JP2007056123A - Method for producing phosphor for electroluminescence and phosphor for electroluminescence - Google Patents

Method for producing phosphor for electroluminescence and phosphor for electroluminescence Download PDF

Info

Publication number
JP2007056123A
JP2007056123A JP2005242378A JP2005242378A JP2007056123A JP 2007056123 A JP2007056123 A JP 2007056123A JP 2005242378 A JP2005242378 A JP 2005242378A JP 2005242378 A JP2005242378 A JP 2005242378A JP 2007056123 A JP2007056123 A JP 2007056123A
Authority
JP
Japan
Prior art keywords
phosphor
producing
carbon
group
activator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005242378A
Other languages
Japanese (ja)
Inventor
Chihiro Kawai
千尋 河合
Ryuichi Inoue
龍一 井上
Toshihiro Sakamoto
敏宏 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2005242378A priority Critical patent/JP2007056123A/en
Publication of JP2007056123A publication Critical patent/JP2007056123A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Luminescent Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a phosphor for EL (electroluminescence) suppressing a leak phenomenon and continuously emitting the El of light in a short wavelength region at high intensity and to provide the phosphor for the EL emitting the EL of visible light at the short wavelength or ultraviolet light by efficiently generating electric field concentration even when the phosphor of a material which originally does not emit the EL with high efficiency is used. <P>SOLUTION: Metal powder consisting essentially of at least one kind of metal selected from the group consisting of Zn, Be, Mg, Ca, Sr and Ba and a material composed of carbon are mechanically ironed and alloyed when the phosphor for the EL is prepared. Thereby, the material composed of the carbon to be an electroconductive layer is uniformly dispersed in the phosphor. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、短波長可視光及び紫外線を高発光強度でエレクトロルミネッセンス(以下、「EL」と略す。)発光する蛍光体を作製する方法に関する。   The present invention relates to a method for manufacturing a phosphor that emits short-wavelength visible light and ultraviolet light with high luminescence intensity and electroluminescence (hereinafter abbreviated as “EL”).

近年の環境問題から、有害物質や細菌・ウイルスなどを分離、分解、または殺菌する機能が強く要求されている。このような分解・殺菌を行う手段として光触媒材料が注目されている。代表的な光触媒はTiO2であるが、これは一般には波長が400nm以下の紫外線を照射することにより光触媒機能を発揮する。 Due to recent environmental problems, a function of separating, decomposing or sterilizing harmful substances, bacteria, viruses and the like is strongly demanded. Photocatalytic materials are attracting attention as a means for performing such decomposition and sterilization. A typical photocatalyst is TiO 2 , which generally exhibits a photocatalytic function when irradiated with ultraviolet rays having a wavelength of 400 nm or less.

このような波長の光を放射させるデバイスとしては、水銀ランプや発光ダイオードもあるが、点または線光源であるため、大面積の光触媒を均一に励起するには適さない。大面積を均一に発光させるデバイスとして無機EL用デバイスがある。これは、光を放射する機能を持つ蛍光体粉末を誘電体樹脂に分散させて、主として交流電界を印加して発光させるものである。   Devices that emit light of such a wavelength include mercury lamps and light emitting diodes, but they are point or line light sources and are not suitable for uniformly exciting a large area photocatalyst. There is an inorganic EL device as a device that uniformly emits light over a large area. In this method, phosphor powder having a function of emitting light is dispersed in a dielectric resin, and light is emitted mainly by applying an alternating electric field.

高効率で発光する蛍光体としてはZnS蛍光体が挙げられる。例えば、特許文献1には、ZnSの母体にCuとClを添加することによりCuSを形成して発光効率を上げた蛍光体についての開示がある。また特許文献2には、ZnS系蛍光体とMgS等の2A族元素との混晶により発光効率を上げた蛍光体が開示されている。
一般にZnS蛍光体の中で短波長の発光を示すものはAgで付活されたものであるが、発光波長は450nmの青色であり、可視光領域の光しか放射しない。この発光機構は、ZnS中に添加された付活剤のAgがアクセプタ準位を形成し、共付活剤として添加されるClやAl等がドナー準位を形成し、このドナー準位とアクセプタ準位間で電子と正孔が再結合することにより波長450nm程度のD−Aペア型(別名Green−Cu型、以下G−Cu型)の青色の発光が生じる。このG−Cu型の発光は、蛍光体母材をZnSとZnSよりもバンドギャップの大きい化合物、例えばMgSやCaS等の2A族元素硫化物との混晶により蛍光体母材のバンドギャップを増大させることにより短波長化することができると考えられる。
Examples of phosphors that emit light with high efficiency include ZnS phosphors. For example, Patent Document 1 discloses a phosphor in which the luminous efficiency is increased by forming CuS by adding Cu and Cl to a ZnS matrix. Patent Document 2 discloses a phosphor whose luminous efficiency is increased by a mixed crystal of a ZnS-based phosphor and a group 2A element such as MgS.
In general, among the ZnS phosphors, those that emit light of a short wavelength are activated by Ag, but the emission wavelength is blue of 450 nm and emits only light in the visible light region. In this light emission mechanism, Ag of the activator added in ZnS forms an acceptor level, and Cl, Al, etc. added as a coactivator form a donor level, and this donor level and acceptor By recombination of electrons and holes between levels, DA-type (also called Green-Cu type, hereinafter referred to as G-Cu type) blue light emission having a wavelength of about 450 nm occurs. This G-Cu type light emission increases the band gap of the phosphor base material by a mixed crystal of the phosphor base material with a compound having a larger band gap than ZnS and ZnS, for example, a group 2A element sulfide such as MgS or CaS. It is considered that the wavelength can be shortened.

しかし、このようなAgをドーピングした蛍光体はEL発光させることができなかった。この理由を以下に説明する。EL用蛍光体として最も一般的なZnS:Cu、Cl蛍光体は、蛍光体内部に多数の双晶(積層欠陥)が形成されており、双晶界面に沿って導電性の高いCu−S系化合物が針状に存在する。電界印加時に針状導電相の先端で電界集中が生じて蛍光体母体であるZnSが励起され、このエネルギーが蛍光体中の各種準位に移動してEL発光する。   However, such a phosphor doped with Ag could not emit EL. The reason for this will be described below. The most common ZnS: Cu, Cl phosphor as an EL phosphor has a large number of twins (stacking faults) formed inside the phosphor, and a highly conductive Cu-S system along the twin interface. The compound exists in a needle shape. When an electric field is applied, electric field concentration occurs at the tip of the acicular conductive phase, and the phosphor matrix, ZnS, is excited, and this energy moves to various levels in the phosphor to emit EL.

