JP2007049489A - Imaging apparatus - Google Patents

Imaging apparatus Download PDF

Info

Publication number
JP2007049489A
JP2007049489A JP2005232472A JP2005232472A JP2007049489A JP 2007049489 A JP2007049489 A JP 2007049489A JP 2005232472 A JP2005232472 A JP 2005232472A JP 2005232472 A JP2005232472 A JP 2005232472A JP 2007049489 A JP2007049489 A JP 2007049489A
Authority
JP
Japan
Prior art keywords
imaging
light
incident
reflecting mirror
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005232472A
Other languages
Japanese (ja)
Inventor
Masataka Yanai
正隆 矢内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daishowa Seiki Co Ltd
Original Assignee
Daishowa Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daishowa Seiki Co Ltd filed Critical Daishowa Seiki Co Ltd
Priority to JP2005232472A priority Critical patent/JP2007049489A/en
Publication of JP2007049489A publication Critical patent/JP2007049489A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Studio Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an imaging apparatus which can be made compact and is used for a detector. <P>SOLUTION: The imaging apparatus is provided with: a light source apparatus 41 for illuminating an imaging target T; an imaging device 21 for converting an image formed on a light reception surface into an electric signal; an optical means for forming the image of the target T on the light reception surface of the imaging device 21; and a housing 1 for holding the light source apparatus 41 and housing the imaging device 21 and the optical means. The optical means comprises an incidence side reflecting mirror 33, an objective lens 30a arranged at a back stage of the incidence side reflecting mirror 33, an imaging lens 30b, and an outgoing side reflecting mirror 36 arranged at the back stage of the imaging lens 30b. Light made incident on the incidence side reflecting mirror 33 is emitted in a reverse direction to the time when it is incident. As the light on the side of the target T to the incidence side reflecting mirror 33 becomes reverse to the side of the imaging device 21 to the outgoing side reflecting mirror 36, the apparatus does not have a long shape only in one direction but can be made compact. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、画像処理によって撮像対象の状態を検出する検出装置に用いられる撮像装置に関するものである。   The present invention relates to an imaging apparatus used in a detection apparatus that detects a state of an imaging target by image processing.

従来から、撮像対象を撮像して得られた画像に画像処理を施すことによって撮像対象の状態を検出する検出装置において撮像対象の撮像に用いられる撮像装置が提供されている(例えば、特許文献1参照)。撮像対象は、例えば精密加工用のフライス盤のような工作機械におけるエンドミルのような治具や工作物、あるいは三次元測定機におけるスキャニングプローブなどである。また、検出する状態は、例えば撮像対象の位置や、欠けや表面に付着した異物といった撮像対象の欠陥である。
特開2001−269844号公報
2. Description of the Related Art Conventionally, there has been provided an imaging device that is used for imaging an imaging target in a detection device that detects the state of the imaging target by performing image processing on an image obtained by imaging the imaging target (for example, Patent Document 1). reference). The imaging object is, for example, a jig such as an end mill in a machine tool such as a milling machine for precision machining or a workpiece, or a scanning probe in a three-dimensional measuring machine. Further, the state to be detected is a defect of the imaging target such as a position of the imaging target, a chip or a foreign matter attached to the surface.
JP 2001-269844 A

ここで、撮像対象が小さなものである場合、撮像対象と撮像素子との間には倍率が高くかつ歪みの少ない光学系を配置する必要がある。しかし、このような光学系は一般に光路長を長くとる必要がある。従来は、上記のような光学系のために撮像装置が1方向に長い形状となり、撮像装置の設置場所に高さや長さを必要としていた。   Here, when the imaging target is small, it is necessary to arrange an optical system with high magnification and low distortion between the imaging target and the imaging device. However, such an optical system generally requires a long optical path length. Conventionally, due to the optical system as described above, the imaging device has a shape that is long in one direction, and the height and length of the installation location of the imaging device are required.

本発明は上記事由に鑑みて為されたものであり、その目的は、コンパクト化が可能な撮像装置を提供することにある。   The present invention has been made in view of the above-described reasons, and an object thereof is to provide an imaging apparatus that can be made compact.

請求項1の発明は、撮像対象を撮像した画像に画像処理を施すことにより撮像対象の状態を検出する検出装置に設けられ撮像対象を撮像する撮像装置であって、撮像対象を照明する照明手段と、受光面に結像した像を電気信号に変換する撮像素子と、撮像対象からの光が入射する対物レンズ並びに対物レンズを通過した光が通過する撮像レンズを含み撮像対象の像を撮像素子の受光面に結像させる光学手段と、照明手段を保持するとともに撮像素子と光学手段とを収納するハウジングとを備え、光学手段は、それぞれ光軸の向きを変更する複数個の光学素子を含み入射した光を入射位置とは異なる位置から逆向きに出射させる反転部を含み、反転部は、撮像レンズを通過した光を反射する反射鏡を含むことを特徴とする。   The first aspect of the present invention is an imaging device that is provided in a detection device that detects a state of an imaging target by performing image processing on an image obtained by imaging the imaging target and illuminates the imaging target. An imaging element that converts an image formed on the light receiving surface into an electric signal, an objective lens that receives light from the imaging target, and an imaging lens that passes light passing through the objective lens. Optical means for forming an image on the light receiving surface, and a housing for holding the illuminating means and housing the image pickup element and the optical means, and the optical means includes a plurality of optical elements each changing the direction of the optical axis. It includes a reversing unit that emits incident light in a reverse direction from a position different from the incident position, and the reversing unit includes a reflecting mirror that reflects the light that has passed through the imaging lens.

