005244887A Pending JP2007057049A (en) 2005-08-25 2005-08-25 Bearing with sensor

Country Status (1)

Country Link
JP (1) JP2007057049A (en)

Similar Documents

Publication Publication Date Title
EP3001057B1 (en) Sensor-equipped rolling bearing, motor, and actuator
JP2004353735A (en) Rotating device with sensor and its forming method
JPH01162113A (en) Bearing with magnetic field detector
CN101092994A (en) Sensor-equipped rolling bearing, and rotation state detecting device
JP2008019933A (en) Bearing device with sensor and bearing system
JP5857470B2 (en) Rolling bearing device with sensor
JP2017160974A (en) Bearing device with sensor
JP2009204083A (en) Bearing with sensor
JP2006090831A (en) Bearing with rotation sensor
JP5909888B2 (en) Rolling bearing device with sensor, motor, electric forklift, and lifting device
JP2007057049A (en) Bearing with sensor
JP5228512B2 (en) State quantity measuring device for rolling bearing units
JP2008026009A (en) Method for measuring state of rotation of bearing
JP2008164143A (en) Bearing with sensor
JP5321115B2 (en) Rolling bearing with rotation sensor
JP4957259B2 (en) State quantity measuring device for rolling bearing units
JP5018114B2 (en) Bearing with sensor
JP2002340918A (en) Rotational speed detector and bearing for wheel having the same
JP2004353732A (en) Rolling bearing device with sensor
JP4587656B2 (en) Bearing with absolute encoder
JP2008128639A (en) Rolling bearing device for wheel
JP2005337751A (en) Rotation supporting apparatus with rotation angle detecting device
JP2004308724A (en) Bearing with rotation sensor
JP2009243661A (en) Bearing with sensor
JP2004361362A (en) Rolling bearing with rotation sensor