この蛍光体の一般的な製法は以下の通りである。原料粉末であるZnSにCuSO4やKClを添加した混合粉末を不活性雰囲気中で1000〜1100℃で数時間焼成後、室温まで冷却する。焼成時に生じるZnSの粒成長段階で、成長双晶と呼ばれる多数の双晶が形成される。さらに焼成後の室温までの冷却段階で、ZnSには六方晶から立方晶への相転移が生じ、転移双晶と呼ばれる多数の双晶が形成される。この時、添加したCu成分の内、ZnSの固溶限界を超えたCuは双晶界面に針状のCu−S系化合物として析出する。Cu−S系化合物は一般的にはCu2Sであると言われている。Cuの変わりにAgをドーピングした場合、双晶界面に析出するのはAg2Sであり、導電性が低いために電界集中効果を示さないのである。 The general manufacturing method of this phosphor is as follows. A mixed powder obtained by adding CuSO 4 or KCl to ZnS as a raw material powder is fired at 1000 to 1100 ° C. for several hours in an inert atmosphere, and then cooled to room temperature. A number of twins called growth twins are formed at the grain growth stage of ZnS generated during firing. Furthermore, in the cooling step to room temperature after firing, a phase transition from hexagonal to cubic occurs in ZnS, and a number of twins called transition twins are formed. At this time, of the added Cu component, Cu exceeding the solid solubility limit of ZnS precipitates as a needle-like Cu-S compound at the twin interface. The Cu—S compound is generally said to be Cu 2 S. When Ag is doped instead of Cu, it is Ag 2 S that precipitates at the twin interface, and the electric field concentration effect is not exhibited because of low conductivity.

一方、蛍光体表面に導電性粒子を付着させることで、電界印加時に該導電性粒子近傍に電界集中を生じさせてEL発光させることが報告されている(例えば、特許文献3)。しかし、このような蛍光体では、導電性粒子が付着することで蛍光体表面の抵抗が低下するために、電界印加時に、蛍光体表面を伝って電界が逃げてしまうリーク現象が起こるために、極めて発光寿命が短いEL用蛍光体しか得られなかった。
特開平5−152073号公報 特開2002−231151号公報 特公平7−47732号公報
On the other hand, it has been reported that by attaching conductive particles to the phosphor surface, electric field concentration is generated in the vicinity of the conductive particles when an electric field is applied, thereby causing EL emission (for example, Patent Document 3). However, in such a phosphor, since the resistance of the phosphor surface decreases due to the adhesion of conductive particles, a leak phenomenon occurs in which the electric field escapes along the phosphor surface when an electric field is applied. Only EL phosphors with extremely short emission lifetimes were obtained.
Japanese Patent Laid-Open No. 5-152073 JP 2002-231151 A Japanese Patent Publication No. 7-47732

そこで本発明は、このようなリーク現象を抑制し、短波長域の光を高強度でかつ継続的にEL発光させることができるEL用蛍光体を作製する方法を提供することを目的とする。
さらに、本来は高効率でEL発光しない材料系の蛍光体であっても、電解集中を効率良く発生させることにより、短波長可視光や紫外線をEL発光できるEL用蛍光体を提供することを目的とする。
Therefore, an object of the present invention is to provide a method for producing an EL phosphor capable of suppressing such a leak phenomenon and continuously emitting EL in a short wavelength region with high intensity.
Furthermore, an object of the present invention is to provide an EL phosphor capable of EL emission of short-wavelength visible light and ultraviolet light by efficiently generating electrolysis concentration even with a material-based phosphor that is originally highly efficient and does not emit EL light. And

上記目的に鑑みて本発明者らは鋭意研究した結果、蛍光体内部に、導電性の高い炭素成分を含む導電相を均一に分散させることにより、短波長EL用蛍光体として発光強度の高い蛍光体となることを発見し、本発明に至ったものである。   In light of the above-mentioned object, the present inventors have conducted intensive research. As a result, by uniformly dispersing a conductive phase containing a highly conductive carbon component inside the phosphor, a fluorescent material having high emission intensity as a phosphor for short wavelength EL. It has been found that it becomes a body, and has led to the present invention.

即ち、本発明は以下の構成よりなることを特徴とする。
(1)Zn、Be、Mg、Ca、Sr及びBaより成る群から選ばれる少なくとも1種の金属を主成分とする金属粉末と炭素から構成される材料をメカニカルアロイング(以下、「MA」と略す。)して合金化する工程、該合金を硫化して硫化物を主成分とする複合体とする工程と、該複合体を粉砕・熱処理して蛍光体とする工程と、上記のいずれかの工程において付活剤及び/または共付活剤を添加する工程と、からなるEL用蛍光体の製法。
(2)前記合金を硫化して硫化物を主成分とする複合体とする工程において、該合金に硫黄粉末を添加してMAすることを特徴とする上記(1)に記載のEL用蛍光体の製法。
(3)Zn、Be、Mg、Ca、Sr及びBaより成る群から選ばれる少なくとも1種の金属を主成分とする金属粉末と、硫黄粉末と、および炭素から構成される材料をMAして硫化物を主成分として複合体とする工程、該複合体を粉砕・熱処理して蛍光体とする工程と、上記のいずれかの工程において付活剤及び/または共付活剤を添加する工程、からなるEL用蛍光体の製法。
本発明は硫化物を主成分とした複合体を作製する際に、硫黄粉末を用いてMAにより硫化させるため、HSガスと反応させて硫化させる方法の場合に生じる排ガス処理の問題も無くなる。
That is, the present invention is characterized by having the following configuration.
(1) Mechanical alloying (hereinafter referred to as “MA”) is made of a metal powder composed mainly of at least one metal selected from the group consisting of Zn, Be, Mg, Ca, Sr and Ba and carbon. Any one of the above, a step of alloying the alloy, a step of sulfiding the alloy to form a composite containing sulfide as a main component, a step of pulverizing and heat-treating the composite to form a phosphor, and And a step of adding an activator and / or a coactivator in the step, and a method for producing an EL phosphor.
(2) The phosphor for EL as described in (1) above, wherein in the step of sulfiding the alloy to form a composite containing sulfide as a main component, sulfur powder is added to the alloy and MA is performed. The manufacturing method.
(3) Sulfurization is carried out by MA with a material composed of at least one metal selected from the group consisting of Zn, Be, Mg, Ca, Sr and Ba, sulfur powder, and carbon. From the step of making a composite with an object as a main component, the step of pulverizing and heat-treating the composite to make a phosphor, and the step of adding an activator and / or a coactivator in any of the above steps, The manufacturing method of the fluorescent substance for EL which becomes.
In the present invention, when a composite containing sulfide as a main component is produced, sulfur powder is used to sulfidize with MA, so that the problem of exhaust gas treatment that occurs in the case of sulfidation by reacting with H 2 S gas is eliminated. .

(4)前記金属粉末が、Znを主成分とすることを特徴とする上記(1)〜(3)のいずれか一に記載のEL用蛍光体の製法。
(5)前記金属粉末が、ZnとBe、Mg、Ca、SrまたはBaの少なくとも一種との混合物を主成分とする上記(4)に記載のEL用蛍光体の製法。
(4) The method for producing a phosphor for EL according to any one of (1) to (3), wherein the metal powder contains Zn as a main component.
(5) The method for producing an EL phosphor according to (4), wherein the metal powder contains a mixture of Zn and at least one of Be, Mg, Ca, Sr, or Ba as a main component.

(6)前記付活剤が、Ag、Cu、またはAuの少なくとも一種であることを特徴とする上記(1)〜(5)のいずれか一に記載のEL用蛍光体の製法。
(7)前記付活剤がAgであることを特徴とする上記(6)に記載のEL用蛍光体の製法。
(8)前記付活剤を金属粉末で添加する上記(1)〜(7)に記載のEL用蛍光体の製法。
(6) The method for producing an EL phosphor according to any one of (1) to (5), wherein the activator is at least one of Ag, Cu, or Au.
(7) The process for producing an EL phosphor as described in (6) above, wherein the activator is Ag.
(8) The manufacturing method of the phosphor for EL as described in said (1)-(7) which adds the said activator with a metal powder.