この発明によれば、反転部を挟んで両側で光が互いに逆向きとなるから、1方向に長い形状とはならずコンパクト化が可能となる。   According to the present invention, since the lights are opposite to each other on both sides of the reversing part, the shape is not long in one direction and can be made compact.

請求項2の発明は、請求項1の発明において、光学手段は、物体側テレセントリック光学系を構成することを特徴とする。   According to a second aspect of the present invention, in the first aspect of the present invention, the optical means constitutes an object side telecentric optical system.

この発明によれば、光学手段と撮像対象との距離が変化しても、撮像素子に形成される像の大きさが変化しないから、撮像対象の状態を正確に検出することができる。   According to the present invention, even if the distance between the optical means and the imaging target changes, the size of the image formed on the imaging element does not change, so the state of the imaging target can be detected accurately.

請求項3の発明は、請求項1又は請求項2の発明において、ハウジングは、互いに異なる方向から撮像対象へ向けられそれぞれ光が入射する2個の入射口を有し、光学手段は、入射した光の一部を透過させ一部を反射させる半透鏡素子と、それぞれ1個の入射口から入射した光を半透鏡素子に互いに異なる方向から入射させる2個の導光路とを含み、撮像素子と半透鏡素子とは、一方の導光路を通過して半透鏡素子を透過した光と、他方の導光路を通過して半透鏡素子に反射された光とがともに撮像素子に入射する位置関係で配置されていることを特徴とする。   According to a third aspect of the present invention, in the first or second aspect of the present invention, the housing has two entrances that are directed toward the object to be imaged from different directions, and each of the light enters, and the optical means is incident. A semi-transparent element that transmits a part of light and reflects a part of the light, and two light guide paths that allow light incident from one incident port to enter the semi-transparent element from different directions, The semi-transparent element is a positional relationship in which the light that has passed through one light guide path and transmitted through the semi-mirror element and the light that has passed through the other light guide path and reflected by the half mirror element are incident on the imaging element. It is arranged.

この発明によれば、1個の撮像素子で撮像対象を2方向から撮像することができる。従って、撮像素子を2個設ける場合に比べて製造コストの低減や小型化が可能となる。   According to the present invention, an imaging target can be imaged from two directions with one image sensor. Therefore, the manufacturing cost can be reduced and the size can be reduced as compared with the case where two image sensors are provided.

請求項4の発明は、請求項1〜3のいずれかの発明において、照明手段は、撮像対象において撮像素子によって撮像される面を照明することを特徴とする。   According to a fourth aspect of the present invention, in any one of the first to third aspects, the illuminating means illuminates a surface imaged by the imaging element in the imaging target.

この発明によれば、撮像対象の表面の欠陥の検出に適した画像を撮像することができる。   According to the present invention, it is possible to capture an image suitable for detecting a defect on the surface of the imaging target.

請求項5の発明は、請求項1〜4のいずれかの発明において、ハウジングは導電材料で構成され、絶縁材料からなり撮像素子とハウジングとの間に介在して撮像素子を支持する保持体を備えることを特徴とする。   According to a fifth aspect of the present invention, in any of the first to fourth aspects of the present invention, the housing is made of a conductive material, and is made of an insulating material. The holding body that supports the image sensor is interposed between the image sensor and the housing. It is characterized by providing.

この発明によれば、ハウジング外からの輻射ノイズの撮像素子への到達はハウジングにより抑制される。また、保持体によってハウジングと撮像素子とが電気的に絶縁されるから、ハウジングを通じた電磁ノイズの撮像素子への伝導も抑制される。従って、撮像素子の出力に対するノイズの影響が低減される。   According to this invention, the arrival of radiation noise from the outside of the housing to the image sensor is suppressed by the housing. Further, since the housing and the image sensor are electrically insulated by the holding body, conduction of electromagnetic noise through the housing to the image sensor is also suppressed. Therefore, the influence of noise on the output of the image sensor is reduced.

本発明によれば、撮像対象の像を撮像素子に結ばせる光学手段がそれぞれ光軸の向きを変更する複数個の光学素子を含み入射した光を入射位置とは異なる位置から逆向きに出射させる反転部を含むことにより、反転部を挟んで両側で光が互いに逆向きとなるから、1方向に長い形状とはならずコンパクト化が可能となる。   According to the present invention, the optical means for connecting the image to be imaged to the image sensor includes a plurality of optical elements each changing the direction of the optical axis and emits the incident light in a reverse direction from a position different from the incident position. By including the inversion part, the light is opposite to each other on both sides of the inversion part, so that it is not long in one direction and can be made compact.

