JP2004124317A - Polyester-based nonwoven fabric and filter - Google Patents

Polyester-based nonwoven fabric and filter Download PDF

Info

Publication number
JP2004124317A
JP2004124317A JP2002291495A JP2002291495A JP2004124317A JP 2004124317 A JP2004124317 A JP 2004124317A JP 2002291495 A JP2002291495 A JP 2002291495A JP 2002291495 A JP2002291495 A JP 2002291495A JP 2004124317 A JP2004124317 A JP 2004124317A
Authority
JP
Japan
Prior art keywords
nonwoven fabric
polyester
layer
filter
basis weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002291495A
Other languages
Japanese (ja)
Other versions
JP4131383B2 (en
Inventor
Shigeki Tanaka
田中 茂樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2002291495A priority Critical patent/JP4131383B2/en
Publication of JP2004124317A publication Critical patent/JP2004124317A/en
Application granted granted Critical
Publication of JP4131383B2 publication Critical patent/JP4131383B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonwoven fabric having high stiffness and excellent in a shielding property and filter characteristics and a filter having little deformation by fluid resistance in filtering operation. <P>SOLUTION: The polyester-based nonwoven fabric is composed of three or more laminated nonwoven fabric layers and has 0.10-1.50N/2cm three-point supporting flexural rigidity, 100-300g/m<SP>2</SP>basis weight and 0.2-0.7mm thickness. The polyester-based conjugate nonwoven fabric is e.g. obtained by laminating and integrating a nonwoven fabric A layer having fiber with 7-15μm fiber diameter and having 10-50g/m<SP>2</SP>basis weight as a surface layer material with a nonwoven fabric B layer having 15-270g/m<SP>2</SP>basis weight and composed of a core-sheath type conjugate fiber having 20-50μm fiber diameter in which the sheath component is a low-melting polyester having 110-250°C melting point and the core component is a polyester having 185-300°C melting point and a polyester nonwoven fabric C layer having 30-200g/m<SP>2</SP>basis weight. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、剛性が高く遮蔽性やフィルター特性に優れた不織布に関する。特に濾過操作時の流体抵抗により変形することの小さいフィルターとして好適な複合不織布に関する。さらに、ダスト払い落とし性の良いフィルターに関する。そして、プリーツ加工されてのちカートリッジに使用されるフィルター関するものである。
【0002】
【従来の技術】
ポリエチレンテレフタレートよりなる不織布は、機械的特性及び化学的特性に優れており、それぞれのポリエステルの特性に応じて、例えば土木・建築資材用や産業資材用の繊維に使用されている。
特に、代表的なポリエステルであるポリエチレンテレフタレートは、耐熱性、優れた強伸度特性、比較的安価な原料価格などの優位性から工業的に広く利用されている。
また、ポリエチレンテレフタレートと低密度ポリエチレンの2成分よりなる複合繊維を用いた長繊維不織布が特公平8−14069号公報に開示されるごとく熱接着性不織布として用いられている。たとえば、ポリエステル系複合繊維不織布は、微多孔分離膜材などと貼り合わせて分離膜の支持体として用いられることも多い。膜材は、ポリプロピレンやポリテトラフルオロエチレンなどで構成される場合も多いが、これらの構成樹脂は非常に薄く剛性が低いために単独で用いることが困難であるため、補強材として積層されている。
【0003】
これらの複合繊維不織布は、目付を大きく設定すると接点での接着強度が高くなり、その結果として剛性にすぐれるため構造材など高い剛性の必要な用途に用いられている。
【0004】
通常、不織布の繊維径を太くするほど、およびまたは目付を大きくするほど不織布の剛性を高くすることが可能となるが、複合繊維でない不織布を熱接着により一体化をはかった場合には目付がおおよそ150〜180g/m^2くらいより高い場合に熱伝導差の問題で層間剥離の問題を生じやすい。その対策として、繊維径が大きく目付も大きいポリエステル系の芯鞘型複合繊維をも使用されているが、それでも部分的にエンボス加工された部分がフィルムに近い状態に変化しており、フィルターとして用いた際に流体透過抵抗が大きくなり、送液ポンプやブロアなどの動力費が高くなるという問題が有った。また、剛性を高めるためにエンボス押さえ部面積が大きくなることが多く、場合によっては溝状の長いエンボスパターンをつけることもあるが、表面に凹凸があるためにフィルターを逆洗やパルス払い落としなどの手段によりフィルターを再生する際に、ダストなどのケーキ剥離性が低下するという問題点が有った。また、不織布の剛性が高くなるとシートの巻き出しが不安定になりやすいが、表面の凹部があることによりプリーターなどの加工機供給部との接触面積が小さくなりすぎるためか供給時にシートが滑って供給が不安定になるという問題が顕著となる場合も少なくなかった。また、太い繊維を用いた場合には濾過精度が高く設定しにくいという問題が有った。
【0005】
【発明が解決しようとする課題】
本発明は、かかる問題点を鑑みて、剛性が高く、しかもフィルターとして用いた場合のフィルター性能が高くかつダストの剥離性が良い長繊維不織布およびそれを用いたフィルターを提供するものである。
【0006】
【課題を解決するための手段】
かかる問題点を解決するために本発明は以下の手段をとる。
【0007】
すなわち、本発明は、下記の構成からなる。
1.3層以上の積層不織布層よりなり、3点支持曲げ剛性が0.10〜1.50N/2cm、目付が100〜300g/m^2、厚みが0.2〜0.7mmであることを特徴とするポリエステル系不織布。
2.少なくとも、繊維径が7〜20ミクロンの繊維よりなる目付が10〜150g/m^2の不織布A層、繊維径が20〜50μmの芯鞘型複合繊維を30%以上含む目付が15〜200g/m^2である不織布B層、目付が30〜200g/m^2のポリエステル不織布C層からなる積層不織布であって、各層が積層一体化されてなることを特徴とする上記第1に記載のポリエステル系不織布。
3.少なくとも不織布A層あるいはC層の何れか一方が長繊維不織布であることを特徴とする上記第2に記載のポリエステル系不織布。
4.芯鞘型複合繊維が、鞘成分の融点が110℃〜250℃のポリエステル、芯成分の融点が185℃〜300℃のポリエステルであることを特徴とする上記第2に記載のポリエステル系不織布。
5.熱接着により積層一体化されていることを特徴とする上記第2に記載のポリエステル系不織布。
6.プリーツ加工されてなることを特徴とする上記第2に記載のポリエステル系不織布。
7.上記第1記載のポリエステル系不織布を用いてなることを特徴とするフィルタ−。
8.上記第2記載の不織布A層とC層を構成する繊維の繊維径が異なり、かつ不織布の色が異なることを特徴とするフィルター。
9.不織布Aおよび不織布C層が熱エンボスカレンダープレスにより外表面側に部分的に凹面の窪みを有することを特徴とする上記第7あるいは8に記載のフィルター。
10.不織布がプリーツ加工されてなることを特徴とする上記第8に記載のフィルター。
【0008】
以下に本発明の用件について詳細に説明する。
先ず、本発明に係る不織布は、3層以上の積層不織布により構成され、3点支持曲げ剛性が0.10〜1.50N/2cm、目付が100〜300g/m^2、厚みが0.2〜0.7mmであることが好ましい。
本発明に係る不織布は、比較的低い目付かつ薄い厚みであっても、3点支持曲げ剛性を上記範囲内とするには後述する不織布の積層一体化が好ましい態様である。剛性が上記範囲を下回ると、低いとプリーツ織りしてフィルターやフィルターの支持体に用いたり、構造体の一部として不織布を用いた場合にたわみなどの変形を生じやすくなるため好ましくない。また剛性が上記範囲を上回るっても大きな問題はないが剛性を高くするためには厚みを大きくとる必要が出てくるため、カートリッジのプリーツ折り込み本数が少なくなるためあまり好ましくはない。好ましくは、0.15〜0.70N/2cmである。
また、フラジール通気度が3〜20cc/cm^2秒であることが望ましい。通気抵抗が上記範囲を下回ると被濾過流体を供給するポンプなどの動力費が高くなったり流体から受ける抗力でプリーツの山形状が変形したりするする問題が発生する場合がありあまり好ましくない。一方、剛性が上記範囲を上回ってもあまり問題はないが、発明者らの経験では濾過精度が低下する可能性が高く望ましくない場合が多かった。好ましくは5〜20cc/cm^2秒、特に好ましくは7〜15cc/cm^2秒である。フラジール通気度と5cm/秒の通気抵抗は以下の式でほぼ換算可能である。
5cm/秒の通気抵抗(mmAq)=63.5/フラジール通気度(cc/cm^2秒)
【0009】
本発明で用いられる不織布は、具体的には、下記の多層構造からなることが剛性を高くする目的から推奨される。
構成要素である不織布A層は、目付が10〜150g/m^2の不織布であることが望ましい。また、厚みが0.2〜0.7mmであることが好ましい。かかる条件をはずれて、目付が小さすぎたりあるいは厚みが薄すぎると所望の剛性を得ることが困難となる。目付が高すぎると通気度が小さくなりすぎてあまり好ましくない。また、厚みが厚いと剛性は高くなる場合も多いが、厚すぎると繊維相互の接着点数が減るために剛性が不足したりあるいは不織布が毛羽立ちやすくなるなどの問題を生じる場合があるためあまり好ましくない。フィルターカートリッジに織り込んで使用する場合は、厚みが厚すぎると折り込み面積が小さくなるため好ましくない場合もある。繊維径が7〜20ミクロンの間にあることで、充填密度をあまり高く設定しないでも高い濾過精度を達成することが可能となる。繊維径が細すぎると摩耗などにより毛羽だちやすいという問題点が発現する。また、剛性を高くするために繊維径を太くするとフィルターとして用いた場合に充填率を高くしないと濾過精度が高く設定できなくなり、その結果流体透過抵抗が増加するという問題を生じる。本発明の複合不織布をフィルターとして用いる場合は、不織布A層を濾過面とするサーフェース濾過材として用いられることが一般的であると考えられるので、細い繊維径であるほど濾過精度が高くなり、かつ表面が平滑化されやすくその結果ケーキ剥離性が良くなって濾過ライフも長くすることが可能となる。一方、捕集される粒子の凝集性が高い場合には繊維径をある程度太くすることも好ましく、繊維径が10〜20ミクロンの間にあることが好ましかった。
本発明のように複合構造をとらない場合は、濾過精度と濾過ライフの性能バランスを良くして、かつ剛性の高い不織布を得ることは極めて困難と考えられる。不織布A層およびまたはC層が長繊維不織布であると、フィルターや遮蔽材として用いた場合に繊維の脱落の心配がないために特に好ましい。
【0010】
また、不織布A層の繊維はシートの長手方向中心線に沿ってプラスマイナス15度の角度の範囲に主に配列していることが好ましい。繊維を主に長手方向に配列させることで不織布の剛性を高めることが可能となる。この範囲に配列する繊維本数の割合が25%以上であれば(均一な繊維配列で有れば約17%)主に配列していると見なすことができるが、好ましくは30%以上、特に好ましくは50%以上である。不織布剛性を高めるためには、繊維径が細いほど長手方向に繊維配向の割合が高いことが好ましい。繊維径が15ミクロン以下である場合には、該方向への繊維配列が70%以上、特に好ましくは80%以上である。特に、横手方向に平行な折れ目をジグザグ状にいれてプリーツ折りして用いる場合にその曲げ剛性を高くする事が可能となり、水などの流体が透過するときの抵抗で不織布折れ曲がって隣接するシートが重なるために有効濾過面積が低下するという問題を防止することが容易となる。本不織布の構成繊維の融点は不織布C層の融点と同じであってもよいが、好ましくはそれより10〜50℃程度低くして、不織布張り合わせの過程で繊維の一部を融解させることで毛羽立ち防止をすることが可能であり特に好ましい。
【0011】
本発明で用いられる不織布の構成要素である不織布B層は、鞘成分が融点が110℃から250℃の間にある低融点ポリエステルであり、芯成分が融点が180℃〜300℃のポリエステルである芯鞘型複合繊維であることが望ましい。この構成により、本発明の目的である剛性の高い不織布およびそれを用いたフィルターを提供することが可能となる。不織布の形態は、長繊維不織布で有ればプロセス油剤を付与する必要がないため異物を無くすることが可能である。また、長繊維不織布はリントフリー性にもすぐれるため繊維の脱落が無いのでフィルターなどの用途に特に好適である。発明者らの検討の範囲では各ポリマーの融点が高いほど良好な剛性を得ることが可能であった。
【0012】
鞘成分に用いるポリマーは、融点が110℃から250℃の間にある低融点ポリエステルであることが望ましい。融点が110℃以下であると、室温に於いても接着力が低下してしまったり、粘着性がでてブロッキングなどの問題が出るおそれがあるためあまり好ましくない。一方、融点が250℃より高くなると、接着加工温度が高くなり過ぎて接着対象物の表面温度が低いとすぐに固化が始まり接着性が低下したり操業性が悪くなる可能性があるためあまり好ましくない。ポリエステル系樹脂は、一般に異物の発生が少ないためフィルター関連用途への市場に特に好適である。用いる樹脂としては、ポリプロピレンテレフタレート、ポリブチレンテレフタレート、脂肪族ポリエステルあるいはブロック共重合ポリエステルおよびそれらのいずれかを基本骨格の一分とする共重合ポリマーなどが好適に利用できる。
【0013】
また、芯成分のポリマーは、ポリエチレンテレフタレート、ポリプロピレンテレフタレート、ポリブチレンテレフタレート、ポリ乳酸あるいはそれらのいずれかを一部に含む共重合体であることが望ましい。これらのポリエステル系樹脂は、融点が180℃〜300℃の間にあれば高温時の寸法安定性や機械的強度特性に優れるため特に好ましい。最近、自然成分由来やバイオテクノロジーで原料を得ることが可能となってきており、環境保全の観点からも特に好ましい。特に、液体フィルターなどとして形態安定性を樹脂されるときには、ポリエステル繊維のもつ高い剛性が有効になる。芯成分のポリマーは、鞘成分のポリマーの融点あるいは軟化点より少なくとも20℃以上高い温度であることが、接着加工の操業性を考えると好ましい。融点の差が小さいと、加工温度のコントロールを厳密にする必要があるため高度な温度制御設備が必要になったり、加工速度が低速にせざるをえなくなりあまり好ましくない。
【0014】
複合繊維の芯成分と鞘成分の重量比は20:80〜70:30程度であることが好ましく、さらに好ましくは30:70〜60:40の間であり、特に好ましくは40:60〜55:45の間である。接着成分である鞘成分が30%より少ないと十分な接着力を得ることが難しくなる。一方、70%を超えると、接着加工時の温度コントロールが難しくなったり、機械的強度特性が低くなりやすいなど問題を生じやすいので余り好ましくない。
【0015】