(9)前記共付活剤が、F、Cl、Br、I、B、Al、Ga、InまたはTlの少なくとも一種である上記(1)〜(8)のいずれか一に記載のEL用蛍光体の製法。
(10)前記共付活剤を金属粉末で添加する上記(1)〜(9)のいずれか一に記載のEL用蛍光体の製法。
(9) The EL fluorescence according to any one of (1) to (8), wherein the coactivator is at least one of F, Cl, Br, I, B, Al, Ga, In, or Tl. Body making method.
(10) The process for producing a phosphor for EL according to any one of (1) to (9), wherein the coactivator is added as a metal powder.

(11)前記炭素から構成される材料が、カーボンナノチューブ、カーボンナノホーン、フラーレン及び黒鉛から選ばれる少なくとも1種である上記(1)〜(10)のいずれか一に記載のEL用蛍光体の製法。
(12)前記炭素から構成される材料の形状が、針状で、直径が100nm以下におけるアスペクト比が100以上であることを特徴とする上記(1)〜(11)のいずれか一に記載のEL用蛍光体の製法。
(13)前記炭素から構成される材料が、前記硫化物の0.005〜1vol%である前記(1)〜(12)のいずれか一に記載のEL用蛍光体の製法。
(11) The method for producing a phosphor for EL according to any one of (1) to (10), wherein the material composed of carbon is at least one selected from carbon nanotubes, carbon nanohorns, fullerenes, and graphite. .
(12) The shape of the material composed of carbon is needle-like, and the aspect ratio at a diameter of 100 nm or less is 100 or more, (1) to (11) above Manufacturing method of phosphor for EL.
(13) The method for producing an EL phosphor according to any one of (1) to (12), wherein the material composed of carbon is 0.005 to 1 vol% of the sulfide.

(14)前記蛍光体が、一般式Zn(1-x)xS:Ag,D(式中のAは、Be、Mg、Ca、Sr及びBaより成る群から選ばれる少なくとも1種の2A族元素、Dは共付活剤であり、3B族及び7B族元素より成る群から選ばれる少なとも1種、0<x<1)で表される組成物である前記(1)〜(13)のいずれか一に記載のEL用蛍光体の製法。
(15)前記(1)〜(14)のいずれか一に記載の方法により作製されたEL用蛍光体。
(14) The phosphor has the general formula Zn (1-x) A x S: Ag, D (where A is at least one 2A selected from the group consisting of Be, Mg, Ca, Sr and Ba) Group element D is a coactivator, and is a composition represented by at least one selected from the group consisting of Group 3B and Group 7B elements, 0 <x <1) (1) to (13 ). The manufacturing method of the fluorescent substance for EL as described in any one of.
(15) A phosphor for EL produced by the method according to any one of (1) to (14).

本発明は、硫化物蛍光体の内部に炭素成分を含む導電相を均一に分散した蛍光体を作製する方法に関する。例えば、出発原料として金属粉末と炭素成分を用い、これをMA等の手法で合金化、粉砕することで、炭素成分を極めて高い均一性をもって分散した金属系粉末となる。これに所定の発光中心となる元素をドーピングした後、硫化させることにより、炭素成分が高い分散性で分散した硫化物蛍光体になり、ELにより高い電界集中が起こるために高いEL発光強度が得られる。   The present invention relates to a method for producing a phosphor in which a conductive phase containing a carbon component is uniformly dispersed inside a sulfide phosphor. For example, a metal powder and a carbon component are used as starting materials, and this is alloyed and pulverized by a technique such as MA to obtain a metal powder in which the carbon component is dispersed with extremely high uniformity. This is doped with an element serving as a predetermined emission center, and then sulfided to obtain a sulfide phosphor in which the carbon component is dispersed with high dispersibility, and a high electric field concentration occurs due to EL, so that a high EL emission intensity is obtained. It is done.

さらに、本発明では硫化物を母材とする蛍光体において、本来、高効率でEL発光しないAgを付活剤としてドーピングする、例えば、ZnS系蛍光体の内部にカーボンナノチューブ等を導電性炭素成分として均一に分散させて導電相とすることにより高強度の発光を示す蛍光体とするものである。   Further, in the present invention, phosphors based on sulfides are doped with Ag, which is originally highly efficient and does not emit EL light, as an activator. For example, carbon nanotubes or the like are incorporated into ZnS-based phosphors as conductive carbon components. As a phosphor that emits high intensity light by uniformly dispersing as a conductive phase.

上記蛍光体は、例えば、カーボンナノチューブ粉末等と蛍光体の原料となるZnS粉末を、MA等を用いて混合後、通常の粉末焼成法で作製することもできるが、一般にカーボンナノチューブ等は分散性が悪いため混合時に凝集してしまい、焼成後も凝集が解砕されないためカーボンナノチューブ単体の高いアスペクト比を有効に機能させることが困難なため、高い電界集中効果が発現しないのでEL発光強度は低い。   The phosphor can be produced, for example, by mixing a carbon nanotube powder or the like and a ZnS powder that is a raw material of the phosphor using MA or the like, and then producing the phosphor by a normal powder firing method. Since the agglomeration occurs at the time of mixing, and the aggregation is not crushed even after firing, it is difficult to effectively function the high aspect ratio of the carbon nanotube alone, so that a high electric field concentration effect does not appear, so the EL emission intensity is low .

これに対して本発明では、出発原料として蛍光体粉末の代わりに金属粉末を用いることが特徴である。以下、炭素から構成される材料としてカーボンナノチューブを例に説明する。
例えば、金属亜鉛粉末とカーボンナノチューブ等を所定の組成で配合し、MAなどの混合処理を行うと、金属が延性・展性に富むために、MA中に金属組織の引き延ばしや折り畳みが繰り返し生じる。その際にカーボンナノチューブの凝集体が解砕されていき、最終的には金属亜鉛中に高い分散性を持って分散した粉末となる。MA処理は、一般的なボールミル(以下、「BM」とする。)でもいいし、粉砕エネルギーの大きい遊星BMを使えば、高加速度での粉砕が可能になり、分散性はさらに高くなる。MA時の粉砕加速度を大きく、時間を長くするほどカーボンナノチューブの分散状態が向上するので好ましい。しかし、仮に凝集していたとしても、カーボンナノチューブは針状であるため電解集中が起こりやすく、凝集体中からその先端が蛍光体と接触している場合にはEL発光が起こる。
例えば、Znとカーボンナノチューブ粉末の混合物とBM粉砕に使用するボールを、BMポットに充填し、ポットを自公転させて粉砕する。ポットの回転加速度は10G以上が好ましい。これ未満では粉砕エネルギーが通常のBMを使用した場合と大きな差がなく粉砕に時間がかかり、効率が悪い。通常の遊星BMでは150Gの加速度程度までエネルギーを上げることができる。この際、ボールやポットの隔壁からのFe、Cr、Ni、Co等の不純物の混入を防止できるようにしておくことが好ましい。これらの元素は蛍光体の発光キラーとなる。
In contrast, the present invention is characterized in that metal powder is used as a starting material instead of phosphor powder. Hereinafter, a carbon nanotube will be described as an example of a material composed of carbon.
For example, when metal zinc powder and carbon nanotubes are blended in a predetermined composition and subjected to a mixing process such as MA, the metal is highly ductile and malleable, so that the metal structure is repeatedly stretched and folded in the MA. At this time, the aggregates of the carbon nanotubes are crushed and finally become a powder dispersed with high dispersibility in metallic zinc. The MA treatment may be performed by a general ball mill (hereinafter referred to as “BM”). If a planetary BM having a large grinding energy is used, grinding at high acceleration becomes possible, and dispersibility is further enhanced. The larger the pulverization acceleration during MA and the longer the time, the better the dispersion state of the carbon nanotubes. However, even if the carbon nanotubes are aggregated, the carbon nanotubes are needle-shaped, so that electrolytic concentration easily occurs, and EL emission occurs when the tip of the aggregate is in contact with the phosphor.
For example, a mixture of Zn and carbon nanotube powder and a ball used for BM crushing are filled in a BM pot, and the pot is revolved and pulverized. The rotational acceleration of the pot is preferably 10G or more. If it is less than this, the pulverization energy is not significantly different from that in the case of using ordinary BM, and it takes time to pulverize and the efficiency is poor. In a normal planetary BM, the energy can be increased to about 150 G acceleration. At this time, it is preferable that impurities such as Fe, Cr, Ni, Co and the like from the partition walls of the balls and pots can be prevented. These elements become phosphor luminescence killer.

