JP2007056089A - Method for producing purified epoxy resin - Google Patents

Method for producing purified epoxy resin Download PDF

Info

Publication number
JP2007056089A
JP2007056089A JP2005240839A JP2005240839A JP2007056089A JP 2007056089 A JP2007056089 A JP 2007056089A JP 2005240839 A JP2005240839 A JP 2005240839A JP 2005240839 A JP2005240839 A JP 2005240839A JP 2007056089 A JP2007056089 A JP 2007056089A
Authority
JP
Japan
Prior art keywords
epoxy resin
gel
impurities
producing
aqueous layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005240839A
Other languages
Japanese (ja)
Other versions
JP4945958B2 (en
Inventor
Yasuyuki Murata
保幸 村田
Yutaka Makino
裕 牧野
Tsuyoshi Tanaka
堅 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Epoxy Resins Co Ltd
Original Assignee
Japan Epoxy Resins Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Epoxy Resins Co Ltd filed Critical Japan Epoxy Resins Co Ltd
Priority to JP2005240839A priority Critical patent/JP4945958B2/en
Publication of JP2007056089A publication Critical patent/JP2007056089A/en
Application granted granted Critical
Publication of JP4945958B2 publication Critical patent/JP4945958B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Epoxy Resins (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for removing impurities which are formed as by-products when an epoxy resin is produced. <P>SOLUTION: This method for producing the purified epoxy resin scarcely containing the gel-like impurities comprises reacting a compound having two or more atoms of active hydrogen per mol on average with an epihalohydrin in the presence of an alkali metal hydroxide, so as to obtain a crude epoxy resin containing the gel-like impurities, adding water to the obtained resin in a molten state or a solution state, mixing them, then separating the mixture into an organic layer and an aqueous layer, and further removing the gel-like impurities floating between the organic layer and the aqueous layer, so that the purified epoxy resin is produced. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電気電子分野等に有用な高純度なエポキシ樹脂の製造に伴って副生するゲル状不純物を効率よく安定的に除去する精製エポキシ樹脂の製造方法に関する。   The present invention relates to a method for producing a purified epoxy resin that efficiently and stably removes a gel-like impurity that is produced as a by-product with the production of a high-purity epoxy resin useful in the field of electrical and electronic fields.

エポキシ樹脂は、その優れた硬化物性や取扱いの容易さから、接着、注型、封止、積層、成型、塗装等の広い分野で使用されている。
従来、電気及び電子部品等の封止や接着等に用いられるエポキシ樹脂は、その中に不純物として含まれるハロゲン量が少ないことが要求されている。すなわち、加水分解によりイオンとなったエポキシ樹脂中のハロゲンが、電気絶縁性を低下させたり、リード線等を腐食させる等の悪影響を及ぼすことが知られている。特に半導体集積回路の封止材用樹脂としてエポキシ樹脂を使用する場合には、ハロゲン量が少ないことが必須条件であり、半導体回路の集積度が上がるにつれて許容されるハロゲン量はますます少なくなっている。
一般に最も広く使用されているエポキシ樹脂は、フェノール性水酸基、アルコール性水酸基、カルボキシル基、第1級または第2級アミン基を持つ活性水素化合物とエピハロヒドリンとから製造される。この種のエポキシ樹脂には、無機ハロゲンや1,2ハロヒドリン基、1,3ハロヒドリン基またはハロメチル基などの形で存在する有機ハロゲンが不純物として含まれる。
それらの不純物ハロゲンの内、無機ハロゲンは水洗などの技術で問題を生じないレベルまで低減させることが可能であるが、その他の有機ハロゲンをエポキシ基の重合等の副反応を十分に低く押さえながら低減させることは困難である。
Epoxy resins are used in a wide range of fields such as adhesion, casting, sealing, lamination, molding and painting because of their excellent cured properties and ease of handling.
2. Description of the Related Art Conventionally, epoxy resins used for sealing and adhesion of electrical and electronic components are required to have a small amount of halogen contained as impurities therein. That is, it is known that the halogen in the epoxy resin that is ionized by hydrolysis adversely affects the electrical insulation or corrodes the lead wire or the like. In particular, when epoxy resin is used as a resin for encapsulants in semiconductor integrated circuits, a small amount of halogen is an essential condition, and as the degree of integration of semiconductor circuits increases, the allowable amount of halogen decreases. Yes.
The most widely used epoxy resins are generally produced from an active hydrogen compound having a phenolic hydroxyl group, an alcoholic hydroxyl group, a carboxyl group, a primary or secondary amine group, and an epihalohydrin. This type of epoxy resin contains an organic halogen present as an impurity, such as an inorganic halogen, a 1,2-halohydrin group, a 1,3-halohydrin group, or a halomethyl group.
Of these impurity halogens, inorganic halogen can be reduced to a level that does not cause problems with techniques such as washing with water, but other organic halogens are reduced while suppressing side reactions such as polymerization of epoxy groups sufficiently low. It is difficult to make it.

有機ハロゲン不純物の含有量の少ないエポキシ樹脂を製造するため、活性水素化合物とエピハロヒドリンの反応の際に、非プロトン性極性溶媒などを用いて反応の選択性を向上させ、不純物の生成を押さえることが提案されている(特許文献1、2、3、4)。しかし、それらの方法による効果では、最近の厳しい要求を満たすことはできない。
また、一旦製造したエポキシ樹脂を再精製処理して低ハロゲン化する方法も多く提唱されている。これらの方法は不純物有機ハロゲンを塩基性化合物により加水分解し、ハロゲンイオンとした後、水洗等により除去するものであるが、有機ハロゲンの加水分解の際に活性の高いエポキシ基の重合等の副反応が起こり、ゲル状不純物が多量に生成する。
たとえば、エポキシ樹脂を非プロトン性極性溶媒に溶解し、アルカリ金属水酸化物を加えて不純物有機ハロゲンを加水分解する方法が示されている(特許文献5、6、7、8、9、10)。しかし、これらの方法では、不純物有機ハロゲンを分解することはできるがゲル状不純物も多量に生成する。
ゲル状不純物はエポキシ樹脂の使用の際に、目詰まりを起こしたり、硬化物に欠陥ができるなどの問題となるため、完全に除去する必要がある。従来は、濾過により除去するのが一般的な技術であったが、通常ゲル状不純物は粘着性があるため、濾過材(濾紙、金網など)の目詰まりを起こしやすく、困難な作業となる。近年ますます厳しくなる品質要求を満たすため、濾過材の目開きを小さくする必要が生じており、この問題は重大化している。特に大規模な工業的生産においては効率的な除去方法が求められていた。
また、近年封止材等に多用されるビフェノール類から製造されるエポキシ樹脂は、化学構造上ゲル状不純物の粘着性が強く成りやすく、さらには結晶性を持つため濾過材でゲル状不純物を核として結晶化し、上記問題をさらに深刻化させている。
特開昭58-189223号公報 特開昭60-31516号公報 特開昭60-31517号公報 特開平1-66224号公報 特開昭62-18778号公報 特開昭62-235314号公報 特開昭63-174981号公報 特開平1-126320号公報 特開平2-47129号公報 特開平5-17464号公報
In order to produce an epoxy resin with a low content of organic halogen impurities, it is possible to improve the selectivity of the reaction by using an aprotic polar solvent or the like during the reaction between the active hydrogen compound and epihalohydrin, thereby suppressing the generation of impurities. It has been proposed (Patent Documents 1, 2, 3, 4). However, the recent strict requirements cannot be met by the effects of these methods.
Many proposals have also been made for a method of reducing the halogen content by repurifying the epoxy resin once produced. These methods hydrolyze the impurity organic halogen with a basic compound to form a halogen ion, and then remove it by washing or the like. Reaction occurs, and a large amount of gel-like impurities are generated.
For example, a method is disclosed in which an epoxy resin is dissolved in an aprotic polar solvent, and an alkali metal hydroxide is added to hydrolyze the impurity organic halogen (Patent Documents 5, 6, 7, 8, 9, 10). . However, these methods can decompose the impurity organic halogen, but generate a large amount of gel impurities.
The gel-like impurities cause problems such as clogging and defects in the cured product when using the epoxy resin, so it is necessary to completely remove the gel-like impurities. Conventionally, it has been a general technique to remove by filtration. However, since gel-like impurities are usually sticky, the filter medium (filter paper, wire mesh, etc.) is likely to be clogged, which is a difficult operation. In order to meet the increasingly demanding quality requirements in recent years, it is necessary to reduce the opening of the filter medium, and this problem has become serious. In particular, an efficient removal method has been demanded in large-scale industrial production.
In addition, epoxy resins produced from biphenols, which are frequently used in sealing materials in recent years, tend to have strong adhesion of gel-like impurities due to their chemical structure. As a result of crystallization, the above problem is further exacerbated.
JP 58-189223 A JP-A-60-31516 JP 60-31517 A JP-A-1-66224 JP 62-18778 JP 62-235314 A JP 63-174981 A Japanese Unexamined Patent Publication No. 1-126320 JP-A-2-47129 JP-A-5-17464