以下、本発明を実施するための最良の形態について、図面を参照しながら説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

本実施形態は、図1に示すように、例えば発光ダイオードからなり撮像対象Tを照明する光源(図示せず)を保持し光源を駆動する駆動回路(図示せず)を収納した光源装置41と、例えば電荷結合素子(CCD:Charge Coupled Devices)のような撮像素子21を備えるカメラ2と、撮像対象Tの像を撮像素子21の受光面に結像させる光学手段に含まれる対物レンズ30a及び撮像レンズ30bと、光源装置11とカメラ2と対物レンズ30aと撮像レンズ30bとが収納されたハウジング1とを備える。以下、上下左右は図1(a)を基準とし、図1(b)の下方を前方として説明する。   In the present embodiment, as shown in FIG. 1, for example, a light source device 41 made of a light emitting diode and holding a light source (not shown) for illuminating the imaging target T and housing a drive circuit (not shown) for driving the light source For example, a camera 2 including an imaging device 21 such as a charge coupled device (CCD), an objective lens 30a included in an optical unit that forms an image of the imaging target T on a light receiving surface of the imaging device 21, and imaging The lens 30b, the light source device 11, the camera 2, the objective lens 30a, and the housing 1 in which the imaging lens 30b is accommodated are provided. Hereinafter, the upper, lower, left, and right will be described with reference to FIG. 1A and the lower side of FIG.

対物レンズ30a及び撮像レンズ30bは、光軸を揃えて例えば合成樹脂からなる筒形状のレンズホルダ31にそれぞれ保持されている。   The objective lens 30a and the imaging lens 30b are respectively held by cylindrical lens holders 31 made of, for example, synthetic resin with the optical axes aligned.

ハウジング1は、レンズホルダ31を保持する導光ホルダ32と、導光ホルダ32の前後両側と右側とに設けられそれぞれ光源装置41を保持する3個の光源ホルダ42(1個のみ図示)と、カメラ2が収納される収納凹部11aが上面に設けられたベースボディ11と、レンズホルダ31が挿通された形で導光ホルダ32が保持される導光穴12a及びそれぞれ光源ホルダ42が挿入される3個の光源穴12b(1個のみ図示)が上下に貫設され例えばねじ止めによってベースボディ11に結合して導光ホルダ32及び光源ホルダ42とともに収納凹部11aを閉塞するベースカバー12とを備える。ベースボディ11、ベースカバー12、導光ホルダ32、及び光源ホルダ42はそれぞれ金属からなる。   The housing 1 includes a light guide holder 32 that holds the lens holder 31, three light source holders 42 (only one is shown) that are provided on both the front and rear sides and the right side of the light guide holder 32, respectively, and hold the light source device 41. A base body 11 having a housing recess 11a in which the camera 2 is housed is provided on the upper surface, a light guide hole 12a in which the light guide holder 32 is held in a form in which the lens holder 31 is inserted, and a light source holder 42, respectively. The three light source holes 12b (only one is shown) are provided vertically, and are coupled to the base body 11 by, for example, screwing, and include the light guide holder 32 and the light source holder 42 and the base cover 12 that closes the housing recess 11a. . The base body 11, the base cover 12, the light guide holder 32, and the light source holder 42 are each made of metal.

各光源ホルダ42は、それぞれ、光源装置41が光を上方に照射する向きで例えばねじ止めによって保持される筒形状の本体部42aと、本体部42aの下端部の外周面に突設されベースカバー12の上面に当接する鍔部42bと、本体部42aの上側に設けられ光源装置41から出射した光を撮像対象Tへ向けて反射する光源側反射鏡43を保持した反射鏡保持部42cとからなる。反射鏡保持部42cにおいて撮像対象Tへ向けられる面には、光源側反射鏡43で反射した光源装置41の光が出射する出射口42dが貫設され、出射口42dは、例えばガラスのような透明な材料からなる窓体44によって閉塞される。各光源ホルダ42には、それぞれ下面が開放された有底筒形状であって窓体43を通過した光を出射させる窓穴45a,55aが上端部に周方向に貫設されたカバー45,55が被着される。導光ホルダ22の右側の光源ホルダ42は、光源装置41、光源側反射鏡43、及び窓体44とともにバックライトユニット4を構成し、導光ホルダ22の前後の光源ホルダは、光源装置、光源側反射鏡、及び窓体とともにフロントライトユニット5(図2(c)参照)を構成する。フロントライトユニット5はバックライトユニット4よりもベースカバー12の上面からの突出寸法を小さくしてあり、フロントライトユニット5に取り付けられたカバー55の窓穴55aは斜め上方へ向けられている。   Each of the light source holders 42 protrudes from the outer peripheral surface of the lower end portion of the cylindrical main body portion 42a and the main body portion 42a that are held by, for example, screwing in a direction in which the light source device 41 emits light upward. 12 and a reflector 42c provided on the upper side of the main body 42a and a reflector holding part 42c that holds a light source side reflector 43 that reflects the light emitted from the light source device 41 toward the imaging target T. Become. An exit port 42d through which light from the light source device 41 reflected by the light source side reflecting mirror 43 exits is formed in a surface of the reflector holding unit 42c that is directed to the imaging target T. The exit port 42d is, for example, glass. It is closed by a window body 44 made of a transparent material. Each light source holder 42 has a bottomed cylindrical shape with an open bottom surface, and cover holes 45 and 55 having window holes 45a and 55a for emitting light that has passed through the window body 43 penetrated in the circumferential direction at the upper end. Is deposited. The light source holder 42 on the right side of the light guide holder 22 constitutes the backlight unit 4 together with the light source device 41, the light source side reflecting mirror 43, and the window body 44. The light source holders before and after the light guide holder 22 are the light source device and the light source. A front light unit 5 (see FIG. 2C) is configured together with the side reflecting mirror and the window. The front light unit 5 has a smaller projecting dimension from the upper surface of the base cover 12 than the backlight unit 4, and the window hole 55a of the cover 55 attached to the front light unit 5 is directed obliquely upward.