これを回収後、例えばドーピングのためのAg元素、融剤としてのKClを添加した後、H2Sガスを含む還元性ガス中で焼成することによりZnS:Ag,Cl蛍光体となる。カーボンナノチューブの金属亜鉛中での高い分散性は、ZnSへの転化後も維持されるので、蛍光体内部に導電性の高いカーボンナノチューブが均一に分散した構造の粉末となるのである。 After collecting this, for example, an Ag element for doping and KCl as a fluxing agent are added, and then fired in a reducing gas containing H 2 S gas to obtain a ZnS: Ag, Cl phosphor. The high dispersibility of the carbon nanotubes in the metallic zinc is maintained even after the conversion to ZnS, so that the powder has a structure in which the carbon nanotubes with high conductivity are uniformly dispersed inside the phosphor.

金属原料としては、Zn、Be、Mg、Ca、Sr及びBaより成る群から選ばれる少なくとも1種の金属を主成分とする金属粉末を用いる。これらを単体もしくは複数種を選択して、種々の組成で用いて最終的に蛍光体を作製すると、蛍光体母体のバンドギャップを変化させることができ好ましい。中でも耐湿性の点に鑑みてZnを主成分として用いることが好ましい。さらにBe、Mg、Ca、Sr及びBa等の2A族金属の硫化物は耐湿性が高くないため、好ましくはZnとこれらの金属の混合粉末を出発原料として、最終的にZnMgS、ZnCaS等の混晶母体とすることが特に好ましい。   As the metal raw material, a metal powder containing at least one metal selected from the group consisting of Zn, Be, Mg, Ca, Sr and Ba as a main component is used. It is preferable to select a single substance or a plurality of kinds and use them in various compositions to finally produce a phosphor, because the band gap of the phosphor matrix can be changed. Among these, in view of moisture resistance, it is preferable to use Zn as a main component. Furthermore, since sulfides of Group 2A metals such as Be, Mg, Ca, Sr and Ba are not high in moisture resistance, it is preferable to use a mixed powder of Zn and these metals as a starting material, and finally mix ZnMgS, ZnCaS, etc. It is particularly preferable to use a crystal matrix.

上記の金属粉末とカーボンナノチューブ等をMAし硫化して硫化物とした時には塊状になっている場合が多いので、粉砕するほうがよい。そしていずれかの工程において付活剤と共付活剤を添加し、熱処理して蛍光体とする。熱処理は、MAによって蛍光体に生じた歪を除去するために行うが、その方法としては、通常の炉内での焼成以外に、例えば、レーザアニール、赤外線ランプ加熱、プラズマ加熱等々の方法がある。また、付活剤はAgが好ましいが、CuやAuでも構わない。CuやAuを添加すると、熱処理後にこれらは導電性の高いCu2S、Auとして蛍光体内部に析出するのでカーボンナノチューブ等が内在しなくてもEL発光するが、カーボンナノチューブ等が内在するほうがEL発光強度が高くなる。付活剤の添加はAgCl、Ag2SO4等の硫化物や塩化物等で行えばよく限定されない。共付活剤としては、F、Cl、Br、I、B、Al、Ga、InまたはTl等の汎用のものが用いられる。これらも、KClやNaClの形で添加する場合が多いが限定されない。これらの付活剤や共付活剤はMA処理の前に添加しても構わない。また、付活剤を金属粉末で添加してもよい。例えば、Zn−Mg−Ag合金をMAすればよい。共付活剤を金属粉末で添加することも可能である。例えば、Zn−Mg−Ag−Al合金を用いれば、MA処理の後で付活剤や共付活剤をドーピング添加する必要がなくなる。 When the above metal powder and carbon nanotubes are MA and sulfurized to form a sulfide, it is often in the form of a lump, so it is better to grind. In either step, an activator and a coactivator are added and heat treated to obtain a phosphor. The heat treatment is performed in order to remove the distortion generated in the phosphor by MA. As a method therefor, there are methods such as laser annealing, infrared lamp heating, plasma heating, etc. in addition to firing in a normal furnace. . The activator is preferably Ag, but Cu or Au may also be used. When Cu or Au is added, they are deposited in the phosphor as highly conductive Cu 2 S and Au after heat treatment, so EL emission occurs even if carbon nanotubes are not present. The emission intensity is increased. The addition of the activator is not limited as long as it is performed with sulfides or chlorides such as AgCl and Ag 2 SO 4 . As the coactivator, general-purpose materials such as F, Cl, Br, I, B, Al, Ga, In, or Tl are used. These are often added in the form of KCl or NaCl, but are not limited thereto. These activators and coactivators may be added before the MA treatment. Moreover, you may add an activator with a metal powder. For example, a Zn—Mg—Ag alloy may be MA. It is also possible to add the coactivator as a metal powder. For example, if a Zn—Mg—Ag—Al alloy is used, it is not necessary to add an activator or a coactivator after the MA treatment.