また、該不織布B層を構成する主な繊維の繊維径が20〜50μmの間にあることが望ましく、好ましくは25〜50μmの間であり、特に好ましくは30〜50μmである。繊維径が20μmより小さいと接着部面積が小さくなり、接着力が低下しやすくなりあまり好ましくない。一方、繊維径が50μmより大きくなると不織布の不織布の地合が斑が大きくなり好ましくない。また、スパンボンド法で該不織布を製造する場合には紡糸過程で糸切れを生じたり、繊維牽引のエジェクターに繊維が付着したり詰まったりするなどの問題点を生じやすく操業性に問題を生じることも少なくなかった。また、太すぎる繊維よりなる不織布は繊維量が少ないために地合の斑が目立ちやすく、物性のバラツキにつながる。繊維の少ないところは、不織布の剛性不足や不織布の接着強度の低下を招き好ましくない。不織布B層の繊維は、A層とB層に挟まれているため繊維の脱落の可能性が低いことから短繊維であっても良い。
【0016】
さらに、不織布B層の目付が15〜200g/m^2の間であることが好ましい。また、目付が200g/m^2より大きいと熱エンボス加工を行うときに、エンボスロールでの伝熱性の問題から接着強度が低くなると言う問題を生じやすくあまり好ましくない。本発明の不織布を、分離膜支持体として利用した場合には、目付が15〜70g/m^2の間であることが好ましい。目付が15g/m^2より小さいと先述の理由から適切な接着力を得ることが困難となったり、形態保持性が低下したりするためあまり好ましくない。一方、目付が70g/m^2より大きくても接着力が高くなることはあまり期待できず、分離膜の支持体として用いる際に、厚みや重量が大きくなって取り扱い性が低下したり、圧力損失が大きくなるという問題を生じやすく余り好ましくない。また、厚みが厚いとプリーツ型フィルターに用いる場合に織り込み襞折り数が少なくなり結果として有効濾過面積が少なくなる。
【0017】
本発明で用いる不織布C層は、目付が30〜200g/m^2のポリエステル不織布C層であることが望ましく、好ましくは40〜180g/m^2、特に好ましくは60〜180g/m^2である。不織布の製造方法は特に規定されないが、耐熱性が高くコストパフォーマンスにすぐれたポリエステル長繊維不織布を用いることができる。不織布C層は他の不織布に比べて厚みや目付が高い場合が多いので、熱カレンダー処理などで不織布相互を貼り合わせる際に伝熱不良を生じる恐れがある。その防止のためには、不織布C層をあらかじめ赤外線ヒータなどで予熱することも好ましい。電熱性を高くするために金属を表面に蒸着したり、カーボンなどを練り込んだりするのも好ましい形態の一つで有る。表裏の色を変えておくと使用時の間違い防止の効果も期待できて好ましい。また、不織布A層〜C以外の不織布を、これらの間あるいは片面に貼り合わせて用いても良い。本発明の不織布をフィルターとして用いる際にA層とC層の不織布の繊維径を異なるように設定すると、表裏を入れ替えて使うと異なる精度のフィルターとして使用することが可能であり好ましい形態の一つであると考えられる。この際には、表裏の色を変えておくことが使用方法の間違い防ぐ上で好ましい。また、片側は白やグレーなどの淡い色にしておくと、襞織り数を数えるのを容易とするために襞数を表面に印字する場合に印字が鮮明であり好ましい。
【0018】
本発明の不織布の積層方法は特に規定されないが、好ましい実施形態のひとつとして熱により不織布B層の鞘成分のみあるいは、これに不織布A層の一部の繊維を溶融させて接着して分離膜として用いることも好ましい形態のひとつである。このとき、熱により不織布表面積の15%以上の部分が鞘成分のみを溶融させて変形接着していることが好ましい。接着部分の面積が15%以下だと接着力が弱く剥離しやすくなるのであまり好ましくない。また、圧力をかけすぎてフィルム化するとフィルターとして用いた場合の濾過対象流体による透過抵抗が上昇するためあまり好ましくない。本発明の不織布をフィルター用途に用いる場合は、不織布Aおよび不織布C層が熱エンボスカレンダープレスにより外表面側に部分的に凹面の窪みを有することが好ましい。内面側に凹面の凹みを有するとパルスジェットや逆洗浄により濾過ダストの払い落としをした場合に内部にダストが残ってしまい、残量圧力損失が高くなり、その結果フィルターの洗浄再生サイクルタイムが短くなるため好ましくない。本発明の不織布と多孔膜の接着性を良くするためには、不織布が熱エンボス処理不織布で有る場合には、平滑面(プレーンロール)により積層することが、不織布A層面の表面平滑性を向上させるために特に好ましい。フィルターとして用いる場合に、ケーキ剥離性を向上することが可能となり、工業用集塵フィルターや放電加工などのクーラントフィルターとして用いる場合に特に好適である。
【0019】
本発明の複合不織布あるいはそれを一部に用いたフィルターは剛性が高いためにプリーツ加工されてのちカートリッジにされることが好ましい。積層加工していることで曲げ剛性を高く設定することが可能である。また、不織布B層が低融点成分を持つことで、プリーツ加工の成形性が良好となり、レシプロ加工はもとより従来のスパンボンド不織布では加工の難かしいといわれていた高速ロータリー方式の襞折り加工が可能となる。加工時の下面となる不織布層がエンボス加工によって処理されている場合はその面積が25%以上であると不織布と加工機の支持体部との間で滑りを生じる問題が生じやすくあまり好ましくない。繊維径が太くなるほど該エンボス押さえ面積率が小さい方が好ましい。本発明者の経験ではエンボス部面積が7〜25%の間にあることが特に好ましかった。
【0020】
(繊維径)
走査型電子顕微鏡(SEM)の拡大写真より、100本以上の繊維を読み取り、その算術平均値を繊維径とした。
(目付)
JIS−L−1906に準拠して評価する。
(曲げ剛性)
評価用試料片を幅2cm×長さ10cmの大きさに採取し、支持幅5cmによる3点支持曲げ剛性を測定した。加圧子はJIS−L−1096 曲げ反発性 C法(ループ圧縮法)で使用される形状とする。
(融点)
PERKIN−ELMER社製 DSC7を使用し、昇温速度20℃/分で評価した。
(繊維配列)
画像処理プログラム(東洋紡績株式会社より発売中Image32)によりフーリエ変換法により測定した。繊維の配列を長手方向に対してプラスマイナス90度の範囲で30度刻みで測定し、長手方向プラスマイナス15度の範囲にある繊維の割合を測定した。画像処理装置がない場合は、−90度から+60度の範囲で30度刻みの角度で不織布を、20cm長、5cm幅に切り出してのち引っ張り強度を測定して、それらの値の合計が100になるように規格化したときの長手方向の値を採用しても大きな誤りがないと推定される。
(エアーフィルター性能)
大気塵を用いて5cm/sで濾過操作を行った時の直径50mmのサンプルの前後の粒子濃度をパーティクルカウンターにより測定して1〜2ミクロンの間の粒子径の捕集効率を求めた。また、通気抵抗を、精度測定時にマノメータによりフィルター前後の差圧を測定することにより求めた。
(フラジール通気度)JIS L1096に準じて測定を行った。
(ダスト払い落とし性)有効濾過面積0.04m^2(直径22.6cm)の円形濾材にダスト濃度の3g/m^3のガスを3m/分で濾過を行い、150mmAqになった時点で3kgf/cm^2でパルスで払い落としを行った。30回以上払い落とすと払い落とし間隔の時間が行ってしてくることから、100回払い落とした時点でのパルス払い落とし間隔を測定した。時間が短いほどフィルターの払い落とし性が良くないことになる。
【0021】
【実施例】
(実施例1)
繊維径約12ミクロン、目付20g/m^2のポリエチレンテレフタレートスパンボンド不織布(白色)を不織布A層とした。繊維は40%以上がシートの長手方向中心線に沿ってプラスマイナス15度の角度の範囲に配列していた。イソフタル酸を導入した共重合ポリエステル(融点約130℃)を芯成分に、融点が約270℃のポリエチレンテレフタレートである繊維径が約40μmの芯鞘型複合繊維よりなるスパンボンド不織布B層(目付40g/m^2)を作成した。芯鞘比は重量ベースで50:50であった。不織布C層として繊維径14ミクロン、目付180g/m^2のポリエチレンテレフタレートスパンボンド不織布(東洋紡績株式会社製6A81AD:黒色)を不織布C層として、3枚の不織布をプレーンカレンダーにより150℃、設定線圧約50kg/cm、速度18m/分で貼り合わせた。不織布AおよびCは、エンボスロールによる凹部窪みが外表面側になるように配置した。不織布の曲げ剛性は0.80N/2cmであった。不織布A層が上面になるようにしてロータリー方式の襞折り加工機で処理したところ問題なく処理することが可能であった。エアーフィルタ性能は、捕集効率が62%、通気抵抗が5.2mmAqとフィルター性能がすぐれていた。払い落とし間隔は3.1分と長く、払い落とし性は良好であった。表裏の色が違うので濾過面を間違えることがないと加工場で好評であった。
【0022】
(実施例2)
不織布B層が、繊維径約35ミクロンの芯鞘型短繊維(日本エステル株式会社製メルティー2080、芯部融点約200℃)よりなる目付40g/m^2の不織布に変更した以外は実施例1と同じ方法にて積層不織布を作成した。不織布の曲げ剛性は0.58N/2cmであった。不織布A層が上面になるようにしてロータリー方式の襞折り加工機で処理したところ問題なく処理することが可能であった。エアーフィルタ性能は、捕集効率が59%、通気抵抗が5.7mmAqとフィルター性能がすぐれていた。払い落とし間隔は3.2分と長く、払い落とし性は良好であった。
【0023】
(比較例1)
繊維径が17ミクロン、目付250g/m^2のポリエチレンテレフタレートスパンボンド不織布をプレーンカレンダーにより210℃、設定線圧約80kg/cm、速度3m/分で貼り合わせた。繊維は約38%がシートの長手方向中心線に沿ってプラスマイナス15度の角度の範囲に配列していた。不織布を折り曲げたところ、簡単に層間剥離を生じて不織布の曲げ剛性は測定できず、襞折り加工機での処理ができなかった。エアーフィルタ性能は、捕集効率が52%、通気抵抗が13.0mmAqと圧力損失が高い割に捕集効率が低く問題であった。
【0024】
(比較例2)
実施例1で用いた不織布B層と同じ構成の複合繊維で繊維径が約20ミクロン、目付約250g/m^2のスパンボンド不織布をプレーンカレンダーにより180℃、設定線圧約50kg/cm、速度10m/分で貼り合わせた。繊維は約23%がシートの長手方向中心線に沿ってプラスマイナス15度の角度の範囲に配列していた。ロータリー方式の襞折り加工機で処理したところ滑りを若干生じたがほぼ問題なく処理することが可能であった。不織布の曲げ剛性は0.32N/2cmであった。エアーフィルタ性能は、捕集効率が55%、通気抵抗が10.1mmAqと圧力損失が高い割に捕集効率が低く問題であった。払い落とし間隔は2.3分と短く、払い落とし性はあまり良くなかった。
【0025】
(比較例3)
比較例2で用いた目付250g/m^2のスパンボンド不織布を熱エンボスカレンダー(押さえ部面積約50%)により180℃、設定線圧約50kg/cm、速度15m/分で貼り合わせた。ロータリー方式の襞折り加工機で処理したところ、不織布が機械機のシート供給部で滑って襞折りの間隔がそろわないため問題であった。不織布の曲げ剛性は0.41N/2cmであった。エアーフィルタ性能は、捕集効率が49%、通気抵抗が9.7mmAqと実施例1,2より性能が劣り問題であった。払い落とし間隔は1.7分と短く、払い落とし性はあまり良くなかった。
【0026】
(比較例4)
繊維径約18ミクロン、目付20g/m^2のポリエチレンテレフタレートスパンボンド不織布を不織布A層とした。繊維は約25%以上がシートの長手方向中心線に沿ってプラスマイナス15度の角度の範囲に配列していた。イソフタル酸を導入した共重合ポリエステル(融点約130℃)を芯成分に、融点が約270℃のポリエチレンテレフタレートである繊維径が約14μmの芯鞘型複合繊維よりなるスパンボンド不織布B層(目付40g/m^2)を作成した。芯鞘比は重量ベースで50:50であった。不織布C層として繊維径18ミクロン、目付180g/m^2のポリエチレンテレフタレートスパンボンド不織布を不織布C層として、3枚の不織布をプレーンカレンダーにより150℃、設定線圧約50kg/cm、速度18m/分で貼り合わせた。不織布AおよびCは、エンボスロールによる凹部窪みが内側になるように配置した。不織布の曲げ剛性は0.53N/2cmであった。不織布A層が上面になるようにしてロータリー方式の襞折り加工機で処理したところ問題なく処理することが可能であった。エアーフィルタ性能は、捕集効率が57%と高かったが通気抵抗が8.4mmAqと高く問題であった。払い落とし間隔は1.2分と短く、払い落とし性は悪かった。
【0027】
【発明の効果】
本発明によれば、剛性が高く遮蔽性やフィルター特性に優れた不織布を得ることができる。特に濾過操作時の流体抵抗により変形することの小さいフィルターとして好適な複合不織布となる。さらに、ダスト払い落とし性の良いフィルターにとして使用しうる。また、プリーツ加工されてのちカートリッジ化して使用される高性能のフィルターを提供することを可能とした。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a nonwoven fabric having high rigidity and excellent shielding properties and filter characteristics. In particular, the present invention relates to a composite nonwoven fabric suitable as a filter that is less likely to be deformed by fluid resistance during a filtration operation. Further, the present invention relates to a filter having good dust removal properties. Further, the present invention relates to a filter used in a cartridge after being pleated.
[0002]
[Prior art]
Nonwoven fabrics made of polyethylene terephthalate have excellent mechanical properties and chemical properties, and are used in, for example, fibers for civil engineering and construction materials and industrial materials according to the properties of each polyester.
In particular, polyethylene terephthalate, which is a typical polyester, is widely used industrially because of its advantages such as heat resistance, excellent strength and elongation properties, and relatively inexpensive raw material prices.
A long-fiber nonwoven fabric using a composite fiber composed of two components, polyethylene terephthalate and low-density polyethylene, is used as a heat-bonding nonwoven fabric as disclosed in Japanese Patent Publication No. 8-14069. For example, a polyester-based composite fiber nonwoven fabric is often used as a support for a separation membrane by bonding it to a microporous separation membrane material or the like. The film material is often composed of polypropylene, polytetrafluoroethylene, or the like, but since these constituent resins are extremely thin and have low rigidity, it is difficult to use them alone, so they are laminated as a reinforcing material. .
[0003]
These composite fiber nonwoven fabrics are used for applications requiring high rigidity, such as structural materials, because when the basis weight is set large, the adhesive strength at the contact point increases, and as a result, the rigidity is excellent.
[0004]