導光ホルダ32は、レンズホルダ31が光軸を上下方向に向けて例えば内面に嵌合することによって保持される筒形状の本体部32aと、本体部32aの下端部の外周面に突設されベースカバー12の上面に当接する鍔部32bと、本体部32aの上側に設けられ右面においてバックライトユニット4の光源ホルダ42の出射口42dに対向する位置に光が入射する入射口32dが貫設された反射鏡保持部32cからなる。反射鏡保持部32cには、入射口32dから入射した光を下方へ向けて反射する入射側反射鏡33が保持されている。入射口32dは、光源ホルダ42の出射口42dと同様に、透明な材料からなる窓体34によって閉塞される。さらに、導光ホルダ32には、下面が開放された有底筒形状であって窓体33を通過した光を出射させる窓穴35aが上端部に周方向に貫設されたカバー35が被着される。導光ホルダ32及び光源ホルダ42は、それぞれ例えば鍔部32b,42bをベースカバー12にねじ止めされることによってベースカバー12に結合している。   The light guide holder 32 protrudes on the outer peripheral surface of the cylindrical main body portion 32a that is held by fitting the lens holder 31 with the inner surface of the main body portion 32a, for example, with the optical axis oriented in the vertical direction. A flange portion 32b that contacts the upper surface of the base cover 12 and an incident port 32d through which light enters at a position on the right surface that faces the emission port 42d of the light source holder 42 of the backlight unit 4 are provided. The reflecting mirror holding portion 32c. The reflecting mirror holding portion 32c holds an incident side reflecting mirror 33 that reflects light incident from the incident port 32d downward. The entrance 32d is closed by a window 34 made of a transparent material, like the exit 42d of the light source holder 42. Further, the light guide holder 32 is covered with a cover 35 having a bottomed cylindrical shape with an open bottom surface and a window hole 35a through which light passing through the window 33 is emitted in the circumferential direction. Is done. The light guide holder 32 and the light source holder 42 are coupled to the base cover 12 by, for example, screwing the flange portions 32b and 42b to the base cover 12, respectively.

また、レンズホルダ31の下側には、撮像レンズ30bを通過した下向きの光を右方に向けて反射する出射側反射鏡36を保持した反射鏡ホルダ37が例えば嵌合によって取り付けられる。対物レンズ30a及び撮像レンズ30bの光軸は、入射側反射鏡33と出射側反射鏡36との間では上下方向であり、入射側反射鏡33よりも撮像対象T側と出射側反射鏡36よりも撮像素子21側とではそれぞれ左右方向となっている。つまり、レンズホルダ31の上方において入射側反射鏡33に入射した左向きの光は、レンズホルダ31の下方において出射側反射鏡35に反射されて右向きに出射するのであり、入射側反射鏡33と出射側反射鏡36とで請求項における反転部が構成されている。また、入射側反射鏡33と対物レンズ30aと撮像レンズ30bと出射側反射鏡36とで請求項における光学手段が構成されている。対物レンズ30aと撮像レンズ30bとレンズホルダ31と導光ホルダ32と入射側反射鏡33と窓体34と出射側反射鏡36と反射鏡ホルダ37との組を、以下では導光ユニット3と呼ぶ。   In addition, a reflector holder 37 that holds an exit-side reflecting mirror 36 that reflects downward light that has passed through the imaging lens 30b toward the right is attached to the lower side of the lens holder 31 by, for example, fitting. The optical axes of the objective lens 30 a and the imaging lens 30 b are in the vertical direction between the incident-side reflecting mirror 33 and the emitting-side reflecting mirror 36, and from the imaging target T side and the emitting-side reflecting mirror 36 relative to the incident-side reflecting mirror 33. Are also in the horizontal direction on the image sensor 21 side. That is, the leftward light incident on the incident-side reflecting mirror 33 above the lens holder 31 is reflected by the emission-side reflecting mirror 35 below the lens holder 31 and emitted rightward. The side reflecting mirror 36 constitutes a reversing unit in the claims. The incident-side reflecting mirror 33, the objective lens 30a, the imaging lens 30b, and the emitting-side reflecting mirror 36 constitute optical means in the claims. A set of the objective lens 30a, the imaging lens 30b, the lens holder 31, the light guide holder 32, the incident side reflection mirror 33, the window body 34, the emission side reflection mirror 36, and the reflection mirror holder 37 is hereinafter referred to as a light guide unit 3. .

カメラ2は、反射鏡ホルダ37の右側に、撮像素子21の受光面を左側すなわち出射側反射鏡33に向けて、例えば合成樹脂のような絶縁材料からなる保持体6を介してベースカバー12から吊り下げる形で保持されており、カメラ2とベースボディ11との間には隙間が空いている。保持体6は、例えばねじ止めによってベースカバー12とカメラ2とにそれぞれ結合する。   The camera 2 is placed on the right side of the reflecting mirror holder 37 with the light receiving surface of the image sensor 21 facing the left side, that is, the emitting side reflecting mirror 33, from the base cover 12 via the holding body 6 made of an insulating material such as synthetic resin. It is held in a suspended form, and there is a gap between the camera 2 and the base body 11. The holding body 6 is coupled to the base cover 12 and the camera 2 by, for example, screwing.