また、本発明は、蛍光体が一般式Zn(1-x)AxS:Ag,D(式中のAは、Be、Mg、Ca、Sr及びBaの群から選ばれる少なくとも1種の2A族元素、Dは、3B族または7B族元素から選ばれる少なくとも1種、混合比率xが0≦x<1)で表される組成物からなり、かつBlue−Cu型発光機能を持つ蛍光体にも適用できる。蛍光体がこのような組成物から主に構成されている場合には、特に短波長発光の点から好ましい。この蛍光体は、蛍光体の母体を、ZnSを基に、バンドギャップの大きいMgSやCaS等の2A族硫化物を混合した混晶母体とし、アクセプタとしてAgを、ドナーとしてClやAl等の3B族または7B族元素を添加して作製され、Blue−Cu型発光機能を持つ蛍光体であり、ELスペクトルのピーク波長を400nm以下の領域にすることができる。このようなBlue−Cu型発光を持つ蛍光体は、付活剤(アクセプタ)であるAgを共付活剤(ドナー)のモル濃度以上のモル濃度で含有させることにより作製できる。 In the present invention, the phosphor has the general formula Zn (1-x) AxS: Ag, D (wherein A is at least one 2A group element selected from the group consisting of Be, Mg, Ca, Sr and Ba) , D is composed of a composition represented by at least one selected from Group 3B or Group 7B elements and a mixing ratio x of 0 ≦ x <1), and is also applicable to a phosphor having a Blue-Cu type light emitting function. it can. When the phosphor is mainly composed of such a composition, it is particularly preferable from the viewpoint of light emission at a short wavelength. In this phosphor, the base material of the phosphor is a mixed crystal matrix in which 2A group sulfides such as MgS and CaS having a large band gap are mixed based on ZnS, Ag as an acceptor, and 3B such as Cl and Al as a donor. Is a phosphor having a Blue-Cu type light emitting function, and the peak wavelength of the EL spectrum can be in the region of 400 nm or less. Such a phosphor having a Blue-Cu type light emission can be prepared by containing Ag as an activator (acceptor) at a molar concentration equal to or higher than the molar concentration of the coactivator (donor).

G−Cu型発光する蛍光体、例えばZnS:Ag,Clでは、AgはZnS結晶格子のZn位置を置換し、ClはS位置を置換する。これに対して、本発明では、ZnS系蛍光体に共付活剤のモル濃度よりも高いモル濃度のAgを添加することで、Zn位置を置換するAgに加えて、新たに電荷補償されないAgをZnSの結晶格子間に導入することで得られる。更に、蛍光体母材をZnSとBeS、MgS、CaS、SrSおよびBaSの中から少なくとも1種選ばれる2A族硫化物との混晶にすることにより結晶格子を拡大させ、より多くのAgが格子間に侵入しやすいようにした。このような混晶蛍光体を用いると、EL発光スペクトルのピーク波長を388nm以下にすることができる。   In a phosphor emitting G-Cu type light, for example, ZnS: Ag, Cl, Ag substitutes the Zn position of the ZnS crystal lattice, and Cl substitutes the S position. On the other hand, in the present invention, by adding Ag at a molar concentration higher than the molar concentration of the coactivator to the ZnS-based phosphor, Ag that is not newly charge-compensated in addition to Ag replacing the Zn position. Is introduced between the crystal lattices of ZnS. Furthermore, the crystal lattice is expanded by making the phosphor base material a mixed crystal of ZnS and a group 2A sulfide selected from at least one of BeS, MgS, CaS, SrS and BaS, and more Ag is latticed. Made it easy to intrude in between. When such a mixed crystal phosphor is used, the peak wavelength of the EL emission spectrum can be reduced to 388 nm or less.

本発明は、Cuをドーピングした、蛍光体の一般式がZn(1-x)AxS:Cu,D(式中のAは、Be、Mg、Ca、Sr及びBaの群から選ばれる少なくとも1種の2A族元素、Dは、3B族または7B族元素から選ばれる少なくとも1種、0≦x<1)であり、Blue−Cu型発光機能を持つ蛍光体の場合にも適用できる。Cuをドーピングする場合は、Cu−S系化合物が析出するのでZnS蛍光体には特に必要ない。しかし、ZnMgSやZnCaS等のように、結晶構造が全温度域に亘って六方晶である蛍光体に対しては有効な方法となる。これは、これらの混晶蛍光体は、成長双晶が生成しにくく、また転移双晶が生成しないために、ZnSと同じ通常の焼成では低輝度でしかEL発光しない。本発明を用いることで高輝度でEL発光させることができる。 In the present invention, the general formula of the phosphor doped with Cu is Zn (1-x) AxS: Cu, D (wherein A is at least one selected from the group of Be, Mg, Ca, Sr and Ba). The group 2A element, D, is at least one selected from the group 3B or group 7B elements, 0 ≦ x <1), and can also be applied to a phosphor having a Blue-Cu type light emitting function. In the case of doping with Cu, a Cu—S compound is deposited, so that it is not particularly necessary for the ZnS phosphor. However, this method is effective for phosphors whose crystal structure is hexagonal over the entire temperature range, such as ZnMgS and ZnCaS. This is because these mixed crystal phosphors are unlikely to form growth twins and do not generate transition twins, so that they emit EL only at low brightness in the same normal firing as ZnS. By using the present invention, EL light can be emitted with high luminance.

炭素から構成される材料の比抵抗は10-1Ωcm以下であることが好ましい。これを下回ると電界集中効果が低下する。炭素から構成される材料は、カーボンナノチューブ、カーボンナノホーン、フラーレン、黒鉛等が候補である。特に、カーボンナノチューブやカーボンナノホーンは、形状が針状で、直径が小さく、アスペクト比が大きいために電界集中しやすく好ましい。好ましくは直径が100nm以下で、かつアスペクト比が100以上であることが好ましい。 The specific resistance of the material composed of carbon is preferably 10 −1 Ωcm or less. Below this, the electric field concentration effect decreases. Carbon nanotubes, carbon nanohorns, fullerenes, graphite, and the like are candidates for materials composed of carbon. In particular, carbon nanotubes and carbon nanohorns are preferable because they have a needle-like shape, a small diameter, and a large aspect ratio, so that an electric field is easily concentrated. Preferably, the diameter is 100 nm or less and the aspect ratio is 100 or more.

これらの導電相となるべき材料の含有量は、硫化後の硫化物の0.005〜1vol%になるように調整することが好ましい。これを超えると、導電相同士が接触、連結して蛍光体に電界がかからなくなる場合がある。これ未満だと、電界集中する箇所が少なくなりEL発光強度が低下する場合がある。   The content of the material to be the conductive phase is preferably adjusted to 0.005 to 1 vol% of the sulfide after sulfidation. If it exceeds this, the conductive phases may contact and connect with each other, and an electric field may not be applied to the phosphor. If it is less than this, the number of locations where the electric field concentrates decreases, and the EL emission intensity may decrease.

本発明を用いれば、リーク現象を抑制し短波長域の光を高強度でかつ継続的にEL発光させることができるEL用蛍光体を作製することができる。
さらに本発明品は、短波長発光が可能なAgをドーピングした蛍光体をEL発光させることができるという効果を有する。特に、ZnSにMgS等のバンドギャップの大きな蛍光体母材を混晶化することで、発光のピーク波長が400nm以下の短波長発光を容易に発現させることができる。これらの蛍光体を用いた無機EL用デバイスは、光触媒を効率よく励起できる紫外線面光源として有望である。
By using the present invention, it is possible to produce an EL phosphor capable of suppressing light leakage and emitting light in a short wavelength region with high intensity and continuous EL emission.
Furthermore, the product of the present invention has an effect that a phosphor doped with Ag capable of emitting light at a short wavelength can emit EL. In particular, by making a phosphor base material having a large band gap such as MgS into ZnS, it is possible to easily develop short wavelength light emission with a peak light emission wavelength of 400 nm or less. An inorganic EL device using these phosphors is promising as an ultraviolet surface light source that can efficiently excite a photocatalyst.