In general, the larger the fiber diameter of the nonwoven fabric and / or the larger the basis weight, the higher the rigidity of the nonwoven fabric can be.However, when the nonwoven fabric which is not a composite fiber is integrated by heat bonding, the basis weight is approximately When it is higher than about 150 to 180 g / m @ 2, a problem of delamination tends to occur due to a difference in thermal conductivity. As a countermeasure, polyester core-sheath composite fibers with a large fiber diameter and a large basis weight are also used, but still the partially embossed part is changing to a state close to the film, and it is used as a filter. In such a case, there is a problem that the fluid permeation resistance increases and the power cost of a liquid feed pump, a blower, and the like increases. In addition, the area of the embossing retainer is often large to increase rigidity.In some cases, a long groove-shaped embossing pattern is used.However, due to the unevenness of the surface, the filter is backwashed or pulsed off. When the filter is regenerated by the above method, there is a problem that the cake peeling property of dust and the like is reduced. Also, when the rigidity of the nonwoven fabric increases, the unwinding of the sheet tends to be unstable, but the sheet may slip due to the concave portion on the surface, possibly because the contact area with the feeding unit of the processing machine such as the pleater becomes too small. In many cases, the problem of unstable supply became noticeable. In addition, when thick fibers are used, there is a problem that filtration accuracy is high and setting is difficult.
[0005]
[Problems to be solved by the invention]
In view of the above problems, the present invention provides a long-fiber nonwoven fabric having high rigidity, high filter performance when used as a filter, and good dust releasability, and a filter using the same.
[0006]
[Means for Solving the Problems]
To solve such a problem, the present invention takes the following measures.
[0007]
That is, the present invention has the following configurations.
1. It is composed of three or more laminated nonwoven fabric layers, has a three-point supporting flexural rigidity of 0.10 to 1.50 N / 2 cm, a basis weight of 100 to 300 g / m @ 2, and a thickness of 0.2 to 0.7 mm. A polyester nonwoven fabric characterized by the following.
2. At least a nonwoven fabric A layer having a basis weight of 10 to 150 g / m @ 2, which is composed of fibers having a fiber diameter of 7 to 20 microns, and a basis weight of 15 to 200 g /%, containing 30% or more of a core-sheath type composite fiber having a fiber diameter of 20 to 50 μm. 2. The laminated nonwoven fabric comprising a nonwoven fabric B layer having m ^ 2 and a polyester nonwoven fabric C layer having a basis weight of 30 to 200 g / m ^ 2, wherein each layer is laminated and integrated. Polyester non-woven fabric.
3. 3. The polyester-based nonwoven fabric according to the above item 2, wherein at least one of the nonwoven fabric A layer and the C layer is a long-fiber nonwoven fabric.
4. 3. The polyester-based nonwoven fabric according to the above item 2, wherein the core-sheath type conjugate fiber is a polyester whose sheath component has a melting point of 110 ° C to 250 ° C and a polyester whose core component has a melting point of 185 ° C to 300 ° C.
5. 3. The polyester-based nonwoven fabric according to the above item 2, wherein the polyester-based nonwoven fabric is laminated and integrated by thermal bonding.
6. 3. The polyester-based nonwoven fabric according to the above item 2, which is pleated.
7. A filter comprising the polyester-based nonwoven fabric according to the first aspect.
8. The filter according to the second aspect, wherein the fibers constituting the non-woven fabric A layer and the C layer have different fiber diameters and the non-woven fabrics have different colors.
9. The filter according to the above item 7 or 8, wherein the nonwoven fabric A and the nonwoven fabric C have a partially concave depression on the outer surface side by a hot emboss calender press.
10. 9. The filter according to the above item 8, wherein the nonwoven fabric is pleated.
[0008]
Hereinafter, the requirements of the present invention will be described in detail.
First, the nonwoven fabric according to the present invention is composed of three or more laminated nonwoven fabrics, has a three-point supporting flexural rigidity of 0.10 to 1.50 N / 2 cm, a basis weight of 100 to 300 g / m / 2, and a thickness of 0.2. It is preferably about 0.7 mm.
In the nonwoven fabric according to the present invention, lamination and integration of the nonwoven fabric described later is a preferable embodiment in order to keep the three-point bending rigidity within the above range even if the nonwoven fabric has a relatively low basis weight and a small thickness. If the rigidity is lower than the above range, it is not preferable if the rigidity is low because deformation such as bending tends to occur when pleated and used for a filter or a support of the filter or when a nonwoven fabric is used as a part of the structure. Although there is no major problem if the rigidity exceeds the above range, it is necessary to increase the thickness in order to increase the rigidity, so that the number of pleated folds of the cartridge is reduced. Preferably, it is 0.15 to 0.70 N / 2 cm.
It is desirable that the Frazier air permeability is 3 to 20 cc / cm @ 2 seconds. If the airflow resistance is lower than the above range, problems such as an increase in power cost of a pump for supplying a fluid to be filtered or deformation of a pleated mountain due to a drag received from the fluid may occur, which is not preferable. On the other hand, there is not much problem even if the stiffness exceeds the above range, but in the experience of the inventors, there is a high possibility that the filtration accuracy is reduced, which is not desirable in many cases. Preferably it is 5 to 20 cc / cm @ 2 seconds, particularly preferably 7 to 15 cc / cm @ 2 seconds. The Frazier air permeability and the airflow resistance of 5 cm / sec can be substantially converted by the following equation.
5 cm / sec airflow resistance (mmAq) = 63.5 / Fragile air permeability (cc / cm ^ 2 sec)
[0009]
Specifically, it is recommended that the nonwoven fabric used in the present invention has the following multilayer structure for the purpose of increasing rigidity.
It is desirable that the nonwoven fabric A layer as a component is a nonwoven fabric having a basis weight of 10 to 150 g / m2. Further, the thickness is preferably 0.2 to 0.7 mm. If the condition is deviated and the basis weight is too small or the thickness is too small, it becomes difficult to obtain a desired rigidity. If the basis weight is too high, the air permeability becomes too small, which is not so preferable. In addition, when the thickness is large, the rigidity is often increased. However, when the thickness is too large, the rigidity is insufficient because the number of bonding points between the fibers is reduced, or a problem such as the nonwoven fabric is likely to be fluffed is not preferable. . In the case of being used by being woven into a filter cartridge, if the thickness is too large, the folded area becomes small, which may not be preferable. When the fiber diameter is between 7 and 20 microns, high filtration accuracy can be achieved without setting the packing density too high. If the fiber diameter is too small, there is a problem that fluff is likely to occur due to abrasion or the like. In addition, if the fiber diameter is increased to increase the rigidity, the filtration accuracy cannot be set high unless the filling rate is increased when the fiber is used as a filter. As a result, the fluid permeation resistance increases. When the composite nonwoven fabric of the present invention is used as a filter, it is generally considered to be used as a surface filtering material having the nonwoven fabric A layer as a filtration surface, so that the smaller the fiber diameter, the higher the filtration accuracy. In addition, the surface is easily smoothed, and as a result, the cake peeling property is improved and the filtration life can be extended. On the other hand, when the collected particles have high cohesiveness, it is preferable to increase the fiber diameter to some extent, and it is preferable that the fiber diameter is between 10 and 20 microns.
