JP2007052474A - Behavior identification system - Google Patents

Behavior identification system Download PDF

Info

Publication number
JP2007052474A
JP2007052474A JP2005235110A JP2005235110A JP2007052474A JP 2007052474 A JP2007052474 A JP 2007052474A JP 2005235110 A JP2005235110 A JP 2005235110A JP 2005235110 A JP2005235110 A JP 2005235110A JP 2007052474 A JP2007052474 A JP 2007052474A
Authority
JP
Japan
Prior art keywords
user
reception frequency
behavior
detection
identification system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005235110A
Other languages
Japanese (ja)
Other versions
JP4701348B2 (en
Inventor
Tadashi Omura
廉 大村
Fusako Takayanagi
芙沙子 高柳
Futoshi Naya
太 納谷
Haruo Noma
春生 野間
Kiyoshi Kogure
潔 小暮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ATR Advanced Telecommunications Research Institute International
Original Assignee
ATR Advanced Telecommunications Research Institute International
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ATR Advanced Telecommunications Research Institute International filed Critical ATR Advanced Telecommunications Research Institute International
Priority to JP2005235110A priority Critical patent/JP4701348B2/en
Publication of JP2007052474A publication Critical patent/JP2007052474A/en
Application granted granted Critical
Publication of JP4701348B2 publication Critical patent/JP4701348B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a behavior identification system, capable of identifying a behavior pattern of a user through a simple structure. <P>SOLUTION: A transmitter 14 transmitting an infrared signal having a fixed pattern is installed to the rear head part of a user H who arbitrarily moves. On the other hand, light receiving modules 12a and 12b forming a receiver 12 detect the infrared signal transmitted from the transmitter 14, by observing two detection areas different in at least either of size and position. A main body 12c forming the receiver 12 forms a receiving frequency function showing the receiving frequency for unit time of the infrared signal detected by each of the modules 12a and 12b. The behavior pattern of the user H is identified by applying the features of two formed receiving frequency functions to a decision tree. According to this invention, the behavior pattern of the user can be identified through a simple structure. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、行動識別システムに関し、特にたとえばユーザの行動態様を識別する、行動識別システムに関する。   The present invention relates to a behavior identification system, and more particularly to a behavior identification system that identifies, for example, a user's behavior mode.

従来のこの種のシステムの一例が、特許文献1に開示されている。この従来技術によれば、ユーザに装着された赤外線タグの点灯状態は、ロケーションサーバによって制御される。赤外線タグから発光された赤外線は、複数の赤外線カメラによって撮影される。赤外線タグの位置は、撮影された複数の赤外線画像に基づいてビデオサーバによって検出される。ロケーションサーバは、検出された赤外線タグの位置を統合してユーザの位置を特定する。これによって、ユーザの位置を高精度かつ安定的に特定することができる。
特開2003−329762号公報[G01S 5/16, H04N 5/225]
An example of a conventional system of this type is disclosed in Patent Document 1. According to this prior art, the lighting state of the infrared tag attached to the user is controlled by the location server. Infrared light emitted from the infrared tag is captured by a plurality of infrared cameras. The position of the infrared tag is detected by the video server based on a plurality of captured infrared images. The location server identifies the position of the user by integrating the positions of the detected infrared tags. Thereby, the position of the user can be specified with high accuracy and stability.
JP 2003-329762 A [G01S 5/16, H04N 5/225]

しかし、従来技術では、複数の赤外線カメラを準備する必要があり、構成が複雑化するという問題がある。また、従来技術はユーザの位置を特定するに留まり、ユーザの行動を識別することはできない。
それゆえに、この発明の主たる目的は、簡単な構成でユーザの行動態様を識別することができる、行動識別システムを提供することである。
However, in the conventional technology, it is necessary to prepare a plurality of infrared cameras, and there is a problem that the configuration becomes complicated. In addition, the conventional technology only specifies the position of the user and cannot identify the user's behavior.
Therefore, a main object of the present invention is to provide a behavior identification system that can identify a behavior mode of a user with a simple configuration.

この発明の他の目的は、ユーザの通過方向を検知することができる、行動識別システムを提供することである。   Another object of the present invention is to provide an action identification system capable of detecting a user's passing direction.

請求項1の発明に従う行動識別システム(10)は、任意に行動するユーザによって保持され、固定パターン信号を送出する送信手段(14)、サイズおよび位置の少なくとも一方が互いに異なる複数の検知エリアにそれぞれ注目して送信手段から送出された固定パターン信号を検知する複数の検知手段(12a, 12b)、複数の検知手段の各々によって検知された固定パターン信号の単位時間毎の受信頻度を示す受信頻度関数を作成する作成手段(S9)、および作成手段によって作成された複数の受信頻度関数に基づいてユーザの行動態様を識別する識別手段(S11, S13, S15)を備える。   The behavior identification system (10) according to the first aspect of the present invention is a transmission means (14) that is held by a user who arbitrarily acts and sends a fixed pattern signal to each of a plurality of detection areas having at least one of size and position different from each other. A plurality of detection means (12a, 12b) for detecting the fixed pattern signal sent from the transmission means with attention, a reception frequency function indicating the reception frequency per unit time of the fixed pattern signal detected by each of the plurality of detection means Creating means (S9) for creating the user and identification means (S11, S13, S15) for identifying the user's behavior based on the plurality of reception frequency functions created by the creating means.