実施例1
(I)原料
(1)炭素 表1に示す各種の直径、アスペクト比、比抵抗を持つカーボンナノチューブ(以下、「CNT」とする。)またはカーボンナノホーン(以下、「CNH」とする。)を用意した。
(2)金属粉末 純度99.999%、平均粒径30μmのZn、Mg、Sr、Ca、Be粉末を用意した。
(3)付活剤・共付活剤 付活剤:平均粒径1μmのAg2S粉末 共付活剤:平均粒径20μmの各種粉末
Example 1
(I) Raw Material (1) Carbon Carbon nanotubes (hereinafter referred to as “CNT”) or carbon nanohorns (hereinafter referred to as “CNH”) having various diameters, aspect ratios, and specific resistances shown in Table 1 are prepared. did.
(2) Metal powder Zn, Mg, Sr, Ca, and Be powders having a purity of 99.999% and an average particle diameter of 30 μm were prepared.
(3) Activator / Co-activator Activator: Ag 2 S powder with an average particle size of 1 μm Co-activator: Various powders with an average particle size of 20 μm

(II)混合
炭素と金属粉末を所定の組成になるように配合した。これに直径3mmのSi34製ボールを加え、Si34製ポットを用いた遊星BMにより75Gの加速度で60分粉砕混合を行った。
(III)熱処理
回収した原料混合物に付活剤と共付活剤を添加し、20×200×20mm(高さ)の蓋付きの石英るつぼに投入し、管状炉を用い、1気圧の10%H2S−H2ガス中、1050℃で6時間焼成を行った後、炉内で室温まで自然冷却した。その後、BMを用いて、平均粒径が15μmになるまで粉砕して蛍光体とした。
(II) Mixing Carbon and metal powder were blended so as to have a predetermined composition. A ball made of Si 3 N 4 having a diameter of 3 mm was added thereto, and pulverized and mixed with planetary BM using a Si 3 N 4 pot at an acceleration of 75 G for 60 minutes.
(III) Heat treatment An activator and a coactivator are added to the recovered raw material mixture, put into a quartz crucible with a lid of 20 × 200 × 20 mm (height), and 10% of 1 atm using a tubular furnace. After firing at 1050 ° C. for 6 hours in H 2 S—H 2 gas, it was naturally cooled to room temperature in the furnace. Thereafter, the phosphor was pulverized with BM until the average particle size became 15 μm.

(発光波長の評価方法)
50×50×1mm(厚み)の石英ガラス基板に、40×40×50μm(深さ)の凹加工を施した後、Alを0.1μm厚さ蒸着して裏面電極とした。蛍光体をひまし油に、35vol%の体積分率で超音波混合してスラリーにし、これを凹部に流し込んだ。最後に、厚さ0.1μmの透明導電膜(表面電極)がコーティングされた50×50×1mmの石英ガラス基板で蓋をしてEL用デバイスとした。
両電極にリード線を取り付け、電圧500V、周波数2500Hzの交流電圧を印加した。発光スペクトルはフォトニックアナライザを用い、同じ感度で測定した。一部の試料に関して発光強度の比較を行った。得られた発光スペクトルのピーク波長の強度を相対比較した。
結果を表1に示す。
(Evaluation method of emission wavelength)
A 50 × 50 × 1 mm (thickness) quartz glass substrate was subjected to a concave processing of 40 × 40 × 50 μm (depth), and then Al was evaporated to a thickness of 0.1 μm to form a back electrode. The phosphor was ultrasonically mixed with castor oil at a volume fraction of 35 vol% to form a slurry, which was poured into the recess. Finally, a 50 × 50 × 1 mm quartz glass substrate coated with a transparent conductive film (surface electrode) having a thickness of 0.1 μm was covered to obtain an EL device.
Lead wires were attached to both electrodes, and an AC voltage having a voltage of 500 V and a frequency of 2500 Hz was applied. The emission spectrum was measured with the same sensitivity using a photonic analyzer. The emission intensity of some samples was compared. The relative intensities of the peak wavelengths of the obtained emission spectra were compared.
The results are shown in Table 1.

Figure 2007056123
Figure 2007056123

表1より明らかなように、CNTを使用しなかった蛍光体はEL発光しなかった(蛍光体No.1、3)。
ZnS−MgS系で付活剤量を共付活剤量よりも多くすることで短波長発光した。Blue−Cu型発光が生じたためと考えられる(No.4と5の比較)。
CNTの比抵抗が小さいほどEL発光強度が増加した(No.6〜8)。
CNHを用いてもEL発光した(No.9)。
CNTの直径が小さく、アスペクト比が大きいほどEL発光強度は高くなった(No.10と11)。
Mgの代わりにSr、Ca、Baを用いても短波長EL発光は得られた(No.12〜14)。
As is clear from Table 1, phosphors that did not use CNT did not emit EL (phosphors No. 1, 3).
In the ZnS-MgS system, light was emitted at a short wavelength by increasing the activator amount more than the coactivator amount. It is considered that Blue-Cu type light emission occurred (comparison of No. 4 and 5).
The EL emission intensity increased as the specific resistance of CNTs decreased (No. 6-8).
Even when CNH was used, EL was emitted (No. 9).
The smaller the CNT diameter and the larger the aspect ratio, the higher the EL emission intensity (No. 10 and 11).
Even when Sr, Ca, Ba was used in place of Mg, short wavelength EL emission was obtained (No. 12-14).

実施例2
(I)原料
(1)炭素
実施例1と同じものを用いた。
(2)金属粉末
実施例1と同じものを用いた。
(3)付活剤・共付活剤
付活剤:平均粒径1μmのAg、CuまたはAu粉末
共付活剤:平均粒径20μmの各種粉末
Example 2
(I) Raw material (1) Carbon The same material as in Example 1 was used.
(2) Metal powder The same powder as in Example 1 was used.
(3) Activator / Co-activator Activator: Ag, Cu or Au powder with an average particle size of 1 μm Co-activator: Various powders with an average particle size of 20 μm

(II)混合
炭素と金属粉末、付活剤、共付活剤を所定の組成になるよう配合した。これに直径3mmのSi34製ボールを加え、Si34製ポットを用いた遊星BMにより75Gの加速度で60分粉砕混合を行った。
(III)熱処理
回収した原料混合物を20×200×20mm(高さ)の蓋付きの石英るつぼに投入し、管状炉を用い、1気圧の10%H2S−H2ガス中、1050℃で6時間焼成を行った後、炉内で室温まで自然冷却した。その後、BMを用いて、平均粒径が15μmになるまで粉砕して蛍光体とした。
(II) Mixing Carbon and metal powder, an activator, and a coactivator were blended so as to have a predetermined composition. A ball made of Si 3 N 4 having a diameter of 3 mm was added thereto, and pulverized and mixed for 60 minutes at an acceleration of 75 G using a planetary BM using a pot made of Si 3 N 4 .
(III) Heat treatment The recovered raw material mixture is put into a quartz crucible with a lid of 20 × 200 × 20 mm (height), and using a tubular furnace at 1050 ° C. in 10% H 2 S—H 2 gas at 1 atm. After baking for 6 hours, it naturally cooled to room temperature in the furnace. Thereafter, the phosphor was pulverized with BM until the average particle size became 15 μm.

