JP2007049104A - Electromagnetic shielding method and electromagnetic shielding member - Google Patents

Electromagnetic shielding method and electromagnetic shielding member Download PDF

Info

Publication number
JP2007049104A
JP2007049104A JP2005254068A JP2005254068A JP2007049104A JP 2007049104 A JP2007049104 A JP 2007049104A JP 2005254068 A JP2005254068 A JP 2005254068A JP 2005254068 A JP2005254068 A JP 2005254068A JP 2007049104 A JP2007049104 A JP 2007049104A
Authority
JP
Japan
Prior art keywords
copper
iron
binary alloy
electromagnetic shielding
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005254068A
Other languages
Japanese (ja)
Inventor
Hisao Wakaumi
久雄 若海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DOTETSU GOKIN KK
Original Assignee
DOTETSU GOKIN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DOTETSU GOKIN KK filed Critical DOTETSU GOKIN KK
Priority to JP2005254068A priority Critical patent/JP2007049104A/en
Publication of JP2007049104A publication Critical patent/JP2007049104A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electromagnetic shielding raw material that uses a copper iron alloy as a binary alloy or uses a copper iron alloy made by adding cobalt, nickel, manganese, and chromium as dopants added to the binary alloy of copper and iron by smelting processes. <P>SOLUTION: Conventionally, highly conductive metals are used as a method for performing electromagnetic shielding, particularly to shield electric field, while magnetic materials such as iron are used to shield magnetism. Therefore, in order to simultaneously shield electric field and magnetism, it is considered that electromagnetic shielding is performed by preparing a highly conductive metal and iron of high permeability into a binary structure. However, the method is not executed because it is difficult to put it into practice and is due to economic factors. The raw material as the binary alloy of copper and iron or the copper iron alloy made by adding cobalt, nickel, manganese, and chromium to the binary alloy as the dopants exhibits an eutectic condition, and is capable of simultaneously shielding both electric field and magnetism. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電子回路あるいは電子部品の使用に当たって、あるいはシールドルームの建設において、当該電子回路あるいは電子部品から洩れ出る電磁波、電界、磁気の遮蔽あるいは、外界から来る不要な電磁波、電磁界を高い電磁遮蔽率で行い得る電磁遮蔽方法または電磁遮蔽部材に関する。  In the use of an electronic circuit or an electronic component, or in the construction of a shield room, the electromagnetic wave leaking from the electronic circuit or the electronic component, an electric field, a magnetic shield, an unnecessary electromagnetic wave coming from the outside, or an electromagnetic field is increased. The present invention relates to an electromagnetic shielding method or an electromagnetic shielding member that can be performed with a shielding rate.

従来、電子回路や電子部品から発生する電磁波は、鉄板ないしは金属板で覆うなどして、妨害電波の遮蔽を行ってきた。また導電性フィルムなども用いられてきた。電子技術の発展に伴い、それらの妨害電磁波の低減は、法規制で守られ、相互の干渉、電子機器の誤動作などを低減する工夫がされて来た。しかしながら、電子技術の発達で、益々電子技術を用いた設備や機器が使われ、身近にそれらのものが常に使用されるようになってきており、電磁遮蔽の問題は、外界への影響を最小化するに限らず、電子回路、電子機器の性能を向上させるために、重要な要素となり、一方外界への無用な電磁界を放出することは、他の電子機器や設備に与える影響が大きくなり、益々深刻な事態となって来たため、従来の電磁遮蔽率より一層の高い電磁遮蔽方法や電磁遮蔽材料の必要性が増してきた。
又、精密な電磁的測定を伴う医療や、電磁波の回り込みを嫌う放送設備、高度な電子技術を駆使した航空機内での電子機器の使用、電磁計測装置、磁気ヘッド、コンピュータ機器、DC−DCコンバータ、ICチップなど外部への影響を最小化するあるいは、外部からくる電磁波の影響を最小化するため、電磁遮蔽技術が工夫されてきた。これらの従来技術の特許文献を以下に示す。
Conventionally, electromagnetic waves generated from electronic circuits and electronic components have been shielded against interference waves by covering them with an iron plate or a metal plate. Conductive films have also been used. With the development of electronic technology, the reduction of such interference electromagnetic waves has been protected by laws and regulations, and contrivances have been made to reduce mutual interference, malfunction of electronic devices, and the like. However, with the development of electronic technology, facilities and equipment using electronic technology are increasingly used, and those are always being used in close proximity, and the problem of electromagnetic shielding minimizes the impact on the outside world. It is an important factor for improving the performance of electronic circuits and electronic devices, while releasing unnecessary electromagnetic fields to the outside world has a large effect on other electronic devices and equipment. As the situation has become more serious, the need for electromagnetic shielding methods and materials that are higher than conventional electromagnetic shielding rates has increased.
In addition, medical equipment with precise electromagnetic measurement, broadcasting equipment that dislikes electromagnetic wave wrapping, use of electronic equipment in aircraft using advanced electronic technology, electromagnetic measuring device, magnetic head, computer equipment, DC-DC converter In order to minimize the influence on the outside, such as an IC chip, or on the influence of the electromagnetic wave coming from the outside, an electromagnetic shielding technique has been devised. These prior art patent documents are listed below.

特開2004−137823 特許3033826 特公平07−024352 特開2004−327687 特許3591629 特開2005−147822 特公平07−024362 電波吸収体のはなし 橋本修著 日刊工業新聞社発行 2001年6月29日初版 特許文献1の特開2004−137823には、導電性被膜を設けた弾性目地遮蔽材を前記目地に圧入して電波の壁面通過を防いでなる電磁シールドコンクリート利用が記載されており、を前記電磁シールドコンクリートには、マグネタイト系鉄鉱石、砂鉄、製鉄ダスト又はカーボン繊維を混入した電磁シールドコンクリート利用の電磁シールド工法が記載されている。しかしながら、この場合において、完全な電気的接地が出来ず、電気抵抗が比較的高いことにより、電磁界の透過に対し不十分である欠点を有する。 JP 2004-137823 A Patent 3338826 JP 07-024352 JP2004-327687 Patent 3591629 JP-A-2005-147822 JP 07-024362 Story of radio wave absorbers Osamu Hashimoto Published by Nikkan Kogyo Shimbun, June 29, 2001 First edition Japanese Patent Application Laid-Open No. 2004-137823 of Patent Document 1 describes the use of electromagnetic shielding concrete in which an elastic joint shielding material provided with a conductive coating is pressed into the joint to prevent radio waves from passing through the wall surface. The shield concrete describes an electromagnetic shield method using electromagnetic shield concrete mixed with magnetite iron ore, iron sand, iron dust, or carbon fiber. However, in this case, complete electrical grounding is not possible, and the electrical resistance is relatively high, so that there is a disadvantage that it is insufficient for transmission of the electromagnetic field.

特許文献2特許3033826には、磁気シールドと電波シールドとを同時に且つ有効に成し得るシールドルーム用シールドパネル及びその組立体が示されており、MRI装置では、磁気共鳴によって人体内から発生する微弱な電磁波を精密測定してこれを映像するようになっているため、周波数が近い僅かなノイズ電波をもこれを回避しなければならず、このため、外部電波を厳格に遮蔽するための電波シールド室が装置全体(或いは一部)を対象として施設されることが記載されている。MRI装置は人体の断面映像を撮影するためのものであり、撮影時には被撮影物は、例えば0.2(2000ガウス)乃至2テスラという強力磁界中に所定時間晒されており、同時に、外部周囲の空間も、このMRI装置からの強力磁場に晒され、例えば周囲への磁気漏れによって10ガウス程度の磁界が生じても周辺の精密電子機器が誤動作し、特に、ペースメーカ等を体内に内蔵した人が作動中の当該MRI装置の近傍を歩くとペースメーカが誤動作し易いという大きな危険を伴うことが記載されている。この場合、シールドルームの組立て作業そのものが実施し易い工夫がされているが、導電性が高く、且つ、透磁率の高い材料が必要である。しかしながら従来においては、亜鉛をコーティングした鉄板で形成したことを特徴としていたが、透磁率が高く且つ導電性の高い材料の使用が困難であり、銅のように電気伝導率が高く、コストの安い材料が使用されるべきであり、又、鉄のように透磁率が高い金属の使用が合わせて使われることが望ましい。従って、銅と鉄の合金である二元合金の使用は、この点において最適材料であり、電界及び磁界の同時遮蔽において好都合である。  Patent Document 2 (Japanese Patent No. 3033826) discloses a shield panel for a shield room and an assembly thereof that can simultaneously and effectively form a magnetic shield and a radio wave shield. In the MRI apparatus, weak resonance generated from the human body due to magnetic resonance is disclosed. Because it is designed to accurately measure the electromagnetic wave and image it, even a slight noise radio wave with a close frequency must be avoided. For this reason, a radio wave shield to strictly shield external radio waves It is described that the room is provided for the entire apparatus (or part of the apparatus). The MRI apparatus is for taking a cross-sectional image of a human body. At the time of photographing, an object to be photographed is exposed to a strong magnetic field of, for example, 0.2 (2000 gauss) to 2 Tesla for a predetermined time, and at the same time, external surroundings. This space is also exposed to the strong magnetic field from the MRI system. For example, even if a magnetic field of about 10 gauss is generated due to magnetic leakage to the surroundings, peripheral precision electronic equipment malfunctions. It is described that there is a great risk that the pacemaker is likely to malfunction when walking near the MRI apparatus in operation. In this case, the shield room assembly work itself has been devised, but a material having high conductivity and high magnetic permeability is required. However, in the past, it was characterized by being formed of an iron plate coated with zinc. However, it is difficult to use a material having high magnetic permeability and high conductivity, high electrical conductivity like copper, and low cost. The material should be used, and it is desirable to use a metal with high permeability such as iron. Therefore, the use of a binary alloy that is an alloy of copper and iron is an optimal material in this respect and is advantageous in the simultaneous shielding of electric and magnetic fields.