固定パターン信号を送出する送信手段は、任意に行動するユーザによって保持される。一方、複数の検知手段は、サイズおよび位置の少なくとも一方が互いに異なる複数の検知エリアにそれぞれ注目して前記送信手段から送出された固定パターン信号を検知する。作成手段は、複数の検知手段の各々によって検知された固定パターン信号の単位時間毎の受信頻度を示す受信頻度関数を作成する。ユーザの行動態様は、作成手段によって作成された複数の受信頻度関数に基づいて、識別手段によって識別される。   The transmission means for transmitting the fixed pattern signal is held by a user who acts arbitrarily. On the other hand, the plurality of detection means detect fixed pattern signals sent from the transmission means while paying attention to a plurality of detection areas having different sizes and positions. The creation means creates a reception frequency function indicating the reception frequency per unit time of the fixed pattern signal detected by each of the plurality of detection means. The behavior mode of the user is identified by the identifying unit based on a plurality of reception frequency functions created by the creating unit.

複数の検知手段によってそれぞれ注目される複数の検知エリアは、サイズおよび位置の少なくとも一方に関して互いに異なる。このため、作成手段によって作成される複数の受信頻度関数は、ユーザの行動に依存し、かつ互いに相違する。ユーザの行動態様は、このような受信頻度関数に基づいて識別される。つまり、簡単な構成での行動識別が可能となる。   The plurality of detection areas noted by the plurality of detection units are different from each other with respect to at least one of size and position. For this reason, the plurality of reception frequency functions created by the creating unit depend on the user's behavior and are different from each other. A user's action mode is identified based on such a reception frequency function. That is, action identification with a simple configuration becomes possible.

請求項2の発明に従う行動識別システムは、請求項1に従属し、送信手段はユーザの身体に装着され、複数の検知手段は固定物の互いに異なる位置に装着される。身体たとえば後頭部に装着することで、ユーザの前方と後方とで固定パターン信号の検知精度が異なる。これによって、受信頻度関数に明確な相違が現れ、行動識別の精度が上昇する。   The behavior identification system according to the invention of claim 2 is dependent on claim 1, wherein the transmission means is attached to the body of the user, and the plurality of detection means are attached to different positions of the fixed object. By attaching to the body, for example, the back of the head, the detection accuracy of the fixed pattern signal differs between the front and the rear of the user. As a result, a clear difference appears in the reception frequency function, and the accuracy of action identification increases.

請求項3の発明に従う行動識別システムは、請求項2に従属し、固定物はゲートであり、複数の検知手段は、ゲートの入口側の側面に設けられる第1検知手段(12a)、およびゲートの出口側の側面に設けられる第2検知手段(12b)を含む。   The behavior identification system according to the invention of claim 3 is dependent on claim 2, wherein the fixed object is a gate, the plurality of detection means are first detection means (12a) provided on a side surface on the entrance side of the gate, and the gate. The 2nd detection means (12b) provided in the side by the side of the exit is included.

請求項4の発明に従う行動識別システムは、請求項1ないし3のいずれかに従属し、識別手段は、複数の受信頻度関数の特徴を検出する検出手段(S13)、および検出手段によって検出された特徴を予め準備された分類モデルに適用してユーザの行動態様を識別する識別実行手段(S15)を含む。これによって、的確な行動識別が可能となる。   The behavior identification system according to the invention of claim 4 is dependent on any one of claims 1 to 3, wherein the identification means is detected by a detection means (S13) for detecting characteristics of a plurality of reception frequency functions, and the detection means. An identification execution means (S15) for applying a feature to a classification model prepared in advance to identify a user's behavior mode is included. As a result, accurate behavior identification is possible.

請求項5の発明に従う行動識別システムは、請求項4に従属し、分類モデルは決定木である。   The behavior identification system according to the invention of claim 5 is dependent on claim 4, and the classification model is a decision tree.

請求項6の発明に従う行動識別システムは、請求項4または5に従属し、作成手段によって作成された受信頻度関数に基づいてユーザの移動方向を特定する特定手段(S11)をさらに備え、検出手段は特定手段によって特定された移動方向を参照して特徴検出処理を実行する。   The behavior identification system according to the invention of claim 6 is dependent on claim 4 or 5, and further comprises a specifying means (S11) for specifying the moving direction of the user based on the reception frequency function created by the creating means, and the detecting means Performs the feature detection process with reference to the moving direction specified by the specifying means.

請求項7の発明に従う行動識別システムは、請求項1ないし6のいずれかに従属し、固定パターン信号は赤外線信号である。   The action identification system according to the invention of claim 7 is dependent on any one of claims 1 to 6, and the fixed pattern signal is an infrared signal.

この発明によれば、複数の検知手段によってそれぞれ注目される複数の検知エリアは、サイズおよび位置の少なくとも一方に関して互いに異なる。このため、作成手段によって作成される複数の受信頻度関数は、ユーザの行動に依存し、かつ互いに相違する。ユーザの行動態様は、このような受信頻度関数に基づいて識別される。つまり、簡単な構成での行動識別が可能となる。   According to the present invention, the plurality of detection areas to which attention is paid by the plurality of detection units are different from each other with respect to at least one of size and position. For this reason, the plurality of reception frequency functions created by the creating unit depend on the user's behavior and are different from each other. A user's action mode is identified based on such a reception frequency function. That is, action identification with a simple configuration becomes possible.