(発光波長の評価方法)
実施例1と同じ。
比較として、市販のZnS:Ag,Cl蛍光体粉末にCNTを添加し、同様の遊星BM処理を行った後、同様の熱処理を施した試料も作製した。
結果を表2に示す。
(Evaluation method of emission wavelength)
Same as Example 1.
As a comparison, a sample was prepared by adding CNT to a commercially available ZnS: Ag, Cl phosphor powder, performing the same planetary BM treatment, and then performing the same heat treatment.
The results are shown in Table 2.

Figure 2007056123
Figure 2007056123

表2から明らかなように、付活剤と共付活剤として金属粉末を用いてもEL発光した。
CNTの量を適当な値にすることでEL発光強度が大きくなった。ZnSを出発原料とした場合はEL発光強度が極めて小さかった。これは蛍光体内部にCNTが分散していないためと考えられる(No.15〜19、22を比較)。
CuやAu粉末を用いてもEL発光した。
Cuを用いた場合、CNTがあると発光強度が大きくなった(No.19と20の比較)。
As can be seen from Table 2, EL was emitted even when metal powder was used as the activator and coactivator.
The EL emission intensity was increased by setting the amount of CNT to an appropriate value. When ZnS was used as the starting material, the EL emission intensity was extremely small. This is probably because CNT is not dispersed inside the phosphor (compare No. 15-19, 22).
Even when Cu or Au powder was used, EL was emitted.
When Cu was used, the emission intensity increased with the presence of CNT (comparison between No. 19 and 20).

実施例3
(I)原料
(1)炭素
炭素種:CNT
炭素種の直径:5nm
炭素種の長さ:550nm
アスペクト比:110
比抵抗:0.02Ωcm
炭素種濃度:0.01vol%
(2)金属粉末
実施例1と同じものを用いた。
(3)付活剤・共付活剤
付活剤:平均粒径1μmのAg粉末
共付活剤:平均粒径20μmのAl粉末
(4)硫黄:純度99.999%の硫黄粉末(平均粒径5μm)を用いた。
Example 3
(I) Raw material (1) Carbon Carbon species: CNT
Carbon species diameter: 5nm
Carbon species length: 550 nm
Aspect ratio: 110
Specific resistance: 0.02 Ωcm
Carbon species concentration: 0.01 vol%
(2) Metal powder The same powder as in Example 1 was used.
(3) Activator / Co-activator Activator: Ag powder with an average particle size of 1 μm Co-activator: Al powder with an average particle size of 20 μm (4) Sulfur: Sulfur powder with a purity of 99.999% (average particle A diameter of 5 μm) was used.

(II)混合
炭素と金属粉末、付活剤、共付活剤、硫黄粉末を所定の組成になるよう配合した。これに直径3mmのSi34製ボールを加え、Si34製ポットを用いた遊星BMにより5〜75Gの加速度で60分粉砕混合を行った。
炭素と金属粉末、付活剤、共付活剤を先に60分粉砕混合した後、硫黄粉末を添加して再度60分粉砕混合した試料も作製した。
(III)熱処理
回収した原料混合物を20×200×20mm(高さ)の蓋付きの石英るつぼに投入し、1気圧のアルゴンガス中、1000℃で2時間熱処理した後、炉内で室温まで自然冷却した。
なお熱処理後の蛍光体中の各相は以下のようになった。
第1成分ZnS
第2成分MgS
第2成分量(mol%):30
(II) Mixing Carbon and metal powder, activator, coactivator, and sulfur powder were blended so as to have a predetermined composition. A ball made of Si 3 N 4 having a diameter of 3 mm was added thereto, and pulverized and mixed for 60 minutes at an acceleration of 5 to 75 G using a planetary BM using a pot made of Si 3 N 4 .
Carbon, metal powder, activator, and coactivator were first pulverized and mixed for 60 minutes, and then a sulfur powder was added and pulverized and mixed again for 60 minutes.
(III) Heat treatment The recovered raw material mixture is put into a quartz crucible with a lid of 20 x 200 x 20 mm (height), heat treated at 1000 ° C in 1 atmosphere of argon gas for 2 hours, and then naturally brought to room temperature in the furnace. Cooled down.
Each phase in the phosphor after the heat treatment was as follows.
First component ZnS
Second component MgS
Second component amount (mol%): 30

(発光波長の評価方法)
実施例1と同じ。
結果を表3に示す。
(Evaluation method of emission wavelength)
Same as Example 1.
The results are shown in Table 3.

Figure 2007056123
Figure 2007056123

表3から明らかなように、金属、CNT、硫黄、付活剤及び共付活剤の混合粉末を用いてもEL発光した。
遊星BMの粉砕加速度を大きくするほどEL発光強度が大きくなった。粉砕加速度が大きいほど、CNTが蛍光体中に均一に分散したためと考えられる(No.23〜26を比較)。
熱処理をしないと発光強度が大幅に低下した。これは、粉砕により蛍光体母体に導入された歪みが緩和されないため、結晶性が低いためと考えられる(No.27)。
硫黄粉末を除く混合粉末を先に粉砕処理し、その後、硫黄粉末を添加して再度粉砕処理した試料は最も発光強度が高かった。金属とCNTの粉砕を先に粉砕したほうが、CNTの分散性が高いためと考えられる(No.28)。
As can be seen from Table 3, EL light was emitted even when a mixed powder of metal, CNT, sulfur, activator and coactivator was used.
The EL emission intensity increased as the pulverization acceleration of the planetary BM was increased. This is probably because the higher the pulverization acceleration, the more uniformly the CNTs are dispersed in the phosphor (compare No. 23 to 26).
Without heat treatment, the emission intensity was significantly reduced. This is presumably because the distortion introduced into the phosphor matrix by pulverization is not relaxed, and the crystallinity is low (No. 27).
A sample in which the mixed powder excluding the sulfur powder was pulverized first, and then the sulfur powder was added and pulverized again had the highest emission intensity. It is thought that the pulverization of the metal and the CNTs first causes the CNTs to have higher dispersibility (No. 28).

Claims (15)