本実施形態の動作を説明する。バックライトユニット4とフロントライトユニット5との少なくとも一方の光源装置41によって撮像対象Tを照明すると、導光ホルダ32の窓体34を通じて入射し入射側反射鏡33で反射され対物レンズ30aと撮像レンズ30bとを通過して出射側反射鏡36で反射された光により、撮像対象Tの像が撮像素子21に形成される。撮像素子21は、形成された像を電気信号に変換する。カメラ2には、撮像素子21によって生成された電気信号を所定の形式の画像データに変換する画像信号生成回路(図示せず)が設けられており、画像信号生成回路から出力された画像データはカメラに接続されたケーブルCを通じて画像処理装置に送信される。ベースボディ11には、ケーブルを引き出すためのケーブル挿通穴11bが収納凹部11aの内外に貫設されている。   The operation of this embodiment will be described. When the imaging target T is illuminated by at least one light source device 41 of the backlight unit 4 and the front light unit 5, the objective lens 30a and the imaging lens are incident through the window 34 of the light guide holder 32 and reflected by the incident-side reflecting mirror 33. An image of the imaging target T is formed on the imaging element 21 by the light that has passed through 30b and is reflected by the exit-side reflecting mirror 36. The image sensor 21 converts the formed image into an electric signal. The camera 2 is provided with an image signal generation circuit (not shown) that converts an electrical signal generated by the image sensor 21 into image data of a predetermined format, and the image data output from the image signal generation circuit is The image is transmitted to the image processing apparatus through the cable C connected to the camera. The base body 11 is provided with a cable insertion hole 11b through which the cable is drawn out, inside and outside the housing recess 11a.

ところで、バックライトユニット4の光源装置41の光は、撮像素子21によって撮像される面の反対側から撮像対象Tを照明するので、撮像素子21に形成される像では撮像対象Tの輪郭が明瞭に表れるから、撮像対象Tの位置の検出に適する。また、フロントライトユニット5の光源装置の光は、撮像対象Tにおいて撮像素子21によって撮像される面を照明するため、撮像対象Tの表面における異物の付着や傷などの欠陥の検出に適する。   By the way, the light of the light source device 41 of the backlight unit 4 illuminates the imaging target T from the opposite side of the surface imaged by the imaging element 21, so that the outline of the imaging target T is clear in the image formed on the imaging element 21. Therefore, it is suitable for detecting the position of the imaging target T. Further, the light of the light source device of the front light unit 5 illuminates the surface of the imaging target T that is imaged by the imaging device 21, and therefore is suitable for detecting defects such as foreign matter adhesion and scratches on the surface of the imaging target T.

ここで、レンズホルダ31の内周面において対物レンズ30a及び撮像レンズ30bの光軸に直交する面内で対物レンズ30aの下側の焦点つまり像側焦点を囲む位置には、レンズホルダ31の内径を他の部位よりも小さくする円環形状の絞り突起31aが内側へ突設されている。これにより、像側テレセントリック光学系が構成されている。従って、撮像対象Tの位置が入射口32dからの距離を変化させる方向(図1の左右方向)にずれても、撮像素子21に形成される像の大きさは変化しないから、撮像対象Tの状態を正確に検出することができる。   Here, the inner diameter of the lens holder 31 is located at a position surrounding the lower focal point of the objective lens 30a, that is, the image-side focal point in a plane orthogonal to the optical axes of the objective lens 30a and the imaging lens 30b on the inner peripheral surface of the lens holder 31. An annular throttle protrusion 31a is formed inwardly so as to be smaller than other portions. Thus, an image side telecentric optical system is configured. Therefore, even if the position of the imaging target T is shifted in the direction in which the distance from the entrance 32d is changed (the left-right direction in FIG. 1), the size of the image formed on the imaging element 21 does not change. The state can be detected accurately.

上記構成によれば、図2(c)に示すように入射側反射鏡33と出射側反射鏡36とで構成される反転部を設けたことにより、入射側反射鏡33の撮像対象T側と出射側反射鏡36の撮像素子21側とで光が逆向きとなる。従って、図2(a)に示すように入射側反射鏡33と出射側反射鏡35とのいずれも設けない場合や、図2(b)に示すように入射側反射鏡33のみを設ける場合と違い、1方向に長い形状とはならないからコンパクト化が可能となる。特に、倍率を高くした場合には撮像レンズ30bから像点までの距離が長くなるため、本実施形態のように撮像レンズ30bの後段に出射側反射鏡35を配置することが有効となる。   According to the above configuration, as shown in FIG. 2C, by providing the reversing unit composed of the incident side reflecting mirror 33 and the emitting side reflecting mirror 36, the incident side reflecting mirror 33 and the imaging target T side are arranged. The light is directed in the opposite direction from the image pickup device 21 side of the exit side reflecting mirror 36. Therefore, as shown in FIG. 2A, neither the incident-side reflecting mirror 33 nor the exit-side reflecting mirror 35 is provided, or as shown in FIG. 2B, only the incident-side reflecting mirror 33 is provided. In contrast, since it does not have a long shape in one direction, it can be made compact. In particular, when the magnification is increased, the distance from the imaging lens 30b to the image point becomes longer. Therefore, it is effective to dispose the emission-side reflecting mirror 35 at the subsequent stage of the imaging lens 30b as in the present embodiment.