When a composite structure is not taken as in the present invention, it is considered to be extremely difficult to obtain a nonwoven fabric having a high rigidity with a good balance between filtration accuracy and filtration life. It is particularly preferable that the non-woven fabric layer A and / or C layer is a long-fiber non-woven fabric because there is no fear of the fibers falling off when used as a filter or a shielding material.
[0010]
Further, it is preferable that the fibers of the non-woven fabric A layer are mainly arranged in a range of an angle of ± 15 degrees along the center line in the longitudinal direction of the sheet. By arranging the fibers mainly in the longitudinal direction, the rigidity of the nonwoven fabric can be increased. If the ratio of the number of fibers arranged in this range is 25% or more (about 17% if the fiber arrangement is uniform), it can be considered that the fibers are mainly arranged, but preferably 30% or more, particularly preferably Is 50% or more. In order to increase the rigidity of the nonwoven fabric, it is preferable that the smaller the fiber diameter, the higher the ratio of fiber orientation in the longitudinal direction. When the fiber diameter is 15 microns or less, the fiber arrangement in this direction is 70% or more, particularly preferably 80% or more. In particular, when a fold parallel to the lateral direction is zigzag and pleated and used, the bending rigidity can be increased, and the nonwoven fabric bends due to resistance when a fluid such as water permeates and adjacent sheets are bent. It is easy to prevent the problem that the effective filtration area decreases due to the overlap. The melting point of the constituent fibers of the present nonwoven fabric may be the same as the melting point of the nonwoven fabric C layer, but is preferably lowered by about 10 to 50 ° C., and a part of the fibers is melted in the process of laminating the nonwoven fabric, so that the fibers are fluffed. It is particularly preferable because it can be prevented.
[0011]
The nonwoven fabric B layer, which is a component of the nonwoven fabric used in the present invention, is a low-melting polyester having a sheath component having a melting point of between 110 ° C and 250 ° C, and a polyester having a core component having a melting point of 180 ° C to 300 ° C. Desirably, it is a core-sheath composite fiber. With this configuration, it is possible to provide a highly rigid nonwoven fabric and a filter using the same, which are the objects of the present invention. As long as the nonwoven fabric is a long-fiber nonwoven fabric, it is not necessary to apply a process oil agent, so that it is possible to eliminate foreign matters. In addition, long-fiber nonwoven fabrics are particularly suitable for applications such as filters because they have excellent lint-free properties and do not fall off the fibers. Within the scope of the studies by the inventors, it was possible to obtain better rigidity as the melting point of each polymer was higher.
[0012]
The polymer used for the sheath component is desirably a low-melting polyester having a melting point between 110 ° C and 250 ° C. If the melting point is 110 ° C. or less, the adhesive strength is lowered even at room temperature, and there is a possibility that a problem such as blocking occurs due to tackiness, which is not preferable. On the other hand, when the melting point is higher than 250 ° C., the bonding temperature is too high, and solidification starts as soon as the surface temperature of the object to be bonded is low. Absent. Polyester-based resins are particularly suitable for the market for filter-related applications because they generally generate less foreign matter. As the resin to be used, polypropylene terephthalate, polybutylene terephthalate, aliphatic polyester or block copolymerized polyester, and a copolymer having any of them as a part of the basic skeleton can be suitably used.
[0013]
Further, the polymer of the core component is desirably polyethylene terephthalate, polypropylene terephthalate, polybutylene terephthalate, polylactic acid or a copolymer partially containing any of them. It is particularly preferable that these polyester resins have a melting point of between 180 ° C. and 300 ° C. because of their excellent dimensional stability and mechanical strength at high temperatures. In recent years, it has become possible to obtain raw materials from natural components or biotechnology, which is particularly preferable from the viewpoint of environmental conservation. In particular, when the liquid filter or the like is made of a resin having form stability, the high rigidity of the polyester fiber is effective. The temperature of the polymer of the core component is preferably at least 20 ° C. higher than the melting point or softening point of the polymer of the sheath component in view of the operability of the bonding process. If the difference between the melting points is small, it is necessary to strictly control the processing temperature, so that sophisticated temperature control equipment is required and the processing speed must be reduced, which is not preferable.
[0014]
The weight ratio of the core component and the sheath component of the composite fiber is preferably about 20:80 to 70:30, more preferably between 30:70 to 60:40, and particularly preferably 40:60 to 55: It is between 45. If the sheath component, which is an adhesive component, is less than 30%, it is difficult to obtain a sufficient adhesive force. On the other hand, if it exceeds 70%, problems such as difficulty in controlling the temperature at the time of bonding and deterioration of mechanical strength characteristics are apt to occur, which is not preferable.
[0015]
The fiber diameter of the main fibers constituting the non-woven fabric B layer is desirably between 20 and 50 μm, preferably between 25 and 50 μm, and particularly preferably between 30 and 50 μm. If the fiber diameter is smaller than 20 μm, the area of the bonded portion becomes small, and the adhesive strength tends to decrease, which is not preferable. On the other hand, if the fiber diameter is larger than 50 μm, the formation of the nonwoven fabric becomes uneven, which is not preferable. In addition, when the nonwoven fabric is manufactured by the spun bond method, problems such as yarn breakage in the spinning process, and fibers adhering or clogging in the fiber pulling ejector are likely to occur, causing problems in operability. Not a few. Further, since the nonwoven fabric made of too thick fiber has a small amount of fiber, unevenness of the formation tends to be conspicuous, leading to variation in physical properties. Where the number of fibers is small, the rigidity of the nonwoven fabric is insufficient and the bonding strength of the nonwoven fabric is reduced, which is not preferable. The fibers of the non-woven fabric B layer may be short fibers because they are sandwiched between the layer A and the layer B and thus have a low possibility of falling off.
[0016]
