JP2007051540A - Mist eliminating device - Google Patents

Mist eliminating device Download PDF

Info

Publication number
JP2007051540A
JP2007051540A JP2006194775A JP2006194775A JP2007051540A JP 2007051540 A JP2007051540 A JP 2007051540A JP 2006194775 A JP2006194775 A JP 2006194775A JP 2006194775 A JP2006194775 A JP 2006194775A JP 2007051540 A JP2007051540 A JP 2007051540A
Authority
JP
Japan
Prior art keywords
fog
carbon fiber
mist
net
fiber bundles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006194775A
Other languages
Japanese (ja)
Inventor
Tomoaki Yoshikawa
友章 吉川
Shinichi Menju
新一 毛受
Toshiaki Inohara
俊明 猪原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Substation Equipment Technology Corp
Original Assignee
Toshiba Substation Equipment Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Substation Equipment Technology Corp filed Critical Toshiba Substation Equipment Technology Corp
Priority to JP2006194775A priority Critical patent/JP2007051540A/en
Publication of JP2007051540A publication Critical patent/JP2007051540A/en
Pending legal-status Critical Current

Links

Landscapes

  • Resistance Heating (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device using far infrared rays which creates fine visibility, and does not cause a trouble in a public transportation facility running without trouble when mist develops, in the public transportation facility such as a road, an airport, and a harbor. <P>SOLUTION: The mist eliminating device includes a mist sensing monitor that monitors the unfavorable influence of mist on visibility, and a system which supplies electricity to heat a mesh infrared emitter, and is constructed to enclose a mist eliminating space according to a signal from the mist sensing monitor. The mesh of infrared emitter is formed in such a way that a plurality of carbon fiber clusters which are intertwined or arranged in parallel with nonconductive fiber clusters located between a number of loops of a nonconductive fiber texture, are entwined with a plurality of nonconductive fiber clusters perpendicular to the carbon fiber clusters so that the nonconductive fiber clusters are intertwined with each other to set adjacent carbon fiber clusters apart from each other across a gap. The gap between adjacent carbon fiber clusters is 3 to 10 mm, and at least the carbon fiber clusters are coated with ceramics. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、道路、空港、港湾等、公共の交通手段において霧が発生した場合に、視界を良好にし、交通手段の運行に支障を来さない設備を、実現可能な経費で提供することができる技術に関する。   The present invention provides a facility that improves visibility and does not hinder the operation of transportation means at a feasible cost when fog occurs in public transportation means such as roads, airports, and harbors. It relates to the technology that can.

霧とは、直径10〜40μm程度の小さい水滴が空気中に多数発生して、遠くまで見通せなくなる現象であり、交通障害の原因になる。霧は多くの場合、非常に小さい、直径1μm以下のチリに空気中の水蒸気が付着して発生するが、基本的には細かい水滴と考えられる。このように霧は大部分が水分から構成されている。
大気中には常に水分が存在するが、その量と形態は気象条件によりさまざまに変わる。つまり、水分の形態が水蒸気、微水滴或いは氷晶のいずれとなるかは気圧、気温、気流、乱流の程度、重力、空気抵抗などの因子に依存して異なる。
Fog is a phenomenon in which a large number of small water droplets having a diameter of about 10 to 40 μm are generated in the air and cannot be seen far away, causing traffic obstacles. In many cases, mist is generated when water vapor in the air adheres to very small dust having a diameter of 1 μm or less, but it is basically considered to be fine water droplets. Thus, the mist is mostly composed of moisture.
Although moisture is always present in the atmosphere, its amount and form vary depending on weather conditions. In other words, whether the form of moisture is water vapor, fine water droplets or ice crystals differs depending on factors such as atmospheric pressure, air temperature, airflow, turbulence, gravity, and air resistance.

但し、これらの空間密度には物理条件に対応した上限がある。水蒸気の場合、標準気圧の平地で水蒸気として飽和できる量は、温度に依存して低下する。例えば、0℃では約5g/m3 、30℃では30g/m3 であり、これらの限界量を超えると、固体微粒子や汚染液滴(ミスト) を核として微水滴が析出する。これが地上に接していれば霧、上空に離れていれば雲と呼ばれる微水滴である。飽和水蒸気が霧粒に引き続き凝結し、或いは霧粒同士が衝突併合することにより霧粒は拡大し、同時に可視光線の散乱率も増大する。しかし、霧粒の直径が50μmを超すあたりからこの霧粒の重力落下が目立ち始める。すなわち、大気中に浮遊できる霧の空間密度にも限界量があり、水量にして最大2g/m3 程度である。 However, these spatial densities have an upper limit corresponding to physical conditions. In the case of water vapor, the amount that can be saturated as water vapor on a flat surface at standard atmospheric pressure decreases depending on the temperature. For example, at 0 ℃ about 5 g / m 3, a 30 ° C. At 30 g / m 3, Exceeding these limit amount, the fine water droplets deposited solid particles and contaminated liquid droplets (mist) as nuclei. If this is in contact with the ground, it is a mist, and if it is far away, it is a fine water droplet called a cloud. Saturated water vapor condenses on the mist particles, or the mist particles collide and collide with each other, so that the mist particles expand and at the same time the visible light scattering rate also increases. However, the gravitational drop of the mist starts to be noticeable when the diameter of the mist exceeds 50 μm. In other words, the spatial density of fog that can float in the atmosphere has a limit amount, and the maximum amount of water is about 2 g / m 3 .

大気の視界を遮る微水滴つまり霧の対策として、従来では、微水滴を蒸発させることだけが考えられていた。水滴を蒸発させるには大量の気化熱を必要とする。エネルギーが効率100%で霧に吸収されると仮定しても、大気空間1m3 あたり約1.2kcal(=580ca1 /g×2g/m3 )の熱を供給しなければならない。しかも、霧を除去すべき対象空間は密閉されているわけではなく、風により絶えず新たな霧が流入し続けるため、被霧解消空間には連続してエネルギーを送る必要がある。したがって、かかる現実の移動霧を消すには、対象空間の風上側単位断面に常時、風速(m/sec)× 1.2 kcal /m3 のエネルギーを与えなくてはならない。 Conventionally, only the evaporation of fine water droplets has been considered as a countermeasure against fine water droplets, ie, fog, that obstructs the field of view of the atmosphere. A large amount of heat of vaporization is required to evaporate the water droplets. Even if the energy is assumed to be absorbed by the mist with an efficiency of 100%, heat of about 1.2 kcal (= 580 ca1 / g × 2 g / m 3 ) must be supplied per 1 m 3 of atmospheric space. Moreover, the target space from which the mist is to be removed is not sealed, and new mist constantly flows in by the wind. Therefore, it is necessary to send energy continuously to the fog-resolving space. Therefore, in order to extinguish such actual moving fog, energy of wind speed (m / sec) × 1.2 kcal / m 3 must be constantly applied to the windward unit cross section of the target space.

例えぱ、高速道路に直交して1m/sec の風が吹く場合、必要視界高度3m、対象距離10kmの路上濃霧全てを瞬時に蒸発させる例を想定すると、道路風上側で、1.46×105 kW(=1m/sec ×3m× 10000m×580cal /g×2g/m3 ×4.2ジュール/cal)の熱が必要となる。この際、一旦消えた霧は30m位までの道路を横切る間は再生しないとする。更に、この熱を空気を介して水滴に伝えるとすると、空気の熱容量〔0.0012ジュール/(m3 ・K)〕、熱拡散〔空気中の狭域熱拡散係数0.1〜1.0m2 /sec 〕、熱伝導〔空気の熱伝導係数0.025W/(m・K)〕などが関係して、1.46×105 kWの数百倍の熱を連続して供給しなくてはならない。したがって、バーナー、配管など大ががりな付属施設が必要となる。また、加熱された高温・乾燥空気が浮力上昇して道路上空に去る現象も起こって、到底実用にならない。 For example, if a wind of 1 m / sec blows perpendicular to the expressway, assuming an example of instantly evaporating all the road fog with a required visual altitude of 3 m and a target distance of 10 km, 1.46 × 10 Heat of 5 kW (= 1 m / sec × 3 m × 10000 m × 580 cal / g × 2 g / m 3 × 4.2 joules / cal) is required. At this time, it is assumed that the fog that once disappeared is not regenerated while crossing a road up to about 30 m. Further, if this heat is transferred to water droplets via air, the heat capacity of air [0.0012 Joules / (m 3 · K)], heat diffusion [narrow region thermal diffusion coefficient in air 0.1 to 1.0 m 2 / sec], heat conduction [air thermal conductivity coefficient 0.025W / (m · K)], etc., it is necessary to continuously supply heat several hundred times as large as 1.46 × 10 5 kW. Must not. Therefore, large-scale attached facilities such as burners and piping are required. In addition, the phenomenon that heated high temperature / dry air rises to the road and rises to buoyancy, which is not practical.

この問題について本発明者らは特許文献1を開示した。本提案は、霧による視界不良を監視する霧感知モニターと、霧感知モニターからの信号に基き電磁波を霧に対して照射する電磁波発振器と、この電磁波発振器に電力を供給するとともに電磁波の波形を変調せしめるパルス変調電源とを有する霧解消装置の基本要素を提供したものである。この提案は先駆的で基本的な提案である。
更に、金属網状ヒーターにセラミックスコーティングを施した赤外線放射体を霧が流入する道路脇に設け、霧を赤外線放射体間の空隙を通過させ、流入する霧の粒子に至近距離から赤外線を放射して効果的に霧を解消する手段が開示されている。
The present inventors disclosed Patent Document 1 regarding this problem. This proposal is a fog detection monitor that monitors poor visibility due to fog, an electromagnetic wave oscillator that irradiates the fog with an electromagnetic wave based on the signal from the fog detection monitor, supplies power to the electromagnetic wave oscillator, and modulates the waveform of the electromagnetic wave The basic element of the fog eliminating apparatus which has a pulse modulation power supply to be shown is provided. This proposal is a pioneering and basic proposal.
In addition, an infrared radiator with a ceramic coating on a metal mesh heater is provided on the side of the road where the mist flows. The mist passes through the gap between the infrared radiators and radiates infrared rays from the closest distance to the flowing mist particles. Means for effectively eliminating fog are disclosed.

更に、特許文献2には波長6〜15μm、好ましくは5〜25μmの遠赤外線輻射体を使用して霧を解消する技術が開示されている。この提案は遠赤外線輻射体を道路脇に間欠的に設置する技術である。加熱式の強力な遠赤外線輻射体から放射された遠赤外線は、道路を斜めに横断して反射手段による反射を繰返し、散乱する遠赤外線により霧を解消するものである。
特開2001−288723号公報 特開2002−030632号公報
Further, Patent Document 2 discloses a technique for eliminating fog using a far-infrared radiator having a wavelength of 6 to 15 μm, preferably 5 to 25 μm. This proposal is a technology for intermittently installing a far-infrared radiator on the side of a road. Far-infrared rays emitted from a heating-type strong far-infrared radiator repeatedly crosses the road obliquely and is repeatedly reflected by the reflecting means, and the fog is eliminated by the scattered far-infrared rays.
JP 2001-288723 A JP 2002-030632 A

上記先行の2文献に開示された人畜に無害な遠赤外線を使用する方法は好ましいが、遠赤外線を含めて電磁波のエネルギーは距離の二乗に反比例して減衰していく。そのため、遠方から放射された赤外線のエネルギーは小さく、より高密度に赤外線輻射源を設けないと実効が得られない。特許文献2には、面状の網を使用した実施例が開示されているが、この網には加熱手段が設けられていない。一般に、遠赤外線放射素子も霧が発生しがちな低温では充分な遠赤外線を放射しない。広い開口部を有し、加熱手段を設けた網目や縞目の間のような至近距離から、遠赤外線を放射しなければ効果的な霧解消を実現することはできない。   Although the method of using far infrared rays that are harmless to humans and animals disclosed in the two preceding documents is preferable, the energy of electromagnetic waves including far infrared rays attenuates in inverse proportion to the square of the distance. Therefore, the energy of infrared rays radiated from a distant place is small, and effectiveness cannot be obtained unless an infrared radiation source is provided at a higher density. Patent Document 2 discloses an embodiment using a planar net, but this net is not provided with a heating means. In general, far-infrared radiation elements also do not emit sufficient far-infrared radiation at low temperatures where fog tends to occur. Effective fog elimination cannot be achieved unless far infrared rays are emitted from a close distance such as between meshes or stripes having a wide opening and heating means.

3〜5mもの高さの構造物を道路脇に設置するためには、堅固、軽量且つ風雨に耐える必要がある。被霧解消空間の側面に堅固な面状構造物を設けると、霧の流れは遮断されて所謂、霧の廻り込み現象が生じ、構造物の上面や側面から複雑な方向に向かって霧が流入してくる。また、加熱された金属網やセラミックスは遠赤外線を放射するが、素材自体が比較的重いため構造物の建設に多大の費用を要するおそれがある。そこで、エネルギー効率の更なる改善や装置の即応性と普及に向けてより優れたものにものにしていく必要がある。   In order to install a structure with a height of 3 to 5 m on the side of the road, it is necessary to be strong, light and resistant to wind and rain. If a solid planar structure is provided on the side of the fog-removing space, the mist flow is blocked and the so-called mist wraparound phenomenon occurs, and the mist flows in a complex direction from the top and side of the structure. Come on. In addition, heated metal nets and ceramics emit far infrared rays, but since the material itself is relatively heavy, there is a possibility that a great deal of cost may be required for construction of the structure. Therefore, it is necessary to improve the energy efficiency and improve the responsiveness and spread of the device.

本発明は上記課題を解決することを目的とし、その構成は、霧による視界不良を監視する霧感知モニターと、該霧感知モニターからの信号に従って、被霧解消空間を囲って設けた、網状の赤外線放射源を通電、加熱するシステムとからなる霧解消装置であって、赤外線放射源が、非導電性繊維束の編み地の多数のループ間に炭素繊維束が平行に絡み込まれ、或いは平行に配列された複数の炭素繊維束を、該炭素繊維束と垂直方向の複数の非導電性繊維束が炭素繊維束を絡めとり、非導電性繊維束同士で絡み合いながら、隣接する炭素繊維束が互いに接触しない間隔で配列している網であり、隣接する炭素繊維間の間隔は3〜10mmであり、少なくとも炭素繊維束にはセラミックスコーティングが施されていることを特徴とする。   An object of the present invention is to solve the above-mentioned problems, and the configuration thereof is a mist detection monitor for monitoring poor visibility due to fog, and a net-like shape provided around the fog-dissolving space according to a signal from the mist detection monitor. An anti-fog device comprising a system for energizing and heating an infrared radiation source, wherein the infrared radiation source is entangled in parallel between multiple loops of a knitted fabric of non-conductive fiber bundles, or in parallel. A plurality of carbon fiber bundles arranged in the same manner, a plurality of non-conductive fiber bundles perpendicular to the carbon fiber bundles entangle the carbon fiber bundles, and the non-conductive fiber bundles are entangled with each other. The meshes are arranged at intervals that do not contact each other, the interval between adjacent carbon fibers is 3 to 10 mm, and a ceramic coating is applied to at least the carbon fiber bundle.

赤外線放射体として、軽量且つ強靱な炭素繊維を使用する本発明により、霧が発生しがちな地域の道路等に採算可能な手段で霧を解消し、公共の交通手段の円滑な運用を可能にする。すなわち、水滴径を一定値以下に制御する本発明により、可視光線の散乱を回避することができ、非効率的な単なる加熱を排除して視界不良を解消することができる利点が生じる。霧解消に必要なエネルギーも数10分の1〜数100分の1に低減できる。網として目ずれがなく、且つ隣接する炭素繊維束同士が互いに設定した距離を保って配列している本発明の網を用いることにより、交通手段の霧解消が始めて実現段階に入った。   The present invention using lightweight and tough carbon fiber as an infrared radiator eliminates fog by means that can be profitable for roads in areas where fog is likely to occur, enabling smooth operation of public transportation. To do. That is, according to the present invention in which the water droplet diameter is controlled to be equal to or less than a certain value, it is possible to avoid the scattering of visible light, and there is an advantage that it is possible to eliminate inefficiency simply by eliminating inefficient mere heating. The energy required for fog elimination can also be reduced to several tenths to several hundredths. By using the net of the present invention in which there is no mesh misalignment and the adjacent carbon fiber bundles are arranged at a set distance from each other, the fog of the means of transportation has been solved for the first time.

すなわち、本発明は放射する赤外線の波長を水分の吸収波長と一致させてエネルギー効率を高めるものである。電磁波としては、波長の短い順にγ線<X線<紫外線<可視光線<赤外線<マイクロ波<電波等があるが、本発明においては人畜に優しく、加温効果も大きい赤外線を用いる。赤外線とは、電磁波の中で0.75〜1000μmの波長領域であり、更にその中でも4ミクロン以上の波長帯を遠赤外線と呼んでいる。この波長域の中の10〜20μmを温度に換算すると27℃〜77℃となる。つまり比較的低温の放射体が発するマイルドな電磁波が赤外線ないし遠赤外線である。
本発明者らの実験によれば、赤外線の波長3μmの場合、水の吸収率が100%に近づくが3μmを超えると直ちに低下し、波長6〜7μm以上では安定して100%近い吸収が続く。50μm程度まではほぼ安定して使用でき、25μm以下が好ましいことが判明した。
In other words, the present invention increases the energy efficiency by matching the wavelength of infrared rays to be emitted with the absorption wavelength of moisture. Examples of electromagnetic waves include γ rays <X rays <ultraviolet rays <visible rays <infrared rays <microwaves <radio waves, etc., in the order of shorter wavelengths. In the present invention, infrared rays that are gentle to humans and have a large heating effect are used. Infrared rays is a wavelength region of 0.75 to 1000 μm in electromagnetic waves, and among them, a wavelength band of 4 microns or more is called far infrared rays. If 10-20 micrometers in this wavelength range is converted into temperature, it will be 27 to 77 degreeC. That is, a mild electromagnetic wave emitted from a relatively low temperature radiator is infrared or far infrared.
According to the experiments by the present inventors, in the case of an infrared wavelength of 3 μm, the water absorption rate approaches 100%, but immediately decreases when it exceeds 3 μm, and when the wavelength is 6 to 7 μm or more, the absorption is stably close to 100%. . It was found that the film can be used almost stably up to about 50 μm, and preferably 25 μm or less.

本発明は、赤外線が電気極性を持つ分子(水分子など)に運動エネルギーを与え、分子を共振させて運動を強める作用を有することを見出して完成した。赤外線エネルギーを得た水粒子は自己分裂現象により視界を透明にする。
水は2個の水素と1個の酸素の化合物である。しかし、実際にはH2 O単体で存在するのではなく、多くのH2 O分子同士が互いに引きつけ合い、図1に示すような、結合を繰り返した大型のクラスター1という塊となって存在していると考えられている。このクラスター1(水分子結合体)は、外部から蒸発させるエネルギーよりも小さいエネルギーが加わることにより分裂する。水滴の大きさがある程度小さくなると可視光に対して透明になるので、完全に気化させて水分子1個づつにしなくても光を散乱しなくなることが判明した。図2には、可視光を散乱しない分裂したクラスター2の分子構造イメージ図を示した。
The present invention has been completed by finding that infrared rays have an action of imparting kinetic energy to molecules having electric polarity (such as water molecules) and strengthening the motion by resonating the molecules. Water particles that have received infrared energy make the field of view transparent due to the self-splitting phenomenon.
Water is a compound of two hydrogens and one oxygen. However, in reality, it does not exist as a simple substance of H 2 O, but a lot of H 2 O molecules attract each other, and as shown in FIG. It is thought that This cluster 1 (water molecule conjugate) is split when energy smaller than the energy evaporated from the outside is applied. It has been found that when the size of the water droplet is reduced to some extent, it becomes transparent with respect to visible light, so that it does not scatter light without being completely vaporized to form one water molecule. FIG. 2 shows an image of the molecular structure of split cluster 2 that does not scatter visible light.

赤外線は水分子に運動エネルギーだけを与え、特に遠赤外線は加熱作用があることが知られている。赤外線には分子を共振させてその運動性を強める作用があり、この運動エネルギーは、クラスターの分裂を引き起こし、霧は可視光を散乱しなくなる。
道路上に存在する霧の微水滴に赤外線が放射され、エネルギーが吸収され、微水滴の内部エネルギーが増加するにしたがい、部分的に分子の運動と表面張力が釣り合わなくなることから、微水滴は自ら小水滴に分裂することで安定する。
気象学や物理学の定説によると、蒸発以外では水滴は小さくならないとしている。つまり、水滴が高温になり、内部に多量の水蒸気ができなければ、水滴の表面は割れないと考えられている。これに反し、本発明者らの知見によると、空間に漂い外部からエネルギーを受けた、図2に示すような分裂したクラスター2には水蒸気の凝結はなく、或いは衝突しても合体せず、小径のままの状態で安定する。
Infrared rays give water molecules only kinetic energy, and far infrared rays are known to have a heating effect. Infrared rays have the effect of resonating molecules and strengthening their motility, and this kinetic energy causes cluster splitting, so that fog does not scatter visible light.
Infrared rays are radiated to the foggy water droplets on the road, the energy is absorbed, and as the internal energy of the water droplets increases, the molecular motion partially balances the surface tension. Stabilizes by breaking into small water droplets.
According to the theory of meteorology and physics, water droplets do not become small except by evaporation. That is, it is considered that the surface of the water droplet does not break unless the water droplet becomes high temperature and a large amount of water vapor is formed inside. On the contrary, according to the knowledge of the present inventors, the split cluster 2 as shown in FIG. 2 that has drifted in space and received energy from the outside has no condensation of water vapor, or does not coalesce even when colliding, Stable with small diameter.

本発明に使用する赤外線放射要素は炭素繊維である。更に、炭素繊維束の表面に被覆したセラミックスが炭素繊維と共に加熱されてより多くの赤外線を放射する。炭素繊維とはアクリル系繊維、ピッチ等の有機素材を焼成して製造され、導電性、高強度、低比重の優れた新素材である。一般的には、引張強度及び引張弾性率をパラメータとして汎用グレードと高性能グレードに大別されるが、汎用グレードでも1000MPaの引張強度、100GPaの引張弾性率を有する。電気的には導電性であり、化学的には耐蝕性に優れ、機械的には低比重、比強度、比弾性率が大きく、摩擦係数が低い。   The infrared emitting element used in the present invention is carbon fiber. Further, the ceramic coated on the surface of the carbon fiber bundle is heated together with the carbon fiber to emit more infrared rays. Carbon fiber is manufactured by firing organic materials such as acrylic fibers and pitch, and is a new material excellent in conductivity, high strength, and low specific gravity. In general, a general-purpose grade and a high-performance grade are roughly classified using a tensile strength and a tensile elastic modulus as parameters, but the general-purpose grade also has a tensile strength of 1000 MPa and a tensile elastic modulus of 100 GPa. Electrically conductive, chemically excellent in corrosion resistance, mechanically low specific gravity, specific strength, large specific elastic modulus, and low friction coefficient.

炭素は発熱することにより赤外線領域のエネルギーを放射する。しかも、27〜77℃程度の加熱で波長10〜20μm程度の遠赤外線を放射する。赤外線放射源として炭素繊維を用いる利点として、炭素繊維の体積占有率(一般的にVfと称している) を変えることにより自由に電気抵抗を設計できることが挙げられる。
炭素繊維は、通常所定の太さのものを多数束ねて用いられる。例えば径7〜10μmの繊維を2000〜8000本束ねた繊維束もある。1万本から1万5千本を束ねると可撓性を失うが、結着樹脂を選定したり、断面形状を楕円形ないし扁平にすることにより可撓性が得られる。
Carbon emits energy in the infrared region by generating heat. Moreover, far-infrared rays having a wavelength of about 10 to 20 μm are emitted by heating at about 27 to 77 ° C. An advantage of using carbon fiber as an infrared radiation source is that the electrical resistance can be designed freely by changing the volume occupancy (generally referred to as Vf) of the carbon fiber.
Carbon fibers are usually used by bundling a large number of fibers having a predetermined thickness. For example, there is a fiber bundle in which 2000 to 8000 fibers having a diameter of 7 to 10 μm are bundled. When 10,000 to 15,000 are bundled, flexibility is lost. However, flexibility can be obtained by selecting a binder resin or making the cross-sectional shape elliptical or flat.

非導電性繊維としては、ポリエステル繊維、ポリアミド繊維、アラミド繊維等のプラスチックス繊維或いはガラス繊維等の無機系繊維等を用いる。これら編み地、織地を製造する際に、炭素繊維束を絡み取ることにより通電加熱可能な編み地、織地からなる本発明の網を得る。織地として開口部を広くとると平織りでは目ずれが生じるため絡み織が好ましい。絡み織とは、図3に示すように、間隔を保って平行に配列された複数本の炭素繊維束3が、これと垂直で、より細い複数本の非導電性繊維束4に絡まれて固定された織地である。隣接する炭素繊維束3までの間は非導電性繊維自体が絡みあって、広い開口部5を形成する織地である。非導電性繊維束4は太線で表現したが、現実には複数本の繊維束であったり、より複雑に絡ませて目ずれを防止することができる。一般には炭素繊維束を横に挿入しながら織っていくが、本発明の使用にあたっては炭素繊維束は縦方向でも横方向でも差支えない。炭素繊維束3に電流を導通することにより、大量の遠赤外線を放射させることができる。   As the non-conductive fiber, plastic fiber such as polyester fiber, polyamide fiber, aramid fiber or inorganic fiber such as glass fiber is used. When producing these knitted fabrics and woven fabrics, the net of the present invention comprising knitted fabrics and woven fabrics capable of being heated by energization is obtained by entwining the carbon fiber bundles. If the opening is widened as a woven fabric, a plain weave causes misalignment, and an entangled weave is preferable. As shown in FIG. 3, the entangled weave is a plurality of carbon fiber bundles 3 arranged parallel to each other at intervals, and is entangled with a plurality of finer non-conductive fiber bundles 4 perpendicular to this. It is a fixed woven fabric. Between the adjacent carbon fiber bundles 3, the non-conductive fibers themselves are entangled to form a wide opening 5. Although the non-conductive fiber bundle 4 is expressed by a thick line, in reality, it may be a plurality of fiber bundles or more complicatedly entangled to prevent misalignment. In general, the carbon fiber bundles are woven while being inserted horizontally, but in the use of the present invention, the carbon fiber bundles may be longitudinal or transverse. By conducting an electric current through the carbon fiber bundle 3, a large amount of far infrared rays can be emitted.

本発明の網は編み地が好ましい。編み地はループを形成することや横糸が存在しないことで織地と区別され、織地は緯糸を必須とすることで編み地と区別される。編み地は横編みでも縦編み(ラッセル編み)でも多数のループが存在し、所定のループ内に炭素繊維束を固定しながら編んでいく。
ラッセル編み地は、多数の縦糸のみを使用する編み地であり、目ずれしないため漁網、農業用網、土木用網等、産業用に広く使用されている。本発明の網とは、充分な開口部5を有する編み地或いは絡み織地で、隣接する炭素繊維束が互いに接触しないように、開口部5を確保して炭素繊維束を配列させた網である。開口部5が網全体に占める面積比率は自然霧の流れを妨げない程度であり、実質的には30%以上、好ましくは40〜50%又はそれ以上である。
The net of the present invention is preferably knitted fabric. A knitted fabric is distinguished from a woven fabric by forming a loop and no weft, and a woven fabric is distinguished from a knitted fabric by requiring a weft. The knitted fabric has a large number of loops regardless of whether it is a flat knitting or a warp knitting (Russell knitting).
Russell knitted fabrics are knitted fabrics that use only a large number of warp yarns and are widely used for industrial purposes such as fishing nets, agricultural nets, and civil engineering nets because they are not misaligned. The net of the present invention is a net having a sufficient number of openings 5 and an arrangement of carbon fiber bundles with openings 5 secured so that adjacent carbon fiber bundles do not contact each other. . The area ratio that the opening 5 occupies in the entire net is such that it does not interfere with the flow of natural fog, and is substantially 30% or more, preferably 40 to 50% or more.

これら広い開口部を有する編み地又は織地からなる網は、例えば高速道路の場合、道路脇に間欠的にポールを立て、ポール間に網を懸架することができる。織地又は編み地である網は幅に限界がある。例えば、高速道路脇等に配設するときは必要長さに切断した数枚を、縦に又は横に連接して広い網にすることができる。連接するにあたっては、網をプラスチック等の非導電性枠体に張設することができる。炭素繊維束の切断端部を導電性塗料の塗布及び/又は帯状の金属製金具の押圧により1枠体の両端を電極とし、隣接する電極の上端同士又はした端同士を導線で接続することが好ましい。網の炭素繊維束を、図4、図7に示すように、縦に配列すると縦方向の全炭素繊維束に通電することができる。網の炭素繊維束を横に配列すると、横方向の全炭素繊維束に通電することができる。また、霧が発生しない時には網を下面に或いはポール脇に収納して視界を広げることもできる。   For example, in the case of a highway, a net made of knitted fabric or woven fabric having a wide opening can intermittently stand poles on the side of the road and suspend the net between the poles. Nets that are woven or knitted have a limited width. For example, when it is arranged on the side of an expressway or the like, several pieces cut to the required length can be connected vertically or horizontally to form a wide net. When connecting, the net can be stretched on a non-conductive frame such as plastic. The ends of the carbon fiber bundles may be connected to each other by applying conductive paint and / or pressing a belt-shaped metal fitting with the ends of one frame as electrodes and the upper ends of adjacent electrodes connected with each other with a conductive wire. preferable. When the carbon fiber bundles of the mesh are arranged vertically as shown in FIGS. 4 and 7, all the carbon fiber bundles in the longitudinal direction can be energized. When the carbon fiber bundles of the mesh are arranged horizontally, all the carbon fiber bundles in the lateral direction can be energized. In addition, when fog does not occur, the field of view can be expanded by storing the net on the lower surface or on the side of the pole.

本発明の遠赤外線放射装置は一般のヒーターのように赤熱するほど加熱しない。波長10〜20μm遠赤外線を放射させるには27〜77℃で足りる。発生する遠赤外線も微弱であるため、表面から3〜4mm、精々5mm程度である。炭素繊維束の表面とこれに隣接する炭素繊維束の表面との間隔は3〜10mm、好ましくは4〜8mm、より好ましくは5〜6mmである。この間隔が10mmを越えると霧が充分に解消されず、3mm未満では流入する移動霧を遮断して霧の回り込み現商が生じる。   The far-infrared radiation device of the present invention is not heated so much as it is red hot like a general heater. 27-77 ° C. is sufficient to emit far infrared rays having a wavelength of 10-20 μm. Since the far infrared rays generated are also weak, they are about 3 to 4 mm from the surface, and at most about 5 mm. The space | interval of the surface of a carbon fiber bundle and the surface of the carbon fiber bundle adjacent to this is 3-10 mm, Preferably it is 4-8 mm, More preferably, it is 5-6 mm. If this distance exceeds 10 mm, the mist is not sufficiently eliminated, and if it is less than 3 mm, the inflowing moving mist is cut off and a wraparound quotient is generated.

また、図4に示すように、非導電性繊維束からなる広い開口部5を有する網12に炭素繊維束3を縦方向に、互いに接触しない間隔で編み込んでいくこともできる。図4では非導電性繊維束4と開口部5を斜線で表した。図4の場合には炭素繊維束3の上端の切断端部側で、端から6本の炭素繊維束をまとめて導電塗料を塗布したり、導電性板状体を取付ける等、他の公知の方法を用いて電極7bとした。このようにして炭素繊維束6本ずつをまとめて電極7とした。更に下端の切断端部側には、両端から3本ずつの炭素繊維束3をまとめて連結して電極7aとした。電極7a以降は上端と同じく順次炭素繊維束36本をまとめて電極7とし、最終端部は縦糸3本をまとめて電極7とした。   Moreover, as shown in FIG. 4, the carbon fiber bundle 3 can also be knitted in the vertical direction in the net | network 12 which has the wide opening part 5 which consists of a nonelectroconductive fiber bundle at the space | interval which does not mutually contact. In FIG. 4, the non-conductive fiber bundle 4 and the opening 5 are represented by oblique lines. In the case of FIG. 4, on the cut end portion side of the upper end of the carbon fiber bundle 3, other well-known methods such as applying a conductive paint to the six carbon fiber bundles from the end, attaching a conductive plate-like body, etc. Using the method, an electrode 7b was obtained. In this way, six carbon fiber bundles were collectively used as an electrode 7. Further, three carbon fiber bundles 3 from both ends are connected together on the cut end side of the lower end to form an electrode 7a. From the electrode 7a onward, 36 carbon fiber bundles were gathered together as an electrode 7 in the same manner as the upper end, and the final end was made up of 3 warp yarns as an electrode 7.

このように炭素繊維束3と電極を配置すると電極7aに導通された電流は上端の電極7bに達し、電極7bから炭素繊維束3を介して電極7cに達する。更に電極7cに達した電流は炭素繊維束3を介して上端の電極7dに達する。このようにして、最終的には下端の3本の縦糸をまとめた電極7に達して電源6に戻る。
この方法によれば、電気配線を下端のみに配設することができ、保守管理が一段と容易になる。図4においては説明を容易にするため、電極には炭素繊維束6本、及び下端両端は3本を連結したが、現実には、炭素繊維束6本ではなく15〜50本を使用することになる。
When the carbon fiber bundle 3 and the electrode are arranged in this manner, the current conducted to the electrode 7a reaches the upper electrode 7b and reaches the electrode 7c through the carbon fiber bundle 3 from the electrode 7b. Further, the current reaching the electrode 7 c reaches the upper electrode 7 d through the carbon fiber bundle 3. In this way, finally, the electrode 7 is gathered together with the three warps at the lower end, and the power supply 6 is returned.
According to this method, the electrical wiring can be arranged only at the lower end, and maintenance management becomes easier. For ease of explanation in FIG. 4, six carbon fiber bundles and three at both ends of the lower end are connected to the electrode, but in reality, 15 to 50 pieces are used instead of six carbon fiber bundles. become.

これらの炭素繊維からなる網は高速道路等の被霧解消空間の脇に連続して懸架することができる。しかし、山陵部の道路など水分を大量に含む風が山をはい上がるような場所は霧の多発地域であり、このような霧は道路に沿ってほぼ平行に流れる。このような地域では、被霧解消空間を囲う方法として、道路の真上に、横断膜状に本発明網を間欠的に設ける方法もある。この場合、網の下端は積荷トラック等の車高より上である。或いは道路脇に、霧解消空間の側面から該側面に垂直ないし斜め方向に外方に延出した、本発明の網を間欠的に設ける方法もある。   These carbon fiber nets can be continuously suspended beside a fog-free space such as an expressway. However, places such as roads in mountainous areas where winds containing a large amount of water climb up the mountain are frequent fog areas, and such fog flows almost in parallel along the roads. In such an area, as a method of enclosing the fog-resolving space, there is also a method of intermittently providing the network of the present invention in the shape of a transverse membrane just above the road. In this case, the lower end of the net is above the height of the cargo truck or the like. Alternatively, there is also a method of intermittently providing the net of the present invention on the side of the road, extending outward from the side surface of the fog eliminating space in a direction perpendicular or oblique to the side surface.

本発明の網にはセラミックスコーティングを施すと一層大量の赤外線を放射する。この場合、予めセラミックスコーティングを施した炭素繊維束を用いて編み込み、或いは織り込んでもよいが、出来上がった網自体にセラミックスコーティングを施してもよい。
セラミックスとしては、特に限定はなく、炭化珪素、酸化珪素、アルミナ等が多用され、少量の金属酸化物、例えば、酸化リチウム、酸化鉄、二酸化マンガン、酸化コバルト、酸化ゲルマニウム等を配合したものが好ましい。また、ジルコニア系セラミックスでは、酸化金属類に対して炭素粉末や珪素粉末を配合して焼成したものが使用できる。
When a ceramic coating is applied to the net of the present invention, a larger amount of infrared rays is emitted. In this case, it may be knitted or woven using a carbon fiber bundle that has been previously coated with a ceramic coating, but a ceramic coating may be applied to the finished net itself.
The ceramic is not particularly limited, and silicon carbide, silicon oxide, alumina and the like are frequently used, and those containing a small amount of metal oxide, for example, lithium oxide, iron oxide, manganese dioxide, cobalt oxide, germanium oxide and the like are preferable. . As the zirconia-based ceramics, those obtained by blending and firing carbon powder or silicon powder with metal oxides can be used.

本発明の網を加熱するための電源としては一般電力会社から供給される電源を使用することができるのは当然である。しかしながら、盆地である場合には太陽光発電も有効であり、海岸部であれば風力発電等の天然エネルギーの利用が好ましい。更に、山間地では間伐材を利用したバイオマス、一般廃棄物、天然ガス、石油等を燃焼して発電した自家発電エネルギーを蓄電器に貯え、霧発生に際して随時、一般電力と切り替えて利用することができる。   As a power source for heating the net of the present invention, it is natural that a power source supplied from a general power company can be used. However, solar power generation is also effective in the case of a basin, and the use of natural energy such as wind power generation is preferable at the coast. Furthermore, in mountainous areas, self-generated energy generated by burning biomass, general waste, natural gas, oil, etc. using thinned wood can be stored in a capacitor, and can be used by switching to general power as needed in the event of fog. .

山間部の天候は変わり易く瞬時に霧に覆われた経験を持つ人も多い。その様な場合、被霧解消空間の霧感知モニターのみでは、急遽、炭素繊維束を所定の温度に昇温させることは困難である。土地により山霧の流れはほぼ一定であるため、被霧解消空間の上流に第2の霧監視モニターを設置することが好ましい。第2の霧監視モニターからの信号により、上流での霧発生を早期に感知し、網を張設したり、通電を開始したりして霧解消装置を予め作動させておけば、本格的な濃霧の発生に際しても速やかに対処することができる。   The weather in the mountains is easy to change and many people have the experience of being covered with fog in an instant. In such a case, it is difficult to rapidly raise the carbon fiber bundle to a predetermined temperature only with the fog detection monitor in the fog-resolving space. Since the flow of mountain mist is almost constant depending on the land, it is preferable to install a second mist monitoring monitor upstream of the fog-resolving space. If the signal from the second mist monitoring monitor detects the upstream mist generation at an early stage and stretches the net or starts energization to activate the mist canceling device in advance, it will It is possible to quickly cope with the occurrence of dense fog.

1m×1m×1mのアクリル製角型筒を2個用いた。2個の角形筒の開口同士を接近させ、炭素繊維束を互いに間隔を保って平行にループで絡めながら編んだ網を挟んで固定させた。網12は、炭素繊維約1万2千本からなる長径約7mmの扁平な炭素繊維束3を縦糸とし、径約1mm弱のポリエステル繊維束を用いて炭素繊維束と炭素繊維束との間を約5mmに保ってる編み込んだ網である。開口部5の面積比率は約40%であった。この網全体にセラミックスコーティングを施した。セラミックスは、釉薬としてLiO2 約3%含有するAl23、SiO2 を焼き付けて粒子を付着させた。
連結させた角型筒の一方の開口から霧発生器を用いて霧を発生させ、角型筒に流入させた。この霧は通常の霧の約3倍の6.32g/m3 の水分を含有する濃霧であった。霧発生器から発生した霧は赤外線放射源である網の開口部5を通過して他方の角型筒に移動した。
Two acrylic square tubes of 1 m × 1 m × 1 m were used. The openings of the two rectangular cylinders were brought close to each other, and the carbon fiber bundles were fixed while sandwiching a knitted net while being entangled with a loop in parallel with a space between each other. The net 12 uses a flat carbon fiber bundle 3 having a major axis of about 7 mm made of about 12,000 carbon fibers as warp yarns, and a polyester fiber bundle having a diameter of about 1 mm is used to form a gap between the carbon fiber bundle and the carbon fiber bundle. It is a braided net kept at 5 mm. The area ratio of the opening 5 was about 40%. A ceramic coating was applied to the entire net. The ceramic was made to adhere particles by baking Al 2 O 3 and SiO 2 containing about 3% of LiO 2 as a glaze.
Fog was generated from one opening of the connected rectangular cylinders using a fog generator, and allowed to flow into the rectangular cylinders. This mist was a thick mist containing 6.32 g / m 3 of water, which is about three times the normal mist. The fog generated from the fog generator passed through the opening 5 of the net, which was an infrared radiation source, and moved to the other square cylinder.

赤外線放射源には200W/m2 の電力を印加した。この時の炭素繊維温度は40℃、赤外線放射源の電極間の電気抵抗は65Ωであった。網12を通過する前後の霧の状態を目視観察したところ、網12の手前数10cmのところで霧は見えなくなった。
濃霧に曝されていると網に水分が付着する。炭素繊維束に付着した水分は弱い電力による遠赤外線の放射を阻害する。すでに被霧解消空間に霧が侵入した場合には、最初は150〜250W/m2 の電力を印加して付着した霧の水分を蒸発させる必要がある。水分の蒸発後は、40〜60W/m2 の電力で充分に霧を解消することができた。
A power of 200 W / m 2 was applied to the infrared radiation source. The carbon fiber temperature at this time was 40 ° C., and the electric resistance between the electrodes of the infrared radiation source was 65Ω. When the fog state before and after passing through the net 12 was visually observed, the fog disappeared at a distance of several tens of cm in front of the net 12.
Moisture adheres to the net when exposed to dense fog. Moisture adhering to the carbon fiber bundle inhibits far-infrared radiation caused by weak power. When the mist has already entered the fog-resolving space, it is necessary to first apply 150 to 250 W / m 2 of electric power to evaporate the moisture of the attached mist. After the evaporation of moisture, fog could be sufficiently eliminated with an electric power of 40 to 60 W / m 2 .

更に、実験に用いた霧の粒度分布と霧水量を表1に示した。網前50cmの部位の霧の粒度分布と霧水量を測定し、網通過後の霧の粒度分布と霧水量を測定し、それぞれ表1に併記した。また、この関係を図5にグラフで表した。
大きな霧粒ほど、可視光線を散乱する率が大きいが、空中での浮遊時間は短い。表1及び図5から明らかなように、大きな径の霧粒子が分裂してより小さい霧粒子に移行していることが理解される。
Furthermore, the particle size distribution of fog and the amount of fog water used in the experiment are shown in Table 1. The particle size distribution of fog and the amount of fog water at a site 50 cm in front of the net were measured, and the particle size distribution of fog and the amount of fog water after passing through the net were measured. Further, this relationship is shown in a graph in FIG.
The larger the mist, the greater the rate of scattering visible light, but the shorter the floating time in the air. As is apparent from Table 1 and FIG. 5, it is understood that the large-diameter mist particles are split and transferred to smaller mist particles.

別に、網に通電しなかった以外は実施例1と同様にして実験を行い、網前と網通過後の霧の粒度分布と霧水量とを測定し表2に示した。また、この関係を図6にグラフで表した。
表2及び図6から明らかなように、電流を導通しない網のみであっても網に接触する大きな霧粒は物理的に除去されるものと考えられる。更に、特に通電加熱しなくとも低温の炭素繊維やセラミックスから放射される赤外線も関与しているとも考えられる。
Separately, an experiment was conducted in the same manner as in Example 1 except that the mesh was not energized, and the particle size distribution of fog and the amount of fog water before and after passing the mesh were measured and shown in Table 2. Further, this relationship is shown in a graph in FIG.
As is apparent from Table 2 and FIG. 6, it is considered that large mist particles contacting the net are physically removed even if only the net does not conduct current. Furthermore, it is also considered that infrared rays emitted from low-temperature carbon fibers and ceramics are also involved without particularly heating.

図7は道路での実験用の説明図である。図示を省略したポールで保持された霧解消装置の1単位を示した。8は非導電性の枠体であり、素材としてFRPを用いた。この枠体8内に、実施例1で用いた網を張設した。網は0.5m幅が得られたため、これを長さ3mに切断し、3m×4mの面状の赤外線放射体を得たが、より広幅の炭素繊維網が得られればそれを使用することができる。本実施例では枠体8を8個並列に並べて1単位とした。各枠体内の網の上端及び下端では炭素繊維束の切断部位を、図7に示すように、接続金具及び導電性塗料を用いて一体化し電極7とした。電極7uの図面上での右端と電極7vの図面での左端を導線9で連結し、電極7mの図面での右端と電極7nの図面での左端を導線9で連結し、電極7wの図面での右端と電極7xの図面での左端を導線9で連結し、……電極7yの図面での右端と電極7zの図面での左端を導線9で連結した。枠体8の抵抗は2.25Ωであった。   FIG. 7 is an explanatory diagram for experiments on a road. One unit of the fog eliminating device held by a pole (not shown) is shown. 8 is a non-conductive frame, and FRP was used as a material. The net used in Example 1 was stretched in the frame 8. Since the net had a width of 0.5 m, it was cut into a length of 3 m to obtain a 3 m × 4 m planar infrared emitter. If a wider carbon fiber net is obtained, use it. Can do. In this embodiment, eight frame bodies 8 are arranged in parallel to form one unit. As shown in FIG. 7, the cut portions of the carbon fiber bundles at the upper end and the lower end of the net in each frame body were integrated using a connection fitting and a conductive paint to form an electrode 7. The right end of the electrode 7u on the drawing and the left end of the electrode 7v in the drawing are connected by a conducting wire 9, the right end in the drawing of the electrode 7m and the left end of the electrode 7n in the drawing are connected by a conducting wire 9, and in the drawing of the electrode 7w The right end of the electrode 7x and the left end of the electrode 7x in the drawing are connected by a conductive wire 9, and the right end of the electrode 7y in the drawing and the left end of the electrode 7z in the drawing are connected by a conductive wire 9. The resistance of the frame 8 was 2.25Ω.

図7(電圧調節器、電圧計、電流計は図示を省略した。)から明らかなように、電源6からの12Aの電流は電極7l→電極7u→電極7v→電極7m→電極7n→電極7w→電極7xと流れ、最後に電極7y→電極7z→電極7eに達して電源6に戻る。最初は208V(200W/m2 )の電流を印加し。周囲は濃霧であるにもかかわらず、網通過後の道路上の霧は解消し、500m前方まで見えるようになる。その後、104V(50W/m2 )に電力を落としたが被霧解消空間の霧を完全に解消することができる。
図7においては説明の都合上、枠8と枠8との間に間隙を設けたが、現実には枠8と枠8は密接させる。
As is clear from FIG. 7 (the voltage regulator, the voltmeter, and the ammeter are not shown), the current of 12A from the power source 6 is electrode 7l → electrode 7u → electrode 7v → electrode 7m → electrode 7n → electrode 7w. → The flow flows through the electrode 7x, finally reaches the electrode 7y → the electrode 7z → the electrode 7e and returns to the power source 6. First, apply a current of 208 V (200 W / m 2 ). Despite the dense surroundings, the fog on the road after passing through the net disappears and you can see up to 500m ahead. Thereafter, the electric power was reduced to 104 V (50 W / m 2 ), but the fog in the fog-resolving space can be completely eliminated.
In FIG. 7, for the sake of explanation, a gap is provided between the frame 8 and the frame 8, but in reality, the frame 8 and the frame 8 are in close contact with each other.

炭素繊維網12の長さを5mとし、枠体8を4個用いて1単位とした他は、実施例3と同様にして霧の解消を図る。5m×0.5mの網12の抵抗は3.75Ωである。1単位あたり87V(50W/m2 )〜173V(200W/m2 )の電力の消費で、前方約700mの視界を確保することができる。 Fog is eliminated in the same manner as in Example 3 except that the length of the carbon fiber net 12 is 5 m and four frames 8 are used as one unit. The resistance of the net 12 of 5 m × 0.5 m is 3.75Ω. The power consumption per unit 87V (50W / m 2) ~173V (200W / m 2), it is possible to ensure the visibility of the front about 700 meters.

霧中のクラスターの水分子の結合状態のイメージ図である。It is an image figure of the combined state of the water molecule of the cluster in fog. 分裂したクラスターの水分子の結合状態のイメージ図である。It is an image figure of the combined state of the water molecule of the split cluster. 絡み編の1例を示す説明図である。It is explanatory drawing which shows an example of an entanglement. 炭素繊維束を編み込んだ網の通電方式の1例を示す模式図である。It is a schematic diagram which shows an example of the electricity supply system of the net | network which braided the carbon fiber bundle. 網を通過する前後の、霧の粒度分布と霧水量を表すグラフである。It is a graph showing the particle size distribution of fog and the amount of fog water before and after passing through a net. 通電しない網の通過前後の霧の粒度分布と霧水量を表すグラフである。It is a graph showing the particle size distribution of fog and the amount of fog water before and after passing through a net that is not energized. 道路側面に設けた霧解消装置の説明図である。It is explanatory drawing of the fog elimination apparatus provided in the road side surface.

符号の説明Explanation of symbols

1 クラスター
2 分裂したクラスター
3 炭素繊維束
4 非導電性繊維束
5 開口部
6 電源
7 電極
8 枠体
9 導線
12 網
1 Cluster 2 Split Cluster 3 Carbon Fiber Bundle 4 Non-conductive Fiber Bundle 5 Opening 6 Power Supply 7 Electrode 8 Frame 9 Conductor 12 Network

Claims (8)

霧による視界不良を監視する霧感知モニターと、該霧感知モニターからの信号に従って、被霧解消空間を囲って設けた網状の赤外線放射源を通電、加熱するシステムとからなる霧解消装置であって、
上記赤外線放射源が、非導電性繊維束の編み地或いは織地に、炭素繊維束が相互に接触しない間隔で絡まれて平行に配列している網であり、該網の開口部が占める面積比率が30%以上であることを特徴とする霧解消装置。
A fog canceling device comprising a fog detection monitor for monitoring poor visibility due to fog, and a system for energizing and heating a net-like infrared radiation source provided surrounding the fog-dissolving space according to a signal from the fog detection monitor. ,
The infrared radiation source is a mesh in which carbon fiber bundles are entangled and arranged in parallel with a knitted or woven fabric of non-conductive fiber bundles, and the area ratio occupied by openings of the meshes Is a mist eliminating apparatus characterized by being 30% or more.
網が、非導電性繊維束を用いた編み地の、多数のループ間に炭素繊維束が平行に絡み込まれ、隣接する炭素繊維束が互いに接触しない間隔で配置されていることを特徴とする請求項1に記載する霧解消装置。 A net is characterized in that carbon fiber bundles are entangled in parallel between a number of loops of a knitted fabric using non-conductive fiber bundles, and adjacent carbon fiber bundles are arranged at intervals that do not contact each other. The fog eliminating apparatus according to claim 1. 網が、平行に配列された複数の炭素繊維束を、該炭素繊維束と垂直方向の複数の非導電性繊維束が炭素繊維束を絡めとり、非導電性繊維束同士で絡み合いながら、隣接する炭素繊維束が互いに接触しない間隔を維持して次の炭素繊維束を絡めとる、所謂絡み織であることを特徴とする請求項1記載の霧解消装置。 A net adjoins a plurality of carbon fiber bundles arranged in parallel, while a plurality of non-conductive fiber bundles perpendicular to the carbon fiber bundles entangle the carbon fiber bundles and entangle them with each other. 2. The fog eliminating device according to claim 1, wherein the defogging apparatus is a so-called entangled weave in which the next carbon fiber bundle is entangled while maintaining an interval at which the carbon fiber bundles do not contact each other. 網の、1本の炭素繊維束とこれに隣接する他の炭素繊維束との間隔が、3〜10mmであることを特徴とする請求項1ないし3のいずれかに記載する霧解消装置。 The fog eliminating device according to any one of claims 1 to 3, wherein a distance between one carbon fiber bundle of the net and another carbon fiber bundle adjacent thereto is 3 to 10 mm. 網の、少なくとも炭素繊維束にセラミックスコーティングが施されていることを特徴とする請求項1ないし4のいずれかに記載する霧解消装置。 The mist eliminating apparatus according to any one of claims 1 to 4, wherein a ceramic coating is applied to at least a carbon fiber bundle of the net. 霧解消装置に直結している監視モニターの他に、地形に固有な霧流の上流に、被霧解消空間に設けた霧解消装置を霧発生前に予め作動させておくための、第2の霧監視モニターを設置することを特徴とする請求項1ないし請求項5のいずれかに記載する霧解消装置。 In addition to the monitoring monitor directly connected to the mist eliminating device, the second for activating the mist eliminating device provided in the fog eliminating space upstream of the mist flow unique to the terrain before the occurrence of fog. 6. A fog eliminating apparatus according to claim 1, wherein a fog monitoring monitor is installed. 赤外線放射装置の電源として、一般電力会社から供給される電源と、天然エネルギーを利用して得られた電源或いは自家発電エネルギーを利用して得られた電源とを、切替え可能に並列に配列した回路を設けたことを特徴とする請求項1ないし請求項6のいずれかに記載する霧解消装置。 A circuit in which a power source supplied from a general electric power company and a power source obtained using natural energy or a power source obtained using private power generation energy are arranged in parallel so as to be switched as a power source of the infrared radiation device The mist eliminating apparatus according to claim 1, wherein the mist eliminating apparatus is provided. 網を被霧解消空間の上流に、霧の流れを横断する方向に張設したことを特徴とする請求項1ないし請求項7のいずれかに記載する霧解消装置。 The mist eliminating apparatus according to any one of claims 1 to 7, wherein a net is stretched upstream of the fog eliminating space in a direction crossing the mist flow.
JP2006194775A 2005-07-19 2006-07-14 Mist eliminating device Pending JP2007051540A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006194775A JP2007051540A (en) 2005-07-19 2006-07-14 Mist eliminating device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005208561 2005-07-19
JP2006194775A JP2007051540A (en) 2005-07-19 2006-07-14 Mist eliminating device

Publications (1)

Publication Number Publication Date
JP2007051540A true JP2007051540A (en) 2007-03-01

Family

ID=37916156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006194775A Pending JP2007051540A (en) 2005-07-19 2006-07-14 Mist eliminating device

Country Status (1)

Country Link
JP (1) JP2007051540A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100838828B1 (en) * 2008-02-28 2008-06-17 (주) 경화엔지니어링 Net for prevention fog net manufacturing method and net for prevention fog
JP2009275386A (en) * 2008-05-13 2009-11-26 Shigeru Yashima Snow melting machine
JP2010116689A (en) * 2008-11-11 2010-05-27 Yuni Rotto:Kk Defogging apparatus
KR101251433B1 (en) 2011-03-10 2013-04-05 한국건설기술연구원 Sliding Type Fog Dissipation Apparatus
RU2616358C1 (en) * 2016-06-10 2017-04-14 Алексей Алексеевич Палей Fog dissipator
CN108541084A (en) * 2018-05-02 2018-09-14 中国民航大学 A kind of outdoor demisting electric heating blanket and defogging method
CN108677838A (en) * 2018-05-25 2018-10-19 深圳市奈士迪技术研发有限公司 A kind of road tooth parking aid
RU2751741C1 (en) * 2020-10-08 2021-07-16 Алексей Алексеевич Палей Method for demonstrating advertising information and device for its implementation

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08100419A (en) * 1994-10-03 1996-04-16 Mitsubishi Heavy Ind Ltd Defogging device
JPH11265782A (en) * 1998-03-16 1999-09-28 Nippon Mitsubishi Oil Corp Heating element and fixing method for heating element
JP2000273835A (en) * 1999-03-24 2000-10-03 Mitsubishi Electric Corp Fog removing system
JP2001262868A (en) * 2000-03-17 2001-09-26 Matsushita Seiko Co Ltd Snow-melting device
JP2001288723A (en) * 2000-04-07 2001-10-19 Toshiba Techno Consulting Kk Defogging apparatus
JP2002030632A (en) * 2000-05-12 2002-01-31 Yusetsu Techno Kk Defogging device and defogging method
JP2004052469A (en) * 2002-07-23 2004-02-19 Seimitsu Kasei Kk Steel plate-roofed roof for house facilitated in snow removal, and construction method therefor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08100419A (en) * 1994-10-03 1996-04-16 Mitsubishi Heavy Ind Ltd Defogging device
JPH11265782A (en) * 1998-03-16 1999-09-28 Nippon Mitsubishi Oil Corp Heating element and fixing method for heating element
JP2000273835A (en) * 1999-03-24 2000-10-03 Mitsubishi Electric Corp Fog removing system
JP2001262868A (en) * 2000-03-17 2001-09-26 Matsushita Seiko Co Ltd Snow-melting device
JP2001288723A (en) * 2000-04-07 2001-10-19 Toshiba Techno Consulting Kk Defogging apparatus
JP2002030632A (en) * 2000-05-12 2002-01-31 Yusetsu Techno Kk Defogging device and defogging method
JP2004052469A (en) * 2002-07-23 2004-02-19 Seimitsu Kasei Kk Steel plate-roofed roof for house facilitated in snow removal, and construction method therefor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100838828B1 (en) * 2008-02-28 2008-06-17 (주) 경화엔지니어링 Net for prevention fog net manufacturing method and net for prevention fog
JP2009275386A (en) * 2008-05-13 2009-11-26 Shigeru Yashima Snow melting machine
JP4520518B2 (en) * 2008-05-13 2010-08-04 茂 八嶋 Snow melting machine
JP2010116689A (en) * 2008-11-11 2010-05-27 Yuni Rotto:Kk Defogging apparatus
KR101251433B1 (en) 2011-03-10 2013-04-05 한국건설기술연구원 Sliding Type Fog Dissipation Apparatus
RU2616358C1 (en) * 2016-06-10 2017-04-14 Алексей Алексеевич Палей Fog dissipator
CN108541084A (en) * 2018-05-02 2018-09-14 中国民航大学 A kind of outdoor demisting electric heating blanket and defogging method
CN108677838A (en) * 2018-05-25 2018-10-19 深圳市奈士迪技术研发有限公司 A kind of road tooth parking aid
RU2751741C1 (en) * 2020-10-08 2021-07-16 Алексей Алексеевич Палей Method for demonstrating advertising information and device for its implementation

Similar Documents

Publication Publication Date Title
JP2007051540A (en) Mist eliminating device
KR20110031220A (en) Apparatus and related methods for weather modification by electrical processes in the atmosphere
CN102137591B (en) Method and apparatus for local modification of atmosphere
US20180272358A1 (en) Systems and methods for collecting a species
JP6454483B2 (en) Snow protection system with snow melting function
US20130206912A1 (en) Moisture dispersion
Zhang et al. An electrostatic scheme realizing the complete interception of fog droplets by corona discharge-induced ion wind
RU2422584C1 (en) Method of fog dissipation
RU2414117C1 (en) Apparatus for electrophysical influence on atmosphere
US20040134997A1 (en) Method and apparatus for controlling atmospheric conditions
CN101280554A (en) Method for melting road surface ice and snow and road
CN207353652U (en) Anion generator and anion generating system
RU2616393C1 (en) Fog dissipator
US3934817A (en) Precipitation of steam fogs
GB2475280A (en) Aircraft contrail dispersion
CN110047722A (en) It is a kind of for handling the charged particle generating device of atmospheric environment
KR20180075861A (en) Anion Self Diffusing Fog Dissipation Device And Fog Dissipation System Comprising The Same
RU2502255C1 (en) Method of initiation of jet streams in atmosphere
US20230240207A1 (en) Apparatus for precipitation of atmospheric water
JP4378438B2 (en) Anti-fogging device and anti-fogging method
CN106000644A (en) Efficient air purifier and purifying method
CA2530409A1 (en) Method for breaking anticyclonic circulation and device for carrying out said method
KR102580706B1 (en) Water Droplet Growth Observation System using Negative Ion Generator
RU2161881C2 (en) Weather correction apparatus
RU2272096C1 (en) Method for fog dispersion

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080718

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20100125

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100203

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100727