JP2007051582A - Fuel-injection control system - Google Patents

Fuel-injection control system Download PDF

Info

Publication number
JP2007051582A
JP2007051582A JP2005237358A JP2005237358A JP2007051582A JP 2007051582 A JP2007051582 A JP 2007051582A JP 2005237358 A JP2005237358 A JP 2005237358A JP 2005237358 A JP2005237358 A JP 2005237358A JP 2007051582 A JP2007051582 A JP 2007051582A
Authority
JP
Japan
Prior art keywords
learning
command
amount
injection
correction amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005237358A
Other languages
Japanese (ja)
Other versions
JP3904022B2 (en
Inventor
Kazumi Yamaguchi
一実 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2005237358A priority Critical patent/JP3904022B2/en
Priority to PCT/JP2006/312512 priority patent/WO2007020748A1/en
Priority to EP06767170A priority patent/EP1921300B1/en
Priority to CN2006800289903A priority patent/CN101238280B/en
Priority to US12/063,838 priority patent/US7925419B2/en
Publication of JP2007051582A publication Critical patent/JP2007051582A/en
Application granted granted Critical
Publication of JP3904022B2 publication Critical patent/JP3904022B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2464Characteristics of actuators
    • F02D41/2467Characteristics of actuators for injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D31/00Use of speed-sensing governors to control combustion engines, not otherwise provided for
    • F02D31/001Electric control of rotation speed
    • F02D31/007Electric control of rotation speed controlling fuel supply
    • F02D31/008Electric control of rotation speed controlling fuel supply for idle speed control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2441Methods of calibrating or learning characterised by the learning conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2454Learning of the air-fuel ratio control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2487Methods for rewriting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2441Methods of calibrating or learning characterised by the learning conditions
    • F02D41/2448Prohibition of learning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2487Methods for rewriting
    • F02D41/2493Resetting of data to a predefined set of values

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel-injection control system by which correct commands can be acquired before and after learning a correction. <P>SOLUTION: A command storage 3 stores a pre-learning command for the time before a correction-learning means 5 learns the correction, and a post-learning command for the time after the correction-learning means 5 has learned the correction. A command injection-volume-determining means 4 refers to the pre-learning command at the time before the learning, and it refers to the post-learning command at the time after the learning. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、マルチ噴射式の燃料噴射制御システムに係り、補正量の学習前も学習後も適正な指令が得られる燃料噴射制御システムに関する。   The present invention relates to a multi-injection fuel injection control system, and more particularly to a fuel injection control system that can obtain an appropriate command before and after learning a correction amount.

ディーゼルエンジンの気筒ごとに燃料噴射手段を設け、燃料噴射手段への通電時間を制御して噴射量を制御する場合、燃料噴射制御システムは、現在のエンジン制御パラメータに基づいて、燃料噴射手段が噴射するべき指令噴射量及び噴射回数を決定する。その際、計算の煩雑さを軽減するために、エンジン制御パラメータに対応して燃料噴射手段が噴射するべき指令噴射量をマップと呼ばれる指令記憶手段に記憶するのが一般的である。マップにはエンジン制御パラメータに対応して燃料噴射手段が噴射するべき指令噴射量を記憶しておく。エンジン制御パラメータに基づいてマップを参照すれば指令噴射量が得られる。   When a fuel injection unit is provided for each cylinder of a diesel engine and the injection amount is controlled by controlling the energization time to the fuel injection unit, the fuel injection control system performs injection based on the current engine control parameter. The command injection amount and the number of injections to be performed are determined. At this time, in order to reduce the complexity of calculation, it is common to store the command injection amount to be injected by the fuel injection means in accordance with engine control parameters in a command storage means called a map. The map stores a command injection amount to be injected by the fuel injection means in correspondence with the engine control parameter. By referring to the map based on the engine control parameter, the command injection amount can be obtained.

燃料噴射制御システムは、1燃焼サイクルに1度だけ、噴射するべき指令噴射量の全量を噴射するのではなく、パイロット噴射あるいはアフター噴射と呼ばれる予備的な噴射をメイン噴射の前後に適宜回数行う。これをマルチ噴射と呼ぶ。マルチ噴射では指令噴射量を複数回に分けて噴射することになる。その噴射パターン(指令噴射量及び噴射回数)をマップ化した指令記憶手段をマルチ噴射パターンマップと呼ぶ。   The fuel injection control system does not inject the entire command injection amount to be injected only once in one combustion cycle, but appropriately performs preliminary injection called pilot injection or after injection before and after the main injection. This is called multi-injection. In the multi-injection, the command injection amount is injected in a plurality of times. Command storage means that maps the injection pattern (command injection amount and number of injections) is called a multi-injection pattern map.

噴射量が通電時間に比例するという基本原理から、指令噴射量は通電時間で与えられる。しかし、実際には、燃料噴射手段の個体により噴射量と通電時間との比にばらつき(個体差)があるので、燃料噴射手段が実際に噴射する実噴射量が指令噴射量通りになるよう気筒ごとに補正が必要となる。   From the basic principle that the injection amount is proportional to the energization time, the command injection amount is given by the energization time. However, in actuality, there is a variation (individual difference) in the ratio between the injection amount and the energization time depending on the individual fuel injection means, so that the actual injection amount actually injected by the fuel injection means is the same as the command injection amount. Every correction is required.

必要な補正量は燃料噴射手段の個体により異なるが、同じ燃料噴射手段の個体において必要な補正量が短時間のうちに大きく変動することはない。そこで、従来は、燃料噴射手段が実際に噴射する実噴射量が指令噴射量通りになるよう指令噴射量に対する補正量を学習し、学習後はその学習した補正量で指令噴射量を補正するようになっている。指令噴射量が通電時間で与えられるので、補正量も指令噴射量の通電時間を短縮したり延長したりする通電補正時間で与えられる。   Although the required correction amount varies depending on the individual fuel injection means, the required correction amount does not vary greatly within a short time in the same individual fuel injection means. Therefore, conventionally, the correction amount for the command injection amount is learned so that the actual injection amount actually injected by the fuel injection means is equal to the command injection amount, and after the learning, the command injection amount is corrected by the learned correction amount. It has become. Since the command injection amount is given by the energization time, the correction amount is also given by the energization correction time for shortening or extending the energization time of the command injection amount.

学習した補正量は不揮発性メモリに記憶しておく。これにより、電源オフ後も学習した補正量が保持され、次に電源オンしたときには、再度の学習をすることなく、記憶してある補正量を用いることができる。   The learned correction amount is stored in a nonvolatile memory. Thereby, the learned correction amount is retained even after the power is turned off, and the stored correction amount can be used without learning again when the power is turned on next time.

また、燃料噴射制御システムは、アイドル運転時に、実際に今エンジンが回転しているエンジン回転数(以下、実エンジン回転数という)を該燃料噴射制御システムが目標としているエンジン回転数(以下、目標エンジン回転数という)に合わせるために、目標エンジン回転数と実エンジン回転数との偏差に比例係数(以下、アイドルフィードバック係数という)を掛けてフィードバック量を決定し、そのフィードバック量を指令噴射量に重畳することにより、実エンジン回転数が目標エンジン回転数に近づくように目標エンジン回転数に補正をかけている。   In addition, the fuel injection control system uses an engine speed (hereinafter referred to as a target engine speed) that is the target of the engine speed (hereinafter referred to as an actual engine speed) at which the engine is actually rotating during idle operation. In order to match the engine speed), a feedback amount is determined by multiplying the deviation between the target engine speed and the actual engine speed by a proportional coefficient (hereinafter referred to as an idle feedback coefficient), and the feedback amount is used as the command injection quantity. By superimposing, the target engine speed is corrected so that the actual engine speed approaches the target engine speed.

特開2004−11511号公報JP 2004-11511 A 特開2000−8908号公報Japanese Patent Laid-Open No. 2000-8908 特開2005−16486号公報JP 2005-16486 A

従来の燃料噴射制御システムでは、アイドルフィードバック係数やマルチ噴射パターンマップは補正量の学習前も学習後も同じである。しかし、アイドルフィードバック係数やマルチ噴射パターンマップは、当然、噴射が正確に行われる状態(実噴射量が指令噴射量通りである状態)を前提として作製されている。つまり、学習後の状態に合わせてある。従って、アイドルフィードバック係数やマルチ噴射パターンマップが補正量の学習前も学習後も同じであるということは、噴射が正確に行われない状態(実噴射量が指令噴射量通りでない状態)である学習前に、学習後を前提としたアイドルフィードバック係数やマルチ噴射パターンマップが使われているということである。   In the conventional fuel injection control system, the idle feedback coefficient and the multi-injection pattern map are the same before and after learning the correction amount. However, the idle feedback coefficient and the multi-injection pattern map are naturally created on the assumption that the injection is performed accurately (the actual injection amount is the same as the command injection amount). That is, it matches the state after learning. Therefore, the fact that the idle feedback coefficient and the multi-injection pattern map are the same before and after learning the correction amount means that the injection is not accurately performed (the actual injection amount is not in accordance with the command injection amount). This means that the idle feedback coefficient and the multi-injection pattern map are used before learning.

従来、このために、アイドリングハンチングや気筒間変動が起きていた。アイドリングハンチングや気筒間変動が起きると、学習ができなくなってしまう。   Conventionally, this has caused idling hunting and fluctuation between cylinders. When idling hunting or cylinder-to-cylinder fluctuations occur, learning becomes impossible.

逆に、学習前の噴射が正確に行われない状態に合わせたアイドルフィードバック係数やマルチ噴射パターンマップを仮に作製したとしても、今度は、このようなアイドルフィードバック係数やマルチ噴射パターンマップを噴射が正確に行われる状態となった学習後に使用してしまうと、学習した意味が半減してしまう。   Conversely, even if an idle feedback coefficient or a multi-injection pattern map that matches the state in which the injection before learning is not accurately performed is created, the injection is accurately performed this time. If it is used after learning, the learned meaning is halved.

また、アイドル運転時に極端に大きなフィードバック量が与えられると、エンジンが停止または発振(エンジン回転数が安定せずふらつくこと)する場合がある。反面、フィードバック量が小さすぎると、エンジン回転数が目標値に安定するのに時間がかかる。   Further, if an extremely large feedback amount is given during idling, the engine may stop or oscillate (the engine speed may fluctuate without being stabilized). On the other hand, if the feedback amount is too small, it takes time for the engine speed to stabilize at the target value.

また、同じ燃料噴射手段の個体において必要な補正量が短時間のうちに大きく変動することはないと前述したが、燃料噴射手段の寿命等の長いスパンでは燃料噴射手段の状態が変化することが考えられる。従って、学習した補正量を不揮発性メモリに記憶して延々と使い続けると、燃料噴射手段の状態と補正量とが整合しなくなることがある。   In addition, it has been described that the necessary correction amount does not vary greatly within a short time in the same fuel injection means, but the state of the fuel injection means may change over a long span such as the life of the fuel injection means. Conceivable. Therefore, if the learned correction amount is stored in the nonvolatile memory and used continuously, the state of the fuel injection means and the correction amount may not match.

そこで、本発明の目的は、上記課題を解決し、補正量の学習前も学習後も適正な指令が得られる燃料噴射制御システムを提供することにある。   Accordingly, an object of the present invention is to provide a fuel injection control system capable of solving the above-described problems and obtaining an appropriate command both before and after learning a correction amount.

上記目的を達成するために本発明は、エンジン制御パラメータに対応して燃料噴射手段が噴射するべき指令噴射量及び噴射回数を記憶する指令記憶手段と、現在のエンジン制御パラメータに基づいて上記指令記憶手段を参照して指令噴射量及び噴射回数を決定する指令噴射量決定手段と、上記燃料噴射手段が実際に噴射する実噴射量が指令噴射量通りになるよう指令噴射量に対する補正量を学習する補正量学習手段とを備えた燃料噴射制御システムにおいて、上記指令記憶手段は上記補正量学習手段が補正量を学習する前である学習前時のための学習前用指令と上記補正量学習手段が補正量を学習した後である学習後時のための学習後用指令とを記憶し、上記指令噴射量決定手段は学習前時には学習前用指令を参照し、学習後時には学習後用指令を参照するものである。   In order to achieve the above object, the present invention provides a command storage means for storing the command injection amount and the number of injections to be injected by the fuel injection means corresponding to the engine control parameter, and the command storage based on the current engine control parameter. The command injection amount determining means for determining the command injection amount and the number of injections with reference to the means, and the correction amount for the command injection amount are learned so that the actual injection amount actually injected by the fuel injection means is equal to the command injection amount. In the fuel injection control system provided with the correction amount learning means, the command storage means includes a pre-learning command for the pre-learning time before the correction amount learning means learns the correction amount, and the correction amount learning means. The post-learning command for after learning after learning the correction amount is stored, and the command injection amount determining means refers to the pre-learning command before learning, and is used for after learning after learning. It is intended to refer to the decree.

同じエンジン制御パラメータに対する学習前用指令における平均噴射回数は学習後用指令における平均噴射回数に比べて小さい値であってもよい。   The average number of injections in the pre-learning command for the same engine control parameter may be smaller than the average number of injections in the post-learning command.

アイドル時に、目標とする目標エンジン回転数と実エンジン回転数とを比較し、その偏差に比例係数を掛けてフィードバック量を決定し、そのフィードバック量を指令噴射量に重畳することにより、実エンジン回転数が目標エンジン回転数に近づくようにアイドルフィードバック手段を有し、該アイドルフィードバック手段は、学習前時のための学習前用比例係数と学習後時のための前記学習前用比例係数より大きい学習後用比例係数とを記憶し、学習前時には学習前用比例係数を用い、学習後時には学習後用比例係数を用いてフィードバック量を決定してもよい。   During idling, the target engine speed is compared with the actual engine speed, the feedback amount is determined by multiplying the deviation by a proportional coefficient, and the feedback amount is superimposed on the command injection amount. Idle feedback means so that the number approaches the target engine speed, and the idle feedback means learns larger than the pre-learning proportionality coefficient for before learning and the pre-learning proportionality coefficient for after learning. It is also possible to store the post-proportional coefficient, determine the feedback amount using the pre-learning proportional coefficient before learning, and use the post-learning proportional coefficient after learning.

上記補正量学習手段は、学習が終了したときその学習した補正量と共に学習済みか否かをメモリに記憶し、この学習済みか否かのデータに基づいて学習済みであると判断したときには学習を行わず、上記指令噴射量決定手段は、この学習済みか否かのデータに基づいて学習前時か学習後時かを判定するものとし、さらに、あらかじめ設定されている再学習条件となったか否かを判定する再学習判定手段を有し、上記再学習判定手段が再学習条件となったことを判定した際には、上記学習済みか否かのデータを学習前の状態にすることで上記補正量学習手段及び上記指令噴射量決定手段を学習前時に戻す学習前戻し手段を設けてもよい。   When the learning is completed, the correction amount learning unit stores in the memory whether or not learning has been performed together with the learned correction amount, and performs learning when it is determined that learning has been performed based on the data indicating whether or not learning has been performed. Instead, the command injection amount determination means determines whether it is before learning or after learning based on the data indicating whether learning has been completed, and whether or not a re-learning condition set in advance is satisfied. Re-learning determination means for determining whether or not when the re-learning determination means has become a re-learning condition, the data indicating whether or not the learning has been completed is set to a state before learning. A pre-learning means for returning the correction amount learning means and the command injection amount determining means before the learning may be provided.

本発明は次の如き優れた効果を発揮する。   The present invention exhibits the following excellent effects.

(1)補正量の学習前も学習後も適正な指令が得られる。   (1) An appropriate command can be obtained both before and after learning the correction amount.

以下、本発明の一実施形態を添付図面に基づいて詳述する。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the accompanying drawings.

図1に示されるように、本発明に係る燃料噴射制御システム1は、エンジン制御パラメータに対応して燃料噴射手段2が燃焼サイクル中に噴射するべき指令噴射量及び噴射回数を記憶する指令記憶手段3と、現在のエンジン制御パラメータに基づいて上記指令記憶手段3を参照して指令噴射量及び噴射回数を決定する指令噴射量決定手段4と、上記燃料噴射手段2が実際に噴射する実噴射量が指令噴射量通りになるよう指令噴射量に対する補正量を学習する補正量学習手段5とを備えた燃料噴射制御システム1において、上記指令記憶手段3は上記補正量学習手段5が補正量を学習する前である学習前時のための学習前用指令と上記補正量学習手段5が補正量を学習した後である学習後時のための学習後用指令とを記憶し、上記指令噴射量決定手段4は学習前時には学習前用指令を参照し、学習後時には学習後用指令を参照するものである。   As shown in FIG. 1, the fuel injection control system 1 according to the present invention is a command storage means for storing the command injection amount and the number of injections that the fuel injection means 2 should inject during the combustion cycle in accordance with engine control parameters. 3, command injection amount determination means 4 for determining the command injection amount and the number of injections with reference to the command storage means 3 based on the current engine control parameters, and the actual injection amount actually injected by the fuel injection means 2 In the fuel injection control system 1 provided with the correction amount learning means 5 for learning the correction amount for the command injection amount so that the value becomes the command injection amount, the command storage means 3 stores the correction amount by the correction amount learning means 5. A pre-learning command for before learning, which is before learning, and a post-learning command for after learning, after the correction amount learning means 5 has learned the correction amount. It means 4 are those at the time before learning with reference to the command for pre-learning, and sometimes to refer to a post-training instruction after learning.

エンジン制御パラメータは、エンジン回転数、エンジントルク、アクセル開度、空気燃料比、排気ガス還流量など従来より燃料噴射制御システム1に入力されている公知の数量をいくつでも組み合わせて使用してよいが、ここでは、簡単のためエンジン回転数とトルクだけを例にとって説明する。   The engine control parameter may be used by combining any number of known quantities conventionally input to the fuel injection control system 1 such as the engine speed, engine torque, accelerator opening, air fuel ratio, exhaust gas recirculation amount, and the like. Here, for simplicity, only the engine speed and torque will be described as an example.

燃料噴射手段2は、噴射量が通電時間にほぼ比例する種々の燃料噴射手段を使用してよいが、ここでは、噴射ノズルの弁をソレノイドで開閉するソレノイド式のインジェクタとする。   As the fuel injection means 2, various fuel injection means whose injection amount is substantially proportional to the energization time may be used. Here, a solenoid-type injector that opens and closes the valve of the injection nozzle with a solenoid is used.

補正量学習手段5は、公知のものであり、カム角センサ(図示せず)が示す噴射気筒について、指令噴射量決定手段4が燃料噴射手段2に対して出した指令噴射量とエンジン回転数センサ(図示せず)が示す当該噴射気筒によるエンジン回転数とを比較して燃料噴射手段2における実噴射量の過不足を推定して補正量を求めることができる。   The correction amount learning means 5 is a well-known one, and for the injection cylinder indicated by the cam angle sensor (not shown), the command injection amount determined by the command injection amount determination means 4 to the fuel injection means 2 and the engine speed. A correction amount can be obtained by comparing the engine speed of the injection cylinder indicated by a sensor (not shown) and estimating the excess or deficiency of the actual injection amount in the fuel injection means 2.

指令記憶手段3、指令噴射量決定手段4、補正量学習手段5、及び後述するアイドルフィードバック手段7、学習前戻し手段9は、ECU6と呼ばれるエンジン制御用のコンピュータ内にソフトウェアによって実現される。   The command storage unit 3, the command injection amount determination unit 4, the correction amount learning unit 5, the idle feedback unit 7 and the learning pre-return unit 9, which will be described later, are realized by software in an engine control computer called an ECU 6.

指令記憶手段3は、学習前用指令を記憶する学習前マップ3aと、学習後用指令を記憶する学習後マップ3bとに分かれている。各マップは、指令噴射量、噴射回数、噴射量パターン、噴射タイミング、噴射インターバルを記憶するマルチ噴射パターンマップであるが、ここでは、簡単のため噴射回数だけを例にとって説明する。   The command storage means 3 is divided into a pre-learning map 3a for storing pre-learning commands and a post-learning map 3b for storing post-learning commands. Each map is a multi-injection pattern map that stores a command injection amount, the number of injections, an injection amount pattern, an injection timing, and an injection interval. Here, for simplicity, only the number of injections will be described as an example.

この燃料噴射制御システム1は、アイドル時に、目標とする目標エンジン回転数と実エンジン回転数とを比較し、その偏差に比例係数(アイドルフィードバック係数)を掛けてフィードバック量を決定し、そのフィードバック量を指令噴射量に重畳することにより、実エンジン回転数が目標エンジン回転数に近づくようにするアイドルフィードバック手段7を有し、該アイドルフィードバック手段7は、学習前時のための比較的小さい学習前用比例係数と学習後時のための比較的大きい学習後用比例係数とを記憶し、学習前時には学習前用比例係数を用い、学習後時には学習後用比例係数を用いてフィードバック量を決定するようになっている。   The fuel injection control system 1 compares a target engine speed with a target engine speed at the time of idling, determines a feedback amount by multiplying the deviation by a proportional coefficient (idle feedback coefficient), and the feedback amount. Is superimposed on the command injection amount so that the actual engine speed approaches the target engine speed, and the idle feedback means 7 has a relatively small pre-learning time before learning. The proportional coefficient and the comparatively large post-learning proportional coefficient for after learning are stored, the pre-learning proportional coefficient is used before learning, and the post-learning proportional coefficient is used after learning to determine the feedback amount. It is like that.

この燃料噴射制御システム1では、上記補正量学習手段5は、学習が終了したときその学習した補正量を不揮発性メモリ8に記憶すると共に学習済みであることを示すデータ(例えば、学習済フラグ)を不揮発性メモリ8に記憶し、この学習済フラグがある間は学習を行わず、上記指令噴射量決定手段4及び上記アイドルフィードバック手段7は、この学習済フラグにより学習前時か学習後時かを判定するものとしてある。なお、学習済みか否かをデータとして記憶する方法は学習済フラグに限らない。学習値を2桁の16進数で表す場合に、未学習の状態において学習値を“FF”とすることで未学習を表しておくと、学習値を読み出してその値が“FF”であったときに未学習であるという判定ができる。この方法では学習済フラグが不要なのでメモリ容量を節約することができる。   In the fuel injection control system 1, the correction amount learning means 5 stores the learned correction amount in the nonvolatile memory 8 when learning is completed and also indicates data that has been learned (for example, a learned flag). Is stored in the non-volatile memory 8 and learning is not performed while the learned flag is present, and the command injection amount determining means 4 and the idle feedback means 7 are either before learning or after learning depending on the learned flag. It is as a judgment. Note that the method of storing whether or not learning has been performed as data is not limited to the learned flag. When the learning value is represented by a 2-digit hexadecimal number, when the learning value is represented as “FF” in an unlearned state, the learning value is read and the value is “FF”. Sometimes it can be determined that it has not been learned. Since this method does not require a learned flag, it can save memory capacity.

そして、この燃料噴射制御システム1は、あらかじめ設定されている再学習条件となったか否かを判定する再学習判定手段(図示せず)を有し、上記再学習判定手段が再学習条件となったことを判定した際には、上記学習済みか否かのデータを学習前の状態にすることで上記補正量学習手段5及び上記指令噴射量決定手段4を学習前時に戻す学習前戻し手段9を設けてある。   The fuel injection control system 1 has re-learning determination means (not shown) for determining whether or not a re-learning condition set in advance is satisfied, and the re-learning determination means becomes the re-learning condition. When it is determined that the learning has been completed, the learning amount return means 9 for returning the correction amount learning means 5 and the command injection amount determination means 4 to the pre-learning state by setting the data indicating whether or not learning has been performed to a pre-learning state. Is provided.

不揮発性メモリ8は、EEPROM、フラッシュメモリなどで構成することができる。   The nonvolatile memory 8 can be configured by an EEPROM, a flash memory, or the like.

図2(a)に学習前マップを、図2(b)に学習後マップを示す。図示のように、いずれのマップにおいても、エンジン制御パラメータをエンジン回転数とエンジントルクだけにしたので、各マップは二次元的に表現することができる。所望したエンジントルク(N)の行において所望したエンジン回転数(rpm)の列に位置する欄を参照すれば、その欄に記憶されている噴射回数(回)が読み出せるようになっている。エンジントルクやエンジン回転数がこれらのマップの行、列の中間的な値のときは、エンジントルクやエンジン回転数を行、列の値に丸めてマップを参照するか、エンジントルクやエンジン回転数を挟む両側の欄の値から近似式によって噴射回数を求めるとよい。   FIG. 2A shows a pre-learning map, and FIG. 2B shows a post-learning map. As shown in the figure, in any map, since the engine control parameters are only the engine speed and the engine torque, each map can be expressed two-dimensionally. By referring to the column located in the column of the desired engine speed (rpm) in the desired engine torque (N) row, the number of injections (times) stored in that column can be read. If the engine torque and engine speed are intermediate values in the rows and columns of these maps, round the engine torque and engine speed to the row and column values and refer to the map, or check the engine torque and engine speed. The number of injections may be obtained by an approximate expression from the values on both sides sandwiching.

2つのマップの同じ欄を比較すると、学習前マップの噴射回数は学習後マップの噴射回数より小さいか等しい。つまり、同じエンジン制御パラメータに対する学習前用指令における噴射回数は学習後用指令における噴射回数に比べて小さい値となっている。つまり、マップにおける噴射量の平均値、より詳細に言えば、学習を行う通常運転時におけるマップの噴射回数の平均値は学習後のマップの噴射回数の平均値より小さい。その理由を一例により説明しておく。   Comparing the same field of two maps, the number of injections in the pre-learning map is less than or equal to the number of injections in the post-learning map. That is, the number of injections in the pre-learning command for the same engine control parameter is smaller than the number of injections in the post-learning command. That is, the average value of the injection amount in the map, more specifically, the average value of the number of injections of the map during normal operation in which learning is performed is smaller than the average value of the number of injections of the map after learning. The reason will be described with an example.

今、排気量が1700cm3のエンジンを想定する。アイドル時における1気筒の1燃焼サイクルに必要な噴射量は4mm3である。学習前では、噴射が正確に行われない(実噴射量が指令噴射量通りでない)。仮に、燃料噴射手段2として実噴射量が指令噴射量より1回噴射あたり1mm3多くなる個体があったとする。この燃料噴射手段2を3回噴射させると、合計3mm3多くなる。つまり、1燃焼サイクル合計で実噴射量が指令噴射量より3mm3多くなることになる。この増加分は指令噴射量4mm3に比較して、かなり大きい量であるため、アイドル運転を維持することができない。逆に、1回あたりの噴射量が少なくなる個体においては、1燃焼サイクル合計の実噴射量がとても少なくなり、やはりアイドル運転を維持することができなくなることがある。 Now, an engine with a displacement of 1700 cm 3 is assumed. The injection amount required for one combustion cycle of one cylinder at the time of idling is 4 mm 3 . Before learning, injection is not performed accurately (the actual injection amount is not the same as the command injection amount). Suppose that there is an individual whose fuel injection means 2 has an actual injection amount that is 1 mm 3 greater than the command injection amount per injection. When this fuel injection means 2 is injected three times, the total increases by 3 mm 3 . That is, the actual injection amount is 3 mm 3 more than the command injection amount in one combustion cycle. This increased amount is considerably larger than the command injection amount 4 mm 3 , so that the idle operation cannot be maintained. On the contrary, in an individual in which the injection amount per one time is small, the actual injection amount of one combustion cycle is very small, and it may be impossible to maintain the idling operation.

これに対し、本発明では、学習前の噴射回数を小さめにしておく。例えば、先の例で1回噴射だけにしておけば、1燃焼サイクル合計で実噴射量が指令噴射量より1mm3多いだけですむ。よって、アイドル運転を維持することができる。アイドル運転が維持できるから、そのアイドル時に補正量の学習を行うことができる。 On the other hand, in the present invention, the number of injections before learning is made smaller. For example, if only one injection is used in the previous example, the actual injection amount is only 1 mm 3 greater than the command injection amount in one combustion cycle. Therefore, idle operation can be maintained. Since the idling operation can be maintained, the correction amount can be learned at the idling time.

しかし、学習後は、噴射が正確に行われる(実噴射量が指令噴射量通り)ようになるので、1燃焼サイクルに何回噴射しても誤差が増大することは起きない。よって、アイドル時にも噴射回数を大きくして当初の目的であるマルチ噴射を行うことが可能となる。   However, after learning, the injection is accurately performed (the actual injection amount is the same as the command injection amount), so that the error does not increase no matter how many injections are performed in one combustion cycle. Therefore, it is possible to increase the number of injections even during idling to perform multi-injection, which is the original purpose.

図3にアイドルフィードバック手段7が行うフィードバック量決定処理の等価回路を示す。この等価回路は、目標エンジン回転数と実エンジン回転数とを比較する比較器31と、学習前用比例係数を記憶する学習前係数部32と、学習後用比例係数を記憶する学習後係数部33と、これら2つのメモリの読み出し値を学習前後で切り替えてフィードバック量として出力するスイッチ34とからなる。   FIG. 3 shows an equivalent circuit of the feedback amount determination process performed by the idle feedback means 7. This equivalent circuit includes a comparator 31 that compares the target engine speed and the actual engine speed, a pre-learning coefficient unit 32 that stores a pre-learning proportional coefficient, and a post-learning coefficient unit that stores a post-learning proportional coefficient. 33 and a switch 34 that switches the read values of these two memories before and after learning and outputs them as a feedback amount.

学習前用比例係数が比較的小さいのに対し、学習後用比例係数は比較的大きい。その理由のひとつは、学習前はエンジン(アイドル運転中)が停止しないようにすること、つまりエンジンの安定性を重視するからである。比例係数が大きいと、目標エンジン回転数と実エンジン回転数との偏差が大きいときに、フィードバック量が非常に大きくなり、エンジン停止を招くことがあり得るが、比例係数が小さいことでこれを回避できる。   The proportional coefficient for before learning is relatively small, whereas the proportional coefficient for after learning is relatively large. One reason is that prior to learning, the engine (during idle operation) is not stopped, that is, the engine stability is emphasized. If the proportionality factor is large, the feedback amount becomes very large when the deviation between the target engine speed and the actual engine speed is large, which may cause the engine to stop, but this is avoided by the small proportionality factor. it can.

もうひとつの理由は、学習後は、エンジン回転数が最終目標であるアイドル回転数に早く収束してアイドル時の噴射量が最適噴射量になることを重視するからである。比例係数が小さいと、目標エンジン回転数と実エンジン回転数との偏差に対してフィードバック量があまり大きくならないので収束が遅いが、比例係数がおおきいことで収束を早くすることができる。   Another reason is that, after learning, it is important that the engine speed converges quickly to the final target idle speed and the injection quantity during idling becomes the optimum injection quantity. If the proportionality coefficient is small, the feedback amount does not become so large with respect to the deviation between the target engine speed and the actual engine speed, so the convergence is slow. However, if the proportionality coefficient is large, the convergence can be accelerated.

図4に制御の流れを示す。以下、この流れに従って燃料噴射制御システムの動作を説明する。   FIG. 4 shows the flow of control. The operation of the fuel injection control system will be described below according to this flow.

この制御の流れは電源オン(イグニションキーがオン)でスタートする。スタート後、すぐにステップS1で、ECU6は、不揮発性メモリ8に記憶されている学習済フラグを読み出し、ECU6内の作業領域に格納する。なお、ECU6の出荷時には学習済フラグ=0(クリア)である。   This control flow starts when the power is turned on (ignition key is on). Immediately after the start, in step S1, the ECU 6 reads the learned flag stored in the nonvolatile memory 8 and stores it in the work area in the ECU 6. Note that the learned flag = 0 (clear) when the ECU 6 is shipped.

ステップS2で、ECU6は、学習済フラグ=1かどうか(学習が済んだかどうか)を判定する。NOであれば現在が学習前時ということである。YESであれば現在が学習後時ということである。   In step S2, the ECU 6 determines whether or not the learned flag is 1 (whether learning has been completed). If NO, the current time is before learning. If YES, the current time is after learning.

学習前時ならば、ステップS3で、指令噴射量決定手段4が学習前マップを参照して指令噴射量及び噴射回数を決定する。また、このとき、アイドル運転時であるならば、アイドルフィードバック手段7が学習前用比例係数を用いてフィードバック量を決定し、目標エンジン回転数を計算する。つまり、学習前の噴射が正確に行われない状態(実噴射量が指令噴射量通りでない状態)で最適化したアイドルフィードバック係数やマルチ噴射パターンマップを用いて指令噴射量を求めたり、指令噴射量に対する補正量を求めることになる。   If it is before learning, in step S3, the command injection amount determination means 4 determines the command injection amount and the number of injections with reference to the pre-learning map. At this time, if it is during idling, the idle feedback means 7 determines the feedback amount using the pre-learning proportionality coefficient and calculates the target engine speed. In other words, the command injection amount is obtained by using an idle feedback coefficient or a multi-injection pattern map that is optimized in a state where the injection before learning is not accurately performed (the actual injection amount is not in accordance with the command injection amount). The amount of correction for is obtained.

ステップS4では、ECU6は、補正量学習手段5による学習が終了したか否かを判断する。NOの判断であれば、ステップS6に飛ぶ。   In step S4, the ECU 6 determines whether or not learning by the correction amount learning means 5 has been completed. If NO, the process jumps to step S6.

ここで、補正量学習手段5は、理想燃料噴射量に対して特定回転数を設定しておき、エンジン回転数がその特定回転数で安定する指示燃料噴射量を理想燃料噴射量として学習を終了するとよい。   Here, the correction amount learning means 5 sets a specific engine speed for the ideal fuel injection quantity, and finishes learning with the command fuel injection quantity at which the engine speed is stabilized at the specific engine speed as the ideal fuel injection quantity. Good.

例えば、理論値で5mm3で700回転するエンジンの場合、3mm3多く噴射してしまうインジェクタであった場合には、学習中に指示噴射量を5mm3から徐々に減少させてゆくと指示噴射量が2mm3時に700回転で安定する。ここで700回転で安定したことから、このときの指示噴射量(通電時間等)をこれ以降5mm3と認識する補正をかけることで、実噴射量と指示噴射量との差を埋めることができる。このエンジン回転が安定することで学習終了として判断する。 For example, in the case of an engine that rotates 700 mm at a theoretical value of 5 mm 3 , if it is an injector that injects 3 mm 3 more, if the command injection amount is gradually decreased from 5 mm 3 during learning, the command injection amount Is stable at 700 rpm at 2 mm 3 . Since the rotation is stabilized at 700 rpm, the difference between the actual injection amount and the commanded injection amount can be filled by correcting the commanded injection amount (energization time, etc.) at this time as 5 mm 3 thereafter. . It is determined that the learning is finished when the engine rotation is stabilized.

ステップS4がYESの判断であれば、ステップS7で学習済フラグ=1(学習が済んだ)とする。ステップS6に進む。   If step S4 is YES, the learned flag is set to 1 (learned) in step S7. Proceed to step S6.

ステップS6では、ECU6は、イグニションキーがオフかどうか判断する。これは電源がオフになるとメモリのバックアップができないから、イグニションキーがオフの段階でメモリのバックアップを行おうというものである。NOであれば、イグニションキーがオンであるので、エンジン運転が続いていることがわかり、ステップS2に戻る。YESであれば、イグニションキーがオフであるので、エンジン運転は停止されたことになる。よって、ステップS8で、ECU6は、ECU6内の作業領域内の学習済フラグを不揮発性メモリ8に記憶して、電源オフに備える。   In step S6, the ECU 6 determines whether or not the ignition key is off. Since the memory cannot be backed up when the power is turned off, the memory is backed up when the ignition key is turned off. If NO, since the ignition key is on, it can be seen that the engine is running, and the process returns to step S2. If YES, the engine operation has been stopped because the ignition key is off. Therefore, in step S8, the ECU 6 stores the learned flag in the work area in the ECU 6 in the nonvolatile memory 8 to prepare for power off.

ステップS2で学習後時という判断のときは、ステップS9で、指令噴射量決定手段4が学習後マップを参照して指令噴射量及び噴射回数を決定する。また、このとき、アイドル運転時であるならば、アイドルフィードバック手段7が学習後用比例係数を用いてフィードバック量を決定し、目標エンジン回転数を計算する。つまり、学習後の噴射が正確に行われる状態(実噴射量が指令噴射量通りである状態)で最適化したアイドルフィードバック係数やマルチ噴射パターンマップを用いて指令噴射量を求めたり、指令噴射量に対する補正量を求めることになる。   If it is determined in step S2 that it is after learning, in step S9, the command injection amount determination means 4 refers to the post-learning map and determines the command injection amount and the number of injections. At this time, if it is during idling, the idle feedback means 7 determines the feedback amount using the post-learning proportionality coefficient and calculates the target engine speed. In other words, the command injection amount is obtained by using an idle feedback coefficient or a multi-injection pattern map that is optimized in a state in which the learned injection is accurately performed (a state in which the actual injection amount is the same as the command injection amount). The amount of correction for is obtained.

ステップS10では、学習前戻し手段9による燃料噴射手段2の劣化判定を行う。具体的には、劣化判定変数が所定の判定基準値を超えたとき、燃料噴射手段2が劣化した(再学習が必要な程度状態が変化した)と判断する。劣化判定変数としては、アイドルフィードバック積分項、車両の走行距離などがある。また、アイドル回転数のばらつき検知、気筒間補正値のばらつき検知などを行い、これらのばらつきの大きさを劣化判定変数としてもよい。また、燃料噴射手段2を交換した場合、あるいは燃料噴射系に影響のある部品(ポンプ、ECM等)を交換した場合にも、再学習が必要であるので、これらの部品交換の際にECU6に対してそのイベントを伝える情報を入力できるようにしておき、この情報についてもステップS10で判定するとよい。   In step S10, the deterioration determination of the fuel injection means 2 by the learning pre-return means 9 is performed. Specifically, when the deterioration determination variable exceeds a predetermined determination reference value, it is determined that the fuel injection unit 2 has deteriorated (the state has changed to the extent that relearning is necessary). Examples of the deterioration determination variable include an idle feedback integral term and a vehicle travel distance. Further, it is also possible to detect variations in idle rotation speed, detect variations in correction values between cylinders, etc., and use the magnitude of these variations as a deterioration determination variable. In addition, when the fuel injection means 2 is replaced or when a part (pump, ECM, etc.) that affects the fuel injection system is replaced, re-learning is necessary. On the other hand, information that conveys the event can be input, and this information may be determined in step S10.

ステップS10の判定がNOであるならば、補正量を再学習する必要はないので、ECU6はステップS6に飛ぶ。ステップS10の判定がYESであるならば、補正量を再学習する必要があるので、ステップS11で学習済フラグ=0(クリア)とした後、ステップS6に飛ぶ。学習済フラグをクリアした影響はステップS2に表れ、再学習が発生することになる。   If the determination in step S10 is NO, there is no need to relearn the correction amount, and the ECU 6 jumps to step S6. If the determination in step S10 is YES, the correction amount needs to be re-learned, so after setting the learned flag = 0 (clear) in step S11, the process jumps to step S6. The effect of clearing the learned flag appears in step S2, and relearning occurs.

以上説明したように、補正量を学習する前の噴射が正確に行われない状態においては、その状態で最適化したアイドルフィードバック係数やマルチ噴射パターンマップを用いて指令噴射量を求めたり、指令噴射量に対する補正量を求め、一方、補正量を学習した後の噴射が正確に行われるようになった状態においては、その状態で最適化したアイドルフィードバック係数やマルチ噴射パターンマップを用いて指令噴射量を求めたり、指令噴射量に対する補正量を求めることになる。すなわち、学習前であっても学習後であっても指令噴射量決定手段4、アイドルフィードバック手段7から適正な指令が得られる。   As described above, in the state where the injection before learning the correction amount is not accurately performed, the command injection amount is obtained using the idle feedback coefficient or the multi-injection pattern map optimized in that state, or the command injection In the state where the correction amount for the amount is obtained and the injection after learning the correction amount is accurately performed, the command injection amount using the idle feedback coefficient and the multi-injection pattern map optimized in that state Or a correction amount for the command injection amount. That is, an appropriate command can be obtained from the command injection amount determining means 4 and the idle feedback means 7 before or after learning.

学習前の噴射回数は学習後の噴射回数に比べて小さい値としたので、指令噴射量に対する実噴射量の誤差が増大することがなくなる。とりわけ、指令噴射量がもともと小さいアイドル時にアイドル維持が可能となる。   Since the number of injections before learning is set smaller than the number of injections after learning, an error in the actual injection amount with respect to the command injection amount does not increase. In particular, idling can be maintained at idling when the command injection amount is originally small.

アイドルフィードバック手段7が学習前時には比較的小さい学習前用比例係数を用い学習後時には比較的大きい学習後用比例係数を用いるので、学習前時にはエンジン回転の安定性が保たれ、学習後時にはエンジン回転数の適正値への迅速な収束が期待できる。   Since the idle feedback means 7 uses a relatively small pre-learning proportional coefficient before learning and uses a relatively large post-learning proportional coefficient after learning, the engine rotation stability is maintained before learning and the engine rotation after learning. Rapid convergence to an appropriate number can be expected.

学習前戻し手段9が燃料噴射手段2の劣化を判定して学習済フラグをクリアして諸制御を学習前時に戻すので、燃料噴射手段2の劣化に応じた補正量が再学習できることになる。   Since the pre-learning return means 9 determines the deterioration of the fuel injection means 2 and clears the learned flag to return the various controls to the time before learning, the correction amount corresponding to the deterioration of the fuel injection means 2 can be re-learned.

本発明の一実施形態を示す燃料噴射制御システムのブロック構成図である。It is a block block diagram of the fuel-injection control system which shows one Embodiment of this invention. 本発明に用いる指令記憶手段の具体例を示すものであり、(a)は学習前マップ、(b)は学習後マップの図である。The example of the instruction | command memory | storage means used for this invention is shown, (a) is a map before learning, (b) is a figure of the map after learning. 本発明に用いるアイドルフィードバック手段が行うフィードバック量決定処理の等価回路図である。It is an equivalent circuit diagram of the feedback amount determination process performed by the idle feedback means used in the present invention. 本発明の燃料噴射制御システムにおける制御の流れを示すフローチャートである。It is a flowchart which shows the flow of control in the fuel-injection control system of this invention.

符号の説明Explanation of symbols

1 燃料噴射制御システム
2 燃料噴射手段
3 指令記憶手段
4 指令噴射量決定手段
5 補正量学習手段
6 ECU(コンピュータ)
7 アイドルフィードバック手段
8 不揮発性メモリ
9 学習前戻し手段
DESCRIPTION OF SYMBOLS 1 Fuel injection control system 2 Fuel injection means 3 Command storage means 4 Command injection amount determination means 5 Correction amount learning means 6 ECU (computer)
7 Idle feedback means 8 Non-volatile memory 9 Learning return means

Claims (4)

エンジン制御パラメータに対応して燃料噴射手段が噴射するべき指令噴射量及び噴射回数を記憶する指令記憶手段と、現在のエンジン制御パラメータに基づいて上記指令記憶手段を参照して指令噴射量及び噴射回数を決定する指令噴射量決定手段と、上記燃料噴射手段が実際に噴射する実噴射量が指令噴射量通りになるよう指令噴射量に対する補正量を学習する補正量学習手段とを備えた燃料噴射制御システムにおいて、上記指令記憶手段は上記補正量学習手段が補正量を学習する前である学習前時のための学習前用指令と上記補正量学習手段が補正量を学習した後である学習後時のための学習後用指令とを記憶し、上記指令噴射量決定手段は学習前時には学習前用指令を参照し、学習後時には学習後用指令を参照することを特徴とする燃料噴射制御システム。   Command storage means for storing the command injection amount and the number of injections to be injected by the fuel injection means corresponding to the engine control parameter, and the command injection amount and the injection frequency with reference to the command storage means based on the current engine control parameter Fuel injection control comprising: command injection amount determining means for determining the correction amount; and correction amount learning means for learning a correction amount for the command injection amount so that the actual injection amount actually injected by the fuel injection means is equal to the command injection amount In the system, the command storage means includes a pre-learning instruction for before the learning that is before the correction amount learning means learns the correction amount and a post-learning time after the correction amount learning means has learned the correction amount. A post-learning command for the fuel, wherein the command injection amount determining means refers to the pre-learning command before learning, and refers to the post-learning command after learning Cum control system. 同じエンジン制御パラメータに対する学習前用指令における平均噴射回数は学習後用指令における平均噴射回数に比べて小さい値であることを特徴とする請求項1記載の燃料噴射制御システム。   2. The fuel injection control system according to claim 1, wherein the average number of injections in the pre-learning command for the same engine control parameter is smaller than the average number of injections in the post-learning command. アイドル時に、目標とする目標エンジン回転数と実エンジン回転数とを比較し、その偏差に比例係数を掛けてフィードバック量を決定し、そのフィードバック量を指令噴射量に重畳することにより、実エンジン回転数が目標エンジン回転数に近づくようにアイドルフィードバック手段を有し、該アイドルフィードバック手段は、学習前時のための学習前用比例係数と学習後時のための前記学習前用比例係数より大きい学習後用比例係数とを記憶し、学習前時には学習前用比例係数を用い、学習後時には学習後用比例係数を用いてフィードバック量を決定することを特徴とする請求項1又は2記載の燃料噴射制御システム。   During idling, the target engine speed is compared with the actual engine speed, the feedback amount is determined by multiplying the deviation by a proportional coefficient, and the feedback amount is superimposed on the command injection amount. Idle feedback means so that the number approaches the target engine speed, and the idle feedback means learns larger than the pre-learning proportionality coefficient for before learning and the pre-learning proportionality coefficient for after learning. 3. The fuel injection according to claim 1, wherein a post-learning proportional coefficient is stored, the pre-learning proportional coefficient is used before learning, and the post-learning proportional coefficient is used after learning, and the feedback amount is determined using the post-learning proportional coefficient. Control system. 上記補正量学習手段は、学習が終了したときその学習した補正量と共に学習済みか否かをメモリに記憶し、この学習済みか否かのデータに基づいて学習済みであると判断したときには学習を行わず、上記指令噴射量決定手段は、この学習済みか否かのデータに基づいて学習前時か学習後時かを判定するものとし、さらに、あらかじめ設定されている再学習条件となったか否かを判定する再学習判定手段を有し、上記再学習判定手段が再学習条件となったことを判定した際には、上記学習済みか否かのデータを学習前の状態にすることで上記補正量学習手段及び上記指令噴射量決定手段を学習前時に戻す学習前戻し手段を設けたことを特徴とする請求項1〜3いずれか記載の燃料噴射制御システム。
When the learning is completed, the correction amount learning unit stores in the memory whether or not learning has been performed together with the learned correction amount, and performs learning when it is determined that learning has been performed based on the data indicating whether or not learning has been performed. Instead, the command injection amount determination means determines whether it is before learning or after learning based on the data indicating whether learning has been completed, and whether or not a re-learning condition set in advance is satisfied. Re-learning determination means for determining whether or not when the re-learning determination means has become a re-learning condition, the data indicating whether or not the learning has been completed is set to a state before learning. The fuel injection control system according to any one of claims 1 to 3, further comprising a learning advance return means for returning the correction amount learning means and the command injection amount determination means before learning.
JP2005237358A 2005-08-18 2005-08-18 Fuel injection control system Active JP3904022B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2005237358A JP3904022B2 (en) 2005-08-18 2005-08-18 Fuel injection control system
PCT/JP2006/312512 WO2007020748A1 (en) 2005-08-18 2006-06-22 Fuel injection control system
EP06767170A EP1921300B1 (en) 2005-08-18 2006-06-22 Fuel injection control system
CN2006800289903A CN101238280B (en) 2005-08-18 2006-06-22 Fuel injection control system
US12/063,838 US7925419B2 (en) 2005-08-18 2006-06-22 Fuel injection control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005237358A JP3904022B2 (en) 2005-08-18 2005-08-18 Fuel injection control system

Publications (2)

Publication Number Publication Date
JP2007051582A true JP2007051582A (en) 2007-03-01
JP3904022B2 JP3904022B2 (en) 2007-04-11

Family

ID=37757417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005237358A Active JP3904022B2 (en) 2005-08-18 2005-08-18 Fuel injection control system

Country Status (5)

Country Link
US (1) US7925419B2 (en)
EP (1) EP1921300B1 (en)
JP (1) JP3904022B2 (en)
CN (1) CN101238280B (en)
WO (1) WO2007020748A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009180145A (en) * 2008-01-30 2009-08-13 Toyota Motor Corp Air-fuel ratio control system for internal combustion engine
JP2010168905A (en) * 2009-01-20 2010-08-05 Denso Corp Air-fuel ratio learning control device for internal combustion engine
JP2020176559A (en) * 2019-04-19 2020-10-29 マツダ株式会社 Learning control method of fuel injection amount

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5589910B2 (en) * 2011-03-14 2014-09-17 株式会社デンソー Engine control device
US9103295B2 (en) * 2012-08-13 2015-08-11 Continental Automotive Systems, Inc. Current controller having programmable current-control parameters and hardware-implemented support functions
US9599062B2 (en) * 2014-07-28 2017-03-21 Ford Global Technologies, Llc Method of pilot injection control
US10316783B2 (en) * 2015-05-11 2019-06-11 Ge Global Sourcing Llc Fuel injector wear correction methodology
US10018130B2 (en) * 2015-05-11 2018-07-10 General Electric Company Fuel injector wear compensation methodology by altering injection schedule
DE102017001904B4 (en) * 2017-02-28 2019-01-03 Mtu Friedrichshafen Gmbh Procedure for monitoring the crankcase pressure
JP2018150825A (en) 2017-03-10 2018-09-27 株式会社豊田自動織機 Controller of engine
CN111771050B (en) * 2018-02-26 2022-03-01 日立安斯泰莫株式会社 Fuel injection control device and fuel injection control method

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2165063B (en) * 1984-01-24 1987-08-12 Japan Electronic Control Syst Air/fuel mixture ratio learning controller in electronic control fuel injection internal combustion engine
JPS61185631A (en) 1985-02-12 1986-08-19 Mazda Motor Corp Control unit for engine
US4729359A (en) * 1985-06-28 1988-03-08 Japan Electronic Control Systems Co., Ltd. Learning and control apparatus for electronically controlled internal combustion engine
JPH04203457A (en) 1990-11-30 1992-07-24 Nissan Motor Co Ltd Air-fuel ratio control device of engine
US5265581A (en) 1990-11-30 1993-11-30 Nissan Motor Co., Ltd. Air-fuel ratio controller for water-cooled engine
JPH08261045A (en) 1995-03-27 1996-10-08 Toyota Motor Corp Air-fuel ratio control device for internal combustion engine
JP3946816B2 (en) 1997-06-17 2007-07-18 日産自動車株式会社 Engine air-fuel ratio control device
JPH11229930A (en) 1998-02-13 1999-08-24 Toyota Motor Corp Internal combustion engine controller
JP2000008908A (en) 1998-06-18 2000-01-11 Toyota Motor Corp Combustion control device for cylinder injection type internal combustion engine
JP2003120363A (en) * 2001-10-15 2003-04-23 Nissan Motor Co Ltd Fuel injection control device for internal combustion engine
JP4089244B2 (en) 2002-03-01 2008-05-28 株式会社デンソー Injection amount control device for internal combustion engine
JP3876766B2 (en) 2002-06-06 2007-02-07 株式会社デンソー Injection rate control device for internal combustion engine
JP3966096B2 (en) * 2002-06-20 2007-08-29 株式会社デンソー Injection amount control device for internal combustion engine
JP3867626B2 (en) * 2002-06-20 2007-01-10 トヨタ自動車株式会社 Control device for internal combustion engine
JP4158623B2 (en) 2003-06-27 2008-10-01 株式会社デンソー Fuel injection device
JP2005113729A (en) * 2003-10-06 2005-04-28 Toyota Motor Corp Air fuel ratio control device for internal combustion engine
JP4203457B2 (en) 2004-07-28 2009-01-07 シャープ株式会社 Light emitting module and light emitting system
JP4415912B2 (en) * 2004-10-06 2010-02-17 株式会社デンソー Engine control system
JP2006258009A (en) * 2005-03-18 2006-09-28 Toyota Motor Corp Control device of internal combustion engine
JP4029893B2 (en) * 2005-07-15 2008-01-09 いすゞ自動車株式会社 Fuel injection control device
JP3941828B2 (en) * 2005-09-15 2007-07-04 トヨタ自動車株式会社 Air-fuel ratio control device for internal combustion engine
JP4353220B2 (en) * 2006-08-29 2009-10-28 株式会社デンソー Fuel injection control device for internal combustion engine
JP4899791B2 (en) * 2006-10-30 2012-03-21 株式会社デンソー FUEL INJECTION CONTROL DEVICE AND FUEL SUPPLY SYSTEM DIAGNOSIS METHOD
JP4775342B2 (en) * 2007-07-23 2011-09-21 株式会社デンソー Fuel injection control device and fuel injection system using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009180145A (en) * 2008-01-30 2009-08-13 Toyota Motor Corp Air-fuel ratio control system for internal combustion engine
JP2010168905A (en) * 2009-01-20 2010-08-05 Denso Corp Air-fuel ratio learning control device for internal combustion engine
JP2020176559A (en) * 2019-04-19 2020-10-29 マツダ株式会社 Learning control method of fuel injection amount
JP7282311B2 (en) 2019-04-19 2023-05-29 マツダ株式会社 Learning control method for fuel injection amount

Also Published As

Publication number Publication date
WO2007020748A1 (en) 2007-02-22
EP1921300A4 (en) 2009-11-11
JP3904022B2 (en) 2007-04-11
EP1921300A1 (en) 2008-05-14
EP1921300B1 (en) 2012-09-05
US7925419B2 (en) 2011-04-12
US20100170474A1 (en) 2010-07-08
CN101238280B (en) 2011-03-30
CN101238280A (en) 2008-08-06

Similar Documents

Publication Publication Date Title
JP3904022B2 (en) Fuel injection control system
CN108730054B (en) Method and system for characterizing a port fuel injector
WO2015004988A1 (en) Control device for internal combustion engine
US9845761B2 (en) Fuel estimation apparatus
US7451037B2 (en) Learning method of injection characteristic and fuel injection controller
JP6359122B2 (en) Method and apparatus for calibrating post-injection of an internal combustion engine
US7438066B2 (en) Method and device for controlling an internal combustion engine
KR101928661B1 (en) Control device for internal combustion engine
US20100100302A1 (en) Method and Device For Dosing Fuel Which Is To Be Injected Into A Combustion Chamber Of An Internal Combustion Engine
JP4513757B2 (en) Fuel injection control device
JP4529892B2 (en) Fuel injection control device for multi-cylinder engine
US6947826B2 (en) Method for compensating injection quality in each individual cylinder in internal combustion engines
US7890245B2 (en) Diagnostic method and device for controlling an internal combustion engine
US11215134B2 (en) Method of operating an internal combustion engine
JP3782399B2 (en) Fuel injection control device for internal combustion engine
JP2011140926A (en) Fuel injection control device of internal combustion engine
JP4883068B2 (en) Fuel injection control device
JP4882883B2 (en) Fuel injection control device and fuel injection system using the same
US10612484B2 (en) Control apparatus for engine
JP5648646B2 (en) Fuel injection control device
JP4238043B2 (en) Fuel injection control device for internal combustion engine
JP4877189B2 (en) Fuel injection system
JP2009144632A (en) Internal combustion engine control device
JP2022029914A (en) Idling rotation speed control device
KR100253433B1 (en) A method for compensating deviation rpm between real rpm and target rpm

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070101

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20260119

Year of fee payment: 19