Further, the basis weight of the nonwoven fabric B layer is preferably between 15 and 200 g / m @ 2. On the other hand, if the basis weight is larger than 200 g / m @ 2, a problem that the adhesive strength is reduced due to the problem of heat transfer in the embossing roll when performing the hot embossing is not preferable. When the nonwoven fabric of the present invention is used as a separation membrane support, the basis weight is preferably between 15 and 70 g / m @ 2. If the basis weight is less than 15 g / m ^ 2, it is difficult to obtain an appropriate adhesive force or the shape retention is deteriorated for the above-mentioned reason, and it is not so preferable. On the other hand, even if the basis weight is larger than 70 g / m @ 2, it is not expected that the adhesive strength becomes high, and when used as a support for a separation membrane, the thickness and weight are increased and handleability is reduced, and pressure is reduced. The problem that the loss is increased tends to occur, which is not preferable. On the other hand, when the thickness is large, the number of weaving folds is reduced when used for a pleated filter, and as a result, the effective filtration area is reduced.
[0017]
The nonwoven fabric C layer used in the present invention is desirably a polyester nonwoven C layer having a basis weight of 30 to 200 g / mg2, preferably 40 to 180 g / m ^ 2, particularly preferably 60 to 180 g / mg2. is there. The method for producing the nonwoven fabric is not particularly limited, but a polyester long-fiber nonwoven fabric having high heat resistance and excellent cost performance can be used. Since the nonwoven fabric C layer often has a higher thickness and basis weight than other nonwoven fabrics, there is a possibility that poor heat transfer may occur when the nonwoven fabrics are bonded to each other by heat calendering or the like. In order to prevent this, it is also preferable to preheat the nonwoven fabric C layer in advance with an infrared heater or the like. Evaporation of a metal on the surface or kneading of carbon or the like in order to enhance the electrothermal property is also one of the preferable modes. It is preferable to change the color of the front and back, since the effect of preventing mistakes during use can be expected. Further, non-woven fabrics other than the non-woven fabric layers A to C may be used by being bonded between them or on one side. When the non-woven fabric of the present invention is used as a filter, if the fiber diameter of the non-woven fabric of the A layer and the C layer is set to be different, it is possible to use the non-woven fabric of the present invention as a filter with different accuracy when used by exchanging the front and back sides. It is considered to be. In this case, it is preferable to change the color of the front and back sides in order to prevent erroneous use. Further, it is preferable that one side has a light color such as white or gray, because the number of folds is printed on the surface in order to facilitate counting the number of folds, which is preferable.
[0018]
Although the method for laminating the nonwoven fabric of the present invention is not particularly limited, as a preferred embodiment, only the sheath component of the nonwoven fabric B layer is heated, or a part of the fibers of the nonwoven fabric A layer is melted and bonded to the sheath component as a separation membrane. Use is also one of the preferred modes. At this time, it is preferable that 15% or more of the nonwoven fabric surface area is deformed and adhered by melting only the sheath component by heat. When the area of the bonding portion is 15% or less, the bonding strength is weak and the film is easily peeled, which is not preferable. Further, if the film is formed by applying too much pressure, the permeation resistance of the fluid to be filtered when used as a filter is undesirably increased. When the nonwoven fabric of the present invention is used for a filter, it is preferred that the nonwoven fabric A and the nonwoven fabric C have a partially concave depression on the outer surface side by a hot emboss calender press. If there is a concave dent on the inner side, dust is left inside when the dust is removed by pulse jet or back washing, and the residual pressure loss increases, resulting in a shorter filter regeneration cycle time. Is not preferred. In order to improve the adhesiveness between the nonwoven fabric of the present invention and the porous film, when the nonwoven fabric is a hot-embossed nonwoven fabric, laminating with a smooth surface (plain roll) improves the surface smoothness of the nonwoven fabric A layer surface. It is particularly preferred for When used as a filter, cake peelability can be improved, which is particularly suitable when used as a coolant filter for industrial dust collection filters or electric discharge machining.
[0019]
Since the composite nonwoven fabric of the present invention or a filter using the composite nonwoven fabric as a part thereof has high rigidity, it is preferable to form a cartridge after pleating. Bending rigidity can be set high by laminating. In addition, since the non-woven fabric B layer has a low melting point component, the formability of the pleating process is improved, and high-speed rotary fold folding, which is said to be difficult to process with conventional spunbonded non-woven fabrics, as well as reciprocating processing, is possible. It becomes. When the nonwoven fabric layer serving as the lower surface at the time of processing is processed by embossing, if the area is 25% or more, a problem of causing slippage between the nonwoven fabric and the support of the processing machine is apt to occur, which is not preferable. It is preferable that the larger the fiber diameter is, the smaller the embossing area ratio is. In the experience of the inventor, it was particularly preferred that the embossed area be between 7 and 25%.
[0020]
(Fiber diameter)
From an enlarged photograph of a scanning electron microscope (SEM), 100 or more fibers were read, and the arithmetic average value was defined as the fiber diameter.
(Weight)
It is evaluated according to JIS-L-1906.
(Bending rigidity)
An evaluation sample piece was sampled in a size of 2 cm in width × 10 cm in length, and three-point support bending rigidity at a support width of 5 cm was measured. The pressurizer has a shape used in JIS-L-1096 bending resilience C method (loop compression method).
(Melting point)
The evaluation was performed at a heating rate of 20 ° C./min using DSC7 manufactured by PERKIN-ELMER.
(Fiber array)
It was measured by a Fourier transform method using an image processing program (Image32 sold by Toyobo Co., Ltd.). The arrangement of the fibers was measured at intervals of 30 degrees within a range of ± 90 degrees with respect to the longitudinal direction, and the proportion of fibers within the range of ± 15 degrees in the longitudinal direction was measured. If there is no image processing device, the nonwoven fabric is cut into 20cm length and 5cm width at angles of 30 degrees in the range of -90 degrees to +60 degrees, and the tensile strength is measured. It is estimated that there is no great error even if the value in the longitudinal direction when standardized as follows is adopted.
(Air filter performance)
The particle concentration before and after the sample having a diameter of 50 mm when a filtration operation was performed at 5 cm / s using air dust was measured by a particle counter, and the collection efficiency of a particle diameter between 1 and 2 microns was obtained. In addition, the ventilation resistance was determined by measuring the differential pressure across the filter with a manometer at the time of accuracy measurement.
(Fragile air permeability) The measurement was performed according to JIS L1096.