Zn、Be、Mg、Ca、Sr及びBaより成る群から選ばれる少なくとも1種の金属を主成分とする金属粉末と炭素から構成される材料をメカニカルアロイングして合金化する工程、該合金を硫化して硫化物を主成分とする複合体とする工程、該複合体を粉砕・熱処理して蛍光体とする工程と、上記のいずれかの工程において付活剤及び/または共付活剤を添加する工程、からなるエレクトロルミネッセンス(以下、「EL」と略す。)用蛍光体の製法。 Mechanically alloying and alloying a metal powder composed mainly of at least one metal selected from the group consisting of Zn, Be, Mg, Ca, Sr and Ba, and carbon, Activating and / or coactivator in a step of sulfiding to form a composite containing sulfide as a main component, a step of pulverizing and heat-treating the composite to form a phosphor, and any of the above steps A process for producing a phosphor for electroluminescence (hereinafter abbreviated as “EL”) comprising the step of adding. 前記合金を硫化して硫化物を主成分とする複合体とする工程において、該合金に硫黄粉末を添加してメカニカルアロイングすることを特徴とする前記請求項1記載のEL用蛍光体の製法。 2. The process for producing an EL phosphor according to claim 1, wherein in the step of sulfiding the alloy into a composite mainly composed of sulfide, sulfur alloy is added to the alloy and mechanically alloyed. . Zn、Be、Mg、Ca、Sr及びBaより成る群から選ばれる少なくとも1種の金属を主成分とする金属粉末と、硫黄粉末と、および炭素から構成される材料をメカニカルアロイングして硫化物を主成分として複合体とする工程と、該複合体を粉砕・熱処理して蛍光体とする工程と、上記のいずれかの工程において付活剤及び/または共付活剤を添加する工程と、からなるEL用蛍光体の製法。 Sulfide by mechanically alloying a metal powder composed mainly of at least one metal selected from the group consisting of Zn, Be, Mg, Ca, Sr and Ba, sulfur powder, and carbon. A step of making the composite as a main component, a step of pulverizing and heat-treating the composite to make a phosphor, a step of adding an activator and / or a coactivator in any of the above steps, The manufacturing method of the fluorescent substance for EL which consists of. 前記金属粉末が、Znを主成分とすることを特徴とする請求項1〜3のいずれか一項に記載のEL用蛍光体の製法。 The method for producing a phosphor for EL according to any one of claims 1 to 3, wherein the metal powder contains Zn as a main component. 前記金属粉末が、ZnとBe、Mg、Ca、SrまたはBaの少なくとも一種との混合物を主成分とする請求項4に記載のEL用蛍光体の製法。 The method for producing a phosphor for EL according to claim 4, wherein the metal powder is mainly composed of a mixture of Zn and at least one of Be, Mg, Ca, Sr or Ba. 前記付活剤が、Ag、Cu、またはAuの少なくとも一種であることを特徴とする請求項1〜5のいずれか一項に記載のEL用蛍光体の製法。 The method for producing a phosphor for EL according to any one of claims 1 to 5, wherein the activator is at least one of Ag, Cu, or Au. 前記付活剤がAgであることを特徴とする請求項6に記載のEL用蛍光体の製法。 The method for producing a phosphor for EL according to claim 6, wherein the activator is Ag. 前記付活剤を金属粉末で添加する請求項1〜7のいずれか一項に記載のEL用蛍光体の製法。 The manufacturing method of the fluorescent substance for EL as described in any one of Claims 1-7 which adds the said activator with a metal powder. 前記共付活剤が、F、Cl、Br、I、B、Al、Ga、InまたはTlの少なくとも一種である請求項1〜8のいずれか一項に記載のEL用蛍光体の製法。 The method for producing a phosphor for EL according to any one of claims 1 to 8, wherein the coactivator is at least one of F, Cl, Br, I, B, Al, Ga, In, or Tl. 前記共付活剤を金属粉末で添加する請求項1〜9のいずれか一項に記載のEL用蛍光体の製法。 The method for producing a phosphor for EL according to any one of claims 1 to 9, wherein the coactivator is added as a metal powder. 前記炭素から構成される材料が、カーボンナノチューブ、カーボンナノホーン、フラーレン及び黒鉛から選ばれる少なくとも1種である請求項1〜10のいずれか一項に記載のEL用蛍光体の製法。 The method for producing a phosphor for EL according to any one of claims 1 to 10, wherein the material composed of carbon is at least one selected from carbon nanotubes, carbon nanohorns, fullerenes, and graphite. 前記炭素から構成される材料の形状が、針状で、直径が100nm以下におけるアスペクト比が100以上であることを特徴とする請求項1〜11に記載のEL用蛍光体の製法。 The method for producing a phosphor for EL according to any one of claims 1 to 11, wherein the material composed of carbon has a needle shape and an aspect ratio of 100 or less in diameter of 100 nm or less. 前記炭素から構成される材料が、前記硫化物の0.005〜1vol%である請求項1〜12のいずれか一項に記載のEL用蛍光体の製法。 The method for producing a phosphor for EL according to any one of claims 1 to 12, wherein the material composed of carbon is 0.005 to 1 vol% of the sulfide. 前記蛍光体が、一般式Zn(1-x)xS:Ag,D(式中のAは、Be、Mg、Ca、Sr及びBaより成る群から選ばれる少なくとも1種の2A族元素、Dは共付活剤であり、3B族及び7B族元素より成る群から選ばれる少なとも1種、0<x<1)で表される組成物である請求項1〜13のいずれか一項に記載のEL用蛍光体の製法。 The phosphor has the general formula Zn (1-x) A x S: Ag, D (where A is at least one 2A group element selected from the group consisting of Be, Mg, Ca, Sr and Ba, D is a coactivator and is a composition represented by at least one selected from the group consisting of Group 3B and Group 7B elements, 0 <x <1). A process for producing a phosphor for EL as described in 1. 前記請求項1〜14のいずれか一項に記載の方法により作製されたEL用蛍光体。 The phosphor for EL produced by the method as described in any one of Claims 1-14.
JP2005242378A 2005-08-24 2005-08-24 Method for producing phosphor for electroluminescence and phosphor for electroluminescence Pending JP2007056123A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005242378A JP2007056123A (en) 2005-08-24 2005-08-24 Method for producing phosphor for electroluminescence and phosphor for electroluminescence

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005242378A JP2007056123A (en) 2005-08-24 2005-08-24 Method for producing phosphor for electroluminescence and phosphor for electroluminescence

Publications (1)

Publication Number Publication Date
JP2007056123A true JP2007056123A (en) 2007-03-08

Family

ID=37919883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005242378A Pending JP2007056123A (en) 2005-08-24 2005-08-24 Method for producing phosphor for electroluminescence and phosphor for electroluminescence

Country Status (1)

Country Link
JP (1) JP2007056123A (en)

Similar Documents

Publication Publication Date Title
JP4543251B2 (en) Phosphor and light source
WO2006025259A1 (en) Phosphor, method for producing same, and light-emitting device using same
JP2005255895A (en) Phosphor and its manufacturing method
JP2006063286A (en) Fluorophor and light-emitting devic
KR20080056199A (en) A luminous body
JP2004043656A (en) High-luminance mechnoluminescent material and method for producing the same
JP2006183055A (en) Yttrium based phosphor, process for preparing the same and display device using the same
JP4822513B2 (en) EL phosphor and method for producing the same
US20080057343A1 (en) Phosphor, Method for Manufacturing Same, and Particle Dispersed El Device Using Same
Liu et al. Tunable cathodoluminescence properties of Tb3+-doped La2O3 nanocrystalline phosphors
JP2007063301A (en) Phosphor for el
JP2005336275A (en) Production method of electroluminescent body
JP2007056123A (en) Method for producing phosphor for electroluminescence and phosphor for electroluminescence
JP2005008674A (en) Phosphor and vacuum fluorescent display
JP2007045926A (en) Fluorescent material
US20110133125A1 (en) Inorganic phosphor particle
JP2007046002A (en) Composite oxide phosphor, method for producing the same, and light emitting device
JP2005146190A (en) Red phosphor comprising alkaline earth sulfide as main component and process for producing the same
JP2012072377A (en) High-luminance phosphor and method of manufacturing the same
JP4343267B1 (en) Green phosphor
JP2006199876A (en) Aluminum nitride-based fluorescent substance
JP2007138007A (en) Fluorescent substance and el element using the same and method for producing fluorescent substance
JP2006335915A (en) Powdery phosphor, method for producing the same and luminescent device using the same
JP2007131655A (en) Fluorescent material, fluorescent lamp, fluorescent material for el and method for producing fluorescent material
JP2009149765A (en) Manufacturing method for phosphor fine particle, phosphor fine particle, and electroluminescence display