この発明の上述の目的,その他の目的,特徴および利点は、図面を参照して行う以下の実施例の詳細な説明から一層明らかとなろう。   The above object, other objects, features and advantages of the present invention will become more apparent from the following detailed description of embodiments with reference to the drawings.

図1を参照して、この実施例の行動識別システム10は、ゲートGTの上部に設置される赤外線受信機(以下、単に「受信機」という)12と、ユーザHの後頭部に装着される赤外線送信機(以下、単に「送信機」という)14とを含む。
受信機12は、2つの受光モジュール12aおよび12bと本体12cとによって構成される。受光モジュール12aはゲートGTの入口側の側面に設けられ、受光モジュール12bはゲートGTの出口側の側面に設けられる。受光モジュール12aおよび12bはそれぞれ、図7に示す検知エリアSaおよびSbを有する。検知エリアSaおよびSbは、サイズおよび位置の少なくとも一方について、互いに相違する。受光モジュール12aおよび12bはそれぞれ、検知エリアSaおよびSbに注目して送信機14から送信される赤外線信号を検知し、“0”または“1”の検知信号を出力する。
Referring to FIG. 1, an action identification system 10 of this embodiment includes an infrared receiver (hereinafter simply referred to as “receiver”) 12 installed on an upper portion of a gate GT and an infrared ray mounted on the back of a user H. And a transmitter (hereinafter simply referred to as “transmitter”) 14.
The receiver 12 includes two light receiving modules 12a and 12b and a main body 12c. The light receiving module 12a is provided on the side surface on the inlet side of the gate GT, and the light receiving module 12b is provided on the side surface on the outlet side of the gate GT. The light receiving modules 12a and 12b have detection areas Sa and Sb shown in FIG. 7, respectively. The detection areas Sa and Sb are different from each other in at least one of size and position. The light receiving modules 12a and 12b detect the infrared signal transmitted from the transmitter 14 while paying attention to the detection areas Sa and Sb, respectively, and output a detection signal of “0” or “1”.

送信機14から送信される赤外線信号は、8ビットの固定パターン(ID)を有する。この結果、検知信号もまた8ビットの固定パターンを示す。IDの発信周波数は、受光モジュール12aおよび12bの受信頻度がユーザHの行動によって十分相違するように、50Hzとされる。また、図示しないバッテリとしてCR2032が使用される。この周波数でのバッテリの駆動時間は平均すると約24時間である。この駆動時間は、ユーザHの1日の行動を追跡するにあたり、十分である。送信機14はユーザHによって装着されることから、ユーザHの行動に影響を及ぼさないよう、外形寸法24mm×32mm×9.5mmと小型化される。
受信機12の本体12cは、図2に示すように構成される。受光モジュール12aおよび12bの各々から出力された検知信号は、CPU12fに与えられる。CPU12fは、与えられた2つの検知信号をそれぞれデコードして2つのIDを検出する。検出されたIDは、タイムスタンプとともに図3に示すテーブル12tに登録される。こうして、時系列データが作成される。
The infrared signal transmitted from the transmitter 14 has an 8-bit fixed pattern (ID). As a result, the detection signal also shows an 8-bit fixed pattern. The transmission frequency of the ID is set to 50 Hz so that the reception frequency of the light receiving modules 12a and 12b is sufficiently different depending on the action of the user H. Moreover, CR2032 is used as a battery (not shown). The average battery driving time at this frequency is about 24 hours. This driving time is sufficient for tracking the daily behavior of the user H. Since the transmitter 14 is worn by the user H, the external size is reduced to 24 mm × 32 mm × 9.5 mm so as not to affect the behavior of the user H.
The main body 12c of the receiver 12 is configured as shown in FIG. The detection signal output from each of the light receiving modules 12a and 12b is given to the CPU 12f. The CPU 12f detects the two IDs by decoding the two given detection signals, respectively. The detected ID is registered in the table 12t shown in FIG. 3 together with the time stamp. Thus, time series data is created.

CPU12fは、IDの受信頻度を示す2つの受信頻度関数をテーブル12tの時系列データに基づいて作成し、作成された2つの受信頻度関数からユーザHの通過方向を検出する。CPU12fはまた、検出された通過方向を参照して2つの受信頻度関数の特徴を抽出し、抽出された特徴をメモリ12gに記憶された決定木(Decision Tree)のような分類モデルに入力する。この結果、ユーザHの行動が識別される。識別結果は、無線LAN12hによって図示しないサーバに送信される。
受信頻度関数は、詳しくは以下に示す要領で作成される。なお、後述する数式では、受光モジュール12aに対応するパラメータに“A”を割り当て、受光モジュール12bに対応するパラメータに“B”を割り当てる。
The CPU 12f creates two reception frequency functions indicating the ID reception frequency based on the time series data in the table 12t, and detects the passing direction of the user H from the two received reception frequency functions. The CPU 12f also extracts features of the two reception frequency functions with reference to the detected passing direction, and inputs the extracted features into a classification model such as a decision tree stored in the memory 12g. As a result, the action of the user H is identified. The identification result is transmitted to a server (not shown) via the wireless LAN 12h.
The reception frequency function is created in detail as follows. In the mathematical formulas described later, “A” is assigned to the parameter corresponding to the light receiving module 12a, and “B” is assigned to the parameter corresponding to the light receiving module 12b.

図4(A)を参照して、ウィンドウWの幅をTw秒とし、ウィンドウWの1回のずらし幅をΔTwとすると、R∈{A,B}による単位時間あたりのID受信頻度を表す受信頻度関数hR,id(t),(R={A,B})は、数1および数2によって表される。 Referring to FIG. 4A, when the width of window W is Tw seconds and the shift width of window W once is ΔTw, reception indicating ID reception frequency per unit time by R∈ {A, B}. The frequency function h R , id (t), (R = {A, B}) is expressed by Equation 1 and Equation 2.

Figure 2007052474
Figure 2007052474

Figure 2007052474
Figure 2007052474

数1に示す関数f(t,R,id)によれば、時刻tで受信したidの受光モジュールがRであれば演算結果は“1”を示し、そうでなければ演算結果は“0”を示す。時刻tを中点時刻とする時間帯Twにわたって関数f(t,R,id)を積分すると、受信頻度関数hR,id(t),(R={A,B})が求められる。この結果、図4(A)に示す受光モジュール出力については、図4(B)に示す受信頻度関数が得られる。
なお、離散化データに対しては、数2に代えて数3が適用される。
According to the function f (t, R, id) shown in Equation 1, if the light receiving module with id received at time t is R, the calculation result indicates “1”; otherwise, the calculation result is “0”. Indicates. When the function f (t, R, id) is integrated over the time zone Tw with the time t as the midpoint time, the reception frequency function h R , id (t), (R = {A, B}) is obtained. As a result, the reception frequency function shown in FIG. 4B is obtained for the light receiving module output shown in FIG.
For discretized data, Equation 3 is applied instead of Equation 2.

Figure 2007052474
Figure 2007052474

以下、特定のIDについてのみ述べる場合、もしくはIDが文脈から明らかな場合については、“id”の記述を省略する。受光モジュール12aに対応する受信頻度関数はhA(t)と表され、受光モジュール12bに対応する受信頻度関数はhB(t)と表される。 Hereinafter, when only a specific ID is described, or when the ID is clear from the context, the description of “id” is omitted. The reception frequency function corresponding to the light receiving module 12a is represented as h A (t), and the reception frequency function corresponding to the light receiving module 12b is represented as h B (t).

受信頻度関数hA(t)およびhB(t)が図5に示すように描かれることを前提として、ユーザHの通過方向は、次の要領で検出される。 Assuming that the reception frequency functions h A (t) and h B (t) are drawn as shown in FIG. 5, the passing direction of the user H is detected as follows.

まず、受信頻度関数hA(t)およびhB(t)の各々が“0”より大きい値を持つ時間帯が、数4によって定義される。 First, a time zone in which each of the reception frequency functions h A (t) and h B (t) has a value greater than “0” is defined by Equation 4.

Figure 2007052474
Figure 2007052474

受信頻度関数hA(t)が“0”よりも大きい値を示す時間帯は、先頭時刻tAstartおよび末尾時刻tAendによって規定される。受信頻度関数hB(t)が“0”よりも大きい値を示す時間帯は、先頭時刻tBstartおよび末尾時刻tBendによって規定される。さらに、先頭時刻tAstartおよびtBstartのうちより早い時刻はTstartと定義され、末尾時刻tAendおよびtBendのうちより遅い時刻はTendと定義される。 The time zone in which the reception frequency function h A (t) shows a value larger than “0” is defined by the start time t A start and the end time t A end. The time zone in which the reception frequency function h B (t) indicates a value larger than “0” is defined by the start time t B start and the end time t B end. Further, the earlier time of the start times t A start and t B start is defined as Tstart, and the later time of the end times t A end and t B end is defined as Tend.

ユーザHが接近する側の受光モジュールが先に反応し、通過後の受光モジュールが遅れて反応することから、ユーザHの通過方向は、上述の時刻TstartおよびTendに基づいて特定される。先に反応する受光モジュールを“通過前受光モジュール”とし、遅れて反応する受光モジュールを“通過後受光モジュール”とすると、Tstartに対応する受信頻度関数のIDを出力した受光モジュールが通過前受光モジュールとして特定され、Tendに対応する受信頻度関数のIDを出力した受光モジュールが通過後受光モジュールとして特定される。これによって、ユーザHの通過方向を検出することができる。   Since the light receiving module on the side to which the user H approaches reacts first and the light receiving module after passing reacts with a delay, the passing direction of the user H is specified based on the above-described times Tstart and Tend. If the light receiving module that reacts first is “light receiving module before passing” and the light receiving module that reacts later is “light receiving module after passing”, the light receiving module that outputs the ID of the reception frequency function corresponding to Tstart is the light receiving module before passing. The light receiving module that outputs the ID of the reception frequency function corresponding to Tend is specified as the light receiving module after passing. Thereby, the passing direction of the user H can be detected.

通過方向が検出されると、受信頻度関数hA(t)およびhB(t)の特徴が以下の要領で抽出される。
まず、受信頻度関数hA(t)およびhB(t)のいずれか一方が“0”よりも大きい値を有する時間帯Ttotが、数5によって求められる。
When the passing direction is detected, the characteristics of the reception frequency functions h A (t) and h B (t) are extracted as follows.
First, a time zone Ttot in which one of the reception frequency functions h A (t) and h B (t) has a value larger than “0” is obtained by Equation 5.

Figure 2007052474
Figure 2007052474

次に、受信頻度関数hR(t),(R={A,B})が、Tstartが時刻0 となるように変換される。変数された受信頻度関数はhR(τ),(τ=t−Tstart)と表される。受信頻度関数hR(τ)の単位時間あたりの積算値ΦRは数6によって求められ、この積算値ΦRを正規化した値φRは数7によって求められる。 Next, the reception frequency function h R (t), (R = {A, B}) is converted so that Tstart becomes time 0. The variable reception frequency function is expressed as h R (τ), (τ = t−Tstart). Integrated value [Phi R per unit time received frequency function h R (τ) is determined by the number 6, the value phi R to the integrated value [Phi R normalized is determined by the number 7.

Figure 2007052474
Figure 2007052474

Figure 2007052474
Figure 2007052474

受信頻度関数hR(τ)の時間重心TgR,R={A,B}は、数8によって求められる。また、時間重心の時間差ΔTgは、数9によって求められる。 The time centroid Tg R , R = {A, B} of the reception frequency function h R (τ) is obtained by Equation 8. Further, the time difference ΔTg of the time centroid is obtained by Equation 9.

Figure 2007052474
Figure 2007052474

Figure 2007052474
Figure 2007052474

数9において、Tg_atfer は通過後受光モジュールに対応する受信頻度関数の時間重心であり、Tg_beforeは 通過前受光モジュールに対応する受信頻度関数の時間重心である。正規化された時間差δTgは、数10によって求められる。 In Equation 9, Tg_atfer is the time centroid of the reception frequency function corresponding to the light-receiving module after passage, and Tg_before is the time centroid of the reception frequency function corresponding to the light-receiving module before passage. The normalized time difference δTg is obtained by Equation 10.

Figure 2007052474
Figure 2007052474

メモリ14gに記憶された決定木は、図6に示すように構成される。上述の要領で求められた特徴Ttot,φafter,φbefore,Tg_atfer,Tg_before,ΔTgおよびδTgは、この決定木に入力される。この結果、ユーザHの行動が“walk”,“run”,“through”,“turn”および“wheelchair”のいずれかであるかが識別される。なお、φafterは通過後受光モジュールに対応する受信頻度関数の正規化積算値であり、φbeforeは通過前受光モジュールに対応する受信頻度関数の正規化積算値である。   The decision tree stored in the memory 14g is configured as shown in FIG. The characteristics Ttot, φafter, φbefore, Tg_atfer, Tg_before, ΔTg, and δTg obtained as described above are input to this decision tree. As a result, whether the action of the user H is “walk”, “run”, “through”, “turn”, or “wheelchair” is identified. Φafter is a normalized integrated value of the reception frequency function corresponding to the post-passing light receiving module, and φbefore is a normalized integrated value of the reception frequency function corresponding to the pre-passing light receiving module.

ユーザHが図7に示す行動Iをとった場合、受信頻度関数は図8(A)に示すように変化する。このとき、ユーザHの行動態様は“walk”と識別される。ユーザHが図7に示す行動IIをとった場合、受信頻度関数は図8(B)に示すように変化する。このとき、ユーザHの行動態様は“run”と識別される。ユーザHが図7に示す行動IIIをとった場合、受信頻度関数は図8(C)に示すように変化する。このとき、ユーザHの行動態様は“through”と識別される。
ユーザHが図7に示す行動IVをとった場合、受信頻度関数は図8(D)に示すように変化する。このとき、ユーザHの行動態様は“turn”と識別される。ユーザHが図7に示す行動Vをとった場合、受信頻度関数は図8(E)に示すように変化する。このとき、ユーザHの行動態様は“wheelchair”と識別される。
When the user H takes action I shown in FIG. 7, the reception frequency function changes as shown in FIG. At this time, the behavior mode of the user H is identified as “walk”. When the user H takes action II shown in FIG. 7, the reception frequency function changes as shown in FIG. 8B. At this time, the behavior mode of the user H is identified as “run”. When the user H takes action III shown in FIG. 7, the reception frequency function changes as shown in FIG. At this time, the behavior mode of the user H is identified as “through”.
When the user H takes action IV shown in FIG. 7, the reception frequency function changes as shown in FIG. At this time, the behavior mode of the user H is identified as “turn”. When the user H takes action V shown in FIG. 7, the reception frequency function changes as shown in FIG. At this time, the behavior mode of the user H is identified as “wheelchair”.

行動I,IIおよびVについては、受光モジュール12aに対応する受信頻度関数の値が、受光モジュール12bに対応する受信頻度関数の値よりも小さい。これは、送信機14がユーザHの後頭部に装着され、ユーザHの前方と後方とで赤外線信号の検知精度が異なるからである。これによって、受信頻度関数に明確な相違が現れ、行動識別の精度が上昇する。   For actions I, II and V, the value of the reception frequency function corresponding to the light receiving module 12a is smaller than the value of the reception frequency function corresponding to the light receiving module 12b. This is because the transmitter 14 is mounted on the back of the user H, and the infrared signal detection accuracy differs between the front and the rear of the user H. As a result, a clear difference appears in the reception frequency function, and the accuracy of action identification increases.

なお、上述の決定木は、ユーザHに事前の訓練行動を行わせて時系列データを取得し、かつこの時系列データに基づく受信頻度関数から抽出された特徴に行動ラベルを割り当てることで作成される。
図2に示すCPU12fは、詳しくは図9に示すフロー図に従う処理を実行する。まずステップS1でタイムスタンプを含む複数の設定を初期化する。ステップS3では受光モジュール12aまたは12bによって赤外線信号を受信したか否かを判別し、YESであればステップS5以降の処理を実行する。
The above-described decision tree is created by letting the user H perform pre-training behavior to acquire time series data and assign action labels to features extracted from the reception frequency function based on this time series data. The
Specifically, the CPU 12f shown in FIG. 2 executes processing according to the flowchart shown in FIG. First, in step S1, a plurality of settings including a time stamp are initialized. In step S3, it is determined whether or not an infrared signal is received by the light receiving module 12a or 12b. If YES, the processes in and after step S5 are executed.

ステップS5では、受信した赤外線信号つまり検知信号をデコードしてIDを検出し、検出されたIDをタイムスタンプとともにテーブル12tに書き込む。こうして、時系列データが作成される。作成された時系列データは、ステップS7でID毎にソートされる。   In step S5, the received infrared signal, that is, the detection signal is decoded to detect the ID, and the detected ID is written in the table 12t together with the time stamp. Thus, time series data is created. The created time series data is sorted for each ID in step S7.

ステップS9では、ソートされた時系列データに基づいて上述の数1および数2に従う演算を実行し、2つの受信頻度関数を求める。ステップS11では上述の数4を利用してユーザHの通過方向を検出し、ステップS13では上述の数5〜数10に従う演算を実行して受信頻度関数の特徴を抽出する。
ステップS15では抽出された特徴を決定木に入力してユーザの行動を識別し、ステップS17では識別結果を無線LAN12hを通してサーバに送信する。ステップS19では終了指示が発行されたか否かを判別し、NOであればステップS3に戻る一方、YESであれば処理を終了する。
In step S9, the calculation according to the above formulas 1 and 2 is executed based on the sorted time series data, and two reception frequency functions are obtained. In step S11, the passing direction of the user H is detected using the above-described equation 4, and in step S13, the calculation according to the above-described equations 5 to 10 is executed to extract the characteristics of the reception frequency function.
In step S15, the extracted feature is input to the decision tree to identify the user's action. In step S17, the identification result is transmitted to the server through the wireless LAN 12h. In step S19, it is determined whether or not an end instruction has been issued. If NO, the process returns to step S3. If YES, the process ends.

以上の説明から分かるように、固定パターン(ID)を有する赤外線信号を送出する送信機14は、任意に行動するユーザHの後頭部に装着される。一方、受光モジュール12aおよび12bは、サイズおよび位置の少なくとも一方が互いに異なる2つの検知エリアSaおよびSbにそれぞれ注目して、送信機14から送出された赤外線信号を検知する。CPU12fは、受光モジュール12aおよび12bの各々による検知信号の単位時間毎の受信頻度を示す受信頻度関数を作成する(S9)。ユーザHの行動態様は、作成された2つ受信頻度関数の特徴を決定木のような分類モデルに適用することで識別される(S15)。   As can be seen from the above description, the transmitter 14 that transmits an infrared signal having a fixed pattern (ID) is mounted on the back of the user H who acts arbitrarily. On the other hand, the light receiving modules 12a and 12b detect the infrared signal transmitted from the transmitter 14 by paying attention to two detection areas Sa and Sb that are different from each other in at least one of size and position. The CPU 12f creates a reception frequency function indicating the reception frequency per unit time of the detection signal by each of the light receiving modules 12a and 12b (S9). The behavior mode of the user H is identified by applying the characteristics of the two generated reception frequency functions to a classification model such as a decision tree (S15).

受光モジュール12aおよび12bによってそれぞれ注目される2つの検知エリアSaおよびSbは、サイズおよび位置の少なくとも一方に関して互いに異なる。このため、CPU12fによって作成される2つの受信頻度関数は、ユーザHの行動に依存し、かつ互いに相違する。ユーザHの行動態様または通過方向は、このような受信頻度関数に基づいて識別または検知される。つまり、簡単な構成での行動識別または通過方向検知が可能となる。   The two detection areas Sa and Sb noted by the light receiving modules 12a and 12b are different from each other with respect to at least one of size and position. For this reason, the two reception frequency functions created by the CPU 12f depend on the action of the user H and are different from each other. The action mode or the passing direction of the user H is identified or detected based on such a reception frequency function. That is, action identification or passage direction detection can be performed with a simple configuration.

なお、この実施例では、2つの受光モジュールによって赤外線信号を受信するようにしているが、受光モジュールの数は3つ以上であってもよい。また、この実施例では、赤外線信号を用いているが、無線である限り、これに限られるものではない。さらに、この実施例では、行動態様の分類モデルとして決定木を用いているが、これに代えてk−NN(Nearest Neighbor)法,SVM(Support Vector Machine)法,DP(Dynamic Programming)法,HMM(Hidden Markov Model)法を適用してもよい。   In this embodiment, infrared signals are received by two light receiving modules, but the number of light receiving modules may be three or more. In this embodiment, an infrared signal is used. However, the present invention is not limited to this as long as it is wireless. Furthermore, in this embodiment, a decision tree is used as a classification model for behavioral modes. Instead, a k-NN (Nearest Neighbor) method, an SVM (Support Vector Machine) method, a DP (Dynamic Programming) method, an HMM (Hidden Markov Model) method may be applied.

また、この実施例では、ユーザHの行動態様を“walk”,“run”,“through”,“turn”および“wheelchair”の中から特定するようにしているが、この他に“立ち止まり”や“スキップ”、車いす以外の車輌も考えられる。さらに、この実施例では、ユーザの後頭部に送信機を装着するようにしているが、装着位置は後頭部に限られない。また、この実施例では、ゲートに受信機を設けるようにしているが、受信機は、十字路やT字路の上部、天井などに設けるようにしてもよい。   In this embodiment, the behavior mode of the user H is specified from “walk”, “run”, “through”, “turn”, and “wheelchair”. “Skip”, vehicles other than wheelchairs are also conceivable. Furthermore, in this embodiment, the transmitter is mounted on the back of the user's head, but the mounting position is not limited to the back of the head. In this embodiment, a receiver is provided at the gate. However, the receiver may be provided at the top of the cross or T-junction, the ceiling, or the like.

この発明の一実施例を示す図解図である。It is an illustration figure which shows one Example of this invention. 図1実施例に適用される赤外線送信機の本体の構成の一例を示すブロック図である。It is a block diagram which shows an example of a structure of the main body of the infrared transmitter applied to the FIG. 1 Example. 図2実施例に適用されるテーブルの一例を示す図解図である。It is an illustration figure which shows an example of the table applied to the FIG. 2 Example. (A)は受光モジュールから出力される赤外線信号の変化の一例を示す波形図であり、(B)は(A)に示す赤外線信号に基づいて求められた受信頻度関数の一例を示す波形図である。(A) is a wave form diagram which shows an example of the change of the infrared signal output from a light reception module, (B) is a wave form diagram which shows an example of the reception frequency function calculated | required based on the infrared signal shown to (A). is there. 受信頻度関数の他の一例を示すグラフである。It is a graph which shows another example of a reception frequency function. 決定木の構成の一例を示す図解図である。It is an illustration figure which shows an example of a structure of a decision tree. ユーザの行動の一例を示す図解図である。It is an illustration figure which shows an example of a user's action. (A)は行動Iに対応する受信頻度関数の一例を示すグラフであり、(B)は行動IIに対応する受信頻度関数の一例を示すグラフであり、(C)は行動IIIに対応する受信頻度関数の一例を示すグラフであり、(D)は行動IVに対応する受信頻度関数の一例を示すグラフであり、(E)は行動Vに対応する受信頻度関数の一例を示すグラフである。(A) is a graph showing an example of a reception frequency function corresponding to action I, (B) is a graph showing an example of a reception frequency function corresponding to action II, and (C) is a reception corresponding to action III. It is a graph which shows an example of a frequency function, (D) is a graph which shows an example of the reception frequency function corresponding to action IV, (E) is a graph which shows an example of the reception frequency function corresponding to action V. CPUの動作一例を示すフロー図である。It is a flowchart which shows an example of operation | movement of CPU.

符号の説明Explanation of symbols

10 …行動識別システム
12 …赤外線受信機
14 …赤外線送信機
12a,12b …受光モジュール
12f …CPU
12h …無線LAN
DESCRIPTION OF SYMBOLS 10 ... Action identification system 12 ... Infrared receiver 14 ... Infrared transmitter 12a, 12b ... Light receiving module 12f ... CPU
12h ... Wireless LAN

Claims (7)

ユーザによって保持され、固定パターン信号を送出する送信手段、
サイズおよび位置の少なくとも一方が互いに異なる複数の検知エリアにそれぞれ注目して前記送信手段から送出された固定パターン信号を検知する複数の検知手段、
前記複数の検知手段の各々によって検知された固定パターン信号の単位時間毎の受信頻度を示す受信頻度関数を作成する作成手段、および
前記作成手段によって作成された複数の受信頻度関数に基づいて前記ユーザの行動態様を識別する識別手段を備える、行動識別システム。
Transmitting means for transmitting a fixed pattern signal held by a user;
A plurality of detection means for detecting fixed pattern signals sent from the transmission means by paying attention to a plurality of detection areas having different sizes and positions from each other,
Creation means for creating a reception frequency function indicating a reception frequency per unit time of the fixed pattern signal detected by each of the plurality of detection means, and the user based on the plurality of reception frequency functions created by the creation means A behavior identification system comprising identification means for identifying the behavior mode.
前記送信手段は前記ユーザの身体に装着され、
前記複数の検知手段は固定物の互いに異なる位置に装着される、請求項1記載の行動識別システム。
The transmitting means is worn on the user's body;
The behavior identification system according to claim 1, wherein the plurality of detection units are attached to different positions of the fixed object.
前記固定物はゲートであり、
前記複数の検知手段は、前記ゲートの入口側の側面に設けられる第1検知手段、および前記ゲートの出口側の側面に設けられる第2検知手段を含む、請求項2記載の行動識別システム。
The fixed object is a gate;
3. The behavior identification system according to claim 2, wherein the plurality of detection units include a first detection unit provided on a side surface on the entrance side of the gate and a second detection unit provided on a side surface on the exit side of the gate.
前記識別手段は、前記複数の受信頻度関数の特徴を検出する検出手段、および前記検出手段によって検出された特徴を予め準備された分類モデルに適用して前記ユーザの行動態様を識別する識別実行手段を含む、請求項1ないし3のいずれかに記載の行動識別システム。   The identification unit is a detection unit that detects features of the plurality of reception frequency functions, and an identification execution unit that applies the features detected by the detection unit to a classification model prepared in advance to identify the behavior mode of the user. The action identification system according to claim 1, comprising: 前記分類モデルは決定木である、請求項4記載の行動識別システム。   The behavior identification system according to claim 4, wherein the classification model is a decision tree. 前記作成手段によって作成された受信頻度関数に基づいて前記ユーザの移動方向を特定する特定手段をさらに備え、
前記検出手段は前記特定手段によって特定された移動方向を参照して特徴検出処理を実行する、請求項4または5記載の行動識別システム。
Further comprising specifying means for specifying the moving direction of the user based on the reception frequency function created by the creating means;
The behavior detection system according to claim 4, wherein the detection unit executes a feature detection process with reference to the moving direction specified by the specification unit.
前記固定パターン信号は赤外線信号である、請求項1ないし6のいずれかに記載の行動識別システム。   The behavior identification system according to claim 1, wherein the fixed pattern signal is an infrared signal.
JP2005235110A 2005-08-15 2005-08-15 Action identification system Expired - Fee Related JP4701348B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005235110A JP4701348B2 (en) 2005-08-15 2005-08-15 Action identification system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005235110A JP4701348B2 (en) 2005-08-15 2005-08-15 Action identification system

Publications (2)

Publication Number Publication Date
JP2007052474A true JP2007052474A (en) 2007-03-01
JP4701348B2 JP4701348B2 (en) 2011-06-15

Family

ID=37916914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005235110A Expired - Fee Related JP4701348B2 (en) 2005-08-15 2005-08-15 Action identification system

Country Status (1)

Country Link
JP (1) JP4701348B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012118719A (en) * 2010-11-30 2012-06-21 Fujitsu Ltd State determination device, state determination method, and state determination program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05250578A (en) * 1992-01-10 1993-09-28 Asahi Glass Co Ltd Gate for entry and exiting control
JPH06314988A (en) * 1993-04-28 1994-11-08 Nippon Dry Chem Co Ltd Id entrance/exit management system
JP2002014816A (en) * 2000-05-02 2002-01-18 Internatl Business Mach Corp <Ibm> Method for preparing decision tree by judgment formula and for using the same for data classification and device for the same
JP2003329762A (en) * 2002-05-13 2003-11-19 Foundation For Nara Institute Of Science & Technology Object localization system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05250578A (en) * 1992-01-10 1993-09-28 Asahi Glass Co Ltd Gate for entry and exiting control
JPH06314988A (en) * 1993-04-28 1994-11-08 Nippon Dry Chem Co Ltd Id entrance/exit management system
JP2002014816A (en) * 2000-05-02 2002-01-18 Internatl Business Mach Corp <Ibm> Method for preparing decision tree by judgment formula and for using the same for data classification and device for the same
JP2003329762A (en) * 2002-05-13 2003-11-19 Foundation For Nara Institute Of Science & Technology Object localization system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012118719A (en) * 2010-11-30 2012-06-21 Fujitsu Ltd State determination device, state determination method, and state determination program

Also Published As

Publication number Publication date
JP4701348B2 (en) 2011-06-15

Similar Documents

Publication Publication Date Title
US11295469B2 (en) Electronic device and method for recognizing object by using plurality of sensors
US10740658B2 (en) Object recognition and classification using multiple sensor modalities
US7542592B2 (en) Systems and methods for face detection and recognition using infrared imaging
Long et al. Unifying obstacle detection, recognition, and fusion based on millimeter wave radar and RGB-depth sensors for the visually impaired
JP6682833B2 (en) Database construction system for machine learning of object recognition algorithm
US20180067490A1 (en) Pre-tracking sensor event detection and fusion
JP5682563B2 (en) Moving object locus identification system, moving object locus identification method, and moving object locus identification program
US7639841B2 (en) System and method for on-road detection of a vehicle using knowledge fusion
US7418112B2 (en) Pedestrian detection apparatus
CN107856671A (en) A kind of method and system that road conditions identification is carried out by drive recorder
US20030026461A1 (en) Recognition and identification apparatus
US20180067488A1 (en) Situational awareness determination based on an annotated environmental model
JP6141079B2 (en) Image processing system, image processing apparatus, control method therefor, and program
WO2019006743A1 (en) Method and device for controlling travel of vehicle
KR102480416B1 (en) Device and method for estimating information about a lane
EP1705612A1 (en) Information recognition device, information recognition method, information recognition program, and alarm system
US20100054540A1 (en) Calibration of Video Object Classification
US20100054535A1 (en) Video Object Classification
US11371851B2 (en) Method and system for determining landmarks in an environment of a vehicle
US20140002658A1 (en) Overtaking vehicle warning system and overtaking vehicle warning method
WO2018161217A1 (en) A transductive and/or adaptive max margin zero-shot learning method and system
JP4937844B2 (en) Pedestrian detection device
US20210303871A1 (en) Real-time scene mapping to gps coordinates in traffic sensing or monitoring systems and methods
US20220303738A1 (en) On-board machine vision device for activating vehicular messages from traffic signs
JP4701348B2 (en) Action identification system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110202

R150 Certificate of patent or registration of utility model

Ref document number: 4701348

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees