JP2007050342A - Filter - Google Patents
Filter Download PDFInfo
- Publication number
- JP2007050342A JP2007050342A JP2005237204A JP2005237204A JP2007050342A JP 2007050342 A JP2007050342 A JP 2007050342A JP 2005237204 A JP2005237204 A JP 2005237204A JP 2005237204 A JP2005237204 A JP 2005237204A JP 2007050342 A JP2007050342 A JP 2007050342A
- Authority
- JP
- Japan
- Prior art keywords
- filter
- filter medium
- valley
- peak
- circle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Filtering Materials (AREA)
- Filtering Of Dispersed Particles In Gases (AREA)
Abstract
Description
本発明は、空気清浄や液体浄化のために用いられるフィルタに関し、さらに詳細には不織布や濾紙などのシート状物を山谷折加工した濾材を使用したフィルタに関する。 The present invention relates to a filter used for air purification and liquid purification, and more particularly to a filter using a filter medium obtained by folding a sheet-like material such as a nonwoven fabric or filter paper.
山谷状に形成された濾材を用いたフィルタは、ビルの空調用や空気清浄機や掃除機やエアコンなどの家庭用機器に幅広く使用されている。 Filters using filter media formed in a mountain-and-valley shape are widely used for air conditioning in buildings, and household equipment such as air purifiers, vacuum cleaners, and air conditioners.
濾材を山谷状に形成する目的は、所定のフィルタ寸法内に濾材の濾過有効面積を増加させることにあるが、隣り合う山谷間で濾材同士が接触し、空気などの流体が停滞してしまうため、これを防止するには、たとえばリテーナ付きフィルタとして、特許文献1や特許文献2に示されるように、濾材表面に連続的または断続的に接着剤を塗布しこれを硬化させることによってリテーナを形成し、山谷間の空間を確保する方法がある。
The purpose of forming the filter medium in a valley shape is to increase the effective filtration area of the filter medium within a predetermined filter size, but the filter medium contacts between adjacent mountains and valleys, and fluids such as air stagnate. In order to prevent this, for example, as a filter with a retainer, as shown in
また、山谷の位置規制部材付きフィルタとして、特許文献3、特許文献4や特許文献5に示されるように、金属や不織布などで形成された部材によって山谷の位置を規制し、山谷間に所定の空間を確保する方法もあるが、これらいずれの方法も山谷間の間隔を確保することに着目しているのみで、そこに開示される濾材では、図12に示すように、フィルタとして使用した際に、空気の抵抗によって濾材が変形し上流側山頂部に空気が流通しない部分17が生じ、これにより構造的な圧力損失が発生していたのが実状である。
Moreover, as shown in
加えて、上記に示したいずれの技術も、濾材の表面に適当な強度を持つ何らかの物質をリテーナや位置規制部材として配する必要があるため、これにより濾材の濾過有効面積が減少したり、フィルタの重量が増加したりするなどの不都合もあった。 In addition, in any of the above-described techniques, it is necessary to arrange a certain substance having an appropriate strength on the surface of the filter medium as a retainer or a position regulating member. There were also inconveniences such as an increase in the weight of the.
本発明者らは、濾材における構造的な圧力損失の原因として、前記したような、空気の抵抗によって濾材が変形し上流側山頂部に空気が流れない部分が生じていることを突き止め、かかる現象を改善すべく鋭意検討の結果、本発明に至ったのである。
本発明の目的は、前記した従来のフィルタにおける問題を解決し、フィルタ使用時の空気抵抗により生じる構造的な圧力損失を軽減させたフィルタを提供することにある。 An object of the present invention is to provide a filter that solves the problems in the conventional filter described above and reduces the structural pressure loss caused by air resistance when the filter is used.
上記目的を達成するために本発明のフィルタは次の構成を有する。すなわち、山谷状に形成された濾材を含むフィルタであって、フィルタ上流側に位置する濾材の山頂部が、2つの斜面部と尾根部とを有し、かつ、尾根部長手方向に直交する断面における山頂部の内側において、2つの斜面部と尾根部に内接する円を描いた際に、その円の直径(R1)が、山高さ(H)の0.5%以上20%以下であるとともに、隣接する谷の間隔(W)の50%以下であることを特徴とするフィルタである。 In order to achieve the above object, the filter of the present invention has the following configuration. That is, a filter including a filter medium formed in a mountain-valley shape, wherein the peak portion of the filter medium located on the upstream side of the filter has two slope portions and a ridge portion, and a cross section perpendicular to the longitudinal direction of the ridge portion. When a circle inscribed in the two slope portions and the ridge portion is drawn on the inner side of the top of the mountain, the diameter (R1) of the circle is not less than 0.5% and not more than 20% of the peak height (H). , 50% or less of the interval (W) between adjacent valleys.
ここで、2つの斜面部のそれぞれと尾根部との間には溝が形成されてなることが好ましく、フィルタ下流側に位置する濾材の谷頂部が、2つの斜面部と谷底部とを有し、かつ、尾根部長手方向に直交する断面における谷頂部の内側において、2つの斜面部と谷底部に内接する円を描いた際に、その円の直径(R2)が、山高さ(H)の0.5%以下であることも好ましく、さらに、隣接する谷の間隔(W)が、前記山高さ(H)の5〜30%の範囲にあることも好ましい。 Here, it is preferable that a groove is formed between each of the two slope portions and the ridge portion, and the valley top portion of the filter medium located on the downstream side of the filter has two slope portions and a valley bottom portion. When a circle inscribed in the two slope portions and the valley bottom portion is drawn inside the valley top portion in the cross section perpendicular to the longitudinal direction of the ridge portion, the diameter (R2) of the circle is the height of the mountain height (H). It is also preferable that it is 0.5% or less, and it is also preferable that the space | interval (W) of an adjacent trough exists in the range of 5-30% of the said peak height (H).
また、本発明に用いる濾材を構成するシート状物が、JIS−L−1079:ガーレ法に基づく測定において、250mg以上の剛軟度を有し、かつ、0.07g/cm3以上0.2g/cm3未満の見掛け密度を有することも好ましい。さらに、山谷状に形成された濾材が、その山谷間の間隔を保持するための支持体を有しないことも好ましい。 Further, the sheet-like material constituting the filter medium used in the present invention has a bending resistance of 250 mg or more in the measurement based on JIS-L-1079: Gurley method, and 0.07 g / cm 3 or more and 0.2 g. It is also preferred to have an apparent density of less than / cm 3 . Furthermore, it is also preferable that the filter medium formed in the shape of a valley does not have a support for maintaining the interval between the peaks and valleys.
上述したフィルタは、その周囲に枠体を配し、その枠体とフィルタとを一体化せしめることによりフィルタユニットを構成する。 The filter described above includes a frame body around the filter, and the filter body is configured by integrating the frame body and the filter.
本発明によれば、フィルタ使用時の空気抵抗により生じる圧力損失を軽減することができるフィルタおよびフィルタユニットとすることができる。また、本発明によれば、フィルタ重量を増加させなくとも前記効果を有効に発揮することができる。 ADVANTAGE OF THE INVENTION According to this invention, it can be set as the filter and filter unit which can reduce the pressure loss which arises by the air resistance at the time of filter use. In addition, according to the present invention, the above-described effects can be effectively exhibited without increasing the filter weight.
以下、本発明を図面を参照しながら詳細に説明する。 Hereinafter, the present invention will be described in detail with reference to the drawings.
本発明のフィルタは、山谷状に形成された濾材を含み、その山頂部は2つの斜面と尾根部とを有している。図1は、本発明における一態様である濾材を尾根部長手方向に直交する断面での概略断面図である。また、図2は、図1におけるフィルタ上流側に位置する山頂部を拡大して示した概略断面図である。空気などの流体は、図中の矢印Aの向きに供給され濾過が行われる。図4は、図1に示す濾材に、矢印Aの向きに流体が供給された状態での概略断面図である。図3は、枠体18をフィルタの周囲に配し、その枠体とフィルタを一体化したフィルタユニットの一例を示す概略斜視図である。この例では、フィルタは、山谷状に形成された濾材1と、不織布などからなる別の濾材19により構成されている。
The filter of the present invention includes a filter medium formed in a mountain-valley shape, and the peak portion has two slopes and a ridge portion. FIG. 1 is a schematic cross-sectional view of a filter medium according to an embodiment of the present invention in a cross section perpendicular to the longitudinal direction of the ridge. FIG. 2 is an enlarged schematic cross-sectional view showing a peak portion located on the upstream side of the filter in FIG. A fluid such as air is supplied in the direction of the arrow A in the figure and filtered. FIG. 4 is a schematic cross-sectional view in a state where a fluid is supplied in the direction of arrow A to the filter medium shown in FIG. FIG. 3 is a schematic perspective view showing an example of a filter unit in which the
さて、図1と図2において、山谷状に形成された濾材1の山頂部は、その内側において、片側斜面と尾根部と他の片側斜面に内接する円5を描いた際に、その円の直径(R1)が山高さ(H)の0.5%以上20%以下であり、かつ隣接する谷の間隔(W)の50%以下となるような空間を有している。
In FIGS. 1 and 2, when the peak portion of the
本発明における濾材は、上流側山頂部の内側にかかる空間を有しているため、矢印Aの向きに流入した空気は、フィルタ使用時に空気の抵抗によって濾材に変形が生じた場合でも、図4に示すとおり濾材1において空気が流れる空間が確保され、空気が圧力損失少なく濾過される。
Since the filter medium in the present invention has a space on the inner side of the upstream peak, even if the air flowing in the direction of the arrow A is deformed in the filter medium due to the resistance of the air when the filter is used, FIG. As shown in FIG. 5, a space through which air flows is secured in the
ここで、前記した円の直径(R1)が隣接する谷の間隔(W)の50%以下であっても山高さ(H)に対して0.5%を下回る場合は、上流側山頂部の内側に十分な空間を確保することができず、空気の抵抗によって濾材が変形した時に片側斜面と他の片側斜面同士が接触してしまい、図12における濾材と同様に、上流側山頂部に空気が流通しない部分17が生じ、構造的な圧力損失が生じやすくなる。
Here, when the diameter (R1) of the above-mentioned circle is 50% or less of the interval (W) between adjacent valleys, but less than 0.5% with respect to the peak height (H), A sufficient space cannot be secured inside, and when the filter medium is deformed by the resistance of air, the one-side slope and the other one-side slope come into contact with each other. The
また、前記した円の直径(R1)が隣接する谷の間隔(W)の50%以下であっても山高さ(H)に対して20%を上回る場合は、尾根部部分が大きくなることにより、この部分で受ける単位面積当たりの空気抵抗が増大してしまい、圧力損失が大きくなりやすくなる。 Moreover, even if the diameter (R1) of the above-mentioned circle is 50% or less of the interval (W) between the adjacent valleys, the ridge portion becomes larger when it exceeds 20% with respect to the mountain height (H). The air resistance per unit area received at this portion increases, and the pressure loss tends to increase.
また、前記した円の直径(R1)が山高さ(H)に対して0.5%以上20%以下であっても、谷の間隔(W)の50%を上回る場合は、所定のフィルタ寸法内に濾材の濾過有効面積を増加させるために適した隣接する谷の間隔(W)との関係で、フィルタ全体の空気に対する抵抗が上昇し、濾過効率が低下する傾向がみられる。 In addition, even when the diameter (R1) of the circle is 0.5% or more and 20% or less with respect to the peak height (H), if it exceeds 50% of the valley interval (W), a predetermined filter dimension is used. There is a tendency that the resistance to air of the entire filter increases and the filtration efficiency decreases due to the relationship with the interval (W) between adjacent valleys suitable for increasing the effective filtration area of the filter medium.
ここで、隣接する谷の間隔(W)とは、隣接する谷間の距離をいう。山高さ(H)と隣接する谷間の距離との関係については詳しくは後述するが、例えば山高さ(H)が30mmの山谷形状の場合、これに最も適した隣接する谷の間隔(W)は約3.5mmとなるのだが、円の直径(R1)が谷の間隔の50%を上回る場合は、それが1.75mmを上回ることになり、隣接する山間の距離が短くなり空気が通りにくく谷部での空気の流れが悪くなって、圧力損失が大きくなりやすくなる。 Here, the interval (W) between adjacent valleys refers to the distance between adjacent valleys. The relationship between the mountain height (H) and the distance between adjacent valleys will be described in detail later. For example, in the case of a mountain valley shape with a mountain height (H) of 30 mm, the most suitable interval (W) between adjacent valleys is Although it is about 3.5 mm, if the circle diameter (R1) exceeds 50% of the valley spacing, it will exceed 1.75 mm, and the distance between adjacent mountains will be shortened, making it difficult for air to pass. The flow of air in the valleys becomes worse, and the pressure loss tends to increase.
また、上記したような空間は、上流側山頂部と下流側谷頂部の内側の両方に有しても良いが、山高さと隣接する谷間の距離との関係を好適に設定しておけば、フィルタ使用時に空気の抵抗によって濾材に変形が生じた場合でも、下流側谷頂部の空気流通路が遮断されることは無いため、下流側谷頂部の内側には有さなくても良く、所定のフィルタ寸法内に濾材の濾過有効面積を増加させることを考慮しながら選択することができる。かかる観点からは、フィルタ下流側に位置する濾材の谷頂部が、谷底部を実質的に有しないか、有したとしても、尾根部長手方向に直交する断面における谷頂部の内側において、2つの斜面部と谷底部に内接する円を描いた際に、その円の直径(R2)は、山高さ(H)の0.5%以下であることが好ましい。 In addition, the space as described above may be provided on both the upstream mountain peak and the downstream valley peak, but if the relationship between the peak height and the distance between adjacent valleys is suitably set, the filter Even when the filter medium is deformed by the resistance of air during use, the air flow passage at the downstream valley top is not blocked, so it does not have to be inside the downstream valley, and a predetermined filter Selection can be made while considering increasing the effective filtration area of the filter medium within the dimensions. From such a viewpoint, the top of the valley of the filter medium located on the downstream side of the filter has substantially no valley bottom, or two slopes inside the valley top in the cross section orthogonal to the longitudinal direction of the ridge. When a circle inscribed in the part and the valley bottom is drawn, the diameter (R2) of the circle is preferably 0.5% or less of the peak height (H).
ここで、濾材の上流側山頂部や下流側谷頂部に空間を形成する方法は、特に限定されるものではないが、濾材を構成するシート状物1aに溝を付けて折り曲げることにより形成することが好ましい。この溝付けによる空間の形成方法においては、上流側山頂部や下流側谷頂部の内側の空間の大きさを精度良く加工し、かつ、山や谷の間隔を精度良く加工するには、図5に示すような装置を用いることが効率的である。ここで図5に示す装置を用いて、山や谷の頂部に空間を有する山谷状の濾材を作製する方法について詳しく説明する。
Here, the method for forming the space at the upstream peak portion or the downstream valley peak portion of the filter medium is not particularly limited, but it is formed by bending the sheet-
濾材の原反であるシート状物1aは、送り出しロール10にセットされ、シート状物1aの反始は搬送ローラー6aと6bに接触した状態で両ロールの間を通り、溝付け加工部の溝付け板9aおよび9bと受け溝8aおよび8bの間を通り、搬送ローラー7aと7bに接触した状態で両ロールの間に通されている。
The sheet-
搬送ローラー6aと6bおよび搬送ローラー7aと7bの間を通されているシート状物1aは、各搬送ローラー6aおよび6bと7aおよび7bが回転することにより矢印Bの方向に順次搬送される。このとき各搬送ローラー6a、6b、7aおよび7bを任意に回転させたり停止させたりすることによりシート状物1aの搬送量を制御することができ、これによりシート状物1aに溝付け加工を行う位置を定める。
The sheet-
図6は、溝付け加工部11における、一対の溝付け板9と受け溝8の一例を示す概略断面図である。また、図7、図8および図9は、それぞれ同様の他の一例を示す概略断面図である。
FIG. 6 is a schematic cross-sectional view showing an example of the pair of
図5における溝付け加工部11では溝付け板9aまたは9bが下降することにより、図6〜9に示すようにシート状物1aが溝付け板9と受け溝8の間に挟まれ、接触部12においてシート状物1aの表面に溝付け加工が施される。
In the
ここで、所望の円の直径(R)を得ることができるように、図6や図8に示すように溝付け板の厚み13と受け溝の角度14を適切に定めて設置したり、溝付け板を図7や図9に示すような形状のものにしたりすることができる。
Here, in order to obtain a desired diameter (R) of the circle, as shown in FIGS. 6 and 8, the
このような装置にて、シート状物1aの溝付け加工を行う位置を適宜制御することにより、隣接する山と谷の間隔を制御することができる。
With such an apparatus, the distance between adjacent peaks and valleys can be controlled by appropriately controlling the position where the sheet-
上述の溝付け加工したシート状物を山谷状に形成するための折り加工方法には、例えばレシプロ式、ロータリー式などの折り加工機による方法を用いることができる。 As a folding method for forming the grooved sheet-like material into a mountain-valley shape, for example, a method using a reciprocating type or rotary type folding machine can be used.
濾材の上流側山頂部や下流側谷頂部に空間を形成する方法としては、上記に示したシート状物に溝を付けることにより折り曲げて空間を形成する方法のほかに、図10に示すように金属、ガラス、プラスチックなどから構成される棒状の支持体15を用い、この支持体15を枠材に付設し、空間を形成することもできる。この場合、山谷状に形成された濾材の山頂部分を支持することにより、空気抵抗による濾材変形量をより軽減することもできる。さらに、この他に図11に示すような山谷形状に成形された押型16aおよび16bでプレスする方法などの成型方法を用いることができる。
As a method of forming a space at the upstream peak or downstream valley peak of the filter medium, in addition to the method of forming a space by bending the sheet-like material as shown above, as shown in FIG. It is also possible to use a rod-
また、本発明において、隣接する谷部の間隔(W)および山の高さ(H)は任意であり、特に限定されるものではないが、隣接する谷部の間隔(W)がその山の高さ(H)の5〜30%、好ましくは10〜20%であるのがよい。ここで、隣接する谷部の間隔とは、隣接する谷間の距離をいう。上記した谷部の間隔がその山の高さに比べて小さすぎると、空気に対する抵抗が上昇し、濾過効率が低下する傾向がみられ、逆に大きすぎると、所定のフィルタ寸法内に濾材の濾過有効面積を設けにくくなる。 In the present invention, the interval (W) between the adjacent valleys and the height (H) of the peaks are arbitrary and are not particularly limited, but the interval (W) between the adjacent valleys is It may be 5 to 30% of the height (H), preferably 10 to 20%. Here, the interval between adjacent valleys refers to the distance between adjacent valleys. If the interval between the valleys described above is too small compared to the height of the peaks, the resistance to air will increase and the filtration efficiency will tend to decrease. Conversely, if it is too large, the filter media will fall within the specified filter dimensions. It becomes difficult to provide an effective filtration area.
また、山谷状に形成した濾材をW状に配置したフィルタとすることにより、フィルタ寸法内の濾材の濾過有効面積を増やすこともできる。 Moreover, the filter effective area of the filter medium within a filter dimension can also be increased by making the filter medium formed in the shape of a mountain valley into a filter arranged in a W shape.
本発明において、濾材を構成するシート状物の種類は特に限定されるものではなく、例えば、短繊維不織布や長繊維不織布が挙げられる。かかる不織布を構成する繊維としては、ガラス繊維、ポリエチレン繊維、ポリプロピレン繊維、ポリエステル繊維などの有機繊維、パルプや麻などの天然繊維、セルロース系、アクリル系またはリグニン系繊維を炭化賦活した活性炭素繊維、金属繊維、ガラス繊維などの無機繊維を用いることができる。また、シート状物としては、エレクトレット処理したポリプロピレン繊維の不織布、ポリエチレンやポリエステルなどの有機繊維不織布からなる通気性支持体を少なくとも一方の面に積層したポリトテトラフルオロエチレン多孔膜、放射線グラフト重合反応を利用して製造されるイオン交換不織布なども用いることができる。 In the present invention, the type of the sheet-like material constituting the filter medium is not particularly limited, and examples thereof include a short fiber nonwoven fabric and a long fiber nonwoven fabric. Examples of the fibers constituting the nonwoven fabric include organic fibers such as glass fibers, polyethylene fibers, polypropylene fibers and polyester fibers, natural fibers such as pulp and hemp, activated carbon fibers obtained by carbonizing and activating cellulose, acrylic or lignin fibers, Inorganic fibers such as metal fibers and glass fibers can be used. In addition, as a sheet-like material, an electret-treated polypropylene fiber nonwoven fabric, a polytotetrafluoroethylene porous film in which a breathable support made of an organic fiber nonwoven fabric such as polyethylene or polyester is laminated on at least one surface, a radiation graft polymerization reaction It is also possible to use ion-exchange nonwoven fabrics manufactured using
とりわけ、ビルの空調用や空気清浄機や掃除機やエアコンなどの家庭用機器用のフィルタ用の濾材に好んで用いられるガラス繊維の不織布、エレクトレット処理したポリプロピレン繊維の不織布が本発明では好ましく用いられる。
また、かかるシート状物は、その剛軟度が、JIS−L−1079:ガーレ法に基づく測定において、250mg以上であれば、上述したプリーツ形状を維持し、構造的な圧力損失の発生を極力抑制することができ好適である。さらには、かかるシート状物は、その見掛け密度が0.07g/cm3以上0.2g/cm3未満であれば、上述した山谷の形状を維持し、構造的な圧力損失の発生を極力抑制することがさらにも増して達成できるとともに、シート内部に適当な空間を有するため、かかるシート状物は山谷形状を形成しやすい。
In particular, non-woven fabrics made of glass fibers and polypropylene fibers treated with electrets are preferably used in the present invention, which are preferably used as filter media for air conditioners in buildings and filters for household appliances such as air cleaners, vacuum cleaners and air conditioners. .
In addition, if the bending resistance of the sheet-like material is 250 mg or more in the measurement based on JIS-L-1079: Gurley method, the above-described pleated shape is maintained and structural pressure loss is generated as much as possible. This is preferable because it can be suppressed. Furthermore, when the apparent density of the sheet-like material is 0.07 g / cm 3 or more and less than 0.2 g / cm 3 , the above-described mountain-valley shape is maintained, and the occurrence of structural pressure loss is suppressed as much as possible. This can be achieved more and more, and since there is an appropriate space inside the sheet, such a sheet-like object is likely to form a mountain-valley shape.
なお、シート状物の見掛け密度は、次の式に示すとおり、シート状物の重量(W)をシート状物の容積(V)で割って求めることができ、シート状物の厚みは3cm角の試料に0.25g/cm2の荷重をシート状物に掛けダイヤルゲージで測定して求めることができる。 The apparent density of the sheet-like material can be obtained by dividing the weight (W) of the sheet-like material by the volume (V) of the sheet-like material as shown in the following formula, and the thickness of the sheet-like material is 3 cm square. It can be obtained by applying a load of 0.25 g / cm 2 to the sample and applying a load to the sheet and measuring it with a dial gauge.
ρ=W/V
ρ:見掛け密度(g/cm3)
W:シート状物の重量(g/m2)
V:シート状物の容積(cm3)
なお、V=T×10000
T:シート状物の厚み(mm)
本発明においては、リテーナや山谷位置規制部材を敷設することを要しないが、本発明の目的を逸脱しない限り、シート状物の剛軟度や見掛け密度と、フィルタ使用時に空気の抵抗によって生じる濾材の変形度合いなどに応じて、適当なリテーナや山谷位置規制部材を用いることを妨げるものではない。
ρ = W / V
ρ: Apparent density (g / cm 3 )
W: Weight of sheet-like material (g / m 2 )
V: Volume of sheet-like material (cm 3 )
V = T × 10000
T: Sheet thickness (mm)
In the present invention, it is not necessary to lay a retainer or a valley / valve position regulating member, but unless it deviates from the purpose of the present invention, the filter medium produced by the bending resistance and the apparent density of the sheet-like material and the air resistance when the filter is used. It does not preclude the use of an appropriate retainer or peak / valley position restricting member in accordance with the degree of deformation.
本発明のフィルタは、上記した濾材のみで構成されていても良いが、図3に示すように、不織布などからなる別の濾材19と組み合わせてフィルタを構成しても良い。山谷状に形成された濾材1と別の濾材19は、それぞれを単層として構成しても良いし、複数の濾材を積層し多層構造としたフィルタとしてもよい。また、それらの濾材は、同種のものを重ねても、異種のものを積層してもよい。たとえば、異種の濾材を積層する場合は、空気などの流体の流入側に目の粗い濾材を配し、流出側に目の細かい濾材を配したりすることができる。また、濾材をたとえば抗菌性を有する濾材と消臭性を有する濾材とを積層したフィルタとすれば、複数の機能を付与することもできる。
The filter of the present invention may be composed only of the above-described filter medium, but as shown in FIG. 3, the filter may be configured in combination with another
また、山谷状に形成された濾材1や別の濾材19に、抗菌性、抗ウイルス性、防かび性、芳香性、消臭性、抗アレルゲン性等の性質をそれぞれ単独で、もしくは複合して付与してもよい。抗菌性を、たとえば山谷状に形成された濾材に付与した場合は、濾材に各種の菌が繁殖するのを防ぎ、濾材の寿命を延長することができる。別の濾材に付与した場合には、上流側にその別の濾材を配して下流側の濾材に菌類を含んだ空気が供給されるのを防いだり、下流側にその別の濾材を配して濾過した空気に菌類が混入することを防いだりすることができる。また、消臭性や芳香性を付与した場合も、清浄なエアを供給することができ、使用可能な時間を延ばすことができる。上記した機能の付与する手段としては、そのような機能を有する薬剤を濾材に塗布する方法や、濾材にそのような薬剤をあらかじめ練り込んでおく方法や、濾材を上記した機能を有する素材で製造する方法などをあげることができる。なお、これらの機能は上述した手段を適宜選択して付与することもできる。
In addition, the
上述したようなフィルタは、図3に示すとおり、通常、その周囲に枠体18を配して、枠体18とフィルタとを一体化し、フィルタユニットとして構成される。一体化することでフィルタの強度が増し、取り扱いが容易となる。また、枠体についても、抗菌性などの前記した機能を単独もしくは複合して付与することができる。
As shown in FIG. 3, the filter as described above is usually configured as a filter unit by arranging a
(実施例1)
目付量100g/m2の不織布(エレクトレットポリプロピレンメルトブロー不織布と短繊維不織布の積層体、JIS−L−1079:ガーレ法に基づく剛軟度320mg、見掛け密度0.16g/cm3)を、図5に示す構造の溝付け加工機を用い、山の高さ(H)58mm、幅591mm、上流側山頂部の内側に空間を形成するための平行する2本の溝の間隔0.5mmで溝付け加工を行い、その後、山谷状に折り込み、HEPAフィルタ(濾材使用面積10m2、サイズ610mm×610mm×65mm、定格風量56m3/分)を得た。得られた濾材の山頂部と谷頂部は、それぞれ、2つの斜面部と尾根部とを有しており、上流側山頂部内側の円の直径(R1)は0.5mm、下流側谷頂部内側の円の直径(R2)は0.1mm、隣接する谷部の間隔(W)は5mmであった。
Example 1
FIG. 5 shows a non-woven fabric having a basis weight of 100 g / m 2 (a laminate of an electret polypropylene meltblown non-woven fabric and a short fiber non-woven fabric, JIS-L-1079: flexural softness 320 mg based on Gurley method, apparent density 0.16 g / cm 3 ). Using the grooving machine with the structure shown, grooving with a height (H) of 58 mm, a width of 591 mm, and an interval between two parallel grooves to form a space inside the upstream peak. After that, it was folded into a mountain-valley shape to obtain a HEPA filter (filter medium use area 10 m 2 , size 610 mm × 610 mm × 65 mm, rated air flow 56 m 3 / min). The peak part and valley part of the obtained filter medium each have two slope parts and a ridge part, the diameter (R1) of the circle inside the upstream peak part is 0.5 mm, and the downstream valley peak inside The diameter (R2) of the circle was 0.1 mm, and the interval (W) between adjacent valleys was 5 mm.
このフィルタを最終圧力損失値294Pa(30mmAq)までの風圧試験(JIS B−9908)にて、圧力損失および捕集効率(0.3ミクロンDOP粒子を用いた計数法)を測定した。結果などを表1にまとめて示す。
(実施例2)
目付量100g/m2の不織布(エレクトレットポリプロピレンメルトブロー不織布と短繊維不織布の積層体、JIS−L−1079:ガーレ法に基づく剛軟度240mg。見掛け密度0.06g/cm3)を、図5に示す構造の溝付け加工機を用い、山の高さ(H)58mm、幅591mm、上流側山頂部の内側に空間を形成するための平行する2本の溝の間隔1.0mmで溝付け加工を行い、その後、山谷状に折り込み、HEPAフィルタ(濾材使用面積10m2、サイズ610mm×610mm×65mm、定格風量56m3/分)を得た。得られた濾材の山頂部と谷頂部は、それぞれ、2つの斜面部と尾根部とを有しており、上流側山頂部内側の円の直径(R1)は1.0mm、下流側谷頂部内側の円の直径(R2)は0.1mm、隣接する谷部の間隔は5mm(W)であった。
This filter was measured for pressure loss and collection efficiency (counting method using 0.3 micron DOP particles) in a wind pressure test (JIS B-9908) up to a final pressure loss value of 294 Pa (30 mmAq). The results are summarized in Table 1.
(Example 2)
FIG. 5 shows a nonwoven fabric having a basis weight of 100 g / m 2 (a laminate of an electret polypropylene meltblown nonwoven fabric and a short fiber nonwoven fabric, JIS-L-1079: bending resistance of 240 mg based on the Gurley method, apparent density 0.06 g / cm 3 ). Using a grooving machine having the structure shown, grooving with a height (H) of 58 mm, a width of 591 mm, and an interval between two parallel grooves to form a space inside the upstream peak, 1.0 mm After that, it was folded into a mountain-valley shape to obtain a HEPA filter (filter medium use area 10 m 2 , size 610 mm × 610 mm × 65 mm, rated air flow 56 m 3 / min). The peak and valley of the obtained filter medium each have two slopes and a ridge, and the diameter (R1) of the circle inside the upstream peak is 1.0 mm, and the downstream valley peak is inside. The diameter (R2) of the circle was 0.1 mm, and the interval between adjacent valleys was 5 mm (W).
このフィルタを最終圧力損失値294Pa(30mmAq)までの風圧試験(JIS B−9908)にて、圧力損失および捕集効率(0.3ミクロンDOP粒子を用いた計数法)を測定した。結果などを表1にまとめて示す。
(比較例1)
目付量100g/m2の不織布(エレクトレットポリプロピレンメルトブロー不織布と短繊維不織布の積層体、JIS−L−1079:ガーレ法に基づく剛軟度320mg。見掛け密度0.16g/cm3)を、図5に示す構造の溝付け加工機を用い、山の高さ(H)58mm、幅591mm、上流側山頂部の内側に空間を形成するための平行する2本の溝の間隔0.2mmで溝付け加工を行い、その後、山谷状に折り込み、HEPAフィルタ(濾材使用面積10m2、サイズ610mm×610mm×65mm、定格風量56m3/分)を得た。得られた濾材の山頂部と谷頂部は、それぞれ、2つの斜面部と尾根部とを有しており、上流側山頂部内側の円の直径(R1)は0.2mm、下流側谷頂部内側の円の直径(R2)は0.1mm、隣接する谷部の間隔(W)は5mmであった。
This filter was measured for pressure loss and collection efficiency (counting method using 0.3 micron DOP particles) in a wind pressure test (JIS B-9908) up to a final pressure loss value of 294 Pa (30 mmAq). The results are summarized in Table 1.
(Comparative Example 1)
FIG. 5 shows a non-woven fabric having a basis weight of 100 g / m 2 (a laminate of an electret polypropylene meltblown non-woven fabric and a short fiber non-woven fabric, JIS-L-1079: a bending resistance of 320 mg based on the Gurley method, an apparent density of 0.16 g / cm 3 ). Using the grooving machine having the structure shown, grooving with a height (H) of a mountain of 58 mm, a width of 591 mm, and an interval between two parallel grooves for forming a space inside the peak of the upstream side is 0.2 mm. After that, it was folded into a mountain-valley shape to obtain a HEPA filter (filter medium use area 10 m 2 , size 610 mm × 610 mm × 65 mm, rated air flow 56 m 3 / min). The peak and valley of the obtained filter medium each have two slopes and a ridge, and the diameter (R1) of the circle inside the upstream peak is 0.2 mm, and the downstream valley peak is inside. The diameter (R2) of the circle was 0.1 mm, and the interval (W) between adjacent valleys was 5 mm.
このフィルタを最終圧力損失値294Pa(30mmAq)までの風圧試験(JIS B−9908)にて、圧力損失および捕集効率(0.3ミクロンDOP粒子を用いた計数法)を測定した。結果などを表1にまとめて示す。 This filter was measured for pressure loss and collection efficiency (counting method using 0.3 micron DOP particles) in a wind pressure test (JIS B-9908) up to a final pressure loss value of 294 Pa (30 mmAq). The results are summarized in Table 1.
円の直径が0.2mmであり、山谷状に形成された上流側山頂部の内側に空気が流れるのに十分な空間を確保することできておらず、フィルタ使用時に空気の抵抗によって濾材が変形し、上流側山頂部に空気が流れない部分が生じたため、実施例1と実施例2と比べ、圧力損失と捕集効率ともに悪化し、HEPAフィルタとしての十分な性能が得られなかった。
(比較例2)
目付量100g/m2の不織布(エレクトレットポリプロピレンメルトブロー不織布と短繊維不織布の積層体、JIS−L−1079:ガーレ法に基づく剛軟度320mg。見掛け密度0.16g/cm3)を、図5に示す構造の溝付け加工機を用い、山の高さ(H)58mm、幅591mm、上流側山頂部の内側に空間を形成するための平行する2本の溝の間隔2.6mmで溝付け加工を行い、その後、山谷状に折り込み、HEPAフィルタ(濾材使用面積10m2、サイズ610mm×610mm×65mm、定格風量56m3/分)を得た。得られた濾材の山頂部と谷頂部は、それぞれ、2つの斜面部と尾根部とを有しており、上流側山頂部内側の円の直径(R1)は2.5mm、下流側谷頂部内側の円の直径(R2)は0.1mm、隣接する谷部の間隔(W)は5mmであった。
The diameter of the circle is 0.2 mm, and it is not possible to secure a sufficient space for the air to flow inside the upstream peak formed in the shape of a valley, and the filter medium is deformed by the resistance of the air when the filter is used. In addition, since a portion where air does not flow is generated at the upstream peak, both the pressure loss and the collection efficiency are deteriorated as compared with Example 1 and Example 2, and sufficient performance as a HEPA filter cannot be obtained.
(Comparative Example 2)
FIG. 5 shows a nonwoven fabric having a basis weight of 100 g / m 2 (a laminate of an electret polypropylene meltblown nonwoven fabric and a short fiber nonwoven fabric, JIS-L-1079: flexural flexibility of 320 mg based on the Gurley method. Apparent density of 0.16 g / cm 3 ). Using the grooving machine having the structure shown, grooving with a height (H) of 58 mm, a width of 591 mm, and an interval of 2.6 mm between two parallel grooves to form a space inside the upstream peak. After that, it was folded into a mountain-valley shape to obtain a HEPA filter (filter medium use area 10 m 2 , size 610 mm × 610 mm × 65 mm, rated air flow 56 m 3 / min). The peak part and valley part of the obtained filter medium each have two slope parts and a ridge part, the diameter (R1) of the circle inside the upstream peak part is 2.5 mm, and the downstream valley top part is inside. The diameter (R2) of the circle was 0.1 mm, and the interval (W) between adjacent valleys was 5 mm.
このフィルタを最終圧力損失値294Pa(30mmAq)までの風圧試験(JIS B−9908)にて、圧力損失および捕集効率(0.3ミクロンDOP粒子を用いた計数法)を測定した。結果などを表1にまとめて示す。 This filter was measured for pressure loss and collection efficiency (counting method using 0.3 micron DOP particles) in a wind pressure test (JIS B-9908) up to a final pressure loss value of 294 Pa (30 mmAq). The results are summarized in Table 1.
円の直径が2.5mmであり、プリーツ状に形成された山部の上流側山頂部に空気が流れるのに十分な空間はあるものの、隣接する山間の距離が十分ではないため、プリーツ谷部での空気の流れが悪くなり、実施例1と実施例2と比べ、圧力損失と捕集効率ともに悪化し、HEPAフィルタとしての十分な性能が得られなかった。 Although the circle has a diameter of 2.5 mm and there is sufficient space for air to flow on the upstream peak of the pleat-shaped peak, there is not enough distance between adjacent peaks, so the pleat valley As a result, the pressure flow and the collection efficiency were deteriorated as compared with Example 1 and Example 2, and sufficient performance as a HEPA filter was not obtained.
本発明は、空気清浄機用のフィルタに限らず、液体濾過用のフィルタなどにも応用することができる。 The present invention can be applied not only to filters for air purifiers but also to filters for liquid filtration.
1 濾材
1a シート状物
2、4 片側斜面内接点
3 尾根部内接点
5 2つの斜面部と尾根部に内接する円
6a,6b,7a,7b 搬送ローラー
8,8a,8b 受け溝
9,9a,9b 溝付け板
10 送り出しロール
11 溝付け加工部
12 接触部
13 板の厚み
14 受け溝の角度
15 支持体
16a,16b 山谷形状に成形された押型
17 空気が流通しない部分
18 枠体
19 別の濾材
DESCRIPTION OF
17 A portion where air does not flow 18
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005237204A JP2007050342A (en) | 2005-08-18 | 2005-08-18 | Filter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005237204A JP2007050342A (en) | 2005-08-18 | 2005-08-18 | Filter |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007050342A true JP2007050342A (en) | 2007-03-01 |
Family
ID=37915152
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005237204A Pending JP2007050342A (en) | 2005-08-18 | 2005-08-18 | Filter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007050342A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008264625A (en) * | 2007-04-17 | 2008-11-06 | Toyota Boshoku Corp | Filter medium and its creasing method |
JP2009090263A (en) * | 2007-10-12 | 2009-04-30 | Panasonic Corp | Dust collection filter |
JP2014117668A (en) * | 2012-12-18 | 2014-06-30 | Toyobo Co Ltd | Electret filter medium |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5689817A (en) * | 1979-07-31 | 1981-07-21 | Yoshimi Oshitari | Air filter |
JPH05212224A (en) * | 1992-01-31 | 1993-08-24 | Toray Ind Inc | Flame-retardant filter medium |
JPH11267417A (en) * | 1998-03-23 | 1999-10-05 | Nippon Muki Co Ltd | Production of filter medium |
JP2002058943A (en) * | 2000-08-14 | 2002-02-26 | Bridgestone Corp | Filter and its manufacturing method |
JP2002058945A (en) * | 2000-08-21 | 2002-02-26 | Mitsubishi Chemicals Corp | Method for removing fine particle in gas |
JP2002136813A (en) * | 2000-10-31 | 2002-05-14 | Toyoda Spinning & Weaving Co Ltd | Filter and its manufacturing method |
JP2002233726A (en) * | 2001-02-13 | 2002-08-20 | Shinryo Corp | Ceramic fiber filter |
JP2006088007A (en) * | 2004-09-22 | 2006-04-06 | Nippon Muki Co Ltd | Air filter and its production method |
-
2005
- 2005-08-18 JP JP2005237204A patent/JP2007050342A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5689817A (en) * | 1979-07-31 | 1981-07-21 | Yoshimi Oshitari | Air filter |
JPH05212224A (en) * | 1992-01-31 | 1993-08-24 | Toray Ind Inc | Flame-retardant filter medium |
JPH11267417A (en) * | 1998-03-23 | 1999-10-05 | Nippon Muki Co Ltd | Production of filter medium |
JP2002058943A (en) * | 2000-08-14 | 2002-02-26 | Bridgestone Corp | Filter and its manufacturing method |
JP2002058945A (en) * | 2000-08-21 | 2002-02-26 | Mitsubishi Chemicals Corp | Method for removing fine particle in gas |
JP2002136813A (en) * | 2000-10-31 | 2002-05-14 | Toyoda Spinning & Weaving Co Ltd | Filter and its manufacturing method |
JP2002233726A (en) * | 2001-02-13 | 2002-08-20 | Shinryo Corp | Ceramic fiber filter |
JP2006088007A (en) * | 2004-09-22 | 2006-04-06 | Nippon Muki Co Ltd | Air filter and its production method |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008264625A (en) * | 2007-04-17 | 2008-11-06 | Toyota Boshoku Corp | Filter medium and its creasing method |
JP2009090263A (en) * | 2007-10-12 | 2009-04-30 | Panasonic Corp | Dust collection filter |
JP2014117668A (en) * | 2012-12-18 | 2014-06-30 | Toyobo Co Ltd | Electret filter medium |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2818223B1 (en) | Blended nonwaven fabric, filter filtration material, and filter unit | |
JP6933456B2 (en) | Air filter filter media, air filter pack and air filter unit | |
RU60874U1 (en) | CARTRIDGE FILTER ELEMENT (OPTIONS) | |
JP5036690B2 (en) | Air filter unit, air filter unit panel using the same, and method for manufacturing air filter unit | |
CN109843410B (en) | Air filter medium, air filter module, and air filter unit | |
EP3520873B1 (en) | Air filter medium, air filter pack, and air filter unit | |
JP5839547B2 (en) | Filter filter medium pleating method and pleating apparatus | |
JP6920042B2 (en) | Air filter filter media, air filter pack and air filter unit | |
JP2019048301A (en) | Filter material, filter element with the same, and method of manufacturing filter material | |
JP5918641B2 (en) | Pleated air filter media and pleated air filter unit | |
JP2015183327A (en) | Melt-blown nonwoven fabric and composite filter medium | |
JP2007050342A (en) | Filter | |
JP2004124317A (en) | Polyester-based nonwoven fabric and filter | |
JP2014184360A (en) | Filter medium for pleat type air filter and pleat type air filter unit | |
WO2013014828A1 (en) | Filter unit and cleaner provided with same | |
JPH06106013A (en) | Air filter | |
CN113795323A (en) | Filter medium for filter and filter | |
JP6017654B2 (en) | Filter filter medium pleating method and pleating apparatus | |
JP2015139739A (en) | Gas turbine intake air filter | |
JP4699728B2 (en) | Air filter unit | |
JP2007330882A (en) | Filter medium, filter unit using it, and using method of the filter unit | |
JP2006075757A (en) | Filter unit | |
US20210339177A1 (en) | Dust collecting filter and process for manufacturing the same | |
JPH02198631A (en) | Laminated adsorbent and its production | |
JP2013166268A (en) | Sheet laminate, and method for manufacturing the sheet laminate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080617 |
|
A977 | Report on retrieval |
Effective date: 20091124 Free format text: JAPANESE INTERMEDIATE CODE: A971007 |
|
A131 | Notification of reasons for refusal |
Effective date: 20110222 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A02 | Decision of refusal |
Effective date: 20120207 Free format text: JAPANESE INTERMEDIATE CODE: A02 |