特許文献3の特公平07−024352には、請求項1に、電磁波遮蔽建物として、建物内で使用される各種情報通信機器の通信電磁波周波数に対して電磁波を十分に遮蔽できる電磁波遮蔽材で独立的に被覆された情報通信機器室ユニットや設備室ユニット等の各々独立した室ユニットと、上記電磁波遮蔽材で独立的に被覆され、内部に電力線、通信線および/または空調ダクトを備えた連絡スペースユニットとにより建物を構成し、該連絡スペースユニットと上記各室ユニットの間の配線や配管による連絡を上記各ユニットに設けた電波漏洩防止装置を通して行うように構成したことを特徴とする電磁波遮蔽建物が記載されている。又請求項3には、上記電磁波遮蔽材が亜鉛メッキ鉄板等の金属板、金網、金属格子、メッキまたは蒸着板・膜等の電磁波反射材であることを特徴とする前記特許請求の範囲第1項または第2項に記載の電磁波遮蔽建物との記載がある。この場合も、前記特許文献2と同じく、銅のように電気伝導率が高く、コストの安い材料が使用されるべきであり、又、鉄のように透磁率が高い金属の使用が合わせて使われることが望ましい。従って、銅と鉄の合金である二元合金の使用は、この点において最適材料であり、電界及び磁界の同時遮蔽において好都合である。  In Japanese Patent Publication No. 07-024352 of Patent Document 3, an electromagnetic wave shielding material that can sufficiently shield electromagnetic waves from communication electromagnetic wave frequencies of various information communication devices used in the building as an electromagnetic wave shielding building is independent of claim 1. Information communication equipment room unit, equipment room unit, etc., which are individually covered, and a communication space which is independently covered with the above-mentioned electromagnetic shielding material and has a power line, a communication line and / or an air conditioning duct inside. An electromagnetic wave shielding building characterized in that a building is constituted by a unit, and communication between the communication space unit and each room unit by wiring or piping is performed through a radio wave leakage prevention device provided in each unit. Is described. According to a third aspect of the present invention, the electromagnetic wave shielding material is an electromagnetic wave reflecting material such as a metal plate such as a galvanized iron plate, a wire net, a metal grid, plating, or a vapor deposition plate / film. Or electromagnetic wave shielding building described in item 2. In this case as well, as in Patent Document 2, a material with high electrical conductivity and low cost such as copper should be used, and the use of a metal with high magnetic permeability such as iron is also used. It is desirable that Therefore, the use of a binary alloy that is an alloy of copper and iron is an optimal material in this respect and is advantageous in the simultaneous shielding of electric and magnetic fields.

特許文献4の特開2004−327687には、電磁波障害防止用材料として、粒径が100ナノメートル未満の微結晶を含有する軟磁性金属皮膜の少なくとも一層(A層)が湿式めっき法によって形成されてなるシート状電磁波障害防止用材料の記載がある。請求項4には、前記A層の上又は(及び)下に、該軟磁性皮膜の層よりも電気伝導度の良好な金属皮膜の層(B層)が湿式めっき法によってさらに形成されて、少なくとも二層以上の層構造となっている請求項1〜3のいずれかに記載のシート状電磁波障害防止用材料が記載され、又、請求項14には、前記B層が銅又は銀或いはそれらを含む合金から選ばれる一種又は二種以上からなる請求項4〜13のいずれかに記載のシート状電磁波障害防止用材料が記載されている。しかし、この場合、湿式めっき法では、処理において、電磁波障害防止用材料相当の面積以上のメッキ槽を必要とし、又、二層構造にする必要がある難点があり、コスト面、実施面でコストにおいても高価になるという問題がある。従って、従って、銅と鉄の合金である二元合金の使用は、二層化せずとも銅と鉄の共晶が多層膜を形成している状況であり、この点においても最適材料であり、電界及び磁界の同時遮蔽において好都合である。  In Japanese Patent Application Laid-Open No. 2004-327687 of Patent Document 4, at least one layer (A layer) of a soft magnetic metal film containing fine crystals having a particle size of less than 100 nanometers is formed by a wet plating method as an electromagnetic interference prevention material. There is a description of a sheet-like electromagnetic interference prevention material. According to claim 4, a metal film layer (B layer) having a better electrical conductivity than the soft magnetic film layer is further formed on or above (and) the A layer by a wet plating method. The sheet-like electromagnetic wave interference preventing material according to any one of claims 1 to 3, which has a layer structure of at least two layers, and in claim 14, the layer B is made of copper or silver, or those The sheet-shaped electromagnetic wave interference preventing material according to any one of claims 4 to 13, wherein the material is composed of one or more selected from an alloy containing selenium. However, in this case, the wet plating method requires a plating tank having an area equivalent to or larger than the electromagnetic interference prevention material in processing, and has a disadvantage that it needs to have a two-layer structure. However, there is a problem that it becomes expensive. Therefore, the use of a binary alloy, which is an alloy of copper and iron, is a situation in which a eutectic of copper and iron forms a multilayer film without forming a double layer, which is also an optimal material in this respect. Convenient for simultaneous shielding of electric and magnetic fields.

特許文献5の特許3591629には、電磁シールド床について、その請求項1において、真綿状シールド材を床スラブ上に所要電磁シールド性能の発現に足る割合で敷き、前記真綿状シールド材の壁側の端縁を前記壁面シールド材の折曲げた下端へ電気的に接触させてなる電磁シールド床が記載されており、更請求項9において、前記導電性繊維を、銅、黄銅、ステンレス鋼、鉄・クロム合金、及び炭素からなる群から選んだ一以上の材料からなる直径40〜100μmの繊維としてなる電磁シールド床であることが記載されている。ここでは、銅のように電気伝導率が高い材料による線材と、鉄のように透磁率が高い金属の線材を合わせて使うものであるが、そのそれぞれの銅、鉄の線材が互いに離散することなく、均一に床面に敷くことは難しく、これを固定するには、樹脂などの第三の材料を要することとなり、取り扱い上及び、コストにおいての難点がある。又、終端を完全に電気的に設置するには、かしめ作業が必要である一方、湿度を伴った場合の電食が生じ易く、耐久性の上から、問題が生じる。ここにおいても、銅と鉄の合金である二元合金の使用は、この点において最適材料であり、終端を相手側の銅材のアースバーへの溶接、友材によるロウ付け、ネジ止めが容易であり、電界及び磁界の同時遮蔽において好都合である。  In Patent 3591629 of Patent Document 5, for the electromagnetic shield floor, in claim 1, the fluffy shield material is laid on the floor slab at a ratio sufficient to develop the required electromagnetic shield performance, and the wall side of the fluffy shield material is placed. An electromagnetic shield floor in which an end edge is electrically contacted with a bent lower end of the wall shield material is described, and in claim 9, the conductive fiber is made of copper, brass, stainless steel, iron, It is described that the electromagnetic shield floor is a fiber having a diameter of 40 to 100 μm made of one or more materials selected from the group consisting of a chromium alloy and carbon. Here, a wire made of a material having a high electrical conductivity such as copper and a metal wire having a high magnetic permeability such as iron are used together, but the copper and iron wires are separated from each other. In addition, it is difficult to lay on the floor surface uniformly, and fixing this requires a third material such as a resin, which is difficult in terms of handling and cost. Further, in order to install the terminal completely electrically, caulking work is necessary, but electric corrosion is easily generated when the humidity is accompanied, and there is a problem in terms of durability. Here too, the use of a binary alloy, which is an alloy of copper and iron, is the optimal material in this respect, and the end is easily welded to the copper bar on the other side, brazed with a friend, and screwed easily. It is advantageous in simultaneous shielding of electric and magnetic fields.

特許文献6の特開2005−147822には、前記第1及び第2の金属体は電磁界シールド効果を有すると共に、一方は熱伝導が高い金属であることの必要性が記載されており、又、DC/DC電源であるスイッチング電源では、伝導性、放射性ノイズ、特に漏洩磁界ノイズが発生し、周辺回路、とりわけパネルセンサ及びアンプICを含めた検出系に磁気結合して誘導ノイズ電圧を発生し、画像表示装置の品質などに影響を及ぼす問題が記載されている。こうした漏洩電磁界ノイズを発生する電子回路や、デバイスからの漏洩電磁界ノイズを遮蔽するには、電磁遮蔽材で密閉することが必要であるとしているが、特に磁場遮蔽を高遮蔽率で実現するためには、放熱性の高い材料つまり熱伝導率の高い、銅などの材料を合わせて使用する方法が記載されている。この場合も、二種の金属を熱抵抗を持たせることなく、電磁界を高効率で、行うための課題が生じる。従って、銅と鉄の二元合金の使用は、この点においても最適材料であり、電界及び磁界の同時遮蔽と熱を外部に放出する上で、好都合である。  Japanese Patent Application Laid-Open No. 2005-147822 of Patent Document 6 describes the necessity that the first and second metal bodies have an electromagnetic shielding effect and one of them is a metal having high heat conduction. In a switching power supply, which is a DC / DC power supply, conductive and radiated noise, particularly leakage magnetic field noise is generated, and an induction noise voltage is generated by magnetic coupling to a peripheral circuit, particularly a detection system including a panel sensor and an amplifier IC. Problems that affect the quality of the image display device are described. In order to shield leakage electromagnetic field noise from electronic circuits and devices that generate such leakage electromagnetic field noise, it is necessary to seal with electromagnetic shielding material. Therefore, a method is described in which a material having high heat dissipation, that is, a material having high thermal conductivity, such as copper, is used together. Also in this case, there arises a problem for performing the electromagnetic field with high efficiency without giving the two kinds of metals thermal resistance. Therefore, the use of a binary alloy of copper and iron is an optimum material also in this respect, and is advantageous for simultaneous shielding of electric and magnetic fields and releasing heat to the outside.

又、特許文献7に示す、特公平07−024362のような場合の電磁遮蔽ブラインドを構成する電磁遮蔽材料においても、特に高い磁場遮蔽率を要する場合には、銅と鉄の二元合金の使用が効果的であり、最適材料であることは明白である。
非特許文献1の電波吸収体のはなしでは、電波吸収体について種々材料、方法の記載があるが、本発明で用いた銅と鉄の二元合金の使用については、一切の記載が無い。
Also, in the electromagnetic shielding material constituting the electromagnetic shielding blind shown in Japanese Patent Publication No. 07-024362 shown in Patent Document 7, use of a binary alloy of copper and iron is particularly necessary when a high magnetic field shielding rate is required. It is clear that is an effective and optimal material.
Although there are descriptions of various materials and methods for the radio wave absorber in Non-Patent Document 1, there is no description of the use of the binary alloy of copper and iron used in the present invention.

従来電磁遮蔽を行う場合、電界を遮蔽する場合、導電率の高い金属、例えば銅、金、銀、アルミなどが用いられ、又、磁界の遮蔽においては、パーマロイや鉄などの強磁性体が用いられてきた。しかしながら、電界と磁界を同時に遮蔽することは、難しく、又、電界と磁界を同時に遮蔽する素材が無かった。又、遮蔽効果を完全にするには、密閉する必要があるが、同時に密閉された中の電子デバイスや電子回路からの発熱を外部に逃がす必要が生じる。かかる場合において、導電率の高い金属、例えば銅、金、銀、アルミなどが用いられるが、この場合、透磁率の高い鉄やパーマロイと比較すると磁場遮蔽効果が落ちる難点がある。この逆に、透磁率の高い鉄やパーマロイを使用すれば、磁場遮蔽効果は確かに良いが、熱伝導率が銅、金、銀、アルミなど劣り、放熱上の問題、電界遮蔽の効果において、難点がある。
又、銅板を鉄の筐体と結合するには、溶接が出来ず、ボルトによる固定では、隙間ができ、その間隙からの電波漏洩や、接触抵抗の増加によるアースを取る場合の不具合が生じていた。
Conventionally, when shielding electromagnetic fields, when shielding electric fields, metals with high conductivity, such as copper, gold, silver, aluminum, etc., are used. For shielding magnetic fields, ferromagnetic materials such as permalloy and iron are used. Has been. However, it is difficult to simultaneously shield the electric field and the magnetic field, and there is no material that shields the electric field and the magnetic field at the same time. Moreover, in order to complete the shielding effect, it is necessary to seal, but at the same time, it is necessary to release heat generated from the sealed electronic device or electronic circuit to the outside. In such a case, a metal having high conductivity, such as copper, gold, silver, or aluminum, is used. However, in this case, there is a problem that the magnetic field shielding effect is lowered as compared with iron or permalloy having high permeability. On the contrary, if iron or permalloy with high magnetic permeability is used, the magnetic field shielding effect is certainly good, but the thermal conductivity is inferior to copper, gold, silver, aluminum, etc., in terms of heat dissipation problems, electric field shielding effect, There are difficulties.
Also, in order to join the copper plate to the iron casing, welding is not possible, and fixing with bolts creates a gap, causing problems when grounding due to leakage of radio waves from the gap or increased contact resistance. It was.

又、鉄と銅の薄板を交互に張り合わせ、圧接した材料を使用する場合、薄板加工や、圧延加工が出来ず、所望の厚さ、広さの平板を得るための平板加工が出来ない不具合があった。一方、鉄と銅の粉末を焼結した焼結金属においても、素材が脆く、圧延加工などの板加工が出来ない不具合があった。
本発明は、元材料を導電率の高い金属として銅を用い、透磁率の高い鉄との二元合金を得て、電磁界の遮蔽効果が高い電磁遮蔽を実現し、電子機器、設備、建物から放出される漏洩電磁界を押さえ、又、外界からの不要な電磁界から高感度の精密機器、測定器、医療設備への影響を除外することを目的とする。
In addition, when using materials that are laminated with iron and copper sheets alternately and pressed together, thin plate processing and rolling processing cannot be performed, and flat plate processing for obtaining a flat plate with a desired thickness and width cannot be performed. there were. On the other hand, a sintered metal obtained by sintering iron and copper powder has a problem that the material is brittle and plate processing such as rolling cannot be performed.
The present invention uses copper as a metal having a high conductivity as a base material, obtains a binary alloy with iron having a high magnetic permeability, realizes electromagnetic shielding with a high electromagnetic shielding effect, and provides electronic equipment, equipment, and buildings. The purpose is to suppress the leakage electromagnetic field emitted from the outside, and to exclude the influence on the sensitive precision instruments, measuring instruments, and medical equipment from the unnecessary electromagnetic field from the outside.

本発明において、用いる素材の二元合金は、溶解法により、鉄3%以上から90%以下、残りの97%未満から10%未満を電解銅の比率とし、あるいは前記銅と鉄の二元合金に微量添加物として、コバルト、ニッケル、マンガン、クロムを加えて造られた銅鉄合金を使用するが、前記銅鉄合金である二元合金は、加工性に富み、圧延加工、線引き加工が容易である。  In the present invention, the binary alloy used as a raw material is made from 3% to 90% of iron and the remaining less than 97% to less than 10% of electrolytic copper by the melting method, or the above binary alloy of copper and iron Copper iron alloy made by adding cobalt, nickel, manganese, and chromium as a trace additive is used, but the binary alloy that is the copper iron alloy has high workability and is easy to roll and draw. It is.

従って、圧延加工によって得られた、平板や、薄板を求める電磁遮蔽目的に合わせ、使用するものである。一方、前記銅鉄合金である二元合金は、棒状加工や、線状加工も容易であるから、平板電波吸収体に限らず、線状電波吸収体、あるいは、電磁遮蔽の用途に板状、線状の形態で使用することができる。
前記銅と鉄の共晶合金は、含まれる鉄が強磁性体として磁場の遮蔽に有効である共に、これを囲む銅は良好な導電体であることから、高い電磁遮蔽効果が得られる。
また、鉄は電気抵抗が銅よりも高いために流れる電流を熱に変える役割を果たし、鉄は交番磁界に対し、抵抗として熱エネルギーに変換され、何れも電波吸収として働く。
Therefore, it is used in accordance with the electromagnetic shielding purpose for obtaining a flat plate or a thin plate obtained by rolling. On the other hand, the binary alloy that is the copper-iron alloy is easy to be processed into a rod shape or a linear shape, so that it is not limited to a flat plate wave absorber, a linear wave absorber, or a plate shape for electromagnetic shielding, It can be used in a linear form.
In the eutectic alloy of copper and iron, the contained iron is effective for shielding the magnetic field as a ferromagnetic material, and the surrounding copper is a good conductor, so that a high electromagnetic shielding effect is obtained.
Moreover, since iron has a higher electrical resistance than copper, it plays the role of converting the flowing current into heat, and iron is converted into thermal energy as resistance against an alternating magnetic field, both of which function as radio wave absorption.

また、前記銅と鉄の二元合金は、電波の遮蔽を必要とするシールドルームの外壁材としても薄板状、線状又は、線状の線を網状に織るなどして、効果的に電磁遮蔽材として応用できる。
また、電子回路から発信される障害電波を外部に漏らすことなく、同時に内部に熱を篭らす事なく放熱する電磁波漏洩を遮蔽する覆い材料として利用することができる。
In addition, the binary alloy of copper and iron effectively shields electromagnetic waves by woven a thin plate, wire, or wire in a net shape as an outer wall material of a shield room that needs to shield radio waves. It can be applied as a material.
In addition, it can be used as a covering material for shielding electromagnetic wave leakage that does not leak out disturbance electric waves transmitted from an electronic circuit, and at the same time, does not give heat to the inside.

本発明の請求項1に記載した発明は、溶解法により、鉄60%以上から90%以下、残りの40%未満から10%未満を電解銅の比率とした二元合金を用いて、あるいは前記銅と鉄の二元合金に微量添加物として、コバルト、ニッケル、マンガン、クロムを加えて造られた銅鉄合金二元合金を使用する電磁遮蔽方法ある。
前記銅鉄合金二元合金は、鉄を3%から90%、残りの97%未満から10%未満を銅で構成することができるが、鉄成分の増量は、透磁率を上げる効果があるものの、硬さが増し、加工率が上げられない欠点が有る。
従って、成分比率を使用目的に合わせ、適正に選択する必要がある。
又、添加物の効果は、透磁率を上げる効果が得られ、磁気遮蔽に高い効果を有する。
The invention described in claim 1 of the present invention uses a binary alloy in which the ratio of electrolytic copper is 60% or more to 90% or less, and the remaining less than 40% to less than 10% by the melting method, or the above There is an electromagnetic shielding method using a copper-iron alloy binary alloy made by adding cobalt, nickel, manganese, and chromium as a trace additive to a copper-iron binary alloy.
Although the copper-iron alloy binary alloy can be composed of 3% to 90% of iron and the remaining less than 97% to less than 10% of copper, the increase of the iron component has the effect of increasing the magnetic permeability. , There is a drawback that the hardness increases and the processing rate cannot be increased.
Therefore, it is necessary to select the component ratio appropriately according to the purpose of use.
Moreover, the effect of the additive has the effect of increasing the magnetic permeability and has a high effect on magnetic shielding.

請求項2では、鉄の成分比率を下げ、溶解法により、鉄30%以上から60%以下、残りの70%未満から40%未満を電解銅の比率とした二元合金を用いて、あるいは前記銅と鉄の二元合金に微量添加物として、コバルト、ニッケル、マンガン、クロムを加えて造られた銅鉄合金二元合金を使用する電磁遮蔽方法を記載し、これによって、電磁遮蔽特性のことなる加工率の改善された電磁遮蔽部材を得ている。  In claim 2, by using a binary alloy in which the iron component ratio is decreased and the ratio of electrolytic copper is 30% or more to 60% or less and the remaining less than 70% to less than 40% by the melting method, or the above Describes an electromagnetic shielding method that uses a copper-iron alloy binary alloy made by adding cobalt, nickel, manganese, and chromium as a trace additive to a binary alloy of copper and iron. An electromagnetic shielding member having an improved processing rate is obtained.

請求項3では、更に鉄の成分比率を下げ、溶解法により、鉄3%以上から30%以下、残りの97%未満から70%未満を電解銅の比率とした二元合金を用いて、あるいは前記銅と鉄の二元合金に微量添加物として、コバルト、ニッケル、マンガン、クロムを加えて造られた銅鉄合金二元合金を使用する電磁遮蔽方法を記載したもので、一層の加工性の改善を得たものである。この場合、鉄の共晶が圧延方向に更に長く伸ばせることから、請求項5に示す、高周波側の電磁遮蔽効果の維持が可能となっている。  In claim 3, by using a binary alloy in which the iron component ratio is further reduced and the ratio of electrolytic copper is from 3% to 30% and the remaining less than 97% to less than 70% by the melting method, or The electromagnetic shielding method using a copper-iron alloy binary alloy made by adding cobalt, nickel, manganese, chromium as a trace additive to the copper-iron binary alloy is described. It is an improvement. In this case, since the eutectic of iron can be extended further in the rolling direction, the electromagnetic shielding effect on the high frequency side shown in claim 5 can be maintained.

本発明の請求項4において、平板あるいは薄板加工により形成し、被遮蔽物を覆うことにより、電磁遮蔽効果を得る電磁遮蔽方法又は電磁遮蔽部材が記載している。これは、請求項1から請求項3において、銅と鉄の合金である二元合金を平板または薄板加工し、被電磁遮蔽物を覆うことによる電磁遮蔽部材であり、電磁界の漏れを完全に覆い、電磁界の漏れあるいは、外部からの不要な電磁界から電磁遮蔽する電磁遮蔽部材である。  In Claim 4 of this invention, the electromagnetic shielding method or electromagnetic shielding member which obtains an electromagnetic shielding effect by forming by flat plate or thin plate processing, and covering the to-be-shielded object is described. This is an electromagnetic shielding member according to claims 1 to 3 in which a binary alloy which is an alloy of copper and iron is processed into a flat plate or a thin plate and covers an electromagnetic shielding object, and electromagnetic field leakage is completely prevented. It is an electromagnetic shielding member that shields electromagnetic waves from covering, leakage of electromagnetic fields, or unnecessary electromagnetic fields from the outside.

又、請求項5に記載したように、請求項4において、圧延板加工時に銅と鉄の共晶体の伸張方向に伸張率を1%から70%調整し、銅の中の鉄の共晶長を可変し、電気特性を加減すること又は、前記伸張率を可変した材料平板を電磁界の入射方向と直交あるいは伸張方向を斜めにずらして使用する電磁遮蔽部材を記載したものであり、これにより、平板あるいは薄板の電磁界遮蔽特性を使用する元材料が伸張された方位によって得られる特性で電磁界の遮蔽改善し、高周波領域の電磁界遮蔽特性の低下を抑止した効果を得るものである。  Further, as described in claim 5, in claim 4, the eutectic length of iron in copper is adjusted by adjusting the elongation ratio from 1% to 70% in the elongation direction of the eutectic of copper and iron during rolling plate processing. The electromagnetic shielding member is described in which the material flat plate with variable electrical characteristics or the stretch rate variable is used by shifting the direction perpendicular to the electromagnetic field incident direction or obliquely shifting the extension direction. Thus, the shielding of the electromagnetic field is improved by the characteristic obtained by the orientation in which the original material using the electromagnetic shielding characteristic of the flat plate or the thin plate is stretched, and the effect of suppressing the deterioration of the electromagnetic shielding characteristic in the high frequency region is obtained.

又、高周波電磁界の場合、垂直偏波、水平偏波と言われる電磁界に入射方向依存性がある。鍛造、圧延加工した銅と鉄合金である二元合金は、鉄の共晶の圧延による伸張が、遮蔽する高周波電磁界の、垂直偏波、水平偏波に係わる方位特性を有する。請求項6では、請求項4において、圧延線引き加工時に銅と鉄の共晶体の伸張方向を俥張率1%から98%の間で調整し、銅の中の鉄の共晶長を可変し、電気特性を加減すること又は、前記伸張率を可変した線材料を直交あるいは伸張方向を斜めにずらして二枚又は複数枚重ね使用することで、一層の電磁遮蔽効果の高い電磁遮蔽部材について記載している。  In the case of a high-frequency electromagnetic field, electromagnetic fields called vertical polarization and horizontal polarization have dependency on the incident direction. The binary alloy which is a forged and rolled copper and iron alloy has orientation characteristics related to vertical polarization and horizontal polarization of the high-frequency electromagnetic field shielded by stretching due to the eutectic rolling of iron. In claim 6, the eutectic length of the copper and iron eutectic is adjusted between 1% and 98% during the drawing process, and the eutectic length of iron in copper is varied. In addition, an electromagnetic shielding member having a higher electromagnetic shielding effect can be obtained by using two or a plurality of overlapping linear materials with varying electrical characteristics or varying the stretching ratio at right angles or obliquely shifting the stretching direction. is doing.

又、請求項7に記載した請求項1から請求項5において、圧延加工時の加工率を変え、鉄および銅の共晶の伸張長さを変え、電磁遮蔽効果の周波数特性を変える電磁遮蔽部材について、特に鉄の共晶の伸張長さは、銅鉄合金二元合金の内部あるいは表皮を流れる高周波電流の周波数依存性を利用するものであり、電磁遮蔽効果の周波数特性を材料設計において成すものである。  The electromagnetic shielding member according to any one of claims 1 to 5, wherein the processing rate during rolling is changed, the elongate length of the eutectic of iron and copper is changed, and the frequency characteristic of the electromagnetic shielding effect is changed. In particular, the elongation length of the eutectic of iron uses the frequency dependence of the high-frequency current flowing inside the copper-iron alloy binary alloy or through the skin, and the frequency characteristics of the electromagnetic shielding effect are formed in the material design. It is.

又、電子回路や電子デバイスの遮蔽効果を高めるために密閉すると、それらの電子回路や電子デバイスからの発熱も遮蔽の覆いの中に閉じ込めることとなり、不具合が生じる。請求項8に記載されたように、請求項1から請求項6において、電磁遮蔽とともに機器の熱の放出を図るため、部材としてあるいは、放熱フィンあるいは、発熱部を遮蔽の覆いに密着させ、熱伝導を良くし、熱の発散を改善することを意図した構造とした電磁遮蔽材料であり、銅鉄合金である二元合金は熱伝導率もよく、又、構造材料としても鉄成分により銅やアルミに比較し、強度が高いため、より薄い材料でよく、放熱と共に電磁界の遮蔽も同時に行うことができる。  Further, if the sealing is performed to enhance the shielding effect of the electronic circuit or the electronic device, the heat generated from the electronic circuit or the electronic device is confined in the shielding covering, resulting in a problem. As described in claim 8, in order to release the heat of the device together with the electromagnetic shielding, the heat radiation fin or the heat generating part is brought into close contact with the covering of the shielding in order to release the heat of the device together with the electromagnetic shielding. It is an electromagnetic shielding material designed to improve conduction and improve heat dissipation. The binary alloy, which is a copper-iron alloy, has good thermal conductivity. Since the strength is higher than that of aluminum, a thinner material may be used, and heat shielding and electromagnetic field shielding can be performed simultaneously.

更に、請求項9においての記載の通り、銅鉄合金である二元合金は、溶接相手が銅であっても鉄であっても溶接できる利点がある。そこで、請求項1から請求項7において、電気的に筐体や他の部品、構造物が鉄あるいは銅である場合、それらの構造物が銅であっても鉄であっても二元合金を用いてあるいは鉄、銅の溶接材を用いて容易に溶接することによって、機械的設置をより確実にし、且つ、電気的にも確実な接地が行い得るため、これにより電磁遮蔽効果を更に高めることができる電磁遮蔽材料である。例えば、シールドルームの建設において、鉄骨への溶接や、銅製のアースバーへの溶接が容易であり、これによって接地工事をより完全にすることができる。通常銅板と鉄の溶接は出来ず、ボルト締めによる必要が生じるが、本発明の場合、溶接相手が、鉄でも銅でも銅と鉄の二元合金を溶接棒として用いることで、溶接工事が容易となる。  Further, as described in claim 9, the binary alloy which is a copper-iron alloy has an advantage that it can be welded regardless of whether the welding partner is copper or iron. Therefore, in claims 1 to 7, when the casing or other parts or structure is electrically iron or copper, a binary alloy is used regardless of whether the structure is copper or iron. By using or easily welding using iron or copper welding material, the mechanical installation can be made more reliable and the electrical grounding can be done more reliably, which further enhances the electromagnetic shielding effect. It is an electromagnetic shielding material that can be used. For example, in the construction of a shield room, welding to a steel frame or welding to a copper earth bar is easy, thereby making the grounding work more complete. Normally, copper plate and iron cannot be welded, and it is necessary to tighten them with bolts. In the case of the present invention, welding work is easy by using a binary alloy of copper and iron as the welding rod, whether it is iron or copper. It becomes.

又、請求項10において、記載された網状の電磁遮蔽部材とは、前記銅と鉄の二元合金製の線引きした線を用い、請求項1から請求項3において、線引き加工した当該二元合金を用いて、あるいは前記銅と鉄の二元合金に微量添加物として、コバルト、ニッケル、マンガン、クロムを加えて造られた銅および鉄の二元合金を使用し、網状に織り込むことを特徴とする電磁遮蔽部材であり、同時に別の繊維と編みこみ、電磁遮蔽部材とすることが出来、平板や薄板の加工品に比較し、被遮蔽物の覆いとして容易に利用できることを特徴としている。この場合、電磁遮蔽部材が絶縁体であることを要する場合、絶縁物の糸で芯線である銅と鉄の合金である二元合金製の線を覆うように編みこみ、絶縁体として使う方法も容易に実施できる。  Further, in claim 10, the net-like electromagnetic shielding member described above uses a drawn wire made of a binary alloy of copper and iron, and the drawn binary alloy according to claims 1 to 3 Or using a binary alloy of copper and iron made by adding cobalt, nickel, manganese and chromium as a trace additive to the binary alloy of copper and iron, and woven in a net shape It is an electromagnetic shielding member that can be simultaneously braided with another fiber to form an electromagnetic shielding member, and can be easily used as a covering for an object to be shielded as compared with a processed product of a flat plate or a thin plate. In this case, when it is required that the electromagnetic shielding member is an insulator, a method of using it as an insulator by braiding so that a wire made of a binary alloy that is an alloy of copper and iron that is a core wire is covered with an insulator thread. Easy to implement.

更に、請求項11に記載されている、請求項1から請求項3において、線引き加工した当該銅と鉄の合金である二元合金を用いて、あるいは前記銅と鉄の合金である二元合金に微量添加物として、コバルト、ニッケル、マンガン、クロムを加えて造られた銅と鉄の合金である二元合金を使用し、絶縁体の中に一定方向、または不特定方向に固定あるいは絶縁体で固めた電磁遮蔽部材は、線状の銅と鉄の合金である二元合金を樹脂フィルムで挟み、あるいは樹脂で固めて固定し、電磁遮蔽部材を形成するものであり、板金加工の隙間部分からの電磁波の漏れ、防止、不定形の覆いの形成による電磁遮蔽、あるいは電磁遮蔽カーテンや、シールドルームの壁面に使用することができる。又、外周部から銅と鉄の合金である二元合金を引出し、接地すべく加工することができる。  Furthermore, the binary alloy which is described in claim 11, using the binary alloy which is an alloy of copper and iron, or is the alloy of copper and iron according to claim 1. Using a binary alloy that is an alloy of copper and iron made by adding cobalt, nickel, manganese, and chromium as a trace additive, and fixing or insulating the insulator in a certain direction or unspecified direction. The electromagnetic shielding member solidified in (1) is an electromagnetic shielding member formed by sandwiching a binary alloy, which is an alloy of linear copper and iron, with a resin film, or solidifying with resin to form an electromagnetic shielding member. It can be used for electromagnetic wave leakage, prevention, electromagnetic shielding by forming an indefinite shape cover, or an electromagnetic shielding curtain, or a wall of a shield room. Further, a binary alloy that is an alloy of copper and iron can be drawn from the outer peripheral portion and processed to be grounded.

請求項12に記載された請求項1から請求項3において、線引き加工した当該銅と鉄の合金である二元合金を用いて、あるいは前記銅と鉄の合金である二元合金に微量添加物として、コバルト、ニッケル、マンガン、クロムを加えて造られた銅鉄合金二元合金を使用し、前記線引きした線材を等長あるいは非等長に寸断に、等方向あるいは規則性を持って配列し、あるいは規則性を持たせず絶縁体のなかに一定方向、または不特定方向に固定あるいは絶縁体で固めた電磁遮蔽部材は、外部へ放射される電磁波の偏波に合わせ、あるいは周波数特性を得るために線材を等長に裁断して、規則性を持って配列したもの、あるいは電磁波の偏波によらず、あるいは周波数特性を持たないように、非等長に寸断あるいは規則性を持たせず配列し、電磁遮蔽する部材である。又、それらの電磁遮蔽部材を重ねて使用するものである。  The trace additive according to any one of claims 1 to 3, wherein the binary alloy which is an alloy of copper and iron drawn or is used for the binary alloy which is an alloy of copper and iron. As a copper-iron alloy binary alloy made by adding cobalt, nickel, manganese, and chrome, the drawn wire is cut into equal lengths or non-equal lengths, and arranged in the same direction or with regularity. Or an electromagnetic shielding member that is fixed in a certain direction or in a non-specific direction without being regular, or fixed with an insulating material, adjusts to the polarization of electromagnetic waves radiated to the outside, or obtains frequency characteristics. Therefore, the wire rods are cut into equal lengths and arranged with regularity, or do not depend on the polarization of electromagnetic waves, or have non-equal lengths or regularity so as not to have frequency characteristics. Array and electromagnetic It is a member that 蔽. Further, these electromagnetic shielding members are used in an overlapping manner.

又、通常的な電磁遮蔽では、電気的接地を行いより完全な電磁遮蔽を行うのであるが、その場合、接地工事の終端部を銅製のアースバーや、銅製のアース棒を用いるが、銅は、ネジ加工した場合、強度が弱く、より締め付けを要する構造物に適さない。又、アース棒は地中に打ち込み接地抵抗を下げるものであるが、銅は、強度が弱いため、打ち込み作業中に曲がりなどの変形が生じ、再度別のアース棒に交換する必要性が生じるなどの不具合があった。そこで、請求項13に記載した請求項11において、等間隔に導電率の良い導体あるいは、前記銅と鉄の合金である二元合金を用いて、あるいは前記銅と鉄の二元合金に微量添加物として、コバルト、ニッケル、マンガン、クロムを加えて造られた銅鉄合金二元合金を使用した線によりアース線、アースバーあるいはアース棒による接地を設けることで、より完全なる電磁遮蔽を行う遮蔽部材が得られる。
この場合、前記電磁遮蔽部材とアース線、アースバーあるいはアース棒との結合は、銅に比較し、強度を確保できるネジ止めや溶接、ロウ付けいずれもが容易に行い得る。
In addition, in ordinary electromagnetic shielding, electrical grounding is performed and more complete electromagnetic shielding is performed.In this case, the grounding work is terminated with a copper ground bar or a copper grounding rod. When threaded, the strength is weak and it is not suitable for structures that require more tightening. Also, the earthing rod is driven into the ground to lower the grounding resistance, but copper is weak in strength, so deformation such as bending occurs during the driving operation, and it becomes necessary to replace it with another earthing rod. There was a bug. Therefore, in claim 11 according to claim 13, a small amount is added to a conductor having good conductivity at equal intervals or a binary alloy that is an alloy of copper and iron, or to the binary alloy of copper and iron. A shield member that provides more complete electromagnetic shielding by providing grounding with a grounding wire, grounding bar or grounding rod with a wire using a copper-iron alloy binary alloy made by adding cobalt, nickel, manganese, and chromium as an object Is obtained.
In this case, the electromagnetic shielding member and the ground wire, the ground bar, or the ground bar can be easily connected to each other by screwing, welding, or brazing that can ensure strength compared to copper.

更に、請求項14の記載の如く、請求項12において、寸断長さを最小化し、粉末化したものを絶縁体ないしは、織物、プラスチックシート、不織布に付着加工あるいは混入固化し電磁遮蔽を行う部材を得ることができる。これにより、シールドルームの壁材、電波暗室の電波吸収部材、あるいは電磁遮蔽カーテンや、電磁遮蔽覆い材が得られる。  Furthermore, as described in claim 14, in claim 12, the member that performs electromagnetic shielding by minimizing the length of cut and adhering or mixing the powdered material to an insulator, woven fabric, plastic sheet, or non-woven fabric. Obtainable. Thereby, the wall material of a shield room, the electromagnetic wave absorption member of an anechoic chamber, an electromagnetic shielding curtain, or an electromagnetic shielding covering material is obtained.

又、請求項15の記載は、請求項4において、前記銅と鉄の合金である二元合金を用いて、あるいは前記銅と鉄の合金である二元合金に微量添加物として、コバルト、ニッケル、マンガン、クロムを加えて造られた銅鉄合金二元合金を使用した板のバネ性を利用し、バネとしての復元力を利用して、塑性変形させる特定あるいは不特定多数の力点を設け、表面を変形させることで、表面の電磁波反射角度を選べる電磁遮蔽部材である。 銅と鉄の二元合金はその良好なバネ性が利用できる。前記バネ性による元も形状への復元力を利用し、必要に応じた形状に変形するが、被電磁遮蔽物の形状が入れ替わり変化する場合でも、元の形状に復元できる電磁遮蔽覆い材が得られる。  Further, the description of claim 15 is the use of cobalt or nickel as a trace additive in claim 4 using a binary alloy that is an alloy of copper and iron, or a binary alloy that is an alloy of copper and iron. Using the spring property of the plate using a copper-iron alloy binary alloy made by adding manganese and chromium, using the restoring force as a spring, providing a number of specific or unspecified force points to plastically deform, It is an electromagnetic shielding member in which the surface electromagnetic wave reflection angle can be selected by deforming the surface. The good spring property can be used for binary alloys of copper and iron. The original shape due to the spring property is also transformed into a shape as necessary using the restoring force to the shape, but even when the shape of the electromagnetic shielding object is changed and changed, an electromagnetic shielding covering material that can be restored to the original shape is obtained. It is done.

電波暗室やシールドルーム、あるいは特定波長の電磁波に対しての無反射面の構成を請求項16に記載した。請求項10から請求項13において、前記銅と鉄の合金である二元合金を用いて、あるいは前記銅と鉄の二元合金に微量添加物として、コバルト、ニッケル、マンガン、クロムを加えて造られた銅鉄合金二元合金を使用した線のバネ性を利用し、バネとしての復元力を利用して、無反射特性の波長可変を可能とした無反射壁部材が得られる。例えば一定周期で前記電波吸収体あるいはシート状の電波吸収体を周期的に変形させるアクチェータを設け変形させるあるいは、構造物に吸着させることによって、特定周波数の電波無反射構造を形成できる。  The configuration of an anechoic chamber, a shield room, or a non-reflecting surface with respect to an electromagnetic wave having a specific wavelength is described in claim 16. In Claim 10 thru | or 13, using the binary alloy which is the said alloy of copper and iron, or adding said cobalt and iron binary alloy as a trace amount additive, adding cobalt, nickel, manganese, and chromium. By utilizing the spring property of the wire using the obtained copper-iron alloy binary alloy, a non-reflective wall member capable of changing the wavelength of the non-reflective characteristic is obtained by utilizing the restoring force as a spring. For example, an electromagnetic wave non-reflective structure with a specific frequency can be formed by providing an actuator that periodically deforms the radio wave absorber or the sheet-like radio wave absorber at a constant period, or by adsorbing it to a structure.

前記銅と鉄の二元合金を薄板状に圧延、鍛造加工を加え、あるいは線状に線引き加工を加え、あるいは線状の前記銅と鉄の二元合金を網状に編むあるいは、線引き加工したものを一定長あるいは不定長さに裁断し、これを樹脂で等間隔あるいは規則性無く固めるあるいは、接着し、電界及び磁界の遮蔽効率の高い電磁遮蔽を実現することが出来る。又、鍛造方向を同一方向に重ね、又は直交させてあるいは鍛造方向を異方位で二枚以上貼り合せることによって、更に電界及び磁界の遮蔽効率の高い電磁遮蔽を実現することが出来る。又、微細に切断あるいは粉末状にして、誘電体に混ぜ、固化させることによって、電波吸収体も形成できる。  The copper-iron binary alloy is rolled into a thin plate, forged, or wire-drawn, or the wire-like copper-iron binary alloy is knitted or drawn. Can be cut into a certain length or indefinite length, and this can be hardened or bonded with resin at regular intervals or regularity to achieve electromagnetic shielding with high electric field and magnetic field shielding efficiency. Also, electromagnetic shielding with higher electric field and magnetic field shielding efficiency can be realized by overlapping the forging directions in the same direction, or by making two or more forging directions different in orientation. A radio wave absorber can also be formed by finely cutting or powdering, mixing with a dielectric, and solidifying.

前記電界及び磁界の遮蔽効率の高い電磁遮蔽を実現したことにより、従来に比較し、小型、軽量化された電磁遮蔽した電子回路、電子応用装置、シールドルーム、医療設備を低価格で実現することが可能となった。  By realizing electromagnetic shielding with high electric field and magnetic field shielding efficiency, it is possible to realize electronically shielded electronic circuits, electronic application devices, shield rooms, and medical equipment that are smaller and lighter than conventional ones at a low price. Became possible.

本発明の実施の形態を図に基づいて説明する。図1は本発明に関する薄板加工した銅と鉄の合金製の電磁遮蔽部材の各周波数における電界遮蔽特性を測定した結果である。CFA90は銅90%鉄10%の銅鉄二元合金電界遮蔽部材1であり、厚さを0.1mmに鍛造加工後に圧延加工した薄板状の電磁遮蔽部材であり、圧延方向をX軸とみて電磁波シールド・吸収材評価システム図9によって測定したものである。銅鉄二元合金を重ね使用による電界遮蔽部材2は、CFA90の0.1mm厚薄板を圧延方向に2枚揃えて重ね電界遮蔽部材としたものと、CFA90の0.1mm厚薄板を一枚は圧延方向に、更にもう一枚は、圧延方向に対し直交する方向に重ねて得た電界遮蔽部材と、CFA50は、銅50%鉄50%の銅鉄二元合金電界遮蔽部材であり、厚さを0.07mmとして、圧延方向に対し直交する方向に二枚を重ねて得た電界遮蔽部材の3種を電磁波シールド・吸収材評価システム図9によって同時測定し得た結果である。図1から解かるとおり、70MHz以上の周波数で、銅鉄二元合金電界遮蔽部材1単一枚数のものと、銅鉄二元合金を重ね使用による電界遮蔽部材2とでは、圧延方向に寄らず、二枚重ねの方が良好な電界遮蔽特性を示し、電界遮蔽部材2は3種とも略同一レベルの電界遮蔽特性を示すことがわかる。従って、電界遮蔽については、重ね合わせ効果が特に重要である。  Embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows the results of measuring the electric field shielding characteristics at each frequency of an electromagnetic shielding member made of a copper and iron alloy processed into a thin plate according to the present invention. CFA90 is a copper-iron binary alloy electric field shielding member 1 of 90% copper and 10% copper, and is a thin plate-like electromagnetic shielding member which is rolled after forging to a thickness of 0.1 mm. The shield / absorber evaluation system is measured by FIG. The electric field shielding member 2 by using the copper-iron binary alloy is used as a laminated electric field shielding member by aligning two 0.1 mm thick thin plates of CFA90 in the rolling direction, and one sheet of 0.1 mm thick thin plate of CFA90 is rolled. And another one is an electric field shielding member obtained by overlapping in a direction orthogonal to the rolling direction, and CFA50 is a copper-iron binary alloy electric field shielding member made of 50% copper and 50% iron, and has a thickness of 0. It is a result obtained by simultaneously measuring three types of electric field shielding members obtained by overlapping two sheets in a direction orthogonal to the rolling direction as 0.07 mm using the electromagnetic wave shielding / absorbing material evaluation system FIG. As can be seen from FIG. 1, at a frequency of 70 MHz or more, a single copper-iron binary alloy electric field shielding member 1 and an electric field shielding member 2 obtained by overlapping use of a copper-iron binary alloy do not depend on the rolling direction, but two layers are stacked. It shows that the electric field shielding characteristic is better, and the electric field shielding member 2 shows substantially the same level of electric field shielding characteristic for all three types. Therefore, the overlay effect is particularly important for electric field shielding.

図2で、本発明による薄板加工した各種銅鉄二元合金の各周波数における電界遮蔽効果を厚さ12μmのアルミ箔と比較したものである。図1と同様合金の銅鉄混合配分は、電界遮蔽において差が生じないことがわかる。一方図3に示す本発明の例では、金属成分の銅鉄比率及び、圧延方向と直交する重ね合わせの電磁遮蔽効果において、大きく寄与することを示す。  In FIG. 2, the electric field shielding effect at each frequency of various copper-iron binary alloys processed into a thin plate according to the present invention is compared with an aluminum foil having a thickness of 12 μm. It can be seen that the copper-iron mixed distribution of the alloy as in FIG. 1 does not cause a difference in electric field shielding. On the other hand, the example of the present invention shown in FIG. 3 shows that it greatly contributes to the copper-iron ratio of the metal component and the electromagnetic shielding effect of superposition perpendicular to the rolling direction.

図4に本発明による薄板加工した銅鉄二元合金の各周波数における磁気遮蔽効果を示す。磁気遮蔽効果においては、銅鉄二元合金の圧延方向に直交し重ね合わせたことにより、著しい遮蔽効果改善が得られ、二倍の厚さの比較銅板に対し、1MHz以上1GHzの周波数範囲において、約30db近い遮蔽効果の改善が得られることがわかる。ここでは、CFA90の厚さ0.1mmの薄板を圧延方向に対して、直交方向に重ね合わせたものが、銅板0.2mmに比較し、1MHz以上の周波数領域において、磁気遮蔽効果が約30db高いことを示す。  FIG. 4 shows the magnetic shielding effect at each frequency of the copper-iron binary alloy processed into a thin plate according to the present invention. In the magnetic shielding effect, a significant improvement in shielding effect is obtained by superimposing the copper-iron binary alloy in a direction perpendicular to the rolling direction, and in a frequency range of 1 MHz to 1 GHz, about 2 times the comparison copper plate. It can be seen that an improvement of the shielding effect close to 30 db can be obtained. Here, a thin CFA 90 sheet having a thickness of 0.1 mm is overlapped in a direction perpendicular to the rolling direction, and the magnetic shielding effect is higher by about 30 db in a frequency region of 1 MHz or more than a copper sheet of 0.2 mm. It shows that.

図5においては、本発明による薄板加工した銅鉄二元合金の各周波数における磁気遮蔽効果を示す。CFA50の0.07mm厚さの薄板を圧延方向に対し直交して重ねた場合、図4で使用したCFA90の厚さ0.1mmの薄板に比較して、周波数2MHz以上について、10db程度劣ることがわかる。  In FIG. 5, the magnetic shielding effect in each frequency of the copper-iron binary alloy by which the thin plate process by this invention was carried out is shown. When a thin plate of CFA50 having a thickness of 0.07 mm is stacked perpendicular to the rolling direction, it may be inferior by about 10 db at a frequency of 2 MHz or more compared to the thin plate of CFA90 having a thickness of 0.1 mm used in FIG. Recognize.

図6において、本発明による薄板加工した銅鉄二元合金の600倍の顕微鏡写真を示す。写真の中で黒い横縞状の鉄共晶が圧延方向に伸びていることが解かる。
この縞状の鉄共晶は、圧延加工の加工率を上げることにより縞も圧延方向に伸びることになる。
FIG. 6 shows a 600 × micrograph of a thin sheet-processed copper-iron binary alloy according to the present invention. It can be seen in the photograph that the black elongate iron eutectic extends in the rolling direction.
In the striped iron eutectic, the stripes also extend in the rolling direction by increasing the processing rate of the rolling process.

図7において、本発明による電磁波の水平偏波の模式図であり、伝播方向に対し、直角に伝播を阻止する形態で電磁遮蔽部材を置いた場合の共晶の圧延による伸びの方向の配置を示す。高周波磁界は、銅の中にある鉄の共晶により、消耗し、遮蔽効果を得ることが出来ている。  In FIG. 7, it is a schematic diagram of the horizontally polarized wave of the electromagnetic wave according to the present invention, the arrangement of the direction of elongation by eutectic rolling when the electromagnetic shielding member is placed in a form that prevents propagation at right angles to the propagation direction. Show. The high frequency magnetic field is consumed by the eutectic of iron in copper, and a shielding effect can be obtained.

図9に本発明の電磁シールド効果の測定に使用した電磁波シールド・吸収材評価システム構成を示す。ネットワークアナライザ26は、可変周波電磁波を発信し、高周波送信ケーブル27を経由し、高周波導波器28に送る。被測定電磁遮蔽部材30は、両面を測定用金属マスク材29によって挟み、測定領域を設定すると同時に、電磁波の漏洩を防止するため圧接し、更に必要に応じボルトによって締め付ける構造となっている。被測定電磁遮蔽部材30を通過した前記可変周波電磁波は、下側の高周波検出プローブ及び導波器31によって受信し、高周波検出側ケーブル32によって、ネットワークアナライザ26の入力として、漏洩電磁波を検出する。  FIG. 9 shows the configuration of an electromagnetic shielding / absorbing material evaluation system used for measuring the electromagnetic shielding effect of the present invention. The network analyzer 26 transmits a variable frequency electromagnetic wave and sends it to the high frequency director 28 via the high frequency transmission cable 27. The electromagnetic shielding member 30 to be measured has a structure in which both surfaces are sandwiched between measurement metal mask materials 29 to set a measurement region, and at the same time, are pressed against each other to prevent leakage of electromagnetic waves, and further tightened with bolts as necessary. The variable frequency electromagnetic wave that has passed through the electromagnetic shielding member 30 to be measured is received by the lower high-frequency detection probe and waveguide 31, and the leaked electromagnetic wave is detected as an input of the network analyzer 26 by the high-frequency detection cable 32.

以下に本発明の実施例を挙げて説明する。Examples of the present invention will be described below.

本発明で用いる銅及び鉄の合金である二元合金は、電界銅と純鉄を高周波炉により、高周波加熱する溶解法により母合金を作製する。本発明の実施に当たっては、100KW高周波炉を使用した。
又、前記溶解法による銅鉄合金には、前記銅と鉄の二元合金に微量添加物として、コバルト、ニッケル、マンガン、クロムを加えることによって、より透磁率を高め、磁気遮蔽材料としての効果を高めることができた。
溶解に当たっては、電磁遮蔽部材の諸要件に合わせ、銅と鉄の混合比率を設定する。例えば、電磁遮蔽部材であり、且つ放熱部材であり、剛性を要する構造材として用いる電磁遮蔽部材である場合、銅50%、鉄50%のCFA50とするのが良い。
造られた銅と鉄からなる合金である二元合金は、焼結金属による母材と異なり、脆さが無く、容易に熱間圧延にて板状、丸棒状に加工できる。
The binary alloy, which is an alloy of copper and iron used in the present invention, produces a mother alloy by a melting method in which electrolytic copper and pure iron are heated at a high frequency in a high frequency furnace. In carrying out the present invention, a 100 KW high frequency furnace was used.
In addition, the copper-iron alloy produced by the melting method can be further improved in magnetic permeability by adding cobalt, nickel, manganese, and chromium as trace additives to the binary alloy of copper and iron, and the effect as a magnetic shielding material. I was able to increase.
In melting, the mixing ratio of copper and iron is set in accordance with various requirements of the electromagnetic shielding member. For example, in the case of an electromagnetic shielding member that is an electromagnetic shielding member and a heat radiating member and is used as a structural material that requires rigidity, the CFA 50 may be 50% copper and 50% iron.
Unlike the base metal made of sintered metal, the binary alloy that is an alloy made of copper and iron is not brittle and can be easily processed into a plate shape or a round bar shape by hot rolling.

前記溶解法による銅鉄合金あるいは前記銅と鉄の二元合金に微量添加物として、コバルト、ニッケル、マンガン、クロムを加えて造られた銅と鉄の合金を熱間圧延にて板状、丸棒状に加工にものを更に、冷間板加工、棒状加工、線引き加工を施し、板状、棒状、線状の電磁遮蔽材料となる素材金属を得ることができた。  Copper and iron alloys made by adding cobalt, nickel, manganese, and chromium as trace additives to the copper-iron alloy by the melting method or the binary alloy of copper and iron are formed into a plate, round shape by hot rolling. In addition, the material was further processed into a rod shape, and cold plate processing, rod shape processing, and wire drawing processing were performed to obtain a material metal that would be a plate-shaped, rod-shaped, or linear electromagnetic shielding material.

次に、前記溶解法による銅鉄合金あるいは前記銅と鉄の二元合金に微量添加物として、コバルト、ニッケル、マンガン、クロムを加えて造られた銅と鉄に合金である二元合金を熱間圧延にて板状、丸棒状に加工にものを更に、冷間板加工、棒状加工、線引き加工を施し、板状、棒状、線状の電磁遮蔽部材となる素材金属を温度300℃から450℃で熱処理し、急冷し、電磁遮蔽部材を得る。  Next, as a trace additive to the copper-iron alloy by the melting method or the binary alloy of copper and iron, a binary alloy that is an alloy of copper and iron made by adding cobalt, nickel, manganese, and chromium is heated. The material processed into plate-shaped, round bar-shaped by cold rolling is further subjected to cold plate processing, rod-shaped processing, and wire drawing processing, and the material metal that becomes the plate-shaped, rod-shaped, line-shaped electromagnetic shielding member is heated from 300 to 450 ° C. Heat treatment at 0 ° C. and rapid cooling to obtain an electromagnetic shielding member.

実施例では、銅50%、鉄50%のCFA50、銅70%、鉄30%のCFA70、銅90%、鉄10%のCFA90を作製し、厚さを0.1mm、0.07mmとして図9に示す電磁波シールド・吸収材評価システムにより評価した。図4又は図5から0.2mm厚さの銅板とCFA50、CFA90と比較し、高い電磁遮蔽効果を示すことがわかる。図6において、銅と鉄の合金である二元合金の顕微鏡写真を示す。図6から圧延時に鉄の共晶が圧延方向に伸張させられ伸びていることがわかる。従って、この共晶の鉄が交番磁界に対し、抵抗となり、熱として消耗され、磁場の遮蔽効果を示す。
一方、この銅と鉄の合金である二元合金を共晶の伸張方向に対して、直交方向あるいは、共晶の方向をずらして重ね使用することで、電磁界の遮蔽を一層効果的に行える。
図7や図8の模式図で示される構造で、銅と鉄の合金である二元合金重ね電磁遮蔽効果を確認したものが、図1、図2、図3、図4、図5である。
図1おいて、銅と鉄の合金である二元合金の重ね使用による100MHz以上の高周波領域において、高周波電界の遮蔽効果が著しいことがわかる。同様に、図2において、アルミ箔に比較し、銅と鉄の合金である二元合金が高周波電界の遮蔽効果が確認できる。又、磁気遮蔽効果について、単一枚数、複数枚数、鉄共晶の圧延伸張方向別の重ね使用効果が図3、図4、図5において、確認できる。
これらの電磁遮蔽効果を利用し、電磁遮蔽をする方法あるいは電磁遮蔽部材とすることで、従来では得られなかった電磁遮蔽が実現できるようになったが、更に、遮蔽を完全に密閉した空間におくことによる、被遮蔽物から発生する熱の放熱についても、熱伝導率の高い銅と鉄の合金である二元合金に利用により、必要に応じて放熱フィンを設けることで、解消できた。
電磁遮蔽効果が高いため、従来部材よりも薄い材料の使用が可能となり、結果、小型軽量化にも効果があり、経済性の改善も合わせ持つことが出来た。
銅と鉄の合金である二元合金の利用により、電磁遮蔽効率の改善と共に、被電磁遮蔽物を密閉したことによる放熱の問題の解決、又、線状あるいは網状の電磁遮蔽が低コストで利用できるようになった。
又、線状の銅と鉄の合金である二元合金を裁断、粉体上に加工し、電磁界の遮蔽に留まることなく、電波吸収材としても利用ができる。
In the example, CFA 50 of 50% copper, 50% iron, 70% copper, CFA 70 of 30% iron, 90% copper and 10% CFA 90 of iron were produced, and the thickness was 0.1 mm and 0.07 mm. The electromagnetic wave shielding / absorbing material evaluation system shown in FIG. It can be seen from FIG. 4 or FIG. 5 that a high electromagnetic shielding effect is exhibited as compared with a copper plate having a thickness of 0.2 mm and CFA50 and CFA90. In FIG. 6, the microscope picture of the binary alloy which is an alloy of copper and iron is shown. It can be seen from FIG. 6 that the eutectic of iron is elongated in the rolling direction during rolling. Therefore, this eutectic iron becomes a resistance against the alternating magnetic field, is consumed as heat, and exhibits a magnetic field shielding effect.
On the other hand, the binary alloy, which is an alloy of copper and iron, can be used more effectively by shielding the electromagnetic field by using the binary alloy in an orthogonal direction or by shifting the eutectic direction. .
FIGS. 1, 2, 3, 4, and 5 have been confirmed to have a binary alloy overlap electromagnetic shielding effect, which is an alloy of copper and iron, in the structure shown in the schematic diagrams of FIGS. .
In FIG. 1, it can be seen that the shielding effect of the high-frequency electric field is remarkable in a high-frequency region of 100 MHz or higher due to the use of a binary alloy which is an alloy of copper and iron. Similarly, in FIG. 2, the binary alloy which is an alloy of copper and iron can confirm the shielding effect of a high frequency electric field compared with an aluminum foil. In addition, with respect to the magnetic shielding effect, the effect of using a single sheet, a plurality of sheets, and the iron eutectic in each rolling extension direction can be confirmed in FIG. 3, FIG. 4, and FIG.
By using these electromagnetic shielding effects and using electromagnetic shielding methods or electromagnetic shielding members, it became possible to realize electromagnetic shielding that was not obtained in the past. The heat radiation generated by the shielded object can also be eliminated by providing heat radiation fins as necessary by using a binary alloy which is an alloy of copper and iron having a high thermal conductivity.
Since the electromagnetic shielding effect is high, it is possible to use a material thinner than that of the conventional member. As a result, it is effective in reducing the size and weight, and the economic efficiency can be improved.
Use of a binary alloy, which is an alloy of copper and iron, improves electromagnetic shielding efficiency, solves heat dissipation problems by sealing the electromagnetic shielding object, and uses linear or mesh electromagnetic shielding at low cost I can do it now.
In addition, a binary alloy which is a linear copper-iron alloy is cut and processed on a powder, so that it can be used as a radio wave absorber without being limited to electromagnetic field shielding.

平板加工した銅と鉄の合金である二元合金は、必要な寸法又は形状に切断あるいは曲げ加工し、同じく薄板であればロール巻きの状態から、型押し、曲げ、切断加工ののち、電磁遮蔽を要する電子回路や、電子設備に覆いとして電磁遮蔽材として用いることが出来る。又、集積回路の放熱部に直接あるいは絶縁物を解して接触させ、電磁遮蔽と放熱フィンの共用も出来る。例えば、DC−DCコンバータなどのような電磁界を伴う回路の電磁遮蔽に利用できる。
又、シールドルームであれば、壁に平板を逐次貼り付け、あるいは隣接部を溶接、鑞付け、ネジ止めにより、壁に貼り付けることにより、シールドルームの壁として、電磁遮蔽効率の高いシールド壁として利用できる。
例えば、放送局の電磁遮蔽壁やオフィスビルの無線LAN使用時の電磁遮蔽などに利用できる。
又、銅鉄二元合金を線状にしたものを、樹脂で必要な厚さに固め、あるは、フィルム状の樹脂、合成樹脂に挟み、あるいは、絶縁物に編み込んでカーテン状の電磁遮蔽物として利用できる。
又、網状に編んだ線状の銅鉄二元合金を使用に、不定形の被電磁遮蔽物あるいは、不定形のシールドスペースの構築ができる。
更に、上記の利用において、鉄共晶の伸びた方向に対して、直角方向にあるいは、方向をずらして重ね、電磁遮蔽効果を高め利用することができる。
このようにして利用すれば、医療分野のテレメータや、外部あるいは内部の電磁遮蔽が容易に利用できる。
又、細く線引きした銅鉄二元合金を使用して、これを短く切断し、セメントや、樹脂で固め、電波吸収材としても、使用できる。
Binary alloys, which are copper and iron alloys that have been processed into flat plates, are cut or bent to the required dimensions or shape. If they are also thin, they are electromagnetically shielded after rolling, embossing, bending, and cutting. It can be used as an electromagnetic shielding material as a cover for an electronic circuit or electronic equipment that requires the Also, the electromagnetic shielding and the radiation fin can be shared by contacting the heat radiation part of the integrated circuit directly or through an insulator. For example, it can be used for electromagnetic shielding of a circuit with an electromagnetic field such as a DC-DC converter.
If it is a shield room, a flat plate is attached to the wall sequentially, or the adjacent part is welded, brazed, and attached to the wall by screwing, so that it becomes a shield room wall and a shield wall with high electromagnetic shielding efficiency. Available.
For example, it can be used for electromagnetic shielding walls in broadcasting stations or electromagnetic shielding when using wireless LAN in office buildings.
Also, a linear copper-iron alloy is hardened to the required thickness with a resin, or it is sandwiched between a film-like resin or a synthetic resin, or braided into an insulator as a curtain-like electromagnetic shield. Available.
Further, by using a linear copper-iron binary alloy knitted in a net shape, it is possible to construct an irregular electromagnetic shield or an irregular shield space.
Furthermore, in the above utilization, the electromagnetic shielding effect can be enhanced and utilized by overlapping in a direction perpendicular to the extending direction of the iron eutectic or by shifting the direction.
If used in this way, telemeters in the medical field and external or internal electromagnetic shielding can be easily used.
Moreover, it can be used as a radio wave absorber by thinly drawing a copper-iron binary alloy, cutting it short and hardening it with cement or resin.

本発明による薄板加工した銅鉄二元合金の各周波数における電界遮蔽効果を示す。電界遮蔽効果においては、薄板の重ね使用するものの効果が大きい。The electric field shielding effect in each frequency of the copper-iron binary alloy by which the thin plate process by this invention was carried out is shown. In the electric field shielding effect, the effect of using thin plates in a stacked manner is great. 本発明による薄板加工した銅鉄二元合金の各周波数における電界遮蔽効果を厚さ12μmのアルミ箔と比較したものである。The electric field shielding effect in each frequency of the copper-iron binary alloy by which the thin plate process by this invention was carried out is compared with the 12-micrometer-thick aluminum foil. 本発明による薄板加工した銅鉄二元合金の各周波数における磁気遮蔽効果を表したものである。電界遮蔽効果とことなり、薄板加工した銅鉄二元合金の圧延方向、それと直交方向の重ね合わせ磁気遮蔽効果について優れていることがわかる。Fig. 4 shows a magnetic shielding effect at each frequency of a thin copper alloy binary alloy according to the present invention. Unlike the electric field shielding effect, it can