JP2007053810A - Radio ic tag device compatible with metal - Google Patents

Radio ic tag device compatible with metal Download PDF

Info

Publication number
JP2007053810A
JP2007053810A JP2006310443A JP2006310443A JP2007053810A JP 2007053810 A JP2007053810 A JP 2007053810A JP 2006310443 A JP2006310443 A JP 2006310443A JP 2006310443 A JP2006310443 A JP 2006310443A JP 2007053810 A JP2007053810 A JP 2007053810A
Authority
JP
Japan
Prior art keywords
tag
wireless
radio
resonance
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006310443A
Other languages
Japanese (ja)
Other versions
JP4235663B2 (en
Inventor
Hidekazu Ogawa
英一 小川
Tomozo Ota
智三 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2006310443A priority Critical patent/JP4235663B2/en
Publication of JP2007053810A publication Critical patent/JP2007053810A/en
Application granted granted Critical
Publication of JP4235663B2 publication Critical patent/JP4235663B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Waveguide Aerials (AREA)
  • Details Of Aerials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a radio IC tag device compatible with metal etc., that has simple configuration and can extend a communication distance by plane circuit resonance to an incident radio signal. <P>SOLUTION: The radio IC tag device includes a radio IC tag having an electric field radiation component of a linear polarized wave, a ground conductor on a surface of a dielectric, and a radio wave converting resonant reflector made of a patch conductor which has open boundaries on another surface of the dielectric and at both ends of first and second orthogonal resonance axes and also performing plane circuit resonance at first and second resonance frequency respectively by the first and the second resonance axes. The radio IC tag is provided on the second surface of the dielectric of the radio wave converting resonant reflector or the patch conductor so that the electric field radiation component of the linear polarized wave of the radio IC tag and the resonance axes of the radio wave converting resonant reflector may be substantially in the same direction. Then a first radio signal is converted into a second radio signal through the plane circuit resonance of the patch conductor to be reflected to the radio IC tag and a third radio signal from the radio IC tag is converted into a fourth radio signal through plane circuit resonance to the patch conductor to be reflected. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、例えば無線移動体識別システム(以下、RFIDシステムという。)において用いられる金属対応無線ICタグ装置に関する。   The present invention relates to a metal-compatible wireless IC tag device used, for example, in a wireless mobile object identification system (hereinafter referred to as an RFID system).

近年、総務省が「ユビキタス」をITに替わる次世代技術のキーワードとして掲げている。「ユビキタス」とはラテン語で「至るところに存在している」という意味であり、情報通信の世界をすべての物質にまで拡張することを意味する。無線ICタグはユビキタス社会の基盤技術と目されており、各種の物体に貼り付けられ、又はそれらの表面に埋め込まれ利用される。また、無線ICタグは、物品のトレーサビリティ利用のように、物品の製造から物流、廃棄に至る各種の過程で利用され、近距離、遠距離通信等異なった通信形態で使用されるため、それに対応した幅広い形態と通信性能が要求される。   In recent years, the Ministry of Internal Affairs and Communications has listed “ubiquitous” as a keyword for next-generation technology that replaces IT. “Ubiquitous” means “being everywhere” in Latin and means expanding the world of information and communications to all substances. The wireless IC tag is regarded as a basic technology of the ubiquitous society, and is used by being affixed to various objects or embedded on the surface thereof. In addition, wireless IC tags are used in various processes from the manufacture of goods to physical distribution and disposal, such as the use of goods traceability, and are used in different communication modes such as short-distance and long-distance communications. Wide form and communication performance are required.

一般に、RFIDシステムは、スキャナとも呼ばれリーダ/ライタ機能を持つ質問器と、無線ICタグである応答器とを備えて構成される。質問器から放射された無線信号は応答器により受信され、その無線信号の電力により応答器は起動し、応答器はその内蔵メモリに格納されたタグ情報に従って無線搬送波をデジタル変調して、変調された無線信号を発生して質問器に対して返信する。これに応答して、質問器は受信した無線信号をデジタル復調することによりタグ情報を得る。無線ICタグは各種の物品に実装され、物品の生産、物流、販売、リサイクル過程での効率化、あるいは、人や物の管理、安全確保や電子広告等多くの分野での活用が検討されている。これら利用形態においてより適切な無線ICタグの特性、形態は様々で、各種の無線ICタグが開発利用されている。最も一般的な小型の無線ICタグはダイポールアンテナにタグICを実装したもので、これを図38に示す。また、一般的なタグICの構成例を図39に示す。これらについては詳細後述する。   In general, an RFID system includes an interrogator that is also called a scanner and has a reader / writer function, and a responder that is a wireless IC tag. The radio signal emitted from the interrogator is received by the transponder, and the transponder is activated by the power of the radio signal, and the transponder digitally modulates the radio carrier according to the tag information stored in the built-in memory, and is modulated. A wireless signal is generated and returned to the interrogator. In response to this, the interrogator obtains tag information by digitally demodulating the received radio signal. Wireless IC tags are mounted on various products, and are being considered for efficiency in the production, distribution, sales, and recycling processes of products, and in many fields such as management of people and goods, ensuring safety, and electronic advertising. Yes. There are various characteristics and forms of wireless IC tags that are more appropriate in these usage forms, and various wireless IC tags are being developed and used. The most common small wireless IC tag is a dipole antenna in which a tag IC is mounted. This is shown in FIG. A configuration example of a general tag IC is shown in FIG. These will be described in detail later.

ところで、この種の一般的な小型の無線ICタグを、各種の金属筐体やコンテナ、金属で被覆された筐体などに実装する場合は金属の影響を受け、RFIDシステムの無線通信に影響を与える。この問題点を解決するために、例えば、特許文献1及び非特許文献1において、金属体にも実装できる金属対応の無線ICタグの一例(以下、第1の従来例という。)が開示されている。第1の従来例では、1/2波長のマイクロストリップ線路共振器を用いて、アンテナと接地導体との間にタグICを接続する無線ICタグであり、誘電体を介して、アンテナと対向した側に接地導体を有するため、当該接地導体側を金属体等に装着しても、基本的には電波放射に影響せず通信を阻害することはなく、従って、1/2波長アンテナの長さ方向と平行した電界成分を有する直線偏波の無線信号に対しては有効な通信を可能としている。   By the way, when this kind of general small wireless IC tag is mounted on various metal casings, containers, metal-coated casings, etc., it is affected by the metal and affects the wireless communication of the RFID system. give. In order to solve this problem, for example, Patent Document 1 and Non-Patent Document 1 disclose an example of a metal-compatible wireless IC tag that can be mounted on a metal body (hereinafter referred to as a first conventional example). Yes. The first conventional example is a wireless IC tag in which a tag IC is connected between an antenna and a ground conductor using a ½ wavelength microstrip line resonator, and is opposed to the antenna via a dielectric. Since there is a ground conductor on the side, even if the ground conductor side is attached to a metal body or the like, basically, the radio wave radiation is not affected and communication is not hindered. Effective communication is possible for a linearly polarized radio signal having an electric field component parallel to the direction.

また、特許文献2においては、円偏波平面アンテナを用いた無線ICタグの一例(以下、第2の従来例という。)が示されている。第2の従来例では、平面アンテナの放射導体内の適切な位置で、接地導体に向けて導体部を形成し、導体部と接地面間にタグICを接続したことを特徴としており、ここで、平面アンテナから放射される電波は接地導体と反対の放射面方向にのみに放射されるため、接地導体側を金属体に装着することができる。   Patent Document 2 discloses an example of a wireless IC tag using a circularly polarized flat antenna (hereinafter referred to as a second conventional example). The second conventional example is characterized in that a conductor portion is formed toward the ground conductor at an appropriate position in the radiation conductor of the planar antenna, and a tag IC is connected between the conductor portion and the ground plane. Since the radio wave radiated from the planar antenna is radiated only in the radiation surface direction opposite to the ground conductor, the ground conductor side can be attached to the metal body.

特開2000−332523号公報。JP 2000-332523 A. 特開2002−353735号公報。JP 2002-353735 A. 小暮裕明,“電磁界シミュレータで学ぶワイヤレスの世界”,CQ出版社,pp.118,2001年6月20日発行。Hiroaki Kogure, “The World of Wireless Learning with an Electromagnetic Simulator”, CQ Publisher, pp. 118, issued on June 20, 2001.

これら第1と第2の従来例では、装置構成は複雑であり、また、直線偏波や円偏波に対してそれぞれに対応した設計はできるが、一度製造すると、その偏波の変更は難しいという問題点があった。また、一般的な小型の無線ICタグでは、RFIDシステムの質問器と応答器との間の通信距離は比較的短いという問題点があった。さらに、生産工程では、1つの独立した小型の無線ICタグを基板や部品に取り付け、物流工程では、完成品や梱包箱やコンテナに実装し、長距離通信可能な金属対応無線ICタグとして利用するなど、1つの小型の無線ICタグを種々の工程で連続的に活用することは難しいという問題点があった。   In these first and second conventional examples, the device configuration is complicated, and a design corresponding to each of linearly polarized waves and circularly polarized waves can be made. However, once manufactured, it is difficult to change the polarized waves. There was a problem. In addition, a general small wireless IC tag has a problem that a communication distance between an interrogator and a responder of the RFID system is relatively short. Furthermore, in the production process, one independent small wireless IC tag is attached to a board or component, and in the logistics process, it is mounted on a finished product, a packing box or a container and used as a metal-compatible wireless IC tag capable of long-distance communication. For example, it is difficult to continuously use one small wireless IC tag in various processes.

本発明の目的は以上の問題点を解決し、従来例に比較して装置構成が簡単であって、金属に対応できる金属対応無線ICタグ装置を提供することにある。また、本発明の目的は、独立した小型の無線ICタグの通信距離を伸張することができ、それ自体で利用される1つの小型の無線ICタグで種々の利用工程に見合った動作又は特性を実現でき活用性の高い金属対応無線ICタグ装置を提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide a metal-compatible wireless IC tag device that solves the above-described problems, has a simpler device configuration than conventional examples, and can handle metals. In addition, an object of the present invention is to extend the communication distance of an independent small wireless IC tag, and with one small wireless IC tag used by itself, an operation or characteristic suitable for various utilization processes can be obtained. An object of the present invention is to provide a metal-compatible wireless IC tag device that can be realized and is highly usable.

本発明に係る金属対応無線ICタグ装置は、
直線偏波の電界放射成分を有する無線ICタグと、
互いに実質的に平行な第1と第2の面を有する誘電体と、
上記誘電体の第1の面上に設けられた接地導体と、
上記誘電体の第2の面上に設けられ、互いに直交する第1と第2の共振軸の各両端で開放境界となり、上記第1と第2の共振軸でそれぞれ所定の第1と第2の共振周波数で平面回路共振するパッチ導体からなる電波変換共振反射器とを備え、
上記無線ICタグの直線偏波の電界放射成分の方向と、上記電波変換共振反射器の1つの共振軸とが互いに実質的に一致するように、上記無線ICタグを上記電波変換共振反射器の誘電体の第2の面上又は上記パッチ導体上に設け、
上記第1の共振周波数と、上記第2の共振周波数と、上記第1の共振周波数と上記第2の共振周波数との間の周波数のうちのいずれかである通信周波数を有して受信波として入射する第1の無線信号を上記パッチ導体で平面回路共振させ、第2の無線信号に変換して上記無線ICタグに反射させ、上記無線ICタグからの上記通信周波数を有する第3の無線信号を上記パッチ導体に平面回路共振させ、第4の無線信号に変換して送信波として反射するように構成したことを特徴とする。
Metal-compatible wireless IC tag device according to the present invention,
A wireless IC tag having a linearly polarized field emission component;
A dielectric having first and second surfaces substantially parallel to each other;
A ground conductor provided on the first surface of the dielectric;
Provided on the second surface of the dielectric, open at both ends of the first and second resonance axes orthogonal to each other, and predetermined first and second at the first and second resonance axes, respectively. A radio wave conversion resonant reflector comprising a patch conductor that resonates in a planar circuit at a resonance frequency of
The wireless IC tag is attached to the radio wave conversion resonant reflector so that the direction of the linearly polarized field emission component of the radio IC tag and one resonance axis of the radio wave conversion resonant reflector substantially coincide with each other. On the second surface of the dielectric or on the patch conductor;
As a received wave having a communication frequency that is one of the first resonance frequency, the second resonance frequency, and the frequency between the first resonance frequency and the second resonance frequency. The incident first radio signal is caused to resonate in a planar circuit by the patch conductor, converted to a second radio signal, reflected by the radio IC tag, and a third radio signal having the communication frequency from the radio IC tag. The patch conductor is made to resonate in a planar circuit, converted into a fourth radio signal, and reflected as a transmission wave.

なお、「面上に設けられ」、もしくは「導体上に設けられ」の用語は、それぞれ、面又は導体に直接に設けられてもいいし、面又は導体から空隙を介して設けられてもよい。さらに、「設けられ」の用語は、形成されること、貼り付け又は添付されること、単に載置又は搭載されることなどを含むものとする。   The terms “provided on the surface” or “provided on the conductor” may be provided directly on the surface or the conductor, respectively, or may be provided from the surface or the conductor via a gap. . Furthermore, the term “provided” shall include being formed, affixed or attached, simply placed or mounted, and the like.

従って、本発明によれば、以下の特有の効果を奏する。
(1)電波偏波変換共振反射器の構成はきわめて簡単であって、容易に作製することができ、小型の無線ICタグはそれを用いることにより、容易に金属対応無線ICタグ装置を作製することができる。
(2)平面回路共振を用いることにより伝搬利得を実質的に増大させて通信距離を小型の無線ICタグの単独使用に比較して伸長できる。
(3)金属対応無線ICタグ装置は容易に偏波を変換することができるため、RFIDシステムの無線信号に適合するように異なる偏波に対応することができ、好適なシステムを実現することができる。
(4)例えば無線ICタグである無線通信装置は単独で用いることができ、電波偏波変換共振反射器の利用により伝搬利得を実質的に増大させ、また、金属対応無線ICタグ装置としてなど、用途に見合った広い活用が可能となる。
Therefore, according to the present invention, the following specific effects can be obtained.
(1) The configuration of the radio wave polarization conversion resonant reflector is very simple and can be easily manufactured. By using the small wireless IC tag, a metal-compatible wireless IC tag device can be easily manufactured. be able to.
(2) By using the planar circuit resonance, the propagation gain can be substantially increased and the communication distance can be extended as compared with the single use of a small wireless IC tag.
(3) Since the metal-compatible wireless IC tag device can easily convert the polarization, it can cope with different polarizations so as to be compatible with the radio signal of the RFID system, thereby realizing a suitable system. it can.
(4) For example, a wireless communication device that is a wireless IC tag can be used alone, and the propagation gain is substantially increased by using a radio wave polarization conversion resonant reflector, and as a metal-compatible wireless IC tag device, etc. A wide range of usage can be made according to the application.

以下、本発明に係る実施形態について図面を参照して説明する。なお、同様の構成要素については同一の符号を付している。   Hereinafter, embodiments according to the present invention will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected about the same component.

従来例と実施形態との関係.
無線ICタグは、上述のように、各種の物品に実装され、物品の生産、物流、販売、リサイクル過程での効率化、あるいは人、物の管理、安全確保や電子広告等多くの分野での活用が検討され、これら利用形態においてより適切なタグの特性、形態は様々で、各種のタグが開発利用されている。他の無線通信装置に比べて、無線ICタグにとって非常に重要な望ましい要件は、より多くの活用範囲を広げるため、小型・軽量であって、無線通信装置の伝搬利得を実質的に増大させることである。無線ICタグは各種の物品や物体に直接的に装着することが多く、そのため、金属物体や、強誘電体などあらゆる物体に対しても動作可能であることである。すなわち、装着物体の影響を受けない金属対応無線ICタグ(オンメタル無線ICタグ)であること、また、無線ICタグを物品に取り付ける場合、無線ICタグの方向(偏波軸)に制約を加えることなく実施できること、さらに、無線ICタグ実装物品は色々な工程を移動するため通信する質問器のアンテナとの対向状態が一定せず、円偏波特性に対応できること等にある。従って、各種の用途に対して簡単な方法で等価的に通常の小型タグの偏波特性を変換させかつ伝搬利得を実質的に増大させ、あらゆる物体にも実装を可能とする手段があれば、非常に有効な方法を提供することができる。
Relationship between conventional example and embodiment.
As described above, the wireless IC tag is mounted on various articles, and is efficient in the production, distribution, sales, and recycling processes of the article, or in many fields such as management of people, goods, ensuring safety, and electronic advertisement. Utilization has been studied, and the characteristics and forms of tags that are more appropriate in these utilization forms are various, and various tags are being developed and utilized. Compared to other wireless communication devices, a desirable requirement that is very important for wireless IC tags is to be more compact, lighter, and to substantially increase the propagation gain of wireless communication devices in order to expand the range of use. It is. In many cases, the wireless IC tag is directly attached to various articles and objects, and therefore can operate on any object such as a metal object or a ferroelectric substance. In other words, it must be a metal-compatible wireless IC tag (on-metal wireless IC tag) that is not affected by the mounted object, and when the wireless IC tag is attached to an article, restrict the direction (polarization axis) of the wireless IC tag. In addition, since the wireless IC tag mounted article moves through various processes, the facing state of the communicating interrogator with the antenna is not constant, and can cope with circular polarization characteristics. Therefore, if there is a means that can be mounted on any object by converting the polarization characteristics of a normal small tag equivalently and substantially increasing the propagation gain in a simple manner for various applications. Can provide a very effective method.