本発明は、エポキシ樹脂を製造する際に副生するゲル状不純物を効率よくかつ安定的に除去する精製エポキシ樹脂の製造方法に関する。   The present invention relates to a method for producing a purified epoxy resin that efficiently and stably removes gel-like impurities that are by-produced when producing an epoxy resin.

本発明者等は、前記の課題を解決するために種々研究を重ねた結果、特定の分離方法を用いることによりその目的を達成できたのである。
すなわち、本発明の精製エポキシ樹脂の製造方法は、以下の各発明を含有する。
〔1〕 ゲル状不純物の少ない精製エポキシ樹脂を製造する方法であって、1分子当たり平均2個以上の活性水素を有する化合物とエピハロヒドリンとをアルカリ金属水酸化物の存在下に反応させることにより得られたゲル状不純物を含む粗製エポキシ樹脂を溶融状態または溶液状態で水を加えて混合し、次いで有機層と水層に分離させ、続いて有機層と水層の中間に浮遊するゲル状不純物を除去することを特徴とする精製エポキシ樹脂の製造方法。
〔2〕 有機ハロゲン不純物を含む粗製エポキシ樹脂を、エポキシ樹脂を溶解するが水と難相溶性であるエピハロヒドリン以外の有機溶媒に溶解する工程、続いて該溶解液にアルカリ金属水酸化物を固体または溶液で加え低塩素化反応を行う工程、その後水の存在下に有機層と水層に分離させる工程、更に有機層と水層の中間に浮遊するゲル状不純物を除去する工程を順に行うことを特徴とする〔1〕に記載の精製エポキシ樹脂の製造方法。
〔3〕 1分子当たり平均2個以上の活性水素を有する化合物が、多価フェノール化合物、アミノ化合物およびアミノフェノール類から選ばれた少なくとも1種の化合物であることを特徴とする〔1〕または〔2〕に記載の精製エポキシ樹脂の製造方法。
〔4〕 1分子当たり平均2個以上の活性水素を有する化合物が、少なくとも1種のビフェノール類を含む化合物であることを特徴とする〔1〕から〔3〕のいずれか1項に記載の精製エポキシ樹脂の製造方法。
〔5〕得られるエポキシ樹脂中の可鹸化塩素含有量が500ppm以下であることを特徴とする〔1〕から〔4〕のいずれか1項に記載の精製エポキシ樹脂の製造方法。
〔6〕水層のpHが5以上である、〔1〕ないし〔5〕のいずれか1項に記載された精製エポキシ樹脂の製造方法。
〔7〕ゲル状不純物を除去する操作を行う温度が20℃〜150℃である、〔1〕ないし〔6〕のいずれか1項に記載された精製エポキシ樹脂製造方法。
As a result of various studies to solve the above-mentioned problems, the present inventors have achieved the object by using a specific separation method.
That is, the manufacturing method of the refinement | purification epoxy resin of this invention contains the following each invention.
[1] A method for producing a purified epoxy resin with little gel impurities, which is obtained by reacting a compound having an average of 2 or more active hydrogens per molecule with an epihalohydrin in the presence of an alkali metal hydroxide. The resulting crude epoxy resin containing gel-like impurities is mixed with water in a molten or solution state, then separated into an organic layer and an aqueous layer, and then the gel-like impurities floating between the organic layer and the aqueous layer are removed. A method for producing a purified epoxy resin comprising removing the epoxy resin.
[2] A step of dissolving a crude epoxy resin containing an organic halogen impurity in an organic solvent other than an epihalohydrin which dissolves the epoxy resin but is incompatible with water, and subsequently, an alkali metal hydroxide is solidified in the solution. A step of adding a solution to perform a low chlorination reaction, a step of separating the organic layer and the aqueous layer in the presence of water, and a step of removing gel-like impurities floating between the organic layer and the aqueous layer are sequentially performed. The method for producing a purified epoxy resin according to [1], which is characterized by the following.
[3] The compound having an average of two or more active hydrogens per molecule is at least one compound selected from polyphenol compounds, amino compounds and aminophenols [1] or [1] [2] A method for producing a purified epoxy resin according to [2].
[4] The purification according to any one of [1] to [3], wherein the compound having an average of 2 or more active hydrogens per molecule is a compound containing at least one biphenol Production method of epoxy resin.
[5] The method for producing a purified epoxy resin according to any one of [1] to [4], wherein the saponifiable chlorine content in the obtained epoxy resin is 500 ppm or less.
[6] The method for producing a purified epoxy resin according to any one of [1] to [5], wherein the pH of the aqueous layer is 5 or more.
[7] The method for producing a purified epoxy resin according to any one of [1] to [6], wherein the temperature for performing the operation of removing the gel impurities is 20 ° C to 150 ° C.

本発明の精製エポキシ樹脂の製造方法は、エポキシ樹脂を製造する際に副生するゲル状不純を効率よくかつ安定的に除去することができるので、高純度なエポキシ樹脂の製造において有利に使用できる。   The method for producing a purified epoxy resin according to the present invention can efficiently and stably remove gel impurities produced as a by-product when producing an epoxy resin, and thus can be advantageously used in the production of a high-purity epoxy resin. .

本発明は、精製エポキシ樹脂を製造する方法においてエポキシ樹脂を製造する各工程にておい副生するゲル状不純物を含むエポキシ樹脂に溶融状態または溶液状態で水を加え混合し、次いで有機層と水層に分離させ、続いて有機層と水層の中間に浮遊するゲル状不純物を除去することを特徴とする精製エポキシ樹脂の製造方法である。有機層と水層に分離させるには、水を加えて混合した後、放置すればよい。
本発明の精製エポキシ樹脂の製造方法で使用されるエポキシ樹脂は、1分子当たり平均2個以上の活性水素を有する化合物とエピハロヒドリンとをアルカリ金属水酸化物の存在下に縮合反応させエポキシ樹脂としたものである。
その原料となる活性水素化合物としては、たとえば、ビスフェノールA、ビスフェノールF、ビスフェノールAD、ビフェノール、テトラメチルビフェノール、ハイドロキノン、メチルハイドロキノン、ジブチルハイドロキノン、レゾルシン、メチルレゾルシン、ジヒドロキシジフェニルエーテル、ジヒドロキシナフタレンなどの種々のフェノール類や、フェノールノボラック樹脂、クレゾールフェノールノボラック樹脂、ビスフェノールAノボラック樹脂、フェノールアラルキル樹脂、テルペンフェノール樹脂、ジシクロペンタジエンフェノール樹脂、ビフェニルフェノール樹脂などの種々のフェノール樹脂類、種々のフェノール類と、ヒドロキシベンズアルデヒド、クロトンアルデヒド、グリオキザールなどの種々のアルデヒド類との縮合反応で得られる多価フェノール樹脂等の各種のフェノール系化合物、ジアミノジフェニルメタン、アミノフェノール、キシレンジアミンなどの種々のアミノ化合物、メチルヘキサヒドロキシフタル酸、ダイマー酸などの種々のカルボン酸類などが挙げられる。
各種活性水素化合物の中では、電気電子分野で広く用いられているエポキシ樹脂の原料となる多価フェノール化合物が好ましく、特に先端封止材に使用され厳しい不純物管理が要求されるビフェノール型エポキシ樹脂の原料となるビフェノール類が好ましい。また、エポキシ製造時に多量のゲル状不純物を生成しやすいアミノ化合物およびアミノフェノール類も本発明の不純物の除去方法を適用する活性水素化合物として好ましい。
In the method for producing a purified epoxy resin, the present invention comprises mixing water in a molten state or in a solution state with an epoxy resin containing gel-like impurities by-produced in each step of producing the epoxy resin, and then mixing the organic layer and the water. This is a method for producing a purified epoxy resin, characterized in that it is separated into layers, and subsequently gel-like impurities floating between the organic layer and the aqueous layer are removed. In order to separate the organic layer and the aqueous layer, water may be added and mixed and then allowed to stand.
The epoxy resin used in the method for producing a purified epoxy resin of the present invention is an epoxy resin obtained by subjecting a compound having an average of 2 or more active hydrogens per molecule and an epihalohydrin to a condensation reaction in the presence of an alkali metal hydroxide. Is.
Examples of the active hydrogen compound used as the raw material include various phenols such as bisphenol A, bisphenol F, bisphenol AD, biphenol, tetramethylbiphenol, hydroquinone, methylhydroquinone, dibutylhydroquinone, resorcin, methylresorcin, dihydroxydiphenyl ether, and dihydroxynaphthalene. , Phenol novolac resins, cresol phenol novolac resins, bisphenol A novolac resins, phenol aralkyl resins, terpene phenol resins, dicyclopentadiene phenol resins, biphenyl phenol resins, various phenol resins, various phenols, and hydroxybenzaldehyde , Crotonaldehyde, glyoxal and other aldehydes Various phenolic compounds of such resulting polyhydric phenol resin, diaminodiphenylmethane, aminophenol, various amino compounds, such as xylene diamine, methylhexahydrophthalic hydroxy phthalic acid, and the like various carboxylic acids such as dimer acid.
Among various active hydrogen compounds, polyhydric phenol compounds, which are used as raw materials for epoxy resins widely used in the electrical and electronic field, are preferred, especially for biphenol-type epoxy resins that are used in advanced sealing materials and require strict impurity management. Biphenols as raw materials are preferred. In addition, amino compounds and aminophenols that easily generate a large amount of gel impurities during epoxy production are also preferred as active hydrogen compounds to which the impurity removal method of the present invention is applied.

上記のような活性水素化合物とエピハロヒドリンとの反応(以下グリシジル化反応と記載する)は公知の方法で行えるが、代表的な態様例を、以下に詳述する。まず、活性水素化合物をその活性水素1モル当り3〜20モルに相当する量のエピハロヒドリンに溶解させて均一な溶液とする。次いで、その溶液を撹拌しながらこれに活性水素1モル当り0.9〜2モル量のアルカリ金属水酸化物を固体又は水溶液で加えて反応させる。この反応は、常圧下又は減圧下で行わせることができ、反応温度は、通常、常圧下の反応の場合に約30〜105℃であり、減圧下の反応の場合に約30〜80℃である。反応中は、必要に応じて所定の温度を保持しながら反応液を共沸させ、揮発する蒸気を冷却して得られた凝縮液を油/水分離し、水分を除いた油分を反応系に戻す方法によって反応系より脱水する。アルカリ金属水酸化物の添加は、急激な反応をおさえるために、1〜8時間かけて少量ずつを断続的もしくは連続的に添加する。その全反応時間は、通常、1〜10時間程度である。
このグリシジル化反応におけるエピハロヒドリンとしては、通常、エピクロルヒドリン又はエピブロモヒドリンが用いられ、またアルカリ金属水酸化物としては、通常、NaOH又はKOHが用いられる。
また、この反応においては、テトラメチルアンモニウムクロリド、テトラエチルアンモニウムブロミドなどの第四級アンモニウム塩;ベンジルジメチルアミン、2,4,6-(トリスジメチルアミノメチル)フェノールなどの第三級アミン;2-エチル-4-メチルイミダゾール、2-フェニルイミダゾールなどのイミダゾール類;エチルトリフェニルホスホニウムイオダイドなどのホスホニウム塩;トリフェニルホスフィンなどのホスフィン類等の触媒を用いてもよい。
さらに、このグリシジル化反応においては、メタノール、エタノール、2-プロパノールなどのアルコール類;アセトン、メチルエチルケトンなどのケトン類;ジオキサン、エチレングリコールジメチルエーテルなどのエーテル類;ジメチルスルホキシド、ジメチルホルムアミドなどの非プロトン性極性溶媒等の不活性な有機溶媒を使用してもよい。
Although the reaction between the active hydrogen compound and epihalohydrin as described above (hereinafter referred to as glycidylation reaction) can be performed by a known method, typical examples are described in detail below. First, the active hydrogen compound is dissolved in an amount of epihalohydrin corresponding to 3 to 20 mol per mol of active hydrogen to obtain a uniform solution. Next, while stirring the solution, 0.9 to 2 mol amount of alkali metal hydroxide per mol of active hydrogen is added as a solid or an aqueous solution to react. This reaction can be carried out under normal pressure or reduced pressure, and the reaction temperature is usually about 30 to 105 ° C. in the case of reaction under normal pressure and about 30 to 80 ° C. in the case of reaction under reduced pressure. is there. During the reaction, the reaction liquid is azeotroped while maintaining a predetermined temperature as necessary, and the condensate obtained by cooling the vaporized vapor is separated into oil / water, and the oil content excluding moisture is added to the reaction system. The reaction system is dehydrated by the returning method. Addition of the alkali metal hydroxide is carried out little by little intermittently or continuously over 1 to 8 hours in order to suppress a rapid reaction. The total reaction time is usually about 1 to 10 hours.
Epichlorohydrin or epibromohydrin is usually used as the epihalohydrin in this glycidylation reaction, and NaOH or KOH is usually used as the alkali metal hydroxide.
In this reaction, quaternary ammonium salts such as tetramethylammonium chloride and tetraethylammonium bromide; tertiary amines such as benzyldimethylamine and 2,4,6- (trisdimethylaminomethyl) phenol; 2-ethyl Catalysts such as imidazoles such as -4-methylimidazole and 2-phenylimidazole; phosphonium salts such as ethyltriphenylphosphonium iodide; phosphines such as triphenylphosphine may be used.
Furthermore, in this glycidylation reaction, alcohols such as methanol, ethanol and 2-propanol; ketones such as acetone and methyl ethyl ketone; ethers such as dioxane and ethylene glycol dimethyl ether; aprotic polarities such as dimethyl sulfoxide and dimethylformamide An inert organic solvent such as a solvent may be used.

グリシジル化反応終了後、未反応のエピハロヒドリンおよび溶媒を減圧留去等の方法で除くと、目的のエポキシ樹脂が得られるが、通常は、エピハロヒドリンやエポキシ樹脂の重合により生成したエポキシ樹脂や一般の有機溶媒に不溶のゲル状不純物がこのエポキシ樹脂中に混入している。
次に、上記のようにして得られたエポキシ樹脂の可鹸化ハロゲン量が多すぎる場合には、再処理して、充分に可鹸化ハロゲン量が低下した低塩素化エポキシ樹脂とする必要がある。つまり、その高塩素エポキシ樹脂を、2-プロパノール、メチルエチルケトン、メチルイソブチルケトン、トルエン、キシレン、ジオキサン、プロピレングリコールモノメチルエーテル、ジメチルスルホキシドなどの不活性な有機溶媒に再溶解し、アルカリ金属水酸化物を固体、水溶液またはアルコール溶液で加えて約30〜120℃の温度で、0.5〜8時間再閉環反応を行った後、水洗等の方法で過剰のアルカリ金属水酸化物や副生塩を除去し、さらに有機溶媒を減圧留去して除くと、低塩素化されたエポキシ樹脂が得られる。一般に、電気電子分野に用いられるエポキシ樹脂の可鹸化塩素含有量は500ppm以下であることが好ましく、より好ましくは、200ppm以下である。
この再閉環反応においてもエポキシ基の重合によりゲル状不純物が生成する。その生成量はより低い可鹸化塩素含有量を得るために、厳しい反応条件(過剰量のアルカリ、高い反応温度、長い反応時間など)を取るほど多くなる。
After completion of the glycidylation reaction, removing the unreacted epihalohydrin and solvent by distillation under reduced pressure or the like yields the desired epoxy resin, but usually the epoxy resin produced by the polymerization of epihalohydrin or epoxy resin, or general organic resin Gel-like impurities insoluble in the solvent are mixed in the epoxy resin.
Next, when the amount of saponifiable halogen in the epoxy resin obtained as described above is too large, it is necessary to re-process to obtain a low chlorinated epoxy resin having a sufficiently reduced amount of saponifiable halogen. That is, the high chlorine epoxy resin is redissolved in an inert organic solvent such as 2-propanol, methyl ethyl ketone, methyl isobutyl ketone, toluene, xylene, dioxane, propylene glycol monomethyl ether, dimethyl sulfoxide, and the alkali metal hydroxide is dissolved. After adding a solid, aqueous solution or alcohol solution and re-ringing reaction at a temperature of about 30 to 120 ° C. for 0.5 to 8 hours, excess alkali metal hydroxide or by-product salt is removed by washing or the like. Further, when the organic solvent is removed by distillation under reduced pressure, a low chlorinated epoxy resin is obtained. In general, the saponifiable chlorine content of an epoxy resin used in the electric / electronic field is preferably 500 ppm or less, and more preferably 200 ppm or less.
Also in this re-ring closure reaction, gel-like impurities are generated by polymerization of epoxy groups. The amount produced increases with stringent reaction conditions (excess alkali, high reaction temperature, long reaction time, etc.) in order to obtain a lower saponifiable chlorine content.

本発明の精製エポキシ樹脂の製造方法は、上記のようにして製造したゲル状不純物を含有する粗製エポキシ樹脂に、溶融状態または溶液状態で水を加え混合し、次いで有機層と水層に分離させ、続いて有機層と水層の中間に浮遊するゲル状不純物を除去することを特徴とする製造方法である。
溶液状態でこの操作を行う場合の溶媒としては、エポキシ樹脂を溶解するが水と難相溶性の溶媒が用いられる。その溶媒としては、メチルイソブチルケトン、シクロヘキサノンなどのケトン類;トルエン、キシレンなどの芳香族類;エピクロルヒドリン、クロロホルムなどの塩素系溶媒などが用いられる。そのエポキシ樹脂濃度としては、通常10重量%以上、好ましくは20重量%以上である。濃度が低すぎると容積が増えるため大きな装置が必要となり不経済である。層分離の起こりやすさや、粘度などの点から、この操作は20〜50重量%の溶液状態で行うことが最も好ましい。
この操作を行う温度は、通常20〜150℃、好ましくは30〜120℃である。温度が低すぎると層分離が起こりにくく、高すぎるとエポキシ樹脂の分解等の不具合が起こる。水の量は、通常有機層の20〜300体積%が好ましい。水の量が少なすぎると分離操作が行いにくく、多すぎると容積が増えるため大きな装置が必要となり不経済である。水の品質としては、純度が高い方が好ましい。つまり電気伝導率(25℃)として10mS/m以下が好ましく、より好ましくは1mS/m以下である。水の純度が悪いと層分離が起こりにくくなったり、最終製品のイオン性不純物が多くなったりすることがある。
The method for producing a purified epoxy resin according to the present invention comprises mixing a crude epoxy resin containing gel-like impurities produced as described above with water in a molten state or in a solution state, and then separating the mixture into an organic layer and an aqueous layer. Subsequently, the manufacturing method is characterized in that gel-like impurities floating between the organic layer and the aqueous layer are removed.
As a solvent in the case of performing this operation in a solution state, a solvent that dissolves the epoxy resin but is incompatible with water is used. As the solvent, ketones such as methyl isobutyl ketone and cyclohexanone; aromatics such as toluene and xylene; chlorinated solvents such as epichlorohydrin and chloroform are used. The concentration of the epoxy resin is usually 10% by weight or more, preferably 20% by weight or more. If the concentration is too low, the volume increases and a large apparatus is required, which is uneconomical. This operation is most preferably carried out in a solution state of 20 to 50% by weight from the viewpoint of the ease of layer separation and viscosity.
The temperature at which this operation is performed is usually 20 to 150 ° C, preferably 30 to 120 ° C. If the temperature is too low, layer separation hardly occurs, and if it is too high, problems such as decomposition of the epoxy resin occur. The amount of water is usually preferably 20 to 300% by volume of the organic layer. If the amount of water is too small, the separation operation is difficult to perform, and if it is too large, the volume increases and a large apparatus is required, which is uneconomical. As the quality of water, higher purity is preferable. That is, the electrical conductivity (25 ° C.) is preferably 10 mS / m or less, more preferably 1 mS / m or less. If the purity of the water is poor, layer separation may be difficult to occur, and ionic impurities in the final product may increase.

有機層と水の混合時間は、通常1〜120分、好ましくは5〜60分である。混合時間が短すぎるとゲル状不純物の分離が起こりにくく、長すぎても効果の向上はみられないし、層分離が起こりにくくなることがある。混合方法に特に指定はなく有機層と水層が充分に混ざり合いゲル状不純物が分離できればよい。一般的には回転羽根による攪拌が行われるが、急速な添加や狭い流路を急速に通過させるなどの方法でも良い。
分離の時間は、有機層、水層およびその中間のゲル状不純物の層が充分に分離するに必要な時間であり、その時間ができるだけ短くなるようそれぞれのケースにおいて各種条件(溶媒の種類、濃度、温度、pHなど)を調整する必要がある。水層のpHは、通常5以上が好ましく、より好ましくは6〜12である。pHが低すぎるとエポキシ樹脂の分解等の不具合が起こる。高すぎると層分離が起こりにくい場合がある。pH調整のためにリン酸、リン酸一ナトリウム、シュウ酸、酢酸、炭酸などの弱酸を水層に少量添加しても良い。分離操作は、一般的には攪拌を停止した静置で行われるが、緩やかな混合を継続しながらでも良い。また、遠心分離などの方法も採れる。
層分離終了後、ゲル状不純物の層を取り除く。その方法としては、容器の上部または下部より、有機層または水層を抜き出した後にゲル状不純物の層を抜き出しても良いし、容器の中間部よりゲル状不純物の層のみを抜き出しても良い。
The mixing time of the organic layer and water is usually 1 to 120 minutes, preferably 5 to 60 minutes. If the mixing time is too short, separation of the gel-like impurities hardly occurs, and if the mixing time is too long, the effect is not improved, and layer separation may not easily occur. The mixing method is not particularly specified, and it is sufficient that the organic layer and the aqueous layer are sufficiently mixed and the gel impurities can be separated. In general, stirring with a rotary blade is performed, but a method such as rapid addition or rapid passage through a narrow flow path may be used.
The separation time is the time necessary for sufficiently separating the organic layer, the aqueous layer and the intermediate layer of gel impurities, and in each case various conditions (type of solvent, concentration) so that the time is as short as possible. , Temperature, pH, etc.) need to be adjusted. The pH of the aqueous layer is usually preferably 5 or more, more preferably 6-12. If the pH is too low, problems such as decomposition of the epoxy resin occur. If it is too high, layer separation may not occur easily. In order to adjust pH, a small amount of a weak acid such as phosphoric acid, monosodium phosphate, oxalic acid, acetic acid, or carbonic acid may be added to the aqueous layer. The separation operation is generally performed in a stationary state where stirring is stopped, but may be performed while continuing gentle mixing. Also, a method such as centrifugation can be employed.
After the layer separation, the gel impurity layer is removed. As the method, the gel-like impurity layer may be extracted after extracting the organic layer or the aqueous layer from the upper part or the lower part of the container, or only the gel-like impurity layer may be extracted from the middle part of the container.

本発明の精製エポキシ樹脂の製造方法に用いるゲル状不純物の除去方法は、単独で実施しても良いが、前記のエポキシ樹脂製造の途中で行うことが効率上好ましい。ゲル状不純物除去を行うタイミングとしては、グリシジル化反応後にエピハロヒドリン溶液として行う、未反応のエピハロヒドリン除去後に溶融状態で行う、再閉環反応後に溶液として行う、最終溶媒除去後に溶融状態で行う等があるが、再閉環反応後に溶液として水溶性不純物の除去操作と合わせて行うことが効率上好ましい。この水洗操作をバッチ方式で繰り返し行うときは、容器中にゲル状不純物の層を残して有機層を取り出し次の工程に送り、ゲル状不純物の層は次のバッチと合わせてまとめて抜き出すこともできる。
特に、ゲル状不純物の低減が厳しく要求される用途においては、本発明の不純物除去方法によりゲル状不純物を除去した後、さらに濾過を行い微細なゲル状不純物を除去することができるが、生成したゲル状不純物の50重量%以上、好ましくは70重量%以上を本発明の不純物除去方法により除去した後に濾過を行うことが、濾過膜の目詰まりを防ぐ上で好ましい。
The method for removing the gel-like impurities used in the method for producing a purified epoxy resin of the present invention may be carried out independently, but it is preferable in terms of efficiency to carry out the method during the production of the epoxy resin. Examples of the timing for removing the gel impurities include an epihalohydrin solution after the glycidylation reaction, a molten state after removing the unreacted epihalohydrin, a solution after the recyclization reaction, and a molten state after removing the final solvent. From the standpoint of efficiency, it is preferably carried out together with the removal operation of the water-soluble impurities as a solution after the recyclization reaction. When this washing operation is repeated in batch mode, the organic layer is taken out leaving the gel impurity layer in the container and sent to the next step, and the gel impurity layer can be extracted together with the next batch. it can.
In particular, in applications where reduction of gel-like impurities is strictly required, fine gel-like impurities can be removed by further filtration after removing the gel-like impurities by the impurity removal method of the present invention. Filtration after removing 50% by weight or more, preferably 70% by weight or more of the gel-like impurities by the impurity removal method of the present invention is preferable in order to prevent clogging of the filtration membrane.

以下に、本発明の精製エポキシ樹脂の製造方法を実施例及び比較例をあげてさらに詳述する。
<実施例1>
温度計、撹拌装置、冷却管を備えた内容量2Lの三口フラスコに、テトラメチルビフェノール121g、エピクロルヒドリン 555gを仕込み、90℃に昇温して溶解させたのち、48.5重量%の水酸化ナトリウム水溶液 82.5gを1時間かけて滴下した。その間、反応液の温度を95℃以上に保持しながら反応液を共沸させ、揮発する蒸気を冷却して得られた凝縮液を油/水分離し、水分を除いた油分を反応系に戻す方法によって反応系より脱水した。水酸化ナトリウム水溶液の滴下終了後も、30分間脱水操作を継続して反応を行わせた。次いで、生成物から減圧下で過剰のエピクロルヒドリンを留去して、粗製エポキシ樹脂を得た。
この粗製エポキシ樹脂をメチルイソブチルケトン300gに溶解させ、20重量%の水酸化ナトリウム水溶液 100gを加え、85℃の温度で1時間再閉環反応させた。その反応終了後に、水200gを加え80℃で10分間攪拌した後、静置分離し、水層のみを除去した。続いて、第一リン酸ナトリウム1%水溶液200gで同様に洗浄し水層のみを除去した。さらに電気伝導率0.31mS/mの蒸留水200gを加えて80℃で10分間攪拌した後、20分間静置したところ有機層と水層およびその中間に浮遊するゲル状不純物の層に分離した。水層のpHは7であった。水層およびゲル状不純物の層を容器の下部に残し、有機層のみを取り出し目開き約5ミクロンの濾紙で濾過し、不溶分を完全に除去した。濾過操作に要した時間は8分間であった。別途ゲル状不純物の層は水層と分離し、乾燥して重量を測定したところ1.9gであった。濾過で除去したゲル状不純物の乾燥後の重量は、0.2gであった。有機層は、加熱しながら減圧下でメチルイソブチルケトンを完全に除去して、目的の精製エポキシ樹脂166gを得た。
このエポキシ樹脂は、エポキシ当量184g/eq.、可鹸化塩素量70ppmの淡黄色結晶状固体であった。
Below, the manufacturing method of the refinement | purification epoxy resin of this invention is further explained in full detail, giving an Example and a comparative example.
<Example 1>
A 2-liter three-necked flask equipped with a thermometer, stirrer, and condenser is charged with 121 g of tetramethylbiphenol and 555 g of epichlorohydrin, heated to 90 ° C. and dissolved, and then 48.5% by weight of sodium hydroxide. 82.5 g of an aqueous solution was added dropwise over 1 hour. Meanwhile, the reaction liquid is azeotroped while maintaining the temperature of the reaction liquid at 95 ° C. or higher, the condensate obtained by cooling the vaporized vapor is separated into oil / water, and the oil component excluding moisture is returned to the reaction system. It dehydrated from the reaction system by the method. Even after completion of the dropwise addition of the aqueous sodium hydroxide solution, the dehydration operation was continued for 30 minutes to carry out the reaction. Subsequently, excess epichlorohydrin was distilled off from the product under reduced pressure to obtain a crude epoxy resin.
This crude epoxy resin was dissolved in 300 g of methyl isobutyl ketone, 100 g of a 20 wt% aqueous sodium hydroxide solution was added, and the ring was reclosed at a temperature of 85 ° C. for 1 hour. After completion of the reaction, 200 g of water was added and stirred at 80 ° C. for 10 minutes, followed by stationary separation to remove only the aqueous layer. Subsequently, it was washed in the same manner with 200 g of a 1% aqueous sodium phosphate solution to remove only the aqueous layer. Further, 200 g of distilled water having an electric conductivity of 0.31 mS / m was added and stirred at 80 ° C. for 10 minutes, and then allowed to stand for 20 minutes. As a result, it separated into an organic layer, an aqueous layer, and a layer of gel-like impurities floating in the middle. . The pH of the aqueous layer was 7. The aqueous layer and the gel-like impurity layer were left at the bottom of the container, and only the organic layer was taken out and filtered through a filter paper having an opening of about 5 microns to completely remove the insoluble matter. The time required for the filtration operation was 8 minutes. Separately, the gel impurity layer was separated from the aqueous layer, dried and weighed to find 1.9 g. The weight after drying of the gel-like impurities removed by filtration was 0.2 g. In the organic layer, methyl isobutyl ketone was completely removed under reduced pressure while heating to obtain 166 g of the desired purified epoxy resin.
This epoxy resin was a pale yellow crystalline solid having an epoxy equivalent of 184 g / eq. And an amount of saponifiable chlorine of 70 ppm.

<比較例1>
実施例1と同様にエポキシ樹脂製造操作を行ったが、第一リン酸ナトリウム1%水溶液での洗浄は行わず、ゲル状不純物の除去も行わなかった。ゲル状不純物を含む有機層の濾過の作業において、濾過開始初期より目詰まりが激しく、濾過速度が遅かった。全量の約1/3を濾過した時点で完全に目詰まりしたため、濾紙を交換した。合計3枚の濾紙を使用し全量を濾過し終えた。その間にエポキシ樹脂の一部が結晶化し濾紙上に残ることが観察された。濾過操作に要した時間は46分間であった。濾過で除去したゲル状不純物および結晶化したエポキシ樹脂乾燥後の重量は、6.2gであった。得られた樹脂の収量は161g、品質は、実施例1と同様であった。
<Comparative Example 1>
An epoxy resin production operation was carried out in the same manner as in Example 1, but no washing with a 1% aqueous sodium phosphate solution was performed, and no gel impurities were removed. In the operation of filtering the organic layer containing gel impurities, clogging was severe from the beginning of filtration and the filtration rate was slow. Since about 1/3 of the total amount was filtered, the filter paper was completely replaced. A total of three filter papers were used, and the entire amount was filtered. Meanwhile, it was observed that a part of the epoxy resin crystallized and remained on the filter paper. The time required for the filtration operation was 46 minutes. The weight of the gel-like impurities removed by filtration and the crystallized epoxy resin after drying was 6.2 g. The yield of the obtained resin was 161 g, and the quality was the same as in Example 1.

<実施例2>
温度計、撹拌装置、冷却管を備えた内容量2Lの三口フラスコに、パラアミノフェノール36.3g、エピクロルヒドリン 555gおよび2-プロパノール 200gを仕込み、溶解させた後、65℃で1時間反応させた。その後、48.5重量%の水酸化ナトリウム水溶液91gを65℃に保ちながら1時間かけて滴下した。水酸化ナトリウム水溶液の滴下終了後も、30分間65℃で反応を行わせた。次いで、水270gを加え65℃で10分間攪拌した後、静置した。15分間静置したところ有機層と水層およびその中間に浮遊するゲル状不純物の層に分離した。水層およびゲル状不純物の層を容器の下部より抜き出した。ゲル状不純物の乾燥後の重量は、0.3gであった。有機層から減圧下で過剰のエピクロルヒドリンと2-プロパノールを留去して、粗製エポキシ樹脂を得た。
この粗製エポキシ樹脂をメチルイソブチルケトン200gに溶解させ、10重量%の水酸化ナトリウム水溶液 100gを加え、85℃の温度で1時間反応させた。その反応終了後に、水100gを加え80℃で10分間攪拌した後、静置分離し水層のみを除去した。さらに、電気伝導率0.31mS/mの蒸留水200gを加えて80℃で10分間攪拌した後、20分間静置したところ有機層と水層およびその中間に浮遊するゲル状不純物の層に分離した。水層のpHは9であった。水層およびゲル状不純物の層を容器の下部より抜き出した。ゲル状不純物の乾燥後の重量は、2.2gであった。有機層は水200gでさらに2回水洗した後、目開き約5ミクロンの濾紙で濾過し、不溶分を完全に除去した。濾過操作に要した時間は7分間であった。濾過で除去したゲル状不純物の乾燥後の重量は、0.1gであった。次いで、加熱しながら減圧下でメチルイソブチルケトンを完全に除去して、目的の精製エポキシ樹脂82gを得た。
このエポキシ樹脂は、エポキシ当量111g/eq.、可鹸化塩素量280ppmの透明な淡黄色液体であった。
<Example 2>
Into a 2 L three-necked flask equipped with a thermometer, a stirrer, and a condenser tube, 36.3 g of paraaminophenol, 555 g of epichlorohydrin and 200 g of 2-propanol were charged, dissolved, and reacted at 65 ° C. for 1 hour. Thereafter, 91 g of a 48.5% by weight aqueous sodium hydroxide solution was added dropwise over 1 hour while maintaining the temperature at 65 ° C. Even after completion of the dropwise addition of the aqueous sodium hydroxide solution, the reaction was carried out at 65 ° C. for 30 minutes. Next, 270 g of water was added and stirred at 65 ° C. for 10 minutes, and then allowed to stand. After standing for 15 minutes, it separated into an organic layer, an aqueous layer, and a layer of gel-like impurities floating in the middle. The aqueous layer and the gel-like impurity layer were extracted from the bottom of the container. The weight of the gel impurity after drying was 0.3 g. Excess epichlorohydrin and 2-propanol were distilled off from the organic layer under reduced pressure to obtain a crude epoxy resin.
This crude epoxy resin was dissolved in 200 g of methyl isobutyl ketone, 100 g of a 10% by weight aqueous sodium hydroxide solution was added, and the mixture was reacted at a temperature of 85 ° C. for 1 hour. After completion of the reaction, 100 g of water was added and stirred at 80 ° C. for 10 minutes, and then allowed to stand and remove only the aqueous layer. Furthermore, after adding 200 g of distilled water having an electric conductivity of 0.31 mS / m and stirring at 80 ° C. for 10 minutes, the mixture was allowed to stand for 20 minutes and separated into an organic layer, an aqueous layer and a gel-like impurity layer suspended in the middle. did. The pH of the aqueous layer was 9. The aqueous layer and the gel-like impurity layer were extracted from the bottom of the container. The weight of the gel impurity after drying was 2.2 g. The organic layer was further washed twice with 200 g of water and then filtered with a filter paper having an opening of about 5 microns to completely remove insoluble matters. The time required for the filtration operation was 7 minutes. The weight after drying of the gel-like impurities removed by filtration was 0.1 g. Next, methyl isobutyl ketone was completely removed under reduced pressure while heating to obtain 82 g of the desired purified epoxy resin.
This epoxy resin was a transparent light yellow liquid having an epoxy equivalent of 111 g / eq. And an amount of saponifiable chlorine of 280 ppm.

<比較例2>
実施例2と同様にエポキシ樹脂製造操作を行ったが、グリシジル化反応後および再閉環反応後のゲル状不純物の除去も行わなかった。有機層の濾過の作業においは、濾紙の代わりに200メッシュの金網(目開き約70ミクロン)を用いたが、濾過開始初期より目詰まりが激しく、濾過速度が遅かった。全量の約1/2を濾過した時点で完全に目詰まりしたため、金網を交換した。合計2枚の金網を使用し全量を濾過し終えた。濾過操作に要した時間は28分間であった。濾過で除去したゲル状不純物の乾燥後の重量は、3.4gであった。得られた樹脂の収量は78g、品質は、実施例2とほぼ同様であったが、濁りが見られた。
<Comparative Example 2>
Although the epoxy resin production operation was performed in the same manner as in Example 2, the gel-like impurities were not removed after the glycidylation reaction and after the recyclization reaction. In the filtering operation of the organic layer, a 200-mesh wire mesh (aperture of about 70 microns) was used instead of the filter paper, but the clogging was severe and the filtration rate was slow from the beginning of the filtration. Since about half of the total amount was filtered, the wire mesh was replaced. A total of two wire meshes were used to finish filtering the whole amount. The time required for the filtration operation was 28 minutes. The weight after drying of the gel-like impurities removed by filtration was 3.4 g. The yield of the obtained resin was 78 g, and the quality was almost the same as in Example 2, but turbidity was observed.

本発明によりエポキシ樹脂は不純物が除去され、高純度のエポキシ樹脂が得られるので、特に半導体の封止用に使用されるエポキシ樹脂として有効に利用される。   According to the present invention, impurities are removed from the epoxy resin, and a high-purity epoxy resin is obtained. Therefore, the epoxy resin is particularly effectively used as an epoxy resin used for semiconductor encapsulation.

Claims (7)

ゲル状不純物の少ない精製エポキシ樹脂を製造する方法であって、1分子当たり平均2個以上の活性水素を有する化合物とエピハロヒドリンとをアルカリ金属水酸化物の存在下に反応させることにより得られたゲル状不純物を含む粗製エポキシ樹脂を溶融状態または溶液状態で水を加えて混合し、次いで有機層と水層に分離させ、続いて有機層と水層の中間に浮遊するゲル状不純物を除去することを特徴とする精製エポキシ樹脂の製造方法。   A method for producing a purified epoxy resin with few gel impurities, the gel obtained by reacting a compound having an average of 2 or more active hydrogens per molecule with an epihalohydrin in the presence of an alkali metal hydroxide Crude epoxy resin containing a liquid-like impurity is mixed with water in a molten or solution state, then separated into an organic layer and an aqueous layer, and then the gel-like impurities floating between the organic layer and the aqueous layer are removed. A method for producing a purified epoxy resin. 有機ハロゲン不純物を含む粗製エポキシ樹脂を、エポキシ樹脂を溶解するが水と難相溶性であるエピハロヒドリン以外の有機溶媒に溶解する工程、続いて該溶解液にアルカリ金属水酸化物を固体または溶液で加え低塩素化反応を行う工程、その後水の存在下に有機層と水層に分離させる工程、更に有機層と水層の中間に浮遊するゲル状不純物を除去する工程を順に行う、請求項1に記載された精製エポキシ樹脂の製造方法。   A step of dissolving a crude epoxy resin containing an organic halogen impurity in an organic solvent other than epihalohydrin which dissolves the epoxy resin but is incompatible with water, and subsequently adds an alkali metal hydroxide to the solution as a solid or a solution The step of performing a low chlorination reaction, then the step of separating the organic layer and the aqueous layer in the presence of water, and the step of removing the gel-like impurities floating between the organic layer and the aqueous layer are sequentially performed. A method for producing the described purified epoxy resin. 1分子当たり平均2個以上の活性水素を有する化合物が、多価フェノール化合物、アミノ化合物およびアミノフェノール類から選ばれた少なくとも1種の化合物であることを特徴とする、請求項1または請求項2に記載された精製エポキシ樹脂の製造方法。   3. The compound having an average of 2 or more active hydrogens per molecule is at least one compound selected from polyhydric phenol compounds, amino compounds and aminophenols. A method for producing a purified epoxy resin described in 1. 1分子当たり平均2個以上の活性水素を有する化合物が、少なくとも1種のビフェノール類を含む化合物であることを特徴とする、請求項1から請求項3のいずれか1項に記載された精製エポキシ樹脂の製造方法。   The purified epoxy according to any one of claims 1 to 3, wherein the compound having an average of 2 or more active hydrogens per molecule is a compound containing at least one biphenol. Manufacturing method of resin. 得られるエポキシ樹脂中の可鹸化塩素含有量が500ppm以下であることを特徴とする、請求項1から請求項4のいずれか1項に記載された精製エポキシ樹脂の製造方法。   The method for producing a purified epoxy resin according to any one of claims 1 to 4, wherein the saponifiable chlorine content in the obtained epoxy resin is 500 ppm or less. 水層のpHが5以上である、請求項1ないし5のいずれか1項に記載された精製エポキシ樹脂の製造方法。   The method for producing a purified epoxy resin according to any one of claims 1 to 5, wherein the pH of the aqueous layer is 5 or more. ゲル状不純物を除去する操作を行う温度が20℃〜150℃である、請求項1ないし6のいずれか1項に記載された精製エポキシ樹脂製造方法。   The method for producing a purified epoxy resin according to any one of claims 1 to 6, wherein a temperature at which the operation for removing the gel-like impurities is performed is 20 ° C to 150 ° C.
JP2005240839A 2005-08-23 2005-08-23 Method for producing purified epoxy resin Active JP4945958B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005240839A JP4945958B2 (en) 2005-08-23 2005-08-23 Method for producing purified epoxy resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005240839A JP4945958B2 (en) 2005-08-23 2005-08-23 Method for producing purified epoxy resin

Publications (2)

Publication Number Publication Date
JP2007056089A true JP2007056089A (en) 2007-03-08
JP4945958B2 JP4945958B2 (en) 2012-06-06

Family

ID=37919851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005240839A Active JP4945958B2 (en) 2005-08-23 2005-08-23 Method for producing purified epoxy resin

Country Status (1)

Country Link
JP (1) JP4945958B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013194193A (en) * 2012-03-22 2013-09-30 Nippon Steel & Sumikin Chemical Co Ltd Epoxy resin curable composition and cured product thereof
WO2016088815A1 (en) * 2014-12-04 2016-06-09 三菱化学株式会社 Tetramethylbiphenol epoxy resin, epoxy resin composition, cured product and semiconductor sealing material
JP2016162762A (en) * 2015-02-26 2016-09-05 住友ベークライト株式会社 Heat-conductive sheet, cured product of heat-conductive sheet, and semiconductor device
CN114276378A (en) * 2021-12-29 2022-04-05 杜彪 Silicon-containing low-chlorine epoxy resin and preparation method thereof

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0225474A (en) * 1988-07-12 1990-01-26 Yuka Shell Epoxy Kk Production of triglycidyl derivative of aminophenols
JPH04142326A (en) * 1990-10-04 1992-05-15 Nippon Kayaku Co Ltd Epoxy resin and its production
JPH06345846A (en) * 1993-06-10 1994-12-20 Nippon Kayaku Co Ltd Epoxy resin, its production, resin composition and its cured material
JPH0710971A (en) * 1993-06-28 1995-01-13 Nippon Kayaku Co Ltd Resin, epoxy resin, its production, resin composition and cured product thereof
JPH0841165A (en) * 1994-07-28 1996-02-13 Dainippon Ink & Chem Inc Production of epoxy resin
JPH10324733A (en) * 1997-05-23 1998-12-08 Dainippon Ink & Chem Inc Epoxy resin composition, production of epoxy resin and semiconductor-sealing material
JPH11158248A (en) * 1997-11-28 1999-06-15 Dainippon Ink & Chem Inc Manufacture of highly purified epoxy resin
JP2000044651A (en) * 1998-05-29 2000-02-15 Sumitomo Chem Co Ltd Highly pure epoxy resin
JP2000204136A (en) * 1999-01-14 2000-07-25 Nippon Kayaku Co Ltd Production of liquid epoxy resin
JP2000239346A (en) * 1999-02-17 2000-09-05 Yuka Shell Epoxy Kk Purification of epoxy compound
JP2001040065A (en) * 1999-07-28 2001-02-13 Dainippon Ink & Chem Inc Production of high-purity epoxy resin

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0225474A (en) * 1988-07-12 1990-01-26 Yuka Shell Epoxy Kk Production of triglycidyl derivative of aminophenols
JPH04142326A (en) * 1990-10-04 1992-05-15 Nippon Kayaku Co Ltd Epoxy resin and its production
JPH06345846A (en) * 1993-06-10 1994-12-20 Nippon Kayaku Co Ltd Epoxy resin, its production, resin composition and its cured material
JPH0710971A (en) * 1993-06-28 1995-01-13 Nippon Kayaku Co Ltd Resin, epoxy resin, its production, resin composition and cured product thereof
JPH0841165A (en) * 1994-07-28 1996-02-13 Dainippon Ink & Chem Inc Production of epoxy resin
JPH10324733A (en) * 1997-05-23 1998-12-08 Dainippon Ink & Chem Inc Epoxy resin composition, production of epoxy resin and semiconductor-sealing material
JPH11158248A (en) * 1997-11-28 1999-06-15 Dainippon Ink & Chem Inc Manufacture of highly purified epoxy resin
JP2000044651A (en) * 1998-05-29 2000-02-15 Sumitomo Chem Co Ltd Highly pure epoxy resin
JP2000204136A (en) * 1999-01-14 2000-07-25 Nippon Kayaku Co Ltd Production of liquid epoxy resin
JP2000239346A (en) * 1999-02-17 2000-09-05 Yuka Shell Epoxy Kk Purification of epoxy compound
JP2001040065A (en) * 1999-07-28 2001-02-13 Dainippon Ink & Chem Inc Production of high-purity epoxy resin

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013194193A (en) * 2012-03-22 2013-09-30 Nippon Steel & Sumikin Chemical Co Ltd Epoxy resin curable composition and cured product thereof
WO2016088815A1 (en) * 2014-12-04 2016-06-09 三菱化学株式会社 Tetramethylbiphenol epoxy resin, epoxy resin composition, cured product and semiconductor sealing material
CN107001580A (en) * 2014-12-04 2017-08-01 三菱化学株式会社 Tetramethyl biphenyl phenol-type epoxy resin, composition epoxy resin, solidfied material and semiconductor sealing material
KR20170091622A (en) * 2014-12-04 2017-08-09 미쯔비시 케미컬 주식회사 Tetramethylbiphenol epoxy resin, epoxy resin composition, cured product and semiconductor sealing material
US10381282B2 (en) 2014-12-04 2019-08-13 Mitsubishi Chemical Corportion Tetramethylbiphenol type epoxy resin, epoxy resin composition, cured product, and semiconductor sealing material
KR102466597B1 (en) 2014-12-04 2022-11-11 미쯔비시 케미컬 주식회사 Tetramethylbiphenol epoxy resin, epoxy resin composition, cured product and semiconductor sealing material
JP2016162762A (en) * 2015-02-26 2016-09-05 住友ベークライト株式会社 Heat-conductive sheet, cured product of heat-conductive sheet, and semiconductor device
CN114276378A (en) * 2021-12-29 2022-04-05 杜彪 Silicon-containing low-chlorine epoxy resin and preparation method thereof
CN114276378B (en) * 2021-12-29 2023-09-19 智仑超纯环氧树脂(西安)有限公司 Silicon-containing low-chlorine epoxy resin and preparation method thereof

Also Published As

Publication number Publication date
JP4945958B2 (en) 2012-06-06

Similar Documents

Publication Publication Date Title
US6794478B2 (en) Preparing epoxy resin by distilling two fractions to recover and reuse epihalohydrin without glycidol
JP4945958B2 (en) Method for producing purified epoxy resin
EP0303904A2 (en) Preparation of epoxy resins having low undesirable halogen content
JP5130728B2 (en) Epoxy resin purification method
JP3315436B2 (en) Method for producing epoxy resin containing biphenol skeleton
JP2555853B2 (en) Epoxy resin manufacturing method
KR101363137B1 (en) Method For Producing A Purified Epoxy Resin
JP2001040065A (en) Production of high-purity epoxy resin
JP2005097473A (en) New epoxy compound, method for producing the same, curable epoxy resin composition and cured product thereof
JPS6226647B2 (en)
KR20020031316A (en) Epoxy Resin Composition and Process for Producing the Same
JPH0517463A (en) Production of highly pure epoxy resin
CA1293837C (en) Preparation of epoxy resins
JP2000239346A (en) Purification of epoxy compound
JP4874494B2 (en) Production method of epoxy resin
JP2007277498A (en) Process for purification of epoxy resin
JPS6081222A (en) Improved manufacture of epoxynovolak resin
JP2002338657A (en) Method of manufacturing high-purity epoxy resin
JP2005314512A (en) Liquid epoxy resin and method for producing the same, epoxy resin composition and its cured product
JPH09268218A (en) Production of epoxy resin, epoxy resin composition and irs cured material
WO2014162947A1 (en) Method for producing diglycidylamine-type epoxy compound
JP4383180B2 (en) Method for producing crystalline epoxy compound
JP4196627B2 (en) Production method of epoxy resin
JP2003277468A (en) Epoxy resin, epoxy resin composition and its cured product
KR100339702B1 (en) Method for purifying epoxy resin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080521

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4945958

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350