ところで、本実施形態は精密加工用のフライス盤のような工作機械において撮像対象Tとしてのエンドミルのような治具の位置の検出にも用いられる。工作機械では、消費電力が100kWに及ぶ高出力のモータが使用されることがある。この場合、撮像装置はモータが放射する強い輻射ノイズにさらされる。しかし、本実施形態は、ハウジング1を金属で構成することによりカメラ2への輻射ノイズの到達を阻止し、絶縁材料からなる保持体6を介してカメラ2をハウジング1に支持することによりカメラ2とハウジング1とを電気的に絶縁してハウジング1からカメラ2への電磁ノイズの伝導を阻止しているから、カメラ2の撮像素子21や画像信号生成回路がノイズの影響を受けにくい。   By the way, this embodiment is also used for detecting the position of a jig such as an end mill as an imaging target T in a machine tool such as a precision machining milling machine. In a machine tool, a high-power motor with power consumption of 100 kW may be used. In this case, the imaging device is exposed to strong radiation noise radiated from the motor. However, in the present embodiment, the housing 1 is made of metal to prevent the radiation noise from reaching the camera 2, and the camera 2 is supported on the housing 1 via the holding body 6 made of an insulating material. And the housing 1 are electrically insulated from each other to prevent conduction of electromagnetic noise from the housing 1 to the camera 2, so that the image sensor 21 and the image signal generation circuit of the camera 2 are not easily affected by noise.

なお、反転部を構成する光学素子は、光軸の向きを変更することができるものであれば入射側反射鏡33や出射側反射鏡36のような鏡に限られず、例えば撮像対象Tを照明する光として単色光を用いる場合にはプリズムを用いてもよい。   The optical element constituting the reversing unit is not limited to a mirror such as the incident-side reflecting mirror 33 and the emitting-side reflecting mirror 36 as long as the direction of the optical axis can be changed. For example, the imaging target T is illuminated. When monochromatic light is used as the light to be used, a prism may be used.

また、入射口32dの向きが互いに異なる導光ユニット3を2組設けるとともに、入射した光の一部を透過させ一部を反射させる半透鏡素子を追加し、カメラ2と半透鏡素子とを、一方の導光ユニット3を通過して半透鏡素子を透過した光と、他方の導光ユニット3を通過して半透鏡素子に反射された光とがともに撮像素子21に入射する位置関係で配置してもよい。具体的には例えば、図3に示すように、2組の導光ユニット3を、出射側反射鏡35の後段における光軸が互いに直交する向きで配置し、一方の導光ユニット3の出射側反射鏡36の後段における光軸上に撮像素子21が位置するようにカメラ2を配置する。また、各導光ユニット3の出射側反射鏡36に対してそれぞれ異なる面を向けかつ導光ユニット3の出射側反射鏡36の後段における光軸に対してそれぞれ45度傾いた向きで配置されたハーフミラー38をハウジング1内に設ける。一方の導光ユニット3の出射側反射鏡36から出射した光は矢印A1で示すようにハーフミラー38を透過して撮像素子21に入射し、他方の導光ユニット3の出射側反射鏡36から出射した光は矢印A2で示すようにハーフミラー38に反射されてカメラ2の撮像素子21に入射する。さらに、図3の例では、各導光ユニット3に対応して、矢印A3,A4で示すように撮像対象Tを入射口32dの反対側から照明するバックライトユニット4も2組設けている。上記構成を採用すれば、1個のカメラ2で撮像対象Tを2方向から撮像することができるから、撮像対象Tの位置を3次元的に検出することが可能となる。また、カメラ2を2個設ける場合に比べ、製造コストの低減と小型化とが可能となる。なお、半透鏡素子はハーフミラー38に限られず、例えばハーフプリズムを用いてもよい。   In addition, two sets of light guide units 3 having different entrance directions 32d are provided, and a semi-transparent element that transmits a part of incident light and reflects a part thereof is added. Arranged in such a positional relationship that light passing through one light guide unit 3 and passing through the half mirror element and light reflected through the other light guide unit 3 and reflected by the half mirror element are incident on the image sensor 21. May be. Specifically, for example, as shown in FIG. 3, two sets of light guide units 3 are arranged in a direction in which the optical axes in the rear stage of the output side reflecting mirror 35 are orthogonal to each other, and the output side of one light guide unit 3 The camera 2 is arranged so that the imaging device 21 is positioned on the optical axis in the subsequent stage of the reflecting mirror 36. Also, the light-emitting units 3 are arranged in different directions with respect to the output-side reflecting mirrors 36 of the light guide units 3 and inclined at 45 degrees with respect to the optical axis at the rear stage of the output-side reflective mirrors 36 of the light guide units 3. A half mirror 38 is provided in the housing 1. The light emitted from the exit-side reflecting mirror 36 of one light guide unit 3 passes through the half mirror 38 and enters the image sensor 21 as indicated by an arrow A1, and from the exit-side reflector 36 of the other light guide unit 3. The emitted light is reflected by the half mirror 38 and is incident on the image sensor 21 of the camera 2 as indicated by an arrow A2. Further, in the example of FIG. 3, two sets of backlight units 4 that illuminate the imaging target T from the side opposite to the entrance 32 d are provided corresponding to each light guide unit 3 as indicated by arrows A 3 and A 4. If the said structure is employ | adopted, since the imaging target T can be imaged from two directions with the one camera 2, it will become possible to detect the position of the imaging target T three-dimensionally. Further, the manufacturing cost can be reduced and the size can be reduced as compared with the case where two cameras 2 are provided. The half mirror element is not limited to the half mirror 38, and for example, a half prism may be used.

さらに、光源側反射鏡43を設ける代わりに、光源装置41の光を直接撮像対象Tに照射する構成としてもよい。   Furthermore, it is good also as a structure which irradiates the imaging object T directly with the light of the light source device 41 instead of providing the light source side reflective mirror 43. FIG.

本発明の実施形態を示す図であり、(a)は正面断面図、(b)は平面図、(c)は左側面図である。It is a figure which shows embodiment of this invention, (a) is front sectional drawing, (b) is a top view, (c) is a left view. 同上の効果を示す図であり、(a)(b)はそれぞれ互いに異なる比較例を示す概略構成図であり、(c)は本発明の実施形態を示す概略構成図である。It is a figure which shows an effect same as the above, (a) (b) is a schematic block diagram which shows a mutually different comparative example, (c) is a schematic block diagram which shows embodiment of this invention. 同上の別の形態の要部を示す斜視図である。It is a perspective view which shows the principal part of another form same as the above.

符号の説明Explanation of symbols

1 ハウジング
4 バックライトユニット
5 フロントライトユニット
6 保持体
21 撮像素子
30a 対物レンズ
30b 撮像レンズ
33 入射側反射鏡
36 出射側反射鏡
38 ハーフミラー
41 光源装置
T 撮像対象
DESCRIPTION OF SYMBOLS 1 Housing 4 Backlight unit 5 Front light unit 6 Holder 21 Image pick-up element 30a Objective lens 30b Imaging lens 33 Incident side reflecting mirror 36 Outgoing side reflecting mirror 38 Half mirror 41 Light source device T Imaging object

Claims (5)

撮像対象を撮像した画像に画像処理を施すことにより撮像対象の状態を検出する検出装置に設けられ撮像対象を撮像する撮像装置であって、
撮像対象を照明する照明手段と、受光面に結像した像を電気信号に変換する撮像素子と、撮像対象からの光が入射する対物レンズ並びに対物レンズを通過した光が通過する撮像レンズを含み撮像対象の像を撮像素子の受光面に結像させる光学手段と、照明手段を保持するとともに撮像素子と光学手段とを収納するハウジングとを備え、
光学手段は、それぞれ光軸の向きを変更する複数個の光学素子を含み入射した光を入射位置とは異なる位置から逆向きに出射させる反転部を含み、
反転部は、撮像レンズを通過した光を反射する反射鏡を含むことを特徴とする撮像装置。
An imaging device that is provided in a detection device that detects a state of an imaging target by performing image processing on an image obtained by imaging the imaging target, and images the imaging target,
Illuminating means for illuminating an imaging target, an imaging element for converting an image formed on a light receiving surface into an electrical signal, an objective lens for receiving light from the imaging target, and an imaging lens for passing light passing through the objective lens Optical means for forming an image to be imaged on the light receiving surface of the image sensor, and a housing for holding the illumination means and housing the image sensor and the optical means,
The optical means includes a plurality of optical elements that change the direction of the optical axis, respectively, and includes a reversing unit that emits incident light in a reverse direction from a position different from the incident position,
The inversion unit includes a reflecting mirror that reflects light that has passed through the imaging lens.
光学手段は、物体側テレセントリック光学系を構成することを特徴とする請求項1記載の撮像装置。   The imaging apparatus according to claim 1, wherein the optical means constitutes an object side telecentric optical system. ハウジングは、互いに異なる方向から撮像対象へ向けられそれぞれ光が入射する2個の入射口を有し、光学手段は、入射した光の一部を透過させ一部を反射させる半透鏡素子と、それぞれ1個の入射口から入射した光を半透鏡素子に互いに異なる方向から入射させる2個の導光路とを含み、撮像素子と半透鏡素子とは、一方の導光路を通過して半透鏡素子を透過した光と、他方の導光路を通過して半透鏡素子に反射された光とがともに撮像素子に入射する位置関係で配置されていることを特徴とする請求項1又は請求項2記載の撮像装置。   The housing has two entrances that are directed toward the object to be imaged from different directions, and each receives light, and the optical means includes a semi-transparent element that transmits a part of the incident light and reflects a part thereof, and And two light guide paths that allow light incident from one incident port to enter the semi-transparent element from different directions. The imaging element and the semi-transparent element pass through one light guide path and pass the semi-transparent element. 3. The light transmission device according to claim 1, wherein the transmitted light and the light that has passed through the other light guide path and reflected by the semi-transparent mirror element are both placed in a positional relationship to be incident on the imaging device. Imaging device. 照明手段は、撮像対象において撮像素子によって撮像される面を照明することを特徴とする請求項1〜3のいずれか記載の撮像装置。   The imaging device according to claim 1, wherein the illumination unit illuminates a surface of the imaging target imaged by the imaging device. ハウジングは導電材料で構成され、絶縁材料からなり撮像素子とハウジングとの間に介在して撮像素子を支持する保持体を備えることを特徴とする請求項1〜4のいずれか記載の撮像装置。   The imaging apparatus according to claim 1, wherein the housing is made of a conductive material, and includes a holding body that is made of an insulating material and is interposed between the imaging element and the housing to support the imaging element.
JP2005232472A 2005-08-10 2005-08-10 Imaging apparatus Pending JP2007049489A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005232472A JP2007049489A (en) 2005-08-10 2005-08-10 Imaging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005232472A JP2007049489A (en) 2005-08-10 2005-08-10 Imaging apparatus

Publications (1)

Publication Number Publication Date
JP2007049489A true JP2007049489A (en) 2007-02-22

Family

ID=37851951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005232472A Pending JP2007049489A (en) 2005-08-10 2005-08-10 Imaging apparatus

Country Status (1)

Country Link
JP (1) JP2007049489A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012053645A1 (en) 2010-10-22 2012-04-26 株式会社牧野フライス製作所 Method for measuring tool dimensions and measurement device
JP2012093243A (en) * 2010-10-27 2012-05-17 Toyama Prefecture Tool position measurement device
JP2015182159A (en) * 2014-03-24 2015-10-22 三菱重工業株式会社 Measuring apparatus for tool displacement of machine tool
US10189137B2 (en) 2015-06-30 2019-01-29 Big Daishowa Co., Ltd. Tool shape measuring apparatus
KR20210083320A (en) 2018-10-30 2021-07-06 시바우라 기카이 가부시키가이샤 Tool shape measuring device and tool shape measuring method
KR20230056599A (en) 2021-10-20 2023-04-27 시바우라 기카이 가부시키가이샤 Tool measuring device and tool measuring method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08299279A (en) * 1995-05-12 1996-11-19 Topcon Corp Ophthalmologic photographing device
JP2001203234A (en) * 2000-01-21 2001-07-27 Shinkawa Ltd Bonding device and method
JP2001269844A (en) * 2000-03-27 2001-10-02 Toshiba Corp Tool observing method, its device, and cutting work system
JP2002153414A (en) * 2000-11-17 2002-05-28 Asahi Optical Co Ltd Electron endoscope and electron endoscope system
JP2006078854A (en) * 2004-09-10 2006-03-23 Fuji Photo Film Co Ltd Camera head

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08299279A (en) * 1995-05-12 1996-11-19 Topcon Corp Ophthalmologic photographing device
JP2001203234A (en) * 2000-01-21 2001-07-27 Shinkawa Ltd Bonding device and method
JP2001269844A (en) * 2000-03-27 2001-10-02 Toshiba Corp Tool observing method, its device, and cutting work system
JP2002153414A (en) * 2000-11-17 2002-05-28 Asahi Optical Co Ltd Electron endoscope and electron endoscope system
JP2006078854A (en) * 2004-09-10 2006-03-23 Fuji Photo Film Co Ltd Camera head

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012053645A1 (en) 2010-10-22 2012-04-26 株式会社牧野フライス製作所 Method for measuring tool dimensions and measurement device
US9453716B2 (en) 2010-10-22 2016-09-27 Makino Milling Machine Co., Ltd. Method of measurement and apparatus for measurement of tool dimensions
JP2012093243A (en) * 2010-10-27 2012-05-17 Toyama Prefecture Tool position measurement device
JP2015182159A (en) * 2014-03-24 2015-10-22 三菱重工業株式会社 Measuring apparatus for tool displacement of machine tool
US10189137B2 (en) 2015-06-30 2019-01-29 Big Daishowa Co., Ltd. Tool shape measuring apparatus
KR20210083320A (en) 2018-10-30 2021-07-06 시바우라 기카이 가부시키가이샤 Tool shape measuring device and tool shape measuring method
KR20230056599A (en) 2021-10-20 2023-04-27 시바우라 기카이 가부시키가이샤 Tool measuring device and tool measuring method

Similar Documents

Publication Publication Date Title
US7403278B2 (en) Surface inspection apparatus and surface inspection method
JP2007049489A (en) Imaging apparatus
KR100635989B1 (en) Surface inspection apparatus
JP2008203093A (en) Illumination device and image measurement apparatus
TW201819855A (en) Electronic component conveying apparatus and electronic component inspection apparatus
JP2012004306A (en) Adsorption nozzle inspection device of component mounting machine
JP2019508663A (en) Ranging module, three-dimensional scanning system and ranging method
JP2008102011A (en) Hole inside inspection device and hole inside inspection method
JP2016090410A (en) Device and method for inspecting substrate
JP2007033202A (en) Visual inspection apparatus and visual inspection method
KR20020024308A (en) Inspection device for components
JP2007170948A (en) Width measuring device, end position detection device, end thickness measuring device, and shape measuring device
JP4679282B2 (en) Substrate inspection apparatus and substrate inspection method
JP2001522997A (en) Apparatus and method for detecting the position of a component and / or for detecting the position of a connection of a component, and a mounting head having a device for detecting the position of a component and / or detecting the position of a connection of a component
CN100514044C (en) Multi-path reflection fluorescent probe
JP2015125112A (en) Displacement sensor
JPH10288508A (en) External appearance inspection device
JP4316510B2 (en) Image reading device
JP2020016567A (en) Overhead wire inspection device
JP2014225712A (en) Suction nozzle inspection apparatus of component mounting machine
JP2006145849A (en) Optical device for inspection and inspecting device equipped with the same
JP2001050862A (en) Measuring apparatus for aberration of optical-pickup objective lens
JP3102362U (en) Mirror inspection equipment
KR100576392B1 (en) Apparatus for vision inspection
JP4117789B2 (en) Surface light source device for surface inspection

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101005