(Dust removal property) A circular filter medium having an effective filtration area of 0.04 m 2 (diameter 22.6 cm) was filtered at a rate of 3 m / min with a gas having a dust concentration of 3 g / m 3 at a rate of 3 m / min. / Cm ^ 2, and the pulse was used to wipe off. Since the time of the wiping-off interval increases when the wiping-off is performed 30 times or more, the pulse wiping-off interval at the time of the 100-wiring-off is measured. The shorter the time, the poorer the filter sweepability.
[0021]
【Example】
(Example 1)
A polyethylene terephthalate spunbonded nonwoven fabric (white) having a fiber diameter of about 12 microns and a basis weight of 20 g / m @ 2 was used as the nonwoven fabric A layer. More than 40% of the fibers were arranged in the range of plus or minus 15 degrees along the longitudinal center line of the sheet. A spunbond nonwoven fabric B layer (having a basis weight of 40 g) consisting of a core-sheath type composite fiber of polyethylene terephthalate having a melting point of about 270 ° C. and a fiber diameter of about 40 μm, using a copolymerized polyester (melting point of about 130 ° C.) into which isophthalic acid is introduced as a core component. / M ^ 2). The core-sheath ratio was 50:50 on a weight basis. As a non-woven fabric C layer, a polyethylene terephthalate spunbond non-woven fabric (6A81AD manufactured by Toyobo Co., Ltd .: black) having a fiber diameter of 14 μm and a basis weight of 180 g / m 2 was used as a non-woven fabric C layer. Lamination was performed at a pressure of about 50 kg / cm and a speed of 18 m / min. The nonwoven fabrics A and C were arranged such that the recessed portion due to the embossing roll was on the outer surface side. The bending stiffness of the nonwoven fabric was 0.80 N / 2 cm. When processing was performed by a rotary fold folding machine with the nonwoven fabric A layer facing upward, processing was possible without any problem. As for the air filter performance, the trapping efficiency was 62%, and the airflow resistance was 5.2 mmAq, and the filter performance was excellent. The cleaning interval was as long as 3.1 minutes, and the cleaning performance was good. The color of the front and back was different, so it was popular at the processing plant that the filtration surface was not mistaken.
[0022]
(Example 2)
Example 1 except that the non-woven fabric B layer was changed to a non-woven fabric having a basis weight of 40 g / m @ 2 made of core-sheath short fibers having a fiber diameter of about 35 microns (Melty 2080 manufactured by Nippon Ester Co., Ltd., core melting point of about 200 ° C.). A laminated nonwoven fabric was prepared in the same manner as described above. The bending stiffness of the nonwoven fabric was 0.58 N / 2 cm. When processing was performed by a rotary fold folding machine with the nonwoven fabric A layer facing upward, processing was possible without any problem. Regarding the air filter performance, the trapping efficiency was 59%, and the airflow resistance was 5.7 mmAq, and the filter performance was excellent. The cleaning interval was as long as 3.2 minutes, and the cleaning performance was good.
[0023]
(Comparative Example 1)
A polyethylene terephthalate spunbonded nonwoven fabric having a fiber diameter of 17 microns and a basis weight of 250 g / m @ 2 was bonded by a plain calendar at 210 ° C., at a set linear pressure of about 80 kg / cm, and at a speed of 3 m / min. About 38% of the fibers were arranged in a range of plus or minus 15 degrees along the longitudinal centerline of the sheet. When the nonwoven fabric was bent, delamination occurred easily, so that the bending stiffness of the nonwoven fabric could not be measured, and the treatment with a folding machine could not be performed. Regarding the performance of the air filter, the trapping efficiency was low and the trapping efficiency was 13.0 mmAq.
[0024]
(Comparative Example 2)
A spunbonded nonwoven fabric having the same structure as the nonwoven fabric B layer used in Example 1 and having a fiber diameter of about 20 microns and a basis weight of about 250 g / m @ 2 was subjected to a plain calendar at 180 ° C., a set linear pressure of about 50 kg / cm, and a speed of 10 m. / Min. About 23% of the fibers were arranged in a range of plus or minus 15 degrees along the longitudinal centerline of the sheet. When processed with a rotary fold folding machine, slippage occurred slightly, but processing could be performed with almost no problem. The bending stiffness of the nonwoven fabric was 0.32 N / 2 cm. Regarding the performance of the air filter, the trapping efficiency was 55% and the ventilation resistance was 10.1 mmAq. The payoff interval was as short as 2.3 minutes and the payoff was not very good.
[0025]
(Comparative Example 3)
The spunbond nonwoven fabric having a basis weight of 250 g / m ^ 2 used in Comparative Example 2 was bonded by a hot emboss calender (pressing portion area of about 50%) at 180 ° C., a set linear pressure of about 50 kg / cm, and a speed of 15 m / min. When processed with a rotary fold folding machine, there was a problem because the nonwoven fabric slipped in the sheet supply section of the machine and the intervals between the folds were not uniform. The bending stiffness of the nonwoven fabric was 0.41 N / 2 cm. Regarding the performance of the air filter, the trapping efficiency was 49% and the airflow resistance was 9.7 mmAq, which was inferior to those of the first and second examples. The payoff interval was as short as 1.7 minutes and the payoff was not very good.
[0026]
(Comparative Example 4)
A polyethylene terephthalate spunbonded nonwoven fabric having a fiber diameter of about 18 microns and a basis weight of 20 g / m @ 2 was used as the nonwoven fabric A layer. About 25% or more of the fibers were arranged in a range of plus or minus 15 degrees along the longitudinal center line of the sheet. A spunbond nonwoven B layer made of a core-sheath type conjugate fiber of polyethylene terephthalate having a melting point of about 270 ° C. and a fiber diameter of about 14 μm using a copolymer polyester (melting point of about 130 ° C.) into which isophthalic acid is introduced as a core component (basis weight: 40 g) / M ^ 2). The core-sheath ratio was 50:50 on a weight basis. As a non-woven fabric C layer, a polyethylene terephthalate spunbond non-woven fabric having a fiber diameter of 18 μm and a basis weight of 180 g / m / 2 was used as a non-woven fabric C layer, and three non-woven fabrics were subjected to plain calendering at 150 ° C., a set linear pressure of about 50 kg / cm, and a speed of 18 m / min. Stuck together. The nonwoven fabrics A and C were arranged such that the depressions formed by the embossing rolls were inside. The bending stiffness of the nonwoven fabric was 0.53 N / 2 cm. When processing was performed by a rotary fold folding machine with the nonwoven fabric A layer facing upward, processing was possible without any problem. Regarding the air filter performance, the trapping efficiency was as high as 57%, but the airflow resistance was as high as 8.4 mmAq, which was a problem. The payoff interval was as short as 1.2 minutes, and the payoff was poor.
[0027]
【The invention's effect】
According to the present invention, a nonwoven fabric having high rigidity and excellent shielding properties and filter characteristics can be obtained. In particular, the composite nonwoven fabric is suitable as a filter that is less likely to be deformed due to fluid resistance during a filtration operation. Furthermore, it can be used as a filter with good dust removal properties. In addition, it has become possible to provide a high-performance filter that is pleated and then used as a cartridge.