図38に示した最も代表的な無線ICタグでは、誘電体基板8c上にダイポールアンテナ8bを形成し、タグIC8aを接続するだけで簡単に安価に形成できる。図39で示したタグIC8aは、非同期MPU30と、不揮発性メモリ31と、電源再生回路32と、高周波通信回線33などを備えて構成される。なお、中には、外部通信用ポート34を有するものがある。ここで、非同期MPU30はタグIC8a全体の動作を制御するためのコントローラであって、例えば外部通信用ポート34を有する。不揮発性メモリ31は当該タグICのタグ情報を格納するためのメモリである。電源再生回路32はアンテナ8bで受信した起動用の無線信号を受信してその電力を再生して各構成要素30,31,33に供給する。高周波通信回路33は無線送信機を含み、非同期MPU30により不揮発性メモリ31から読み出されたタグ情報に従って、無線搬送波をデジタル変調してアンテナ8bを用いて質問器20に向けて放射する。当該無線ICタグはダイポールアンテナの長手方向の軸を中心に周囲360度にわたって電波を放射するため、長手方向の軸とは別の周囲方向から質問器との無線通信が可能で用途によっては非常に便利な場合がある。また、この無線ICタグは長手方向の軸に平行な電界成分Eを有する直線偏波に対して有効であるが、無線ICタグの長手方向の軸に直交した質問器からの無線信号は受信することができない。しかるに、無線信号が周囲方向に放射され、アンテナ利得が低いため長距離通信には難しい。さらに、無線信号の影響を受けにくい繊維や、薄い紙材等からなる物品に実装するにはさほど問題はないが、各種の金属容器やコンテナや、金属導体で被覆された機器筐体、あるいは各種の車両等の物体に実装するには、金属導体の影響を受けこれらの無線ICタグは利用できない。特に、無線ICタグは、生産、物流、流通、修理工程を移動し利用される場合が多く、その過程において無線ICタグの実装物体が変わることもあり金属に対応できるタグが非常に有効で不可欠である。さらには、アプリケーションにおいて、質問器からの無線信号は直線偏波でよい場合もあるが、無線ICタグの実装や無線通信の自由度を考慮すると、円偏波が望ましい。   The most typical wireless IC tag shown in FIG. 38 can be formed simply and inexpensively by simply forming the dipole antenna 8b on the dielectric substrate 8c and connecting the tag IC 8a. The tag IC 8a shown in FIG. 39 includes an asynchronous MPU 30, a nonvolatile memory 31, a power regeneration circuit 32, a high-frequency communication line 33, and the like. Some have an external communication port 34. Here, the asynchronous MPU 30 is a controller for controlling the operation of the entire tag IC 8a, and has an external communication port 34, for example. The nonvolatile memory 31 is a memory for storing tag information of the tag IC. The power regeneration circuit 32 receives the activation radio signal received by the antenna 8b, regenerates the power, and supplies it to the components 30, 31, and 33. The high-frequency communication circuit 33 includes a wireless transmitter, digitally modulates a wireless carrier wave according to tag information read from the nonvolatile memory 31 by the asynchronous MPU 30, and radiates the wireless carrier wave toward the interrogator 20 using the antenna 8b. Since the wireless IC tag emits radio waves 360 degrees around the longitudinal axis of the dipole antenna, wireless communication with the interrogator is possible from a circumferential direction other than the longitudinal axis. It may be convenient. The wireless IC tag is effective for linearly polarized waves having an electric field component E parallel to the longitudinal axis, but receives a wireless signal from an interrogator orthogonal to the longitudinal axis of the wireless IC tag. I can't. However, radio signals are radiated in the surrounding direction, and the antenna gain is low, so it is difficult for long-distance communication. Furthermore, there are no problems in mounting on articles made of fibers or thin paper materials that are not easily affected by radio signals, but various metal containers and containers, equipment cases coated with metal conductors, These wireless IC tags cannot be used due to the influence of a metal conductor to be mounted on an object such as a vehicle. In particular, wireless IC tags are often used in production, logistics, distribution, and repair processes, and the RFID IC tag mounting object may change during the process, so tags that can handle metals are extremely effective and indispensable. It is. Furthermore, in the application, the radio signal from the interrogator may be linearly polarized, but circular polarization is desirable in consideration of the mounting of the wireless IC tag and the degree of freedom of wireless communication.

本発明に係る実施形態によれば、詳細後述するように、上述の無線ICタグ等の電波放射が周辺方向に放射する、小型の一般的な独立した無線ICタグに対して、平面共振回路を用いて偏波を変換することができる共振偏波変換反射手段を用いて、金属導体にも実装でき、実質的に伝搬利得を増大できる金属対応無線ICタグ装置を実現できる。また、独立した無線ICタグを電波偏波変換共振反射器の上側で特定の位置に配置するだけで、質問器からの各種の偏波を有する無線信号に対応して動作を可能とすることを特徴としている。   According to an embodiment of the present invention, as will be described in detail later, a planar resonant circuit is provided for a small general independent wireless IC tag in which radio wave radiation such as the above-described wireless IC tag radiates in the peripheral direction. By using the resonant polarization converting / reflecting means that can convert the polarization using a metal conductor, it is possible to implement a metal-compatible wireless IC tag device that can substantially increase the propagation gain. In addition, by simply placing an independent wireless IC tag at a specific position on the upper side of the radio wave polarization conversion resonant reflector, it is possible to operate corresponding to wireless signals having various polarizations from the interrogator. It is a feature.

上述の従来例では、パッチアンテナ(平面アンテナ)の放射導体と接地導体間にタグIC部品を直接的に接続する独立した金属対応無線ICタグそのものの構成方法であり、本発明に係る実施形態が目指す金属対応無線ICタグの形成方法とは、基本的な視点が異なる。すなわち、本発明に係る実施形態では、特にそれ自体でも利用される小型アンテナとタグICからなる一般的な独立した無線ICタグと、電波偏波変換共振反射器とを合体させ、伝搬利得を実質的に増大させた優れた円偏波通信に適した金属対応無線ICタグ装置を簡単に作成する。現在では、最も小型の通信装置であり、各種の用途で各種の物体に貼り付ける無線ICタグにおいて特に大きな効果を発揮する。独立した無線ICタグは非常に小さいため、電波偏波変換共振反射器の上部に配置しても到来波の電波信号を遮蔽する影響は小さく、到来信号は当該電波偏波変換共振反射器に作用し反射され無線ICタグに有効に信号を与える。また、下部に配置する当該電波偏波変換共振反射器の接地導体面を各種物体の実装面とすることにより、金属対応無線ICタグ装置としての効果を発揮させる。独立した無線ICタグは、その放射電界方向と電波偏波変換共振反射器の共振電界方向とを特定の位置関係で配置するだけでよい。電波偏波変換共振反射器は、それ自体でなんら作用効果を持たないが、直線偏波放射特性をもつ独立した無線ICタグとの合体により特別の効果を発揮する。このとき、電波偏波変換共振反射器は、前面に置かれた無線ICタグに対して電波偏波変換による無線ICタグと電界偏波軸の整合と、共振反射に伴う電波強度の強化で伝搬利得を実質的に高める。独立した無線ICタグの配置位置を変えることにより各種の偏波信号に対応できる。また、当該電波偏波変換共振反射器の反射により裏面への電波放射を阻止し、これらにより種々の用途に適した金属対応無線ICタグ装置となるものである。   The above-described conventional example is a configuration method of an independent metal-compatible wireless IC tag itself in which a tag IC component is directly connected between a radiating conductor and a grounded conductor of a patch antenna (planar antenna). The basic point of view is different from the target method for forming metal-compatible wireless IC tags. That is, in the embodiment according to the present invention, a general independent wireless IC tag composed of a small antenna and a tag IC, which is used by itself, and a radio wave polarization conversion resonant reflector are combined, and the propagation gain is substantially reduced. A metal-compatible wireless IC tag device suitable for excellent circularly polarized communication increased in size is easily created. At present, it is the smallest communication device, and is particularly effective for wireless IC tags that are attached to various objects for various purposes. Since the independent wireless IC tag is very small, even if it is placed above the radio wave polarization conversion resonant reflector, the effect of shielding the radio signal of the incoming wave is small, and the incoming signal acts on the radio wave polarization conversion resonance reflector. The signal is reflected and an effective signal is given to the wireless IC tag. In addition, the ground conductor surface of the radio wave polarization conversion resonant reflector disposed below is used as a mounting surface for various objects, thereby exhibiting the effect as a metal-compatible wireless IC tag device. The independent wireless IC tag only needs to be arranged in a specific positional relationship between the radiation electric field direction and the resonance electric field direction of the radio wave polarization conversion resonant reflector. The radio wave polarization conversion resonant reflector itself has no effect, but exhibits a special effect when combined with an independent wireless IC tag having linearly polarized radiation characteristics. At this time, the radio wave polarization conversion resonant reflector propagates with the radio IC tag placed on the front surface by matching the radio IC tag and the electric field polarization axis by radio wave polarization conversion, and strengthening the radio wave intensity due to resonance reflection. Substantially increase the gain. Various polarization signals can be handled by changing the arrangement position of the independent wireless IC tag. In addition, the radio wave polarization conversion resonant reflector reflects the radio wave to the back surface, thereby providing a metal-compatible radio IC tag device suitable for various applications.

第1の実施形態.
図1は本発明の第1の実施形態に係る電波偏波変換共振反射器10の構成を示す平面図である。図2は図1のA−A’線についての縦断面図である。
First embodiment.
FIG. 1 is a plan view showing the configuration of a radio wave polarization conversion resonant reflector 10 according to the first embodiment of the present invention. FIG. 2 is a longitudinal sectional view taken along line AA ′ of FIG.

図1及び図2において、互いに実質的に平行な2つの面を有する誘電体基板1の裏面全面に接地導体2が形成され、誘電体基板1のおもて面(以下、放射面ともいう。)に正方形状のパッチ導体3が形成される。ここで、パッチ導体3の中心Oを座標中心とし、パッチ導体3の各辺に対して平行となるようにX軸及びY軸を定め、X軸を基準の0度の方向とし、X軸からY軸方向に向かって方位角θを定め、以下同様とする。   1 and 2, a ground conductor 2 is formed on the entire back surface of a dielectric substrate 1 having two surfaces substantially parallel to each other, and the front surface of the dielectric substrate 1 (hereinafter also referred to as a radiation surface). ) Is formed into a square patch conductor 3. Here, the center O of the patch conductor 3 is set as the coordinate center, the X axis and the Y axis are defined so as to be parallel to each side of the patch conductor 3, the X axis is set to a reference 0 degree direction, and the X axis is The azimuth angle θ is determined toward the Y-axis direction, and so on.

パッチ導体3は、以下に示すように、互いに直交する2つの共振軸RA1,RA2の各両端で開放境界となり、これら共振軸RA1,RA2でそれぞれ互いに異なる共振周波数fl,fhで平面回路共振する2つの平面回路共振器を含む。パッチ導体3の方位角θ=135度の位置にある頂点101と、パッチ導体3の方位角θ=−45度の位置にある頂点102とを結ぶ対角線の長さをLlとし、当該対角線を第1の平面回路共振器の共振軸RA1とする。また、パッチ導体3の方位角θ=45度の位置にある仮想頂点103において二等辺三角形の切欠部3aが形成され、パッチ導体3の方位角θ=−135度の位置にある仮想頂点104において二等辺三角形の切欠部3bが形成される。これら仮想頂点103,104を結ぶ対角線上でのパッチ導体3の長さをLhとし、当該長さLhの軸を第2の平面回路共振器の共振軸RA2とする。   As shown below, the patch conductor 3 becomes an open boundary at both ends of two resonance axes RA1 and RA2 orthogonal to each other, and is planar circuit-resonated at resonance frequencies fl and fh different from each other at these resonance axes RA1 and RA2. Includes two planar circuit resonators. The length of the diagonal line connecting the vertex 101 at the azimuth angle θ = 135 degrees of the patch conductor 3 and the vertex 102 at the azimuth angle θ = −45 degrees of the patch conductor 3 is L1, and the diagonal line is The resonance axis RA1 of one planar circuit resonator is assumed. Further, an isosceles triangular notch 3a is formed at the virtual vertex 103 at the position of the azimuth angle θ = 45 degrees of the patch conductor 3, and the virtual vertex 104 at the position of the azimuth angle θ = −135 degrees of the patch conductor 3 is formed. An isosceles triangular notch 3b is formed. The length of the patch conductor 3 on the diagonal line connecting these virtual vertices 103 and 104 is Lh, and the axis of the length Lh is the resonance axis RA2 of the second planar circuit resonator.

ここで、パッチ導体3の長さLl及びLhは以下のように設定される。パッチ導体3の第1の平面回路共振器において、互いに近接する2つの共振周波数fl,fhの間であって好ましくはそれらの概略平均周波数である通信周波数f0において、長さLlの共振軸RA1により通信周波数f0よりも低い共振周波数flで平面回路共振する。一方、パッチ導体3の第2の平面回路共振器において、上記通信周波数f0において、長さLhの共振軸RA2により通信周波数f0よりも高い共振周波数fhで平面回路共振する。さらに、上記通信周波数f0の位相が共振軸RA1による共振位相特性で共振周波数flから実質的に45度だけ遅れてずれるとともに、上記通信周波数f0の位相が共振軸RA2による共振位相特性で共振周波数fhから実質的に45度だけ進んでずれるように設定される。従って、パッチ導体3の2つの平面回路共振器は、通信周波数f0又はその近傍の周波数において、通信周波数f0の無線信号が入射したときは平面回路共振し、誘電体基板1を介して形成されたパッチ導体3と接地導体2との間で当該無線信号の電磁界が発生し、誘電体基板1を介するパッチ導体3と接地導体2により、誘電体基板1の面に対して垂直な方向であって接地導体2からパッチ導体3に向かう方向(以下、放射方向という。)に当該無線信号の電磁波が放射される。これらの動作は、給電回路を持たずに実現できる。   Here, the lengths Ll and Lh of the patch conductor 3 are set as follows. In the first planar circuit resonator of the patch conductor 3, at a communication frequency f0 between two resonance frequencies fl and fh that are close to each other and preferably their approximate average frequency, the resonance axis RA1 of length L1 Planar circuit resonance occurs at a resonance frequency fl lower than the communication frequency f0. On the other hand, in the second planar circuit resonator of the patch conductor 3, the planar circuit resonates at a resonance frequency fh higher than the communication frequency f0 by the resonance axis RA2 having the length Lh at the communication frequency f0. Further, the phase of the communication frequency f0 is substantially delayed by 45 degrees from the resonance frequency fl in the resonance phase characteristic by the resonance axis RA1, and the phase of the communication frequency f0 is the resonance phase characteristic by the resonance axis RA2 and the resonance frequency fh. Is set to deviate substantially 45 degrees from the first position. Therefore, the two planar circuit resonators of the patch conductor 3 are formed via the dielectric substrate 1 when the radio signal of the communication frequency f0 is incident at the communication frequency f0 or a frequency in the vicinity thereof and the planar circuit resonates. An electromagnetic field of the radio signal is generated between the patch conductor 3 and the ground conductor 2, and is in a direction perpendicular to the surface of the dielectric substrate 1 by the patch conductor 3 and the ground conductor 2 through the dielectric substrate 1. Thus, the electromagnetic wave of the radio signal is radiated in a direction from the ground conductor 2 toward the patch conductor 3 (hereinafter referred to as a radiation direction). These operations can be realized without a power supply circuit.

図3は図1の電波偏波変換共振反射器10上に無線ICタグ8を載置してなる金属対応無線ICタグ装置50の構成及び動作を示す平面図である。図4は図3の金属対応無線ICタグ装置50と、質問器20との配置関係及び動作を示す、図3のB−B’線についての縦断面図及び質問器20の側面図である。   FIG. 3 is a plan view showing the configuration and operation of a metal-compatible wireless IC tag device 50 in which the wireless IC tag 8 is placed on the radio wave polarization conversion resonant reflector 10 of FIG. FIG. 4 is a longitudinal sectional view taken along line B-B ′ in FIG. 3 and a side view of the interrogator 20, showing the positional relationship and operation between the metal-compatible wireless IC tag device 50 in FIG. 3 and the interrogator 20.

図3及び図4を参照して、質問器20からの円偏波の無線信号を電波偏波変換共振反射器10により直線偏波の無線信号に変換して、電波偏波変換共振反射器10のパッチ導体3上にタグ実装台9を介して実装された無線ICタグ8に送信する動作について以下に説明する。なお、無線ICタグ8は、例えば図38で示した一般的なダイポールアンテナ8bを用いて直線偏波の無線信号を放射するものとし、図3に示すように、無線ICタグ8はパッチ導体3の中心Oを含みその長手方向がX軸に沿うように実装され、その実装方法としては、例えば、パッチ導体3又は誘電体基板1の放射面において接着テープを用いて無線ICタグ8を貼り付け、もしくは、当該放射面上に無線ICタグ8を収容する袋状の収納体を設け、無線ICタグ8を当該収納体に挿入して収容する。なお、タグ実装台9は無線ICタグ8の形態に対応し、必要により用いるものであって、無線ICタグ8が誘電体でケーシングされて適切な厚さをもつものであれば、タグ実装台9を用いなくてもよい。   3 and 4, the circularly polarized radio signal from the interrogator 20 is converted into a linearly polarized radio signal by the radio wave polarization conversion resonant reflector 10, and the radio wave polarization conversion resonance reflector 10 is converted. The operation of transmitting to the wireless IC tag 8 mounted on the patch conductor 3 via the tag mounting base 9 will be described below. The wireless IC tag 8 radiates a linearly polarized wireless signal using, for example, the general dipole antenna 8b shown in FIG. 38. As shown in FIG. Is mounted so that the longitudinal direction thereof extends along the X axis, and for example, the wireless IC tag 8 is attached to the radiation surface of the patch conductor 3 or the dielectric substrate 1 using an adhesive tape. Alternatively, a bag-shaped storage body for storing the wireless IC tag 8 is provided on the radiation surface, and the wireless IC tag 8 is inserted into the storage body for storage. The tag mounting base 9 corresponds to the form of the wireless IC tag 8 and is used as necessary. If the wireless IC tag 8 is casing with a dielectric and has an appropriate thickness, the tag mounting base 9 is used. 9 may not be used.

図4において、アンテナ20Aを有する質問器20は、電波偏波変換共振反射器10の誘電体基板1の面に対して垂直な方向であって、接地導体2から放射面に向かう方向に延在した位置に、アンテナ20Aが電波偏波変換共振反射器10の放射面と対向するように設けられる。ここで、質問器20のアンテナ20Aから電波偏波変換共振反射器10に向かって円偏波の無線信号20Sが送信され、その回転する円偏波の無線信号20Sの電界成分をEicとする。当該円偏波の無線信号20Sは、互いに直交し位相差が90度異なった2つの直線偏波の無線信号で表されるので、分解した2つの信号をそれぞれ、図4の偏波断面図20L(当該偏波断面図は、放射面に平行な断面における図である。)において電界成分Eia及びEibとして示す。ここで、電界成分Eibは電界成分Eiaより90度だけ位相が進んだ左旋円偏波とする。これら2つの直線偏波の無線信号が電波偏波変換共振反射器10に入射したとき、電界成分Eiaはより高い共振周波数fhを有するパッチ導体3の共振軸RA2により平面回路共振し、パッチ導体3の共振軸RA2上に電流Iaを発生させる。一方、電界成分Eibはより低い共振周波数flを有するパッチ導体3の共振軸RA1により平面回路共振し、パッチ導体3の共振軸RA1上に電流Ibを発生させる。これらの電流Ia,Ibにより、それぞれと平行した直線偏波の電界EaとEbがパッチ導体3から上記放射方向で再放射される。   In FIG. 4, an interrogator 20 having an antenna 20A extends in a direction perpendicular to the surface of the dielectric substrate 1 of the radio wave polarization conversion resonant reflector 10 and from the ground conductor 2 toward the radiation surface. In this position, the antenna 20A is provided to face the radiation surface of the radio wave polarization conversion resonant reflector 10. Here, the circularly polarized radio signal 20S is transmitted from the antenna 20A of the interrogator 20 to the radio wave polarization conversion resonant reflector 10, and the electric field component of the rotating circularly polarized radio signal 20S is Eic. Since the circularly polarized radio signal 20S is represented by two linearly polarized radio signals that are orthogonal to each other and have a phase difference of 90 degrees, the two separated signals are respectively shown in the polarization cross-sectional view 20L of FIG. (The polarization cross-sectional view is a view in a cross section parallel to the radiation surface.) The electric field components are shown as Eia and Eib. Here, the electric field component Eib is a left-handed circularly polarized wave whose phase is advanced by 90 degrees from the electric field component Eia. When these two linearly polarized radio signals are incident on the radio wave polarization conversion resonant reflector 10, the electric field component Eia resonates in a plane circuit with the resonance axis RA2 of the patch conductor 3 having a higher resonance frequency fh, and the patch conductor 3 A current Ia is generated on the resonance axis RA2. On the other hand, the electric field component Eib resonates in a planar circuit with the resonance axis RA1 of the patch conductor 3 having a lower resonance frequency fl, and generates a current Ib on the resonance axis RA1 of the patch conductor 3. By these currents Ia and Ib, linearly polarized electric fields Ea and Eb parallel to the respective currents are re-radiated from the patch conductor 3 in the radiation direction.

ところで、上述のように、パッチ導体3の各共振軸RA2,RA1上の電流Ia,Ibはそれぞれ、電流Iaの位相が電流Ibの位相よりも90度だけ進んで発生する。一方、電波偏波変換共振反射器10に到来した無線信号の電界成分Eiaは電界成分Eibに比べて90度だけ位相が遅れて入射しているので、それにより生じた電流の90度の位相差と相殺され、パッチ導体3より再放射される無線信号の電界成分Ea及びEbの位相は同相となる。従って、図4に示すように、直交した同相の2つの直線偏波の電界成分Ea及びEbは互いに合成され、円偏波から偏波変換された直線偏波の無線信号Elとして反射されて放射方向で無線ICタグ8に向けて再放射される。このことは、電流Iaと電流Ibが合成された電流Irから電波が放射されるものとみなしてよい。ここで、無線ICタグ8は上述のように実行されているので、X軸に沿った電界成分に対して受信できるので、反射された無線信号は有効的に無線ICタグ8のダイポールアンテナで受信される。これに応答して、無線ICタグ8は受信した無線信号の電力を再生して起動した後、無線ICタグ8内のメモリに格納されたタグ情報に従って負荷変調され、すなわち、無線搬送波をデジタル変調することにより無線信号を発生し、これを電波偏波変換共振反射器10に向けて送信し、電波偏波変換共振反射器10を介して質問器20に返信される。ここでの電波偏波変換共振反射器10の動作では、上述の質問器20から無線ICタグ8への動作とは逆の処理が実行される。   As described above, the currents Ia and Ib on the resonance axes RA2 and RA1 of the patch conductor 3 are generated with the phase of the current Ia being advanced by 90 degrees from the phase of the current Ib. On the other hand, since the electric field component Eia of the radio signal arriving at the radio wave polarization conversion resonant reflector 10 is incident with a phase delay of 90 degrees compared to the electric field component Eib, the phase difference of 90 degrees of the current generated thereby. And the phases of the electric field components Ea and Eb of the radio signal re-radiated from the patch conductor 3 are in phase. Therefore, as shown in FIG. 4, two linearly polarized electric field components Ea and Eb that are orthogonal and in-phase are combined with each other and reflected and radiated as a linearly polarized radio signal El converted from a circularly polarized wave. Re-radiated toward the wireless IC tag 8 in the direction. This may be regarded as a radio wave being radiated from the current Ir obtained by combining the current Ia and the current Ib. Here, since the wireless IC tag 8 is executed as described above, it can be received with respect to the electric field component along the X axis, so that the reflected wireless signal is effectively received by the dipole antenna of the wireless IC tag 8. Is done. In response to this, the wireless IC tag 8 reproduces the power of the received wireless signal and starts up, and then is load-modulated according to the tag information stored in the memory in the wireless IC tag 8, that is, the wireless carrier wave is digitally modulated. As a result, a radio signal is generated, transmitted to the radio wave polarization conversion resonant reflector 10, and returned to the interrogator 20 via the radio wave polarization conversion resonance reflector 10. In the operation of the radio wave polarization conversion resonant reflector 10 here, a process opposite to the operation from the interrogator 20 to the wireless IC tag 8 is executed.

以上説明したように、電波偏波変換共振反射器10は、入射した円偏波の無線信号を直線偏波の無線信号に変換し、前方に置かれた無線ICタグ8の放射電界軸と合わせて有効な無線信号を供給するととともに、電波偏波変換共振反射器10の接地導体2の面は物体への実装面となり、金属対応無線ICタグ装置50を構築できる。なお、電波偏波変換共振反射器10は受動体であり、偏波変換作用については可逆性がある。   As described above, the radio wave polarization conversion resonant reflector 10 converts the incident circularly polarized radio signal into a linearly polarized radio signal and matches it with the radiation electric field axis of the radio IC tag 8 placed in front. In addition, an effective wireless signal is supplied, and the surface of the ground conductor 2 of the radio wave polarization conversion resonant reflector 10 becomes a mounting surface on an object, so that the metal-compatible wireless IC tag device 50 can be constructed. The radio wave polarization conversion resonant reflector 10 is a passive body, and has a reversible polarization conversion function.

図3及び図4の実施形態では、質問器20から送出された無線信号が円偏波を有し、直交した2波に分解した直線偏波の無線信号の電界成分Eiaが電界成分Eibに比べて、90度だけ遅れた左旋円偏波の場合を示したが、2波の位相差が逆の右円偏波の場合は、到来する無線信号の円偏波が上記の例とは90度異なった直交した直線偏波の無線信号に変換される。そのため、無線ICタグ8はY軸上に平行して配置される。その場合の無線ICタグ8の配置位置を点線で示している。なお、無線ICタグ8は、その直線偏波の放射電界の軸が正方形状のパッチ導体3の対角線上と平行に配置しても、同方向の電界成分を有するため、無線ICタグ8は無線信号が供給され動作は可能である。また、少なくとも、無線ICタグ8の放射電界軸が、パッチ導体3の端部とその中心部を結んだ直線と概略平行し配置しても同様に動作する。   3 and 4, the radio signal transmitted from the interrogator 20 has a circular polarization, and the electric field component Eia of the linearly polarized radio signal decomposed into two orthogonal waves is compared with the electric field component Eib. In the case of left-handed circularly polarized wave delayed by 90 degrees, in the case of right-handed circularly polarized wave whose phase difference between the two waves is opposite, the circularly polarized wave of the incoming radio signal is 90 degrees from the above example. It is converted to a radio signal of different orthogonal linear polarization. Therefore, the wireless IC tag 8 is disposed in parallel on the Y axis. In this case, the arrangement position of the wireless IC tag 8 is indicated by a dotted line. Note that the wireless IC tag 8 has an electric field component in the same direction even if the linearly polarized radiation electric field axis is arranged parallel to the diagonal line of the square patch conductor 3, and thus the wireless IC tag 8 is wireless. A signal is supplied and operation is possible. Further, even if at least the radiation electric field axis of the wireless IC tag 8 is arranged substantially parallel to the straight line connecting the end portion of the patch conductor 3 and the central portion thereof, the same operation is performed.

さらに、質問器20からの無線信号が右旋円偏波の場合も、上記と同様に説明できるため説明は省略する。なお、質問器20からの無線信号が円偏波の場合、金属対応無線ICタグ装置50を質問器20からの無線信号と対向させ回転させても、動作は全く同じである。   Further, the case where the radio signal from the interrogator 20 is right-handed circularly polarized wave can be explained in the same manner as described above, and thus the explanation is omitted. When the wireless signal from the interrogator 20 is circularly polarized, the operation is exactly the same even if the metal-compatible wireless IC tag device 50 is rotated opposite to the wireless signal from the interrogator 20.

第1の実施形態の変形例.
図5は本発明の第1の実施形態の変形例に係る金属対応無線ICタグ装置50の構成及び動作を示す平面図である。図6は図5の金属対応無線ICタグ装置50と、質問器20との配置関係及び動作を示す、図5のC−C’線についての縦断面図及び質問器20の側面図である。当該変形例では、第1の実施形態と同様に、無線ICタグ8はダイポールアンテナを備え、ダイポールアンテナの長手方向に平行な放射電界を有する直線偏波の無線信号を送受信するものとする。図5に示すように、無線ICタグ8は、パッチ導体3上であって中心Oを含みX軸に沿って横方向に配置される。また、当該変形例では、図5及び図6を参照して、質問器20からの直線偏波の無線信号を電波偏波変換共振反射器10により円偏波の無線信号に変換して、電波偏波変換共振反射器10のパッチ導体3上にタグ実装台9を介して実装された無線ICタグ8に送信する動作について以下に説明する。
Modification of the first embodiment.
FIG. 5 is a plan view showing the configuration and operation of a metal-compatible wireless IC tag device 50 according to a modification of the first embodiment of the present invention. FIG. 6 is a longitudinal sectional view taken along line CC ′ of FIG. 5 and a side view of the interrogator 20 showing the positional relationship and operation between the metal-compatible wireless IC tag device 50 of FIG. 5 and the interrogator 20. In this modification, as in the first embodiment, the wireless IC tag 8 includes a dipole antenna, and transmits and receives linearly polarized radio signals having a radiation field parallel to the longitudinal direction of the dipole antenna. As shown in FIG. 5, the wireless IC tag 8 is disposed on the patch conductor 3 in the lateral direction including the center O and along the X axis. In the modification, referring to FIGS. 5 and 6, the linearly polarized radio signal from the interrogator 20 is converted into a circularly polarized radio signal by the radio wave polarization conversion resonant reflector 10, and the radio wave An operation of transmitting to the wireless IC tag 8 mounted on the patch conductor 3 of the polarization conversion resonant reflector 10 via the tag mounting base 9 will be described below.

図6において、質問器20から送信された無線信号は、図6の紙面内の上下方向に電界成分Eiを有する直線偏波の無線信号20Sとして送信される場合について考える。まず、電波偏波変換共振反射器10が存在しない場合、無線ICタグ8の放射直線偏波軸が、電界成分Eiに対して直交するように配置される。そのため、質問器20からの無線信号20Sは、電界強度が比較的大きい場合であっても無線ICタグ8のダイポールアンテナを励振することはできず、無線ICタグ8を起動させることはできない。   In FIG. 6, a case is considered where the radio signal transmitted from the interrogator 20 is transmitted as a linearly polarized radio signal 20S having an electric field component Ei in the vertical direction in FIG. First, when the radio wave polarization conversion resonant reflector 10 is not present, the radiation linear polarization axis of the wireless IC tag 8 is arranged so as to be orthogonal to the electric field component Ei. Therefore, the radio signal 20S from the interrogator 20 cannot excite the dipole antenna of the wireless IC tag 8 even when the electric field strength is relatively large, and the wireless IC tag 8 cannot be activated.

しかしながら、図6に示すように、無線ICタグ8の後方に電波偏波変換共振反射器10を配置した場合、まず、質問器20からの無線信号20Sは、電波偏波変換共振反射器10に対してY軸に沿って入射し、電波偏波変換共振反射器10内の平面回路共振器で共振する。すなわち、到来した直線偏波の無線信号20Sの電界成分Eiは、放射面に平行な偏波断面図20Lに示すように、互いに直交した同相の電界成分EiaとEibの2波に分解でき、この2波が電波偏波変換共振反射器10を励振する。これらの無線信号は平面共振回路で共振し、パッチ導体3上でこれら電界成分EiaとEibにそれぞれ平行な誘導電流IaとIbを発生させる。ここで、パッチ導体3の共振軸RA2上で発生される電流Iaは、通信周波数f0より高い共振周波数fhにおいて平面回路共振するので、通信周波数f0においてその位相は共振周波数fhから45度だけ位相が進む。一方、パッチ導体3の共振軸RA1上で発生される電流Ibは、通信周波数f0より低い共振周波数flで平面回路共振するので、通信周波数f0においてその位相は共振周波数flから45度だけ位相が遅れる。さらに、これらの電流IaとIbはそれらと平行した電界成分Era及びErbを発生して放射させる。これら2つの放射電界成分Era及びErbは位相差が90度で、電界成分Eraは電界成分Erbよりも90度位相が進み、これらの電界成分が反射されて再放射されるため、それらの合成波Ecは円偏波の無線信号10Sとなる。その結果、当該無線信号10Sは、図6に示すように、再放射された円偏波の無線信号10Sの電界成分Ecは回転しながら、図6の右側方向へ進むため、無線ICタグ8のアンテナと平行した電界成分が発生し、これに応答して無線ICタグ8は起動する。   However, as shown in FIG. 6, when the radio wave polarization conversion resonant reflector 10 is arranged behind the radio IC tag 8, first, the radio signal 20 </ b> S from the interrogator 20 is sent to the radio wave polarization conversion resonance reflector 10. On the other hand, it enters along the Y axis and resonates with the planar circuit resonator in the radio wave polarization conversion resonant reflector 10. That is, the electric field component Ei of the incoming linearly polarized radio signal 20S can be decomposed into two waves of in-phase electric field components Eia and Eib orthogonal to each other, as shown in the polarization sectional view 20L parallel to the radiation surface. Two waves excite the radio wave polarization conversion resonant reflector 10. These radio signals resonate in a plane resonance circuit and generate induced currents Ia and Ib parallel to these electric field components Eia and Eib on the patch conductor 3, respectively. Here, since the current Ia generated on the resonance axis RA2 of the patch conductor 3 resonates in a planar circuit at a resonance frequency fh higher than the communication frequency f0, the phase thereof is 45 degrees from the resonance frequency fh at the communication frequency f0. move on. On the other hand, the current Ib generated on the resonance axis RA1 of the patch conductor 3 resonates in a planar circuit at a resonance frequency fl lower than the communication frequency f0, so that the phase is delayed by 45 degrees from the resonance frequency fl at the communication frequency f0. . Furthermore, these currents Ia and Ib generate and radiate electric field components Era and Erb parallel to them. These two radiated electric field components Era and Erb have a phase difference of 90 degrees, and the electric field component Era has a phase advance of 90 degrees relative to the electric field component Erb, and these electric field components are reflected and re-radiated. Ec becomes a circularly polarized radio signal 10S. As a result, as shown in FIG. 6, the radio signal 10S advances in the right direction in FIG. 6 while rotating the electric field component Ec of the re-radiated circularly polarized radio signal 10S. An electric field component parallel to the antenna is generated, and in response to this, the wireless IC tag 8 is activated.

ここで、質問器20からの直線偏波軸をY軸と平行となるように固定した状態で、金属対応無線ICタグ装置50を図5の位置から中心Oを中心として回転させれば、電波偏波変換共振反射器10による円偏波の無線信号の発生強度は小さくなるが、当該回転により、偏波は円偏波から楕円偏波になり、さらなる回転により直線偏波になり、以下、回転により、円偏波→楕円偏波→直線偏波→楕円偏波→円偏波→…の繰り返しで偏波が変化する。いずれの場合も、無線ICタグ8と平行した電界成分が発生し、無線ICタグ8は動作する。また、電波偏波変換共振反射器10の接地導体2側へは電波放射がないので、接地導体2側を物体に対する装着面とすることができる金属対応無線ICタグ装置50となる。また、このことは、本実施形態に係る電波偏波変換共振反射器10は、平面回路共振して反射することに加えて、無線ICタグ8の適切な実装位置により、以下の作用があることを意味する。
(a)入射する直線偏波の無線信号を円偏波又は楕円偏波の無線信号に変換して無線ICタグ8に反射する。
(b)入射する円偏波又は楕円偏波の無線信号を直線偏波の無線信号に変換して無線ICタグ8に反射する。
(c)無線ICタグ8からの直線偏波の無線信号を円偏波又は楕円偏波の無線信号に変換して反射する。
(d)無線ICタグ8が円偏波又は楕円偏波の無線信号を放射するものであれば、無線ICタグ8からの円偏波又は楕円偏波の無線信号を直線偏波の無線信号に変換して反射する。
なお、電波偏波変換共振反射器10において、偏波を変換しない場合もあるが、その作用に含むものとする。
Here, if the metal-compatible wireless IC tag device 50 is rotated from the position of FIG. 5 about the center O in a state where the linear polarization axis from the interrogator 20 is fixed to be parallel to the Y-axis, the radio wave Although the generation intensity of the circularly polarized radio signal by the polarization conversion resonant reflector 10 becomes small, the polarization changes from the circular polarization to the elliptical polarization by the rotation, and becomes the linear polarization by the further rotation. Due to the rotation, the polarization changes by repeating circular polarization → elliptical polarization → linear polarization → elliptical polarization → circular polarization →. In either case, an electric field component parallel to the wireless IC tag 8 is generated, and the wireless IC tag 8 operates. In addition, since there is no radio wave radiation to the ground conductor 2 side of the radio wave polarization conversion resonant reflector 10, the metal-compatible wireless IC tag device 50 can be configured such that the ground conductor 2 side is a mounting surface for an object. In addition, this means that the radio wave polarization conversion resonant reflector 10 according to the present embodiment has the following actions depending on the appropriate mounting position of the wireless IC tag 8 in addition to the reflection by the planar circuit resonance. Means.
(A) The incident linearly polarized radio signal is converted into a circularly polarized wave or an elliptically polarized radio signal and reflected to the radio IC tag 8.
(B) The incident circularly or elliptically polarized radio signal is converted into a linearly polarized radio signal and reflected to the radio IC tag 8.
(C) A linearly polarized radio signal from the radio IC tag 8 is converted into a circularly polarized wave or an elliptically polarized radio signal and reflected.
(D) If the wireless IC tag 8 emits a circularly or elliptically polarized wireless signal, the circularly or elliptically polarized wireless signal from the wireless IC tag 8 is converted into a linearly polarized wireless signal. Convert and reflect.
The radio wave polarization conversion resonant reflector 10 may not convert the polarization, but it is included in the action.

なお、上記各例で示した金属対応無線ICタグ装置50の形成において、電波偏波変換共振反射器10のパッチ導体3に対する無線ICタグ8は、パッチ導体3の各辺の中央部の端部とその中心Oを結んだ直線と、無線ICタグ8の1つの直線偏波軸とを平行させて配置することが好ましい。また、パッチ導体3と無線ICタグ8との間隔及び配置位置関係は、無線ICタグ8のタグアンテナの方式や、ICの接続方法やケーシング等により異なるため、最適位置は実験的に決められる。これは、電波偏波変換共振反射器10と、無線ICタグ8が分離しているため、容易に調整できる特徴の1つである。さらに、1個の無線ICタグ8に対して適当な電波偏波変換共振反射器10を用い、用途により適した電波偏波変換特性を得ることができるという特有の効果を有している。   In the formation of the metal-compatible wireless IC tag device 50 shown in each of the above examples, the wireless IC tag 8 with respect to the patch conductor 3 of the radio wave polarization conversion resonant reflector 10 is the end of the central portion of each side of the patch conductor 3. It is preferable that the straight line connecting the center O and the linear polarization axis of the wireless IC tag 8 be arranged in parallel. In addition, since the interval and the arrangement positional relationship between the patch conductor 3 and the wireless IC tag 8 differ depending on the tag antenna system of the wireless IC tag 8, the connection method of the IC, the casing, and the like, the optimal position is determined experimentally. This is one of the features that can be easily adjusted because the radio wave polarization conversion resonant reflector 10 and the wireless IC tag 8 are separated. Furthermore, there is a specific effect that a radio wave polarization conversion resonant reflector 10 suitable for one radio IC tag 8 can be used to obtain a radio wave polarization conversion characteristic suitable for the application.

第2の実施形態.
図7は本発明の第2の実施形態に係る金属対応無線ICタグ装置50Aの構成を示す平面図である。図8は図7のD−D’線についての縦断面図である。図9は図7及び図8の無線ICタグ8の構成及び動作を示す平面図である。第2の実施形態に係る金属対応無線ICタグ装置50Aは電波偏波変換共振反射器10Aを備え、図7及び図8に示すように、第1の実施形態に係る金属対応無線ICタグ装置50に比較して以下の点が異なる。
(1)正方形状のパッチ導体3に代えて、円形状のパッチ導体3Aを用いた。
(2)図1の共振軸RA1に対応する位置に、パッチ導体3Aの直径と同一の長さを有する共振軸RA11を備える。
(3)図1の共振軸RA2に対応する位置に、その両端で概略矩形の切欠部3c,3dを有しかつパッチ導体3Aの直径よりも短い長さを有する共振軸RA12を備える。
(4)無線ICタグ8は、その長手方向が中心Oを含みかつ−Y軸に沿うように実装される。
Second embodiment.
FIG. 7 is a plan view showing a configuration of a metal-compatible wireless IC tag device 50A according to the second embodiment of the present invention. FIG. 8 is a longitudinal sectional view taken along line DD ′ of FIG. FIG. 9 is a plan view showing the configuration and operation of the wireless IC tag 8 of FIGS. The metal-compatible wireless IC tag device 50A according to the second embodiment includes a radio wave polarization conversion resonant reflector 10A. As shown in FIGS. 7 and 8, the metal-compatible wireless IC tag device 50 according to the first embodiment. The following points are different.
(1) Instead of the square patch conductor 3, a circular patch conductor 3A was used.
(2) A resonance axis RA11 having the same length as the diameter of the patch conductor 3A is provided at a position corresponding to the resonance axis RA1 in FIG.
(3) A resonance axis RA12 having substantially rectangular notches 3c and 3d at both ends thereof and having a length shorter than the diameter of the patch conductor 3A is provided at a position corresponding to the resonance axis RA2 in FIG.
(4) The wireless IC tag 8 is mounted such that its longitudinal direction includes the center O and is along the −Y axis.

図7において、パッチ導体3Aの形状は、共振軸RA11でより低い共振周波数flを有し、かつ共振軸RA12でより高い共振周波数fhを有し、第1の実施形態と同様に、通信周波数f0の位相が共振軸RA11による共振位相特性で共振周波数flから実質的に45度だけ遅れてずれるとともに、上記通信周波数f0の位相が共振軸RA12による共振位相特性で共振周波数fhから実質的に45度だけ進んでずれるように設定される。   In FIG. 7, the shape of the patch conductor 3A has a lower resonance frequency fl at the resonance axis RA11 and a higher resonance frequency fh at the resonance axis RA12, and the communication frequency f0 as in the first embodiment. , And the phase of the communication frequency f0 is substantially 45 degrees from the resonance frequency fh by the resonance phase characteristic by the resonance axis RA12. It is set so as to move forward only.

図9において、無線ICタグ8は例えば、小型化のため、誘電体基板8c上に半波長ダイポールアンテナ8bの両端をコ字形に折り曲げ、C字形アンテナを用いた例を示している。この無線ICタグ8では、アンテナ8bに流れる電流がコの字に折り曲げられたところで部分的に逆方向となり、それより放射される電界成分も逆方向成分が発生し、アンテナ8b全体からの電波放射は直線ダイポールアンテナの場合に比べて小さく利得は低下する。しかしながら、アンテナ8bの長手方向の電界Etと直交した放射電界成分Enも発生し、無線ICタグ8として適した用途もある。これと同様に、誘電体基板8cの両面を利用し、ダイポールアンテナ8bを誘電体基板8cの両面に折り返して形成してもよい。その他、無線ICタグ8としては、少なくとも1つの直線偏波の電界放射成分を有するものであれば種々のものが適用できる。   In FIG. 9, for example, the wireless IC tag 8 shows an example in which a C-shaped antenna is used by bending both ends of a half-wavelength dipole antenna 8b on a dielectric substrate 8c into a U-shape for the purpose of miniaturization. In this wireless IC tag 8, when the current flowing through the antenna 8b is bent in a U-shape, the direction is partially reversed, and the electric field component radiated therefrom also generates a backward component, and radio wave radiation from the entire antenna 8b. Is smaller than that of a linear dipole antenna, and the gain is lowered. However, a radiation electric field component En that is orthogonal to the electric field Et in the longitudinal direction of the antenna 8b is also generated, and there is an application that is suitable as the wireless IC tag 8. Similarly, the dipole antenna 8b may be folded back on both surfaces of the dielectric substrate 8c using both surfaces of the dielectric substrate 8c. In addition, as the wireless IC tag 8, various devices can be applied as long as they have at least one linearly polarized electric field radiation component.

第3の実施形態.
図10は本発明の第3の実施形態に係る金属対応無線ICタグ装置50Bの構成を示す平面図である。第3の実施形態に係る金属対応無線ICタグ装置50Bは電波偏波変換共振反射器10Bを備え、第1の実施形態に係る金属対応無線ICタグ装置50に比較して以下の点が異なる。
(1)正方形状のパッチ導体3Bの中心Oを含み、方位角θ=45度の方向で長手方向を有するストリップ形状のスロット3Sをパッチ導体3Bに形成した。
(2)+X軸方向でパッチ導体3Bから無線ICタグの1つの配置位置を決めるため、矩形形状で突出する突出部3eを形成した。
(3)無線ICタグ8は、例えば、好ましくは、位置8Aで示すように、その長手方向が+X軸に沿うように実装される。
Third embodiment.
FIG. 10 is a plan view showing a configuration of a metal-compatible wireless IC tag device 50B according to the third embodiment of the present invention. The metal-compatible wireless IC tag device 50B according to the third embodiment includes a radio wave polarization conversion resonant reflector 10B, and differs from the metal-compatible wireless IC tag device 50 according to the first embodiment in the following points.
(1) A strip-shaped slot 3S including the center O of the square patch conductor 3B and having a longitudinal direction in the direction of the azimuth angle θ = 45 degrees is formed in the patch conductor 3B.
(2) In order to determine one arrangement position of the wireless IC tag from the patch conductor 3B in the + X-axis direction, a protruding portion 3e protruding in a rectangular shape is formed.
(3) The wireless IC tag 8 is preferably mounted so that the longitudinal direction thereof is along the + X axis, for example, as indicated by a position 8A.

図10において、矩形形状のパッチ導体3Bはその中央部において、その長手方向が方位角θ=45度方向となるようにスロット3Sを形成し、これにより、パッチ導体3Bにおいて方位角θ=±45度方向で直交する2軸で上述の2つの共振周波数fl,fhで平面回路共振するよう設定される。なお、共振位相の設定条件は、第1の実施形態と同様である。また、無線ICタグ8は、その直線偏波の電界軸がパッチ導体3Bの端部と中心Oとを結んだ直線に平行して配置すればよく、例えば、図10の位置8Aに限らず、位置8B又は8Cであってもよい。位置8Bでは、無線ICタグ8は−Y軸に沿うように実装される。また、位置8Cでは、無線ICタグ8はパッチ導体3Bの対角線に沿うように実装される。   In FIG. 10, a rectangular patch conductor 3B is formed with a slot 3S at the center so that the longitudinal direction thereof is the azimuth angle θ = 45 degrees, whereby the azimuth angle θ = ± 45 in the patch conductor 3B. The plane circuit resonance is set at the two resonance frequencies fl and fh described above with two axes orthogonal to each other in the degree direction. Note that the resonance phase setting conditions are the same as in the first embodiment. Further, the wireless IC tag 8 may be disposed in parallel with the straight line connecting the end of the patch conductor 3B and the center O so that the electric field axis of the linearly polarized wave is not limited to the position 8A in FIG. It may be at position 8B or 8C. At the position 8B, the wireless IC tag 8 is mounted along the −Y axis. At the position 8C, the wireless IC tag 8 is mounted along the diagonal line of the patch conductor 3B.

第4の実施形態.
図11は本発明の第4の実施形態に係る金属対応無線ICタグ装置50Cの構成を示す平面図である。第4の実施形態に係る金属対応無線ICタグ装置50Cは電波偏波変換共振反射器10Cを備え、第1の実施形態に係る金属対応無線ICタグ装置50に比較して以下の点が異なる。
(1)パッチ導体3Cは矩形形状を有し、その短辺方向及び長辺方向をそれぞれ共振軸とし、これら2つの共振軸の長さがそれぞれ共振周波数fh,flで平面回路共振するように設定される。なお、共振位相の設定条件は、第1の実施形態と同様である。
(2)無線ICタグ8は、例えば図11に示すように、パッチ導体3Cの対角線に沿って実装される。
Fourth embodiment.
FIG. 11 is a plan view showing a configuration of a metal-compatible wireless IC tag device 50C according to the fourth embodiment of the present invention. The metal-compatible wireless IC tag device 50C according to the fourth embodiment includes a radio wave polarization conversion resonant reflector 10C, and is different from the metal-compatible wireless IC tag device 50 according to the first embodiment in the following points.
(1) The patch conductor 3C has a rectangular shape, and the short side direction and the long side direction are set as resonance axes, respectively, and the lengths of these two resonance axes are set to resonate in a planar circuit at resonance frequencies fh and fl, respectively. Is done. Note that the resonance phase setting conditions are the same as in the first embodiment.
(2) The wireless IC tag 8 is mounted along the diagonal line of the patch conductor 3C, for example, as shown in FIG.

第5の実施形態.
図12は本発明の第5の実施形態に係る金属対応無線ICタグ装置50Dの構成及び動作を示す平面図である。図13は図12の金属対応無線ICタグ装置50Dと、質問器20との配置関係及び動作を示す、図12のE−E’線についての縦断面図及び質問器20の側面図である。
Fifth embodiment.
FIG. 12 is a plan view showing the configuration and operation of a metal-compatible wireless IC tag device 50D according to the fifth embodiment of the present invention. FIG. 13 is a longitudinal sectional view taken along line EE ′ of FIG. 12 and a side view of the interrogator 20, showing the positional relationship and operation between the metal-compatible wireless IC tag device 50 D of FIG. 12 and the interrogator 20.

第5の実施形態に係る金属対応無線ICタグ装置50Dは電波偏波変換共振反射器10Dを備え、第1の実施形態に係る金属対応無線ICタグ装置50に比較して以下の点が異なる。
(1)切欠部を有しない正方形状のパッチ導体3Dを備えた。ここで、パッチ導体3Dの各辺はX軸又はY軸に平行であり、パッチ導体3Dは、中心Oを通過し、X軸に沿い、パッチ導体3Dの両端部を結ぶ共振軸RA21と、中心Oを通過し、Y軸に沿い、パッチ導体3Dの両端部を結ぶ共振軸RA22とを備える。
(2)共振軸RA21の右側端部と、共振軸RA22の下側端部とを接続し、後述する所定の長さを有する位相調整用ストリップ導体11を誘電体基板1上に形成した。ここで、誘電体基板1を介して形成されたストリップ導体11と接地導体2とは、マイクロストリップ線路である位相調整伝送線路を構成する。
The metal-compatible wireless IC tag device 50D according to the fifth embodiment includes a radio wave polarization conversion resonant reflector 10D, and differs from the metal-compatible wireless IC tag device 50 according to the first embodiment in the following points.
(1) A square patch conductor 3D having no notch is provided. Here, each side of the patch conductor 3D is parallel to the X-axis or the Y-axis, and the patch conductor 3D passes through the center O and passes along the X-axis to the resonance axis RA21 connecting both ends of the patch conductor 3D, and the center. A resonance axis RA22 that passes through O and connects both ends of the patch conductor 3D along the Y axis is provided.
(2) The right end portion of the resonance axis RA21 and the lower end portion of the resonance axis RA22 are connected, and the phase adjusting strip conductor 11 having a predetermined length described later is formed on the dielectric substrate 1. Here, the strip conductor 11 and the ground conductor 2 formed via the dielectric substrate 1 constitute a phase adjustment transmission line which is a microstrip line.

図12において、パッチ導体3Dは、好ましくは、誘電体基板1を考慮した管内波長λgの概略1/2、又はその奇数倍の各辺の長さを有し、その長さを有する共振軸RA21,RA22により共振周波数f0で平面回路共振するように形成される。また、ストリップ導体11の長さは、好ましくは、誘電体基板1を考慮した管内波長λgの概略1/4、又はその奇数倍に設定される。さらに、無線ICタグ8は、パッチ導体3D上であって、例えば、好ましくは、X軸又はY軸に平行となるように配置実装される。   In FIG. 12, the patch conductor 3 </ b> D preferably has a length of each side that is approximately half of the guide wavelength λg in consideration of the dielectric substrate 1, or an odd multiple thereof, and has a resonance axis RA <b> 21 having the length. , RA22 so that planar circuit resonance occurs at the resonance frequency f0. Further, the length of the strip conductor 11 is preferably set to approximately 1/4 of the guide wavelength λg considering the dielectric substrate 1 or an odd multiple thereof. Further, the wireless IC tag 8 is disposed and mounted on the patch conductor 3D, for example, preferably parallel to the X axis or the Y axis.

図14乃至図16は図12及び図13のパッチ導体3D上に無線ICタグ8を載置したときの動作を示す平面図である。次いで、図12乃至図16を参照して、円偏波の無線信号を直線偏波の無線信号に変換して反射する電波偏波変換共振反射器10Dの動作と、無線ICタグ8を搭載したときの金属対応無線ICタグ装置50Dの動作について以下に説明する。   14 to 16 are plan views showing the operation when the wireless IC tag 8 is placed on the patch conductor 3D shown in FIGS. Next, referring to FIG. 12 to FIG. 16, the operation of the radio wave polarization conversion resonant reflector 10D that converts a circularly polarized radio signal into a linearly polarized radio signal and reflects it, and the radio IC tag 8 are mounted. The operation of the metal-compatible wireless IC tag device 50D will be described below.

図13において、電波偏波変換共振反射器10Dの前方(図13の右側)に配置された質問器20は円偏波の無線信号を電波偏波変換共振反射器10Dに向けて送信する。ここで、無線ICタグ8は、図12に示すように、パッチ導体3Dの中心Oを含むX軸に沿って配置されている。質問器20から送信された回転する円偏波の無線信号の電界成分をEcとしたとき、当該円偏波の無線信号は直交した位相差が90度異なった2つの直線偏波の無線信号で表されるので、分解した2つの無線信号の電界成分をEca及びEcbとして表すことができ、ここで、電界成分Ecbは電界成分Ecaより90度位相が進んだ左旋円偏波とする。   In FIG. 13, an interrogator 20 disposed in front of the radio wave polarization conversion resonant reflector 10D (right side in FIG. 13) transmits a circularly polarized radio signal toward the radio wave polarization conversion resonance reflector 10D. Here, as shown in FIG. 12, the wireless IC tag 8 is arranged along the X axis including the center O of the patch conductor 3D. When the electric field component of the rotating circularly-polarized radio signal transmitted from the interrogator 20 is Ec, the circularly-polarized radio signal is two linearly-polarized radio signals whose orthogonal phase differences are different by 90 degrees. Thus, the electric field components of the two decomposed radio signals can be expressed as Eca and Ecb, where the electric field component Ecb is a left-handed circularly polarized wave whose phase is advanced by 90 degrees from the electric field component Eca.

まず、この2つの直線偏波の無線信号が電波偏波変換共振反射器10Dに入射した場合のパッチ導体3Dからの再放射について説明する。電界成分Ecb及びEcaをそれぞれ別々に考え、まず電界成分Ecbの動作について説明する。図12及び図13において、電界成分Ecbはパッチ導体3DのY軸に平行となるように入射し、共振軸RA22で平面回路共振する。それにより、パッチ導体3D上には、図14に示すようにY軸に平行な電流Icbが流れる。これにより、電流Icbはストリップ導体11及びパッチ導体3DのX軸側の端部を介してパッチ導体3Dに流れる。それ故、ストリップ導体11を含む位相調整伝送線路は例えば管内波長λgの1/4の長さを有するので、パッチ導体3D上にはIcbとは直交し、X軸方向で電流Icbより90度だけ位相が遅れた電流Icb(−90゜)(ここでの位相表示は、電流Icbを基準にした位相であり、以下同様である。)が生じる。電流Icb(−90゜)は、電流Icbより90度だけ位相が遅れていることを示している。従って、図14に示すように、パッチ導体3D上には、互いに直交した電流Icb及びIcb(−90゜)が流れる。   First, re-radiation from the patch conductor 3D when the two linearly polarized radio signals are incident on the radio wave polarization conversion resonant reflector 10D will be described. Considering the electric field components Ecb and Eca separately, the operation of the electric field component Ecb will be described first. 12 and 13, the electric field component Ecb is incident so as to be parallel to the Y axis of the patch conductor 3 </ b> D, and undergoes planar circuit resonance along the resonance axis RA22. Thereby, a current Icb parallel to the Y axis flows on the patch conductor 3D as shown in FIG. As a result, the current Icb flows to the patch conductor 3D through the strip conductor 11 and the end portions on the X-axis side of the patch conductor 3D. Therefore, since the phase adjustment transmission line including the strip conductor 11 has a length of ¼ of the guide wavelength λg, for example, it is orthogonal to Icb on the patch conductor 3D and only 90 degrees from the current Icb in the X-axis direction. A current Icb (-90 °) whose phase is delayed (the phase display here is a phase based on the current Icb, and so on). The current Icb (−90 °) indicates that the phase is delayed by 90 degrees from the current Icb. Therefore, as shown in FIG. 14, currents Icb and Icb (−90 °) orthogonal to each other flow on the patch conductor 3D.

次いで、円偏波の無線信号を形成するもう一方の直線偏波の電界成分Ecaの動作について図15を参照して以下に説明する。図15のX軸に平行な直線偏波の電界成分Ecaは、パッチ導体3Dに入射し、共振軸RA21で平面回路共振する。その結果、図15に示すように、電界成分Ecaと平行した電流Icaが発生する。ところで、電界成分Ecaは上述した電界成分Ecbに比較して位相が90度遅れているから、電流Icaも電流Icbに比べて位相が90度だけ遅れている。従って、電流IcaはIca=Icb(−90゜)と表すことができる。なお、電界成分Eca及びEcbは互いに絶対値が等しいものとしている。一方、電流Ica=Icb(−90゜)は、ストリップ導体11を含む位相調整伝送線路を流れ、パッチ導体3DのY軸方向にも流れる。ところが、当該位相調整伝送線路はその長さが例えばλg/4であるから、90度の遅延を伴う。従って、パッチ導体3DのY軸方向に流れる電流は電流Icaよりさらに90度遅れ、その結果、当該電流はIcb(−180゜)として表すことができる。円偏波の無線信号は上記の2つの電界成分が同時に送られているので、それらによりパッチ導体を流れる電流は合成されたものとなる。すなわち、パッチ導体3DのY軸方向の電流は位相が180度異なるから打ち消され、図16に示すように、X軸方向の電流(2Ica)のみが生じる。当該電流(2Ica)により生じる放射電界は、X軸方向に変化する直線偏波の無線信号となる。従って、パッチ導体3Dの前方において、X軸方向に平行に配置された直線偏波のアンテナを有する無線ICタグ8は、パッチ導体3Dからの直線偏波の無線信号と電界軸方向が一致し、有効的にパッチ導体3Dからの無線信号を受信して通信が可能となる。   Next, the operation of another linearly polarized electric field component Eca that forms a circularly polarized radio signal will be described with reference to FIG. The linearly polarized electric field component Eca parallel to the X-axis in FIG. 15 is incident on the patch conductor 3D and undergoes planar circuit resonance along the resonance axis RA21. As a result, as shown in FIG. 15, a current Ica parallel to the electric field component Eca is generated. Incidentally, since the phase of the electric field component Eca is delayed by 90 degrees compared to the electric field component Ecb described above, the phase of the current Ica is also delayed by 90 degrees compared to the current Icb. Therefore, the current Ica can be expressed as Ica = Icb (−90 °). The electric field components Eca and Ecb are assumed to have the same absolute value. On the other hand, the current Ica = Icb (−90 °) flows through the phase adjustment transmission line including the strip conductor 11 and also flows in the Y-axis direction of the patch conductor 3D. However, since the length of the phase adjustment transmission line is λg / 4, for example, there is a delay of 90 degrees. Therefore, the current flowing in the Y-axis direction of the patch conductor 3D is further delayed by 90 degrees from the current Ica, and as a result, the current can be expressed as Icb (−180 °). The circularly polarized radio signal has the above two electric field components transmitted at the same time, so that the current flowing through the patch conductor is synthesized. That is, the current in the Y-axis direction of the patch conductor 3D is canceled because the phase differs by 180 degrees, and only the current in the X-axis direction (2Ica) is generated as shown in FIG. The radiation electric field generated by the current (2Ica) is a linearly polarized radio signal that changes in the X-axis direction. Therefore, the wireless IC tag 8 having a linearly polarized antenna arranged in parallel with the X-axis direction in front of the patch conductor 3D matches the linearly polarized wireless signal from the patch conductor 3D with the electric field axis direction. Communication is possible by effectively receiving a radio signal from the patch conductor 3D.

また、無線ICタグ8より返信される、タグ情報に従って変調された無線信号は、上記の動作とは逆の動作で偏波変換された後、円偏波の無線信号が質問器20に戻される。従って、当該電波偏波変換共振反射器10Dは円偏波の無線信号を直線偏波の無線信号に変換し、かつその逆の処理を実行する。さらに、電波偏波変換共振反射器10Dの裏面は接地導体2が形成されているために、裏面後方への電波輻射を防止し、その面側を金属体などを含めあらゆる物体に装着することができる。   Further, the radio signal returned from the wireless IC tag 8 and modulated in accordance with the tag information is subjected to polarization conversion by the operation opposite to the above operation, and then the circularly polarized radio signal is returned to the interrogator 20. . Therefore, the radio wave polarization conversion resonant reflector 10D converts the circularly polarized radio signal into a linearly polarized radio signal and executes the reverse process. Further, since the ground conductor 2 is formed on the back surface of the radio wave polarization conversion resonant reflector 10D, it is possible to prevent radio wave radiation to the back of the back surface and attach the surface side to any object including a metal body. it can.

以上の実施形態においては、左旋回の円偏波の例について説明しているが、右旋回の円偏波についても同様である。その場合において、パッチ導体3D上の無線ICタグ8の最適な位置は、無線ICタグ8を上述のX軸方向と直交したY軸方向に沿って配置することが好ましい。図12において点線は、その場合の配置を示している。   In the above embodiment, the example of the left-handed circularly polarized wave is described, but the same applies to the right-handed circularly polarized wave. In that case, the optimum position of the wireless IC tag 8 on the patch conductor 3D is preferably arranged along the Y-axis direction orthogonal to the above-described X-axis direction. In FIG. 12, the dotted line indicates the arrangement in that case.

第5の実施形態の第1の変形例.
図17は本発明の第5の実施形態の第1の変形例に係る金属対応無線ICタグ装置50Eの構成及び動作を示す平面図である。図18は図17の金属対応無線ICタグ装置50Eと、質問器20との配置関係及び動作を示す、図17のF−F’線についての縦断面図及び質問器20の側面図である。当該第1の変形例においては、金属対応無線ICタグ装置50Eは電波偏波変換共振反射器10Eを備え、質問器20から直線偏波の無線信号が到来したときの動作について以下に説明する。
First modified example of the fifth embodiment.
FIG. 17: is a top view which shows the structure and operation | movement of the metal corresponding | compatible radio | wireless IC tag apparatus 50E which concern on the 1st modification of the 5th Embodiment of this invention. 18 is a longitudinal sectional view taken along line FF ′ in FIG. 17 and a side view of the interrogator 20, showing the positional relationship and operation between the metal-compatible wireless IC tag device 50E in FIG. 17 and the interrogator 20. In the first modification, the metal-compatible wireless IC tag device 50E includes the radio wave polarization conversion resonant reflector 10E, and the operation when a linearly polarized radio signal arrives from the interrogator 20 will be described below.

図18において、質問器20からの直線偏波の無線信号は、図18の上下方向に電界Eiが変動するものとする。電波偏波変換共振反射器10Eが存在しない場合、質問器20からの直線偏波の無線信号Eiは無線ICタグ8と直交するため信号強度が比較的大きい場合であっても無線ICタグ8は動作不可能である。   In FIG. 18, it is assumed that the electric field Ei of the radio signal of linear polarization from the interrogator 20 varies in the vertical direction of FIG. When the radio wave polarization conversion resonant reflector 10E is not present, the linearly polarized radio signal Ei from the interrogator 20 is orthogonal to the radio IC tag 8, so that even if the signal intensity is relatively high, the radio IC tag 8 Inoperable.

次いで、電波偏波変換共振反射器10Eを、質問器20からの送信信号に対して無線ICタグ8の後方に配置した場合においては、質問器20からの直線偏波の無線信号は直交した無線ICタグ8には直接には作用せず、電波偏波変換共振反射器10Eに到達する。質問器20からの無線信号の電界成分EiはY軸と平行な共振軸RA22により平面回路共振し、その結果、正方形状のパッチ導体3E上に、電界Eiと平行したY軸に沿った電流Iraを発生する。ここで、電流Iraは、ストリップ導体11を含む位相調整伝送線路を介してパッチ導体3Eの+X軸側の端部に流れ込み、パッチ導体3EにおいてX軸方向に流れ、当該X軸に沿った電流をIrbとする。ここで、ストリップ導体11の線路長を例えばλg/4とすれば、パッチ導体3E上で電流IraとIrbは直交し、電流Irbは電流Iraに比べて90度遅れた電流となる。当該パッチ導体3E上を流れる電流はそれに平行した電界成分を放射する。電流Ira及びIrbに対する放射電界をそれぞれ電界成分Era及びErbとすると、電界成分Erbは電界成分Eraに対して位相が90度遅れた電界成分となる。その結果、2つの電界成分EraとErbによる合成電界成分Ecは円偏波となり、回転しながらパッチ導体3Eから再放射されることになる。従って、回転する電界成分はその前方に配置された無線ICタグ8のダイポールアンテナと平行した電界成分を有するため、無線ICタグ8は無線信号を受信して起動する。   Next, when the radio wave polarization conversion resonant reflector 10E is arranged behind the wireless IC tag 8 with respect to the transmission signal from the interrogator 20, the linearly polarized radio signal from the interrogator 20 is an orthogonal radio. The IC tag 8 does not act directly, and reaches the radio wave polarization conversion resonant reflector 10E. The electric field component Ei of the radio signal from the interrogator 20 undergoes planar circuit resonance by the resonance axis RA22 parallel to the Y axis, and as a result, the current Ira along the Y axis parallel to the electric field Ei is formed on the square patch conductor 3E. Is generated. Here, the current Ira flows into the end on the + X-axis side of the patch conductor 3E via the phase adjustment transmission line including the strip conductor 11, flows in the X-axis direction in the patch conductor 3E, and the current along the X-axis is Let Irb. Here, if the line length of the strip conductor 11 is λg / 4, for example, the currents Ira and Irb are orthogonal to each other on the patch conductor 3E, and the current Irb is a current delayed by 90 degrees compared to the current Ira. The current flowing on the patch conductor 3E radiates an electric field component parallel thereto. Assuming that the radiated electric fields for the currents Ira and Irb are electric field components Era and Erb, respectively, the electric field component Erb is an electric field component whose phase is delayed by 90 degrees with respect to the electric field component Era. As a result, the combined electric field component Ec by the two electric field components Era and Erb is circularly polarized and re-radiated from the patch conductor 3E while rotating. Therefore, since the rotating electric field component has an electric field component parallel to the dipole antenna of the wireless IC tag 8 arranged in front of the rotating electric field component, the wireless IC tag 8 receives the wireless signal and starts.

これに応答して、無線ICタグ8は、タグ情報に従って無線搬送波をデジタル変調して、その無線信号を電波偏波変換共振反射器10Eを介して質問器20に返信する。ここでは、電波偏波変換共振反射器10Eでは、上記と逆の動作が実行され、質問器20に対して、質問器20から送信された無線信号と同一の直線偏波で返信される。質問器20は無線ICタグ8からの無線信号をデジタル復調してタグ情報を取り出す。質問器20からの直線偏波の無線信号の方向を例えばY軸方向と平行な方向で固定した場合において、図17の無線ICタグ8の位置からパッチ導体3Eの中心Oを中心として回転させれば、上述の円偏波での効果は小さくなるが、無線ICタグ8の放射軸と平行した電界成分が発生するので、無線ICタグ8は起動する。また、電波偏波変換共振反射器10Eの接地導体2側への電波放射はないため、当該無線ICタグ8を接地導体2側を物体への実装面とする金属対応無線ICタグ装置50Eとして実現できる。   In response to this, the wireless IC tag 8 digitally modulates the wireless carrier wave according to the tag information, and returns the wireless signal to the interrogator 20 via the radio wave polarization conversion resonant reflector 10E. Here, in the radio wave polarization conversion resonant reflector 10E, an operation reverse to the above is executed, and the interrogator 20 is returned with the same linear polarization as the radio signal transmitted from the interrogator 20. The interrogator 20 digitally demodulates the radio signal from the radio IC tag 8 to extract tag information. When the direction of the linearly polarized radio signal from the interrogator 20 is fixed, for example, in a direction parallel to the Y-axis direction, the radio signal can be rotated around the center O of the patch conductor 3E from the position of the radio IC tag 8 in FIG. For example, although the effect of the above-described circular polarization becomes small, an electric field component parallel to the radiation axis of the wireless IC tag 8 is generated, so that the wireless IC tag 8 is activated. Further, since there is no radio wave radiation to the ground conductor 2 side of the radio wave polarization conversion resonant reflector 10E, the radio IC tag 8 is realized as a metal-compatible radio IC tag device 50E with the ground conductor 2 side mounted on the object. it can.

第5の実施形態の第2の変形例.
図19は本発明の第5の実施形態の第2の変形例に係る金属対応無線ICタグ装置50Fの構成及び動作を示す平面図である。当該変形例においては、金属対応無線ICタグ装置50Fは電波偏波変換共振反射器10Fを備え、第5の実施形態に比較して、正方形状のパッチ導体3Dに代えて、互いに直交する共振軸RA21,RA22を有する円形状のパッチ導体3Fを形成したことであり、その他の構成及び作用効果は第5の実施形態及びその第1の変形例と同様である。
Second modification of the fifth embodiment.
FIG. 19 is a plan view showing the configuration and operation of a metal-compatible wireless IC tag device 50F according to a second modification of the fifth embodiment of the present invention. In the modification, the metal-compatible wireless IC tag device 50F includes a radio wave polarization conversion resonant reflector 10F, and in comparison with the fifth embodiment, instead of the square patch conductor 3D, resonance axes orthogonal to each other. This is that a circular patch conductor 3F having RA21 and RA22 is formed, and other configurations and operational effects are the same as those of the fifth embodiment and the first modification thereof.

第6の実施形態.
図20は本発明の第6の実施形態に係る電波偏波変換共振反射装置10Gを備えた金属対応無線ICタグ装置50Gの構成及び動作を示す平面図である。図21は図20のG−G’線についての縦断面図である。第6の実施形態に係る金属対応無線ICタグ装置50Gは電波偏波変換共振反射装置10Gを備え、第1の実施形態に係る金属対応無線ICタグ装置50に比較して、誘電体基板1上に図1のパッチ導体3と同様の構成を有する2個のパッチ導体3P、3Qを有し、これら2個のパッチ導体3P,3Qをλg/2の電気長(なお、λg/2の奇数倍の電気長であってもよい。)を有しストリップ導体12を含むマイクロストリップ線路である接続伝送線路により連結したことを特徴としている。
Sixth embodiment.
FIG. 20 is a plan view showing the configuration and operation of a metal-compatible wireless IC tag device 50G provided with a radio wave polarization conversion resonant reflection device 10G according to the sixth embodiment of the present invention. FIG. 21 is a longitudinal sectional view taken along line GG ′ of FIG. The metal-compatible wireless IC tag device 50G according to the sixth embodiment includes a radio wave polarization conversion resonant reflection device 10G, which is on the dielectric substrate 1 as compared with the metal-compatible wireless IC tag device 50 according to the first embodiment. 1 includes two patch conductors 3P and 3Q having the same configuration as the patch conductor 3 in FIG. 1, and the two patch conductors 3P and 3Q have an electrical length of λg / 2 (an odd multiple of λg / 2). It is characterized by being connected by a connection transmission line which is a microstrip line including the strip conductor 12.

図20において、パッチ導体3Pは切欠部3pa,3pbを有し、互いに直交する共振軸RA31,RA32を有する。また、パッチ導体3Qは切欠部3qa,3qbを有し、互いに直交する共振軸RA41,RA42を有する。パッチ導体3Pの+X軸方向の端部と、パッチ導体3Qの−X軸方向の端部とが、ストリップ導体12を含む接続伝送線路により連結されている。ここで、無線ICタグ8は、例えばパッチ導体3P上であってX軸方向に沿って配置され、無線ICタグ8のアンテナの放射電界軸がX軸方向と平行となるように配置される。   In FIG. 20, the patch conductor 3P has notches 3pa and 3pb, and has resonance axes RA31 and RA32 orthogonal to each other. The patch conductor 3Q has notches 3qa and 3qb, and has resonance axes RA41 and RA42 orthogonal to each other. An end in the + X-axis direction of the patch conductor 3P and an end in the −X-axis direction of the patch conductor 3Q are connected by a connection transmission line including the strip conductor 12. Here, the wireless IC tag 8 is disposed, for example, on the patch conductor 3P and along the X-axis direction, and is disposed so that the radiation electric field axis of the antenna of the wireless IC tag 8 is parallel to the X-axis direction.

以上のように構成された各パッチ導体3P,3Qによる電波偏波変換及び反射の処理は第1の実施形態と同様であるが、質問器20からの円偏波の無線信号は、パッチ導体3P、3Q上で直線偏波の無線信号を放射する電流が発生し、このとき、2個のパッチ導体3P,3Qにより実質的な伝搬利得をさらに増大できる。当該動作について以下に詳細説明する。   The radio wave polarization conversion and reflection processing by the patch conductors 3P and 3Q configured as described above is the same as that of the first embodiment, but the circularly polarized radio signal from the interrogator 20 is the patch conductor 3P. A current for radiating a linearly polarized radio signal is generated on 3Q. At this time, the substantial propagation gain can be further increased by the two patch conductors 3P and 3Q. The operation will be described in detail below.

図20において、円偏波の無線信号が電波偏波変換共振反射装置10Gに入射したとき、2つのパッチ導体3P,3Qには、図3を参照して説明したように、パッチ導体3P,3Q上で直線偏波を発生する電流が誘導される。パッチ導体3Pでは、電流Iaが矢印の方向でパッチ導体3P上を流れ、当該電流はパッチ導体3Pとストリップ導体12を介して接続されたパッチ導体3Q上でも流れる。一方、パッチ導体3Qにも同様の電流Ibが発生し、ストリップ導体12を介してパッチ導体3Pにも流れる。ところで、パッチ導体3Pとパッチ導体3Qとを接続する接続伝送線路の線路長は略半波長であるため、当該接続伝送線路を流れる電流は反転し、さらに相手側のパッチ導体3Q又は3Pに流れ込む電流は反転する。そのため、電流Ia及びIbは相手側のパッチ導体3Q又は3P上では同相電流となり互いに強め合う。その結果、いずれかのパッチ導体3P,3Q上に再放射される無線信号は強められ上部に配置された無線ICタグ8に対してより強い無線信号を与える。そのため、当該実施形態では、第1の実施形態に比較して通信距離をより長くすることができる。   In FIG. 20, when a circularly polarized radio signal is incident on the radio wave polarization conversion resonant reflection device 10G, the patch conductors 3P, 3Q are provided on the two patch conductors 3P, 3Q as described with reference to FIG. A current that induces linear polarization is induced. In the patch conductor 3P, the current Ia flows on the patch conductor 3P in the direction of the arrow, and the current also flows on the patch conductor 3Q connected to the patch conductor 3P via the strip conductor 12. On the other hand, a similar current Ib is generated in the patch conductor 3Q, and also flows through the strip conductor 12 to the patch conductor 3P. By the way, since the line length of the connection transmission line that connects the patch conductor 3P and the patch conductor 3Q is substantially a half wavelength, the current flowing through the connection transmission line is reversed, and further, the current flows into the patch conductor 3Q or 3P on the other side. Is reversed. Therefore, the currents Ia and Ib become in-phase currents on the other side patch conductors 3Q or 3P and strengthen each other. As a result, the radio signal re-radiated on any one of the patch conductors 3P and 3Q is strengthened and gives a stronger radio signal to the radio IC tag 8 disposed on the upper part. Therefore, in this embodiment, the communication distance can be made longer than in the first embodiment.

以上の実施形態においては、2つのパッチ導体3P,3Qを利用した例を示したが、同様の方法でさらに他のパッチ導体を追加した電波偏波変換共振反射器を形成してもよい。すなわち、複数個のパッチ導体を備え、もしくは複数個の電波偏波変換共振反射器を備え、接続伝送線路における上記通信周波数の管内波長の実質的に1/2の奇数倍の線路長を有する接続伝送線路により、上記複数個のパッチ導体又は電波偏波変換共振反射器を、当該すべての電波偏波変換共振反射器が少なくともいずれかの他の電波偏波変換共振反射器に接続されるように互いに接続する。この場合においても、パッチ導体3P,3Qの裏側には接地導体があるため、金属対応無線ICタグとなる。パッチ導体の個数を増加させたとき、開口面積は増大するので、実質的な伝搬利得を増大できる。   In the above embodiment, an example using two patch conductors 3P and 3Q has been shown. However, a radio wave polarization conversion resonant reflector in which another patch conductor is further added may be formed by the same method. That is, a connection having a plurality of patch conductors or a plurality of radio wave polarization conversion resonant reflectors and having a line length that is an odd multiple of 1/2 of the in-tube wavelength of the communication frequency in the connection transmission line The plurality of patch conductors or radio wave polarization conversion resonant reflectors are connected by transmission lines so that all the radio wave polarization conversion resonance reflectors are connected to at least any other radio wave polarization conversion resonance reflector. Connect to each other. Also in this case, since there is a ground conductor on the back side of the patch conductors 3P and 3Q, a metal-compatible wireless IC tag is obtained. When the number of patch conductors is increased, the aperture area increases, so that the substantial propagation gain can be increased.

第7の実施形態.
図22は本発明の第7の実施形態に係る金属対応無線ICタグ装置50Hの構成及び動作を示す平面図である。図23は図22のH−H’線についての縦断面図である。第7の実施形態に係る金属対応無線ICタグ装置50Hは電波偏波変換共振反射器10Hを備え、上記の実施形態に比較して、それ自身で接地導体2を有しないことを特徴としている。
Seventh embodiment.
FIG. 22 is a plan view showing the configuration and operation of a metal-compatible wireless IC tag device 50H according to the seventh embodiment of the present invention. FIG. 23 is a longitudinal sectional view taken along line HH ′ of FIG. The metal-compatible wireless IC tag device 50H according to the seventh embodiment includes a radio wave polarization conversion resonant reflector 10H, and is characterized in that it does not have the ground conductor 2 by itself as compared with the above embodiment.

図22及び図23において、誘電体基板1上に、例えば円形状のパッチ導体3Fを形成しさらにタグ実装台9を介して無線ICタグ8を形成してなる電波偏波変換共振反射器10Hを、その誘電体基板1の裏面が直接に金属板13の表面に装着する。ここで、金属板13の表面は当該電波偏波変換共振反射器10Hの接地導体として動作し、上述と同様の動作で金属対応無線ICタグとなる。この電波偏波変換共振反射器10Hは、それ自身で接地導体を有しないためより簡単に形成できる。   22 and FIG. 23, a radio wave polarization conversion resonant reflector 10H in which, for example, a circular patch conductor 3F is formed on a dielectric substrate 1 and a wireless IC tag 8 is formed via a tag mounting base 9 is provided. The back surface of the dielectric substrate 1 is directly attached to the surface of the metal plate 13. Here, the surface of the metal plate 13 operates as a ground conductor of the radio wave polarization conversion resonant reflector 10H, and becomes a metal-compatible wireless IC tag by the same operation as described above. The radio wave polarization conversion resonant reflector 10H can be formed more easily because it does not have a ground conductor by itself.

第8の実施形態.
図24は本発明の第8の実施形態に係る金属対応無線ICタグ装置50Iの構成及び動作を示す裏面図である。図25は図24のI−I’線についての縦断面図である。図24は、電波偏波変換共振反射器10Iの裏面を示している。第8の実施形態において、金属対応無線ICタグ装置50Iは電波偏波変換共振反射器10Iを備える。
Eighth embodiment.
FIG. 24 is a back view showing the configuration and operation of the metal-compatible wireless IC tag device 50I according to the eighth embodiment of the present invention. 25 is a longitudinal sectional view taken along line II ′ of FIG. FIG. 24 shows the back surface of the radio wave polarization conversion resonant reflector 10I. In the eighth embodiment, the metal-compatible wireless IC tag device 50I includes a radio wave polarization conversion resonant reflector 10I.

図24及び図25において、電波偏波変換共振反射器10Iにおいて、誘電体基板1に代えて誘電体薄膜1Aを形成し、誘電体薄膜1A上に例えば円形状のパッチ導体3Fを形成する。電波偏波変換共振反射器10Iのパッチ導体3Fを下側とし、片側に金属板13(接地導体として動作する)のある誘電体壁14に対して図25のごとく装着する。当該電波偏波変換共振反射器10Iのパッチ導体3Fは誘電体薄膜1Aで被覆され保護されるとともに、誘電体薄膜1Aは例えば各種のラベル等の表示面としても利用できる。無線ICタグ8はその表面に装着される。当該電波偏波変換共振反射器10Iは薄膜で形成できるため、円形状物体等に対しても適用しやすいという特有の作用効果を有する。   24 and 25, in the radio wave polarization conversion resonant reflector 10I, a dielectric thin film 1A is formed instead of the dielectric substrate 1, and a circular patch conductor 3F is formed on the dielectric thin film 1A, for example. As shown in FIG. 25, the patch conductor 3F of the radio wave polarization conversion resonant reflector 10I is placed on the lower side and attached to the dielectric wall 14 having the metal plate 13 (operating as a ground conductor) on one side. The patch conductor 3F of the radio wave polarization conversion resonant reflector 10I is covered and protected by the dielectric thin film 1A, and the dielectric thin film 1A can be used as a display surface for various labels, for example. The wireless IC tag 8 is attached to the surface. Since the radio wave polarization conversion resonant reflector 10I can be formed of a thin film, it has a specific effect that it can be easily applied to a circular object or the like.

第9の実施形態.
図26は本発明の第9の実施形態に係る金属対応無線ICタグ装置50Jの構成及び動作を示す平面図である。図27は図26のJ−J’線についての縦断面図である。第9の実施形態においては、金属対応無線ICタグ装置50Jは電波偏波変換共振反射器10Jを備える。
Ninth embodiment.
FIG. 26 is a plan view showing the configuration and operation of a metal-compatible wireless IC tag device 50J according to the ninth embodiment of the present invention. 27 is a longitudinal sectional view taken along line JJ ′ of FIG. In the ninth embodiment, the metal-compatible wireless IC tag device 50J includes a radio wave polarization conversion resonant reflector 10J.

第9の実施形態においては、第1の実施形態と同様の形状を有するパッチ導体3を例えば銅版やアルミ箔等の導体薄膜で形成する。なお、パッチ導体3を物体に貼り付けるための接着物を併用してもよい。本実施形態では、裏面に金属板13Aを有する誘電体壁14に対して適用できる。通常の電子機器や情報機器などでは、電磁波の不要輻射を抑圧するため、内側に金属コーティングされたプラスチックの筐体がよく使われる。この場合は、コーティングされた金属部を当該電波偏波変換共振反射器10Jの接地導体として用い、筐体ケースの外側にパッチ導体3のみで構成された電波偏波変換共振反射器10Jを形成し、無線ICタグ8をタグ実装台9を介して設置することができる。例えば、図27において、誘電体壁14はプラスチック等の筺体の壁面でその外側にパッチ導体を配置し、無線ICタグ8を実装する。誘電体壁14に金属板13Aなどの導体がない場合には金属等を筺体内側に設けてもよい。さらに、筺体の誘電体壁14の厚さが不足の場合には、後述する図33及び図34の誘電体スペーサ17を用いてもよい。   In the ninth embodiment, the patch conductor 3 having the same shape as that of the first embodiment is formed of a conductive thin film such as a copper plate or an aluminum foil. An adhesive for attaching the patch conductor 3 to the object may be used in combination. The present embodiment can be applied to the dielectric wall 14 having the metal plate 13A on the back surface. In ordinary electronic devices and information devices, a plastic housing with a metal coating on the inside is often used to suppress unnecessary radiation of electromagnetic waves. In this case, the coated metal part is used as the ground conductor of the radio wave polarization conversion resonant reflector 10J, and the radio wave polarization conversion resonance reflector 10J composed of only the patch conductor 3 is formed outside the housing case. The wireless IC tag 8 can be installed via the tag mounting base 9. For example, in FIG. 27, the dielectric wall 14 is a wall surface of a housing such as plastic, and a patch conductor is disposed on the outside thereof, and the wireless IC tag 8 is mounted. If there is no conductor such as the metal plate 13A on the dielectric wall 14, a metal or the like may be provided inside the housing. Furthermore, when the thickness of the dielectric wall 14 is insufficient, a dielectric spacer 17 shown in FIGS. 33 and 34, which will be described later, may be used.

第9の実施形態においては、切欠部を有する矩形形状のパッチ導体3を用いたが、本発明はこれに限らず、円形状又は楕円形状、もしくはその他の形状のパッチ導体を用いてもよい。   In the ninth embodiment, the rectangular patch conductor 3 having a notch is used. However, the present invention is not limited to this, and a patch conductor having a circular shape, an elliptical shape, or other shapes may be used.

第10の実施形態.
図28は本発明の第10の実施形態に係る金属対応無線ICタグ装置50Kの構成及び動作を示す斜視図である。図29は図28の金属対応無線ICタグ装置50Kの詳細を示す拡大図である。本実施形態においては、図28及び図29に示すように、梱包箱15の誘電体壁16上に電波偏波変換共振反射器10Kを実装配置したことを特徴としている。
Tenth embodiment.
FIG. 28 is a perspective view showing the configuration and operation of a metal-compatible wireless IC tag device 50K according to the tenth embodiment of the present invention. FIG. 29 is an enlarged view showing details of the metal-compatible wireless IC tag device 50K of FIG. In this embodiment, as shown in FIGS. 28 and 29, the radio wave polarization conversion resonant reflector 10K is mounted and disposed on the dielectric wall 16 of the packaging box 15.

図30乃至図34は第10の実施形態に係る金属対応無線ICタグ装置50Kの第1乃至第5の実施例50K−1乃至50K−5の構成を示す縦断面図である。ここで、金属対応無線ICタグ装置50Kの第1乃至第5の実施例50K−1乃至50K−5はそれぞれ、電波偏波変換共振反射器10K−1乃至10K−5を備える。   30 to 34 are longitudinal sectional views showing configurations of first to fifth examples 50K-1 to 50K-5 of the metal-compatible wireless IC tag device 50K according to the tenth embodiment. Here, the first to fifth embodiments 50K-1 to 50K-5 of the metal-compatible wireless IC tag device 50K include radio wave polarization conversion resonant reflectors 10K-1 to 10K-5, respectively.

金属対応無線ICタグ装置50Kの第1の実施例50K−1が図示された図30は、誘電体基板1の片面に接地導体2を形成し、他の片面にパッチ導体3を形成した一体形成型電波偏波変換共振反射器10K−1を誘電体壁16上に実装し、無線ICタグ8を設置した例である。当該電波偏波変換共振反射器10K−1は接地導体2を有するため、無線ICタグ8は梱包箱15に限らずいかなる物体にもそのまま実装でき、金属対応無線ICタグ装置50K−1を形成できる。   FIG. 30 showing the first embodiment 50K-1 of the metal-compatible wireless IC tag device 50K is an integral formation in which the ground conductor 2 is formed on one side of the dielectric substrate 1 and the patch conductor 3 is formed on the other side. This is an example in which a radio wave polarization conversion resonant reflector 10K-1 is mounted on a dielectric wall 16 and a wireless IC tag 8 is installed. Since the radio wave polarization conversion resonant reflector 10K-1 has the ground conductor 2, the wireless IC tag 8 can be mounted on any object as it is without being limited to the packing box 15, and the metal-compatible wireless IC tag device 50K-1 can be formed. .

金属対応無線ICタグ装置50Kの第2の実施例50K−2が図示された図31は、誘電体基板1上に接地導体を形成せず、誘電体壁16の内側に接地導体2Aを形成した例である。当該電波偏波変換共振反射器10K−2を梱包箱15の誘電体壁16に貼り付け、誘電体壁16の内側に接地導体2Aを設け、パッチ導体3上にタグ実装台9を介して無線ICタグ8を実装配置する。これにより、金属対応無線ICタグ装置50K−2となり、無線ICタグ8の実質的な伝搬利得を増大できる。   In FIG. 31 illustrating a second embodiment 50K-2 of the metal-compatible wireless IC tag device 50K, the ground conductor is not formed on the dielectric substrate 1, but the ground conductor 2A is formed inside the dielectric wall 16. It is an example. The radio wave polarization conversion resonant reflector 10K-2 is attached to the dielectric wall 16 of the packing box 15, the ground conductor 2A is provided inside the dielectric wall 16, and the patch conductor 3 is wirelessly connected via the tag mounting base 9. The IC tag 8 is mounted and arranged. Thereby, it becomes the metal corresponding | compatible radio | wireless IC tag apparatus 50K-2, and the substantial propagation gain of the radio | wireless IC tag 8 can be increased.

金属対応無線ICタグ装置50Kの第3の実施例50K−3が図示された図32は、パッチ導体3のみからなる電波偏波変換共振反射器10K−3を用いた例である。パッチ導体3からなる電波偏波変換共振反射器10K−3は、梱包箱15の誘電体壁16の外側から貼り付け、内側には金属膜等からなる接地導体2Aを形成する。ここで、無線ICタグ8はパッチ導体3上に実装配置する。パッチ導体3からなる電波偏波変換共振反射器10K−3は、梱包箱15の製作時に印刷技術等により、接地導体2Aを形成しておけば容易に作成できる。また、上述のように、梱包箱15や容器等の壁面内部に接地導体2Aの金属箔があればパッチ導体3をその外壁に貼り付け、無線ICタグ8を搭載した電波偏波変換共振反射器10K−3を設置するだけでよい。これにより、金属対応無線ICタグ装置50K−3を形成できる。   FIG. 32 illustrating a third embodiment 50K-3 of the metal-compatible wireless IC tag device 50K is an example using a radio wave polarization conversion resonant reflector 10K-3 made up of only the patch conductor 3. The radio wave polarization conversion resonant reflector 10K-3 made of the patch conductor 3 is attached from the outside of the dielectric wall 16 of the packing box 15, and the ground conductor 2A made of a metal film or the like is formed on the inside. Here, the wireless IC tag 8 is mounted on the patch conductor 3. The radio wave polarization conversion resonant reflector 10K-3 made of the patch conductor 3 can be easily formed by forming the ground conductor 2A by a printing technique or the like when the packaging box 15 is manufactured. In addition, as described above, if there is a metal foil of the ground conductor 2A inside the wall surface of the packing box 15 or the container, the patch conductor 3 is attached to the outer wall, and the radio wave polarization conversion resonant reflector on which the wireless IC tag 8 is mounted. It is only necessary to install 10K-3. Thereby, the metal-compatible wireless IC tag device 50K-3 can be formed.

金属対応無線ICタグ装置50Kの第4の実施例50K−4が図示された図33は、電波偏波変換共振反射器10K−4に誘電体スペーサ17を用いる方法を示す。例えば、誘電体壁16の厚さが非常に薄ければ、電波偏波変換共振反射器10K−4として十分な効果が得られない場合がある。この場合、誘電体スペーサ17を接地導体2Bとパッチ導体3間に挿入し、誘電体壁16の厚みを増やすことによりその効果を高めることができる。誘電体スペーサ17は誘電体壁16の表側に用いてもよい。これにより、金属対応無線ICタグ装置50K−4を形成でき、これは裏面の電気的影響を受けないため、梱包箱15内の収容物品に関係なく良好な伝搬特性を有する。   FIG. 33 illustrating a fourth embodiment 50K-4 of the metal-compatible wireless IC tag device 50K shows a method in which the dielectric spacer 17 is used in the radio wave polarization conversion resonant reflector 10K-4. For example, if the thickness of the dielectric wall 16 is very thin, a sufficient effect may not be obtained as the radio wave polarization conversion resonant reflector 10K-4. In this case, the effect can be enhanced by inserting the dielectric spacer 17 between the ground conductor 2 </ b> B and the patch conductor 3 and increasing the thickness of the dielectric wall 16. The dielectric spacer 17 may be used on the front side of the dielectric wall 16. Thereby, the metal-compatible wireless IC tag device 50K-4 can be formed, and since this is not affected by the electrical influence on the back surface, it has good propagation characteristics regardless of the contained articles in the packing box 15.

金属対応無線ICタグ装置50Kの第5の実施例50K−5が図示された図34は、電波偏波変換共振反射器10K−5は誘電体壁16の外側への出っ張りを少なくするため、電波偏波変換共振反射器10K−5を誘電体壁16の内側に設け、誘電体壁16及びタグ実装台9を介して無線ICタグ8を実装設置した例である。これにより、金属対応無線ICタグ装置50K−5を形成できる。   FIG. 34 showing a fifth embodiment 50K-5 of the metal-compatible wireless IC tag device 50K shows the radio wave polarization conversion resonant reflector 10K-5 in order to reduce the protrusion of the dielectric wall 16 to the outside. In this example, the polarization conversion resonant reflector 10K-5 is provided inside the dielectric wall 16, and the wireless IC tag 8 is mounted and installed via the dielectric wall 16 and the tag mounting base 9. Thereby, the metal-compatible wireless IC tag device 50K-5 can be formed.

次いで、本発明者らが行った実験とその結果について以下に説明する。   Next, experiments and results obtained by the inventors will be described below.

図35は比較例に係る独立した無線ICタグ8の最大通信距離を質問器20のアンテナ20Aと対向させ測定したときの無線ICタグ8の方位角φを示す平面図である。図36は第1の実施形態に係る金属対応無線ICタグ装置50Kの最大通信距離を測定したときの方位角φを示す平面図である。図37は発明者らによる図35及び図36の実験結果であって、方位角φに対する最大通信距離を示すグラフである。図35において、独立した無線ICタグ8の方位角φをその上方から見て右回りにとる。また、図36においても、パッチ導体3上に無線ICタグ8を載置した金属対応無線ICタグ装置50についても同様とする。   FIG. 35 is a plan view showing the azimuth angle φ of the wireless IC tag 8 when the maximum communication distance of the independent wireless IC tag 8 according to the comparative example is measured facing the antenna 20A of the interrogator 20. FIG. FIG. 36 is a plan view showing the azimuth angle φ when the maximum communication distance of the metal-compatible wireless IC tag device 50K according to the first embodiment is measured. FIG. 37 is a graph showing the maximum communication distance with respect to the azimuth angle φ, which is the experimental result of the inventors of FIGS. 35 and 36. In FIG. 35, the azimuth angle φ of the independent wireless IC tag 8 is clockwise when viewed from above. Also in FIG. 36, the same applies to the metal-compatible wireless IC tag device 50 in which the wireless IC tag 8 is placed on the patch conductor 3.

図37は、第1の実施形態に係る電波偏波変換共振反射器10を用いた金属対応無線ICタグ装置50についての作用効果を示すための実際の利用形態に即した状態での実験結果例である。実験では、独立した無線ICタグ8として、一般的なダイポールアンテナにタグICを実装し、誘電体でモールドされた2.45GHz帯の無線ICタグを用いた。また、タグ通信にとって実用性の高い左旋円偏波を質問器20のアンテナ20Aから送出し、また、タグ取り付け方向の自由度を考慮して、無線ICタグ8を質問器20のアンテナ20Aに対向して回転させ、最大通信距離を測定した。金属対応無線ICタグ装置50は如何なる物体に装着してもよいが、無線ICタグ8自体は装着物体の影響を受けるため、発泡材の表面に貼り付けて比較例として同様の実験を行っている。また、金属対応無線ICタグ装置50に用いた電波偏波変換共振反射器10は、例えば厚さ3mmの発泡材板を誘電体基板1として用いて薄い銅板でパッチ導体3及び接地導体2を形成している。質問器20とこの金属対応無線ICタグ装置50とを対向させ、独立した無線ICタグ8と同様に金属対応無線ICタグ装置50を回転させながら最大通信距離を測定している。   FIG. 37 shows an example of an experimental result in a state in conformity with an actual use form for showing the operation and effect of the metal-compatible wireless IC tag device 50 using the radio wave polarization conversion resonant reflector 10 according to the first embodiment. It is. In the experiment, as an independent wireless IC tag 8, a 2.45 GHz band wireless IC tag in which a tag IC was mounted on a general dipole antenna and molded with a dielectric was used. Further, a left-handed circularly polarized wave that is highly practical for tag communication is transmitted from the antenna 20A of the interrogator 20, and the radio IC tag 8 is opposed to the antenna 20A of the interrogator 20 in consideration of the degree of freedom in the tag mounting direction. And measured the maximum communication distance. The metal-compatible wireless IC tag device 50 may be attached to any object. However, since the wireless IC tag 8 itself is affected by the attached object, it is attached to the surface of a foam material and a similar experiment is performed as a comparative example. . In addition, the radio wave polarization conversion resonant reflector 10 used in the metal-compatible wireless IC tag device 50 uses, for example, a 3 mm thick foam material plate as the dielectric substrate 1 to form the patch conductor 3 and the ground conductor 2 with a thin copper plate. is doing. The interrogator 20 and the metal-compatible wireless IC tag device 50 are opposed to each other, and the maximum communication distance is measured while rotating the metal-compatible wireless IC tag device 50 in the same manner as the independent wireless IC tag 8.

測定結果によれば、図37から明らかなように、無線ICタグ8単独の通信距離に対して、電波偏波変換共振反射器10を用いた金属対応無線ICタグ50は、最大通信距離が約2倍に増大している。この効果は、円偏波が電波偏波変換共振反射器10により直線偏波に変換され無線ICタグに効率よく無線信号が供給された効果分の3dBと、当該電波偏波変換共振反射器10の共振効果による無線信号の電界強化分の3dBによる改善と分析される。なお、無線ICタグ8の回転に伴う最大通信距離の変動は、主として質問器20のアンテナ20Aの軸比によるものである。   According to the measurement results, as apparent from FIG. 37, the maximum communication distance of the metal-compatible wireless IC tag 50 using the radio wave polarization conversion resonant reflector 10 is about the communication distance of the wireless IC tag 8 alone. It has doubled. This effect is obtained by converting the circularly polarized wave into a linearly polarized wave by the radio wave polarization converting resonant reflector 10 and efficiently supplying a radio signal to the radio IC tag. It is analyzed that the electric field enhancement of the radio signal due to the resonance effect of 3 dB is improved by 3 dB. The fluctuation of the maximum communication distance accompanying the rotation of the wireless IC tag 8 is mainly due to the axial ratio of the antenna 20A of the interrogator 20.

以上説明したように、本発明の実施形態によれば、特徴ある平面形の電波偏波変換共振反射器10と、その前方に通常の小型の無線ICタグ8を配置する。そして、無線ICタグ8と電波偏波変換共振反射器10の特有の位置関係により、到来無線信号の偏波変換を行いその再放射電界軸と無線ICタグ8の放射電界軸とを合わせ、無線ICタグ8に有効な無線信号を与える。無線ICタグ8は着脱可能であってその配置関係を変更することにより、異なった偏波に効果的に対応することができる。また、電波偏波変換共振反射器10の平面回路共振により、信号電力密度を高め、より強い無線信号を無線ICタグ8に与える。これにより、無線ICタグ8に係る伝搬利得を実質的に増大し、より長い距離での通信を可能とする。電波偏波変換共振反射器10上に配置する無線ICタグ8は、パッチ導体3の面積に比べてその上に占有する無線ICタグ8との面積比が小さいほど、到来波に対する遮蔽効果が小さいため、小型無線ICタグ8の通信能力の改善効果が大きく得られる。さらに、電波偏波変換共振反射器10を小型無線ICタグ8の背後に設置することにより、無線ICタグ8にとって非常に重要な金属体を含め如何なる物体にも実装できる金属対応無線ICタグ装置50を実現できる。またさらに、特に、無線ICタグ8の取り付けや無線通信の自由度を高める円偏波通信に最適な手段を与えることができる。通常の1つの無線ICタグ8は、利用される生産、物流、流通、修理、廃棄等の過程において、各種の電波偏波変換共振反射器10の利用により、それらに適した形態、性能が得られるため、無線ICタグ8の活用範囲を広め、経済的な無線ICタグ8を実現できる。   As described above, according to the embodiment of the present invention, a characteristic planar radio wave polarization conversion resonant reflector 10 and a normal small-sized wireless IC tag 8 are arranged in front of it. Then, based on the specific positional relationship between the wireless IC tag 8 and the radio wave polarization conversion resonant reflector 10, the incoming wireless signal is subjected to polarization conversion, the re-radiation electric field axis and the radiation electric field axis of the wireless IC tag 8 are combined, and wireless An effective radio signal is given to the IC tag 8. The wireless IC tag 8 is detachable, and by changing the arrangement relationship thereof, it is possible to effectively cope with different polarized waves. Further, the plane power circuit resonance of the radio wave polarization conversion resonant reflector 10 increases the signal power density and gives a stronger wireless signal to the wireless IC tag 8. Thereby, the propagation gain related to the wireless IC tag 8 is substantially increased, and communication over a longer distance becomes possible. The wireless IC tag 8 disposed on the radio wave polarization conversion resonant reflector 10 has a smaller shielding effect against incoming waves as the area ratio of the wireless IC tag 8 occupied on the wireless IC tag 8 is smaller than the area of the patch conductor 3. Therefore, the effect of improving the communication capability of the small wireless IC tag 8 can be greatly obtained. Further, by installing the radio wave polarization conversion resonant reflector 10 behind the small wireless IC tag 8, a metal-compatible wireless IC tag device 50 that can be mounted on any object including a metal body very important for the wireless IC tag 8. Can be realized. Furthermore, in particular, it is possible to provide an optimum means for circular polarization communication that increases the degree of freedom of attachment of the wireless IC tag 8 and wireless communication. One normal wireless IC tag 8 can obtain a suitable form and performance by using various radio wave polarization conversion resonant reflectors 10 in the process of production, distribution, distribution, repair, disposal, etc. Therefore, the use range of the wireless IC tag 8 can be widened, and the economical wireless IC tag 8 can be realized.

本実施形態に係る電波偏波変換共振反射器は、独立して形成できるが、予め、梱包箱や各種機器筐体等の物品に、その外壁を利用し組み込んでおけば、例えば小型で薄い無線ICタグ8をその壁面に装着するだけで、実質的に伝搬利得を増大させ、簡便で実用性の高い無線ICタグ装置50となる。当該金属対応無線ICタグ装置50を利用することにより、RFIDシステムとして用途に合った高性能システムが実現できる。また、将来、他の無線通信装置の超小型化に伴い本発明の実施形態に係る装置を同様に利用できる。   The radio wave polarization conversion resonant reflector according to the present embodiment can be formed independently. However, if the outer wall is incorporated in an article such as a packing box or various equipment housings in advance, for example, a small and thin wireless By simply mounting the IC tag 8 on the wall surface, the propagation gain is substantially increased, and the wireless IC tag device 50 is simple and highly practical. By using the metal-compatible wireless IC tag device 50, a high-performance system suitable for the application can be realized as an RFID system. In the future, the devices according to the embodiments of the present invention can be used in the same manner as other wireless communication devices are miniaturized.

以上の実施形態においては、1層の誘電体基板1を用いているが、本発明はこれに限らず、2層以上の誘電体基板又は誘電体を用いてもよい。   In the above embodiment, the one-layer dielectric substrate 1 is used. However, the present invention is not limited to this, and a two-layer or more dielectric substrate or dielectric may be used.

本発明の第1の実施形態に係る電波偏波変換共振反射器10の構成を示す平面図である。1 is a plan view showing a configuration of a radio wave polarization conversion resonant reflector 10 according to a first embodiment of the present invention. 図1のA−A’線についての縦断面図である。It is a longitudinal cross-sectional view about the A-A 'line | wire of FIG. 図1の電波偏波変換共振反射器10上に無線ICタグ8を載置してなる金属対応無線ICタグ装置50の構成及び動作を示す平面図である。It is a top view which shows the structure and operation | movement of the metal corresponding | compatible radio | wireless IC tag apparatus 50 by which the radio | wireless IC tag 8 is mounted on the radio wave polarization conversion resonant reflector 10 of FIG. 図3の金属対応無線ICタグ装置50と、質問器20との配置関係及び動作を示す、図3のB−B’線についての縦断面図及び質問器20の側面図である。FIG. 4 is a longitudinal sectional view taken along line B-B ′ in FIG. 3 and a side view of the interrogator 20, showing an arrangement relationship and operation between the metal-compatible wireless IC tag device 50 in FIG. 3 and the interrogator 20. 本発明の第1の実施形態の変形例に係る金属対応無線ICタグ装置50の構成及び動作を示す平面図である。It is a top view which shows the structure and operation | movement of the metal corresponding | compatible radio | wireless IC tag apparatus 50 which concern on the modification of the 1st Embodiment of this invention. 図5の金属対応無線ICタグ装置50と、質問器20との配置関係及び動作を示す、図5のC−C’線についての縦断面図及び質問器20の側面図である。FIG. 6 is a longitudinal sectional view taken along line C-C ′ in FIG. 5 and a side view of the interrogator 20, showing a positional relationship and operation between the metal-compatible wireless IC tag device 50 in FIG. 5 and the interrogator 20. 本発明の第2の実施形態に係る金属対応無線ICタグ装置50Aの構成を示す平面図である。It is a top view which shows the structure of 50 A of metal corresponding | compatible radio | wireless IC tag apparatuses which concern on the 2nd Embodiment of this invention. 図7のD−D’線についての縦断面図である。It is a longitudinal cross-sectional view about the D-D 'line | wire of FIG. 図7及び図8の無線ICタグ8の構成及び動作を示す平面図である。It is a top view which shows the structure and operation | movement of the radio | wireless IC tag 8 of FIG.7 and FIG.8. 本発明の第3の実施形態に係る金属対応無線ICタグ装置50Bの構成を示す平面図である。It is a top view which shows the structure of the metal corresponding | compatible radio | wireless IC tag apparatus 50B which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施形態に係る金属対応無線ICタグ装置50Cの構成を示す平面図である。It is a top view which shows the structure of 50 C of metal corresponding | compatible radio | wireless IC tag apparatuses which concern on the 4th Embodiment of this invention. 本発明の第5の実施形態に係る金属対応無線ICタグ装置50Dの構成及び動作を示す平面図である。It is a top view which shows the structure and operation | movement of metal corresponding | compatible radio | wireless IC tag apparatus 50D which concern on the 5th Embodiment of this invention. 図12の金属対応無線ICタグ装置50Dと、質問器20との配置関係及び動作を示す、図12のE−E’線についての縦断面図及び質問器20の側面図である。FIG. 13 is a longitudinal sectional view taken along line E-E ′ of FIG. 12 and a side view of the interrogator 20, showing the arrangement relationship and operation between the metal-compatible wireless IC tag device 50 </ b> D of FIG. 12 and the interrogator 20. 図12のパッチ導体3D上に無線ICタグ8を載置したときの第1の動作を示す平面図である。FIG. 13 is a plan view showing a first operation when the wireless IC tag 8 is placed on the patch conductor 3D of FIG. 図12のパッチ導体3D上に無線ICタグ8を載置したときの第2の動作を示す平面図である。It is a top view which shows the 2nd operation | movement when the radio | wireless IC tag 8 is mounted on the patch conductor 3D of FIG. 図12のパッチ導体3D上に無線ICタグ8を載置したときの第3の動作を示す平面図である。It is a top view which shows the 3rd operation | movement when the radio | wireless IC tag 8 is mounted on the patch conductor 3D of FIG. 本発明の第5の実施形態の第1の変形例に係る金属対応無線ICタグ装置50Eの構成及び動作を示す平面図である。It is a top view which shows the structure and operation | movement of the metal corresponding | compatible radio | wireless IC tag apparatus 50E which concern on the 1st modification of the 5th Embodiment of this invention. 図17の金属対応無線ICタグ装置50Eと、質問器20との配置関係及び動作を示す、図17のF−F’線についての縦断面図及び質問器20の側面図である。FIG. 18 is a longitudinal sectional view taken along line F-F ′ in FIG. 17 and a side view of the interrogator 20, showing the arrangement relationship and operation between the metal-compatible wireless IC tag device 50 </ b> E in FIG. 17 and the interrogator 20. 本発明の第5の実施形態の第2の変形例に係る金属対応無線ICタグ装置50Fの構成及び動作を示す平面図である。It is a top view which shows the structure and operation | movement of the metal corresponding | compatible radio | wireless IC tag apparatus 50F which concern on the 2nd modification of the 5th Embodiment of this invention. 本発明の第6の実施形態に係る電波偏波変換共振反射装置10Gを備えた金属対応無線ICタグ装置50Gの構成及び動作を示す平面図である。It is a top view which shows the structure and operation | movement of the metal corresponding | compatible radio | wireless IC tag apparatus 50G provided with the radio wave polarization conversion resonant reflection apparatus 10G which concerns on the 6th Embodiment of this invention. 図20のG−G’線についての縦断面図である。It is a longitudinal cross-sectional view about the G-G 'line | wire of FIG. 本発明の第7の実施形態に係る金属対応無線ICタグ装置50Hの構成及び動作を示す平面図である。It is a top view which shows the structure and operation | movement of the metal corresponding | compatible radio | wireless IC tag apparatus 50H which concern on the 7th Embodiment of this invention. 図22のH−H’線についての縦断面図である。It is a longitudinal cross-sectional view about the H-H 'line | wire of FIG. 本発明の第8の実施形態に係る金属対応無線ICタグ装置50Iの構成及び動作を示す裏面図である。It is a back view which shows the structure and operation | movement of the metal corresponding | compatible radio | wireless IC tag apparatus 50I which concern on the 8th Embodiment of this invention. 図24のI−I’線についての縦断面図である。FIG. 25 is a longitudinal sectional view taken along line I-I ′ of FIG. 24. 本発明の第9の実施形態に係る金属対応無線ICタグ装置50Jの構成及び動作を示す平面図である。It is a top view which shows the structure and operation | movement of the metal corresponding | compatible radio | wireless IC tag apparatus 50J which concern on the 9th Embodiment of this invention. 図26のJ−J’線についての縦断面図である。It is a longitudinal cross-sectional view about the J-J 'line | wire of FIG. 本発明の第10の実施形態に係る金属対応無線ICタグ装置50Kの構成及び動作を示す斜視図である。It is a perspective view which shows the structure and operation | movement of the metal corresponding | compatible radio | wireless IC tag apparatus 50K which concern on the 10th Embodiment of this invention. 図28の金属対応無線ICタグ装置50Kの詳細を示す拡大図である。It is an enlarged view which shows the detail of the metal-compatible radio | wireless IC tag apparatus 50K of FIG. 第10の実施形態に係る金属対応無線ICタグ装置50Kにおける第1の実施例50K−1の構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows the structure of 1st Example 50K-1 in the metal corresponding | compatible radio | wireless IC tag apparatus 50K which concerns on 10th Embodiment. 第10の実施形態に係る金属対応無線ICタグ装置50Kにおける第2の実施例50K−2の構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows the structure of 2nd Example 50K-2 in the metal corresponding | compatible radio | wireless IC tag apparatus 50K which concerns on 10th Embodiment. 第10の実施形態に係る金属対応無線ICタグ装置50Kにおける第3の実施例50K−3の構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows the structure of 3rd Example 50K-3 in the metal corresponding | compatible radio | wireless IC tag apparatus 50K which concerns on 10th Embodiment. 第10の実施形態に係る金属対応無線ICタグ装置50Kにおける第4の実施例50K−4の構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows the structure of 4th Example 50K-4 in the metal corresponding | compatible radio | wireless IC tag apparatus 50K which concerns on 10th Embodiment. 第10の実施形態に係る金属対応無線ICタグ装置50Kにおける第5の実施例50K−5の構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows the structure of 5th Example 50K-5 in the metal corresponding | compatible radio | wireless IC tag apparatus 50K which concerns on 10th Embodiment. 比較例に係る無線ICタグ8の最大通信距離を測定したときの無線ICタグ8の方位角φを示す平面図である。It is a top view which shows azimuth angle (phi) of the wireless IC tag 8 when the maximum communication distance of the wireless IC tag 8 which concerns on a comparative example is measured. 第1の実施形態に係る金属対応無線ICタグ装置50の最大通信距離を測定したときの金属対応無線ICタグ装置50の方位角φを示す平面図である。It is a top view which shows azimuth angle (phi) of the metal corresponding | compatible radio | wireless IC tag apparatus 50 when the maximum communication distance of the metal corresponding | compatible radio | wireless IC tag apparatus 50 which concerns on 1st Embodiment is measured. 発明者らによる図35及び図36の実験結果であって、方位角φに対する最大通信距離を示すグラフである。FIG. 37 is a graph showing the maximum communication distance with respect to the azimuth angle φ, which is an experiment result of the inventors of FIGS. 35 and 36. FIG. 従来技術に係る一般的な独立した無線ICタグ8の構成を示す平面図である。It is a top view which shows the structure of the general independent radio | wireless IC tag 8 which concerns on a prior art. 図38のタグIC8aの構成を示すブロック図である。It is a block diagram which shows the structure of tag IC8a of FIG.

符号の説明Explanation of symbols

1…誘電体基板、1A…誘電体薄膜、2,2A,2B…接地導体、3,3A,3B,3C,3D,3E,3F,3P,3Q…パッチ導体、3S…スロット、3a,3b,3c,3d,3pa,3pb,3qa,3qb…切欠部、3e…突出部、8…無線ICタグ、8a…タグIC、8b…ダイポールアンテナ、8c…誘電体基板、9…タグ実装台、10,10A、10B,10C,10D,10E,10F,10H,10I,10K,10K−1,10K−2,10K−3,10K−4,10K−5…電波偏波変換共振反射器、10G…電波偏波変換共振反射装置、11…位相調整ストリップ導体、12…接続ストリップ導体、13,13A…金属板、14…誘電体壁、15…梱包箱、16…誘電体板、17…誘電体スペーサ、20…質問器、20A…アンテナ、30…非同期MPU、31…不揮発性メモリ、32…電源再生回路、33…高周波通信回路、34…外部通信ポート、50,50A,50B,50C,50D,50E,50F,50G,50H,50I,50J,50K−1,50K−2,50K−3,50K−4,50K−5…金属対応無線ICタグ装置、RA1,RA2,RA11,RA12,RA21,RA22,RA31,RA32,RA41,RA42…共振軸。 DESCRIPTION OF SYMBOLS 1 ... Dielectric substrate, 1A ... Dielectric thin film, 2, 2A, 2B ... Ground conductor, 3, 3A, 3B, 3C, 3D, 3E, 3F, 3P, 3Q ... Patch conductor, 3S ... Slot, 3a, 3b, 3c, 3d, 3pa, 3pb, 3qa, 3qb ... notch, 3e ... protrusion, 8 ... wireless IC tag, 8a ... tag IC, 8b ... dipole antenna, 8c ... dielectric substrate, 9 ... tag mounting base, 10, 10A, 10B, 10C, 10D, 10E, 10F, 10H, 10I, 10K, 10K-1, 10K-2, 10K-3, 10K-4, 10K-5 ... Radio wave polarization conversion resonant reflector, 10G ... Radio wave polarization Wave conversion resonant reflection device, 11 ... phase adjusting strip conductor, 12 ... connection strip conductor, 13, 13A ... metal plate, 14 ... dielectric wall, 15 ... packing box, 16 ... dielectric plate, 17 ... dielectric spacer, 20 ... Interrogator 20A ... antenna, 30 ... asynchronous MPU, 31 ... nonvolatile memory, 32 ... power regeneration circuit, 33 ... high frequency communication circuit, 34 ... external communication port, 50, 50A, 50B, 50C, 50D, 50E, 50F, 50G, 50H , 50I, 50J, 50K-1, 50K-2, 50K-3, 50K-4, 50K-5 ... Metal-compatible wireless IC tag devices, RA1, RA2, RA11, RA12, RA21, RA22, RA31, RA32, RA41, RA42: Resonance axis.

Claims (1)

直線偏波の電界放射成分を有する無線ICタグと、
互いに実質的に平行な第1と第2の面を有する誘電体と、
上記誘電体の第1の面上に設けられた接地導体と、
上記誘電体の第2の面上に設けられ、互いに直交する第1と第2の共振軸の各両端で開放境界となり、上記第1と第2の共振軸でそれぞれ所定の第1と第2の共振周波数で平面回路共振するパッチ導体からなる電波変換共振反射器とを備え、
上記無線ICタグの直線偏波の電界放射成分の方向と、上記電波変換共振反射器の1つの共振軸とが互いに実質的に一致するように、上記無線ICタグを上記電波変換共振反射器の誘電体の第2の面上又は上記パッチ導体上に設け、
上記第1の共振周波数と、上記第2の共振周波数と、上記第1の共振周波数と上記第2の共振周波数との間の周波数のうちのいずれかである通信周波数を有して受信波として入射する第1の無線信号を上記パッチ導体で平面回路共振させ、第2の無線信号に変換して上記無線ICタグに反射させ、上記無線ICタグからの上記通信周波数を有する第3の無線信号を上記パッチ導体に平面回路共振させ、第4の無線信号に変換して送信波として反射するように構成したことを特徴とする金属対応無線ICタグ装置。
A wireless IC tag having a linearly polarized field emission component;
A dielectric having first and second surfaces substantially parallel to each other;
A ground conductor provided on the first surface of the dielectric;
Provided on the second surface of the dielectric, open at both ends of the first and second resonance axes orthogonal to each other, and predetermined first and second at the first and second resonance axes, respectively. A radio wave conversion resonant reflector comprising a patch conductor that resonates in a planar circuit at a resonance frequency of
The wireless IC tag is attached to the radio wave conversion resonant reflector so that the direction of the linearly polarized field emission component of the radio IC tag and one resonance axis of the radio wave conversion resonant reflector substantially coincide with each other. On the second surface of the dielectric or on the patch conductor;
As a received wave having a communication frequency that is one of the first resonance frequency, the second resonance frequency, and the frequency between the first resonance frequency and the second resonance frequency. The incident first radio signal is caused to resonate in a planar circuit by the patch conductor, converted to a second radio signal, reflected by the radio IC tag, and a third radio signal having the communication frequency from the radio IC tag. A metal-compatible wireless IC tag device, wherein the patch conductor is made to resonate in a planar circuit, is converted into a fourth wireless signal, and is reflected as a transmission wave.
JP2006310443A 2006-11-16 2006-11-16 Metal-compatible wireless IC tag device Expired - Lifetime JP4235663B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006310443A JP4235663B2 (en) 2006-11-16 2006-11-16 Metal-compatible wireless IC tag device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006310443A JP4235663B2 (en) 2006-11-16 2006-11-16 Metal-compatible wireless IC tag device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004114426A Division JP3902192B2 (en) 2004-04-08 2004-04-08 Radio wave polarization conversion resonant reflector, radio wave polarization conversion resonance reflector, wireless communication system, metal-compatible wireless IC tag device, article, and RFID system

Publications (2)

Publication Number Publication Date
JP2007053810A true JP2007053810A (en) 2007-03-01
JP4235663B2 JP4235663B2 (en) 2009-03-11

Family

ID=37917866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006310443A Expired - Lifetime JP4235663B2 (en) 2006-11-16 2006-11-16 Metal-compatible wireless IC tag device

Country Status (1)

Country Link
JP (1) JP4235663B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100972875B1 (en) 2007-04-11 2010-07-28 가부시키가이샤 히타치세이사쿠쇼 Rfid tag
EP2366120A1 (en) * 2008-11-20 2011-09-21 Monash University Radio frequency transponder system
CN108693222A (en) * 2018-05-17 2018-10-23 华南理工大学 A kind of chipless RFID humidity sensor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100972875B1 (en) 2007-04-11 2010-07-28 가부시키가이샤 히타치세이사쿠쇼 Rfid tag
EP2366120A1 (en) * 2008-11-20 2011-09-21 Monash University Radio frequency transponder system
EP2366120A4 (en) * 2008-11-20 2014-03-12 Reed Licensing Pty Ltd Radio frequency transponder system
US9164169B2 (en) 2008-11-20 2015-10-20 Rfid Technologies Pty Ltd Radio frequency transponder system
CN106654517A (en) * 2008-11-20 2017-05-10 Rfid技术有限公司 Radio frequency transponder system
CN108693222A (en) * 2018-05-17 2018-10-23 华南理工大学 A kind of chipless RFID humidity sensor
CN108693222B (en) * 2018-05-17 2023-06-20 华南理工大学 Chipless RFID humidity sensor

Also Published As

Publication number Publication date
JP4235663B2 (en) 2009-03-11

Similar Documents

Publication Publication Date Title
JP4452865B2 (en) Wireless IC tag device and RFID system
US6985119B2 (en) Multiple feed point slot antenna
US8552920B2 (en) Patch antenna synchronously generating linearly polarized wave and circularly polarized wave and generating method thereof
JP4841659B2 (en) Antenna device
US20110163921A1 (en) Uhf rfid internal antenna for handheld terminals
JP2008182438A (en) Radio tag
JP4409257B2 (en) Radio tag, article provided with the same, and RFID system
JP2008283404A (en) Cross double tag, and rfid system using the same
Sydänheimo et al. Effects of size and shape of metallic objects on performance of passive radio frequency identification
WO2006134658A1 (en) Rfid tag antenna and rfid tag
JP5671874B2 (en) Wireless tag
JP3902192B2 (en) Radio wave polarization conversion resonant reflector, radio wave polarization conversion resonance reflector, wireless communication system, metal-compatible wireless IC tag device, article, and RFID system
JP2003249820A (en) Wireless communication device
JP4927665B2 (en) Auxiliary antenna for RFID tag and its mounting method
JP4235663B2 (en) Metal-compatible wireless IC tag device
Sultan et al. Design and implementation of improved fractal loop antennas for passive UHF RFID tags based on expanding the enclosed area
JP2008167145A (en) Non-contact ic tag
JP4312548B2 (en) Wireless device
JPWO2007017967A1 (en) Wireless IC tag
US20070103308A1 (en) Antenna structure for the radio frequency identification tag
WO2011122163A1 (en) Antenna and wireless communication device
KR100951138B1 (en) Compact broadband RFID tag antenna
KR100690849B1 (en) Printing antenna of uhf band
WO2014103025A1 (en) Wireless ic tag apparatus
Malhat et al. Dielectric resonator antenna mounted on cylindrical ground plane for handheld RFID reader at 5.8 GHz

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4235663

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141219

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term