Claims (10)

3層以上の積層不織布層よりなり、3点支持曲げ剛性が0.10〜1.50N/2cm、目付が100〜300g/m^2、厚みが0.2〜0.7mmであることを特徴とするポリエステル系不織布。It is composed of three or more laminated non-woven fabric layers, has a three-point supporting flexural rigidity of 0.10 to 1.50 N / 2 cm, a basis weight of 100 to 300 g / m @ 2, and a thickness of 0.2 to 0.7 mm. Polyester nonwoven fabric. 少なくとも、繊維径が7〜20ミクロンの繊維よりなる目付が10〜150g/m^2の不織布A層、繊維径が20〜50μmの芯鞘型複合繊維を30%以上含む目付が15〜200g/m^2である不織布B層、目付が30〜200g/m^2のポリエステル不織布C層からなる積層不織布であって、各層が積層一体化されてなることを特徴とする請求項1に記載のポリエステル系不織布。At least a nonwoven fabric A layer having a basis weight of 10 to 150 g / m @ 2 and a basis weight including fibers having a fiber diameter of 7 to 20 μm and a core / sheath type composite fiber having a fiber diameter of 20 to 50 μm of 15 to 200 g / m2. 2. A laminated nonwoven fabric comprising a nonwoven fabric B layer having a m ^ 2 and a polyester nonwoven fabric C layer having a basis weight of 30 to 200 g / m2, wherein each layer is laminated and integrated. Polyester non-woven fabric. 少なくとも不織布A層あるいはC層の何れか一方が長繊維不織布であることを特徴とする請求項2に記載のポリエステル系不織布。The polyester-based nonwoven fabric according to claim 2, wherein at least one of the nonwoven fabric A layer and the C layer is a long-fiber nonwoven fabric. 芯鞘型複合繊維が、鞘成分の融点が110℃〜250℃のポリエステル、芯成分の融点が185℃〜300℃のポリエステルであることを特徴とする請求項2に記載のポリエステル系不織布。The polyester-based nonwoven fabric according to claim 2, wherein the core-sheath type conjugate fiber is a polyester having a sheath component having a melting point of 110C to 250C and a core component having a melting point of 185C to 300C. 熱接着により積層一体化されていることを特徴とする請求項2に記載のポリエステル系不織布。The polyester-based nonwoven fabric according to claim 2, wherein the polyester nonwoven fabric is laminated and integrated by thermal bonding. プリーツ加工されてなることを特徴とする請求項1〜5のいずれかに記載のポリエステル系不織布。The polyester nonwoven fabric according to any one of claims 1 to 5, which is pleated. 請求項1記載のポリエステル系不織布を用いてなることを特徴とするフィルタ−。A filter comprising the polyester nonwoven fabric according to claim 1. 請求項2記載の不織布A層とC層を構成する繊維の繊維径が異なり、かつ不織布の色が異なることを特徴とするフィルター。3. A filter according to claim 2, wherein the fibers constituting the non-woven fabric layers A and C have different fiber diameters and the non-woven fabrics have different colors. 不織布Aおよび不織布C層が熱エンボスカレンダープレスにより外表面側に部分的に凹面の窪みを有することを特徴とする請求項7あるいは8に記載のフィルター。9. The filter according to claim 7, wherein the nonwoven fabric A and the nonwoven fabric C have a partially concave depression on the outer surface side by a hot emboss calender press. 不織布がプリーツ加工されてなることを特徴とする請求項8に記載のフィルター。The filter according to claim 8, wherein the nonwoven fabric is pleated.
JP2002291495A 2002-10-03 2002-10-03 Polyester nonwoven fabric and filter Expired - Fee Related JP4131383B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002291495A JP4131383B2 (en) 2002-10-03 2002-10-03 Polyester nonwoven fabric and filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002291495A JP4131383B2 (en) 2002-10-03 2002-10-03 Polyester nonwoven fabric and filter

Publications (2)

Publication Number Publication Date
JP2004124317A true JP2004124317A (en) 2004-04-22
JP4131383B2 JP4131383B2 (en) 2008-08-13

Family

ID=32283078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002291495A Expired - Fee Related JP4131383B2 (en) 2002-10-03 2002-10-03 Polyester nonwoven fabric and filter

Country Status (1)

Country Link
JP (1) JP4131383B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006231168A (en) * 2005-02-23 2006-09-07 Nitto Denko Corp Vent filter and enclosure equipped with it
JP2007107126A (en) * 2005-10-12 2007-04-26 Toyobo Co Ltd Laminated non-woven fabric
JP2007125546A (en) * 2005-10-04 2007-05-24 Toray Ind Inc Nonwoven fabric for filter
WO2007083370A1 (en) * 2006-01-18 2007-07-26 Nissei Bio Co., Ltd. Filter for air conditioner capable of removing toxic substance
WO2007088824A1 (en) 2006-02-01 2007-08-09 Toray Industries, Inc. Nonwoven fabric for filters and process for production of the same
JP2008114177A (en) * 2006-11-07 2008-05-22 Toray Ind Inc Nonwoven fabric for air sucking filter
JP2009297656A (en) * 2008-06-13 2009-12-24 Mahle Filter Systems Japan Corp Filter element
JP2012045815A (en) * 2010-08-26 2012-03-08 Asahi Kasei Fibers Corp Composite film
JP2012152706A (en) * 2011-01-27 2012-08-16 Toyota Boshoku Corp Filter medium and manufacturing method for the same
US8308833B2 (en) 2005-10-04 2012-11-13 Toray Industries, Inc. Nonwoven fabric for filters
KR101242687B1 (en) * 2008-12-24 2013-03-12 코오롱인더스트리 주식회사 Polyester nonwoven fabrics and preparation method thereof

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006231168A (en) * 2005-02-23 2006-09-07 Nitto Denko Corp Vent filter and enclosure equipped with it
JP4702829B2 (en) * 2005-02-23 2011-06-15 日東電工株式会社 Vent filter and casing provided with the same
JP2007125546A (en) * 2005-10-04 2007-05-24 Toray Ind Inc Nonwoven fabric for filter
US8308833B2 (en) 2005-10-04 2012-11-13 Toray Industries, Inc. Nonwoven fabric for filters
JP2007107126A (en) * 2005-10-12 2007-04-26 Toyobo Co Ltd Laminated non-woven fabric
JPWO2007083370A1 (en) * 2006-01-18 2009-06-11 日生バイオ株式会社 Air conditioner filter that can remove harmful substances
WO2007083370A1 (en) * 2006-01-18 2007-07-26 Nissei Bio Co., Ltd. Filter for air conditioner capable of removing toxic substance
WO2007088824A1 (en) 2006-02-01 2007-08-09 Toray Industries, Inc. Nonwoven fabric for filters and process for production of the same
US8187520B2 (en) 2006-02-01 2012-05-29 Toray Industries, Inc. Nonwoven fabric for filters and method of producing the same
JP2008114177A (en) * 2006-11-07 2008-05-22 Toray Ind Inc Nonwoven fabric for air sucking filter
JP4737039B2 (en) * 2006-11-07 2011-07-27 東レ株式会社 Filter nonwoven fabric for air intake
JP2009297656A (en) * 2008-06-13 2009-12-24 Mahle Filter Systems Japan Corp Filter element
KR101242687B1 (en) * 2008-12-24 2013-03-12 코오롱인더스트리 주식회사 Polyester nonwoven fabrics and preparation method thereof
JP2012045815A (en) * 2010-08-26 2012-03-08 Asahi Kasei Fibers Corp Composite film
JP2012152706A (en) * 2011-01-27 2012-08-16 Toyota Boshoku Corp Filter medium and manufacturing method for the same

Also Published As

Publication number Publication date
JP4131383B2 (en) 2008-08-13

Similar Documents

Publication Publication Date Title
US9630148B2 (en) Filter compound material, method for the production thereof and flat filter elements made of the filter compound material
JP5547062B2 (en) Method for forming a laminate of nanoweb and substrate and filter using the laminate
EP2161066B1 (en) Method of manufacturing composite filter media
JP4880934B2 (en) Laminate and filter media
EP2223725A1 (en) HEPA (H-10) Performance Synthetic Nonwoven And Nanofiber Composite Filter Media
EP1932575B1 (en) Nonwoven fabric for filters
WO2011019022A1 (en) Filtration cloth for dust collection machine
KR20140125443A (en) Blended nonwaven fabric, filter filtration material, and filter unit
EP2213356A1 (en) Air filter and air filter assmebly for cleaner made by using the filter
JP6200031B2 (en) Filter media and filter unit
JP4131383B2 (en) Polyester nonwoven fabric and filter
JP2010526216A (en) Needle punched nanoweb structure
JP5918641B2 (en) Pleated air filter media and pleated air filter unit
JP4016320B2 (en) Polyester long fiber nonwoven fabric and separation membrane using the same
KR20190043534A (en) Span-bonded nonwoven fabric and method for producing the same
JP6725311B2 (en) Filter media and filter unit
JP2004019061A (en) Polyester conjugated nonwoven fabric and filter
JP3767502B2 (en) Filter substrate and filter
JP4016327B2 (en) Polyester nonwoven fabric and filter
JP2007107126A (en) Laminated non-woven fabric
JP4078597B2 (en) Polyester-based flame retardant laminated nonwoven fabric and filter using the same
JP4543332B2 (en) Low pressure loss laminated nonwoven fabric and filter
JP3994225B2 (en) Filter material and filtration method
JPH05192520A (en) Filter cloth enhanced in collection efficiency and production thereof
JP2006043940A (en) Conductive laminated nonwoven fabric and filter using it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080502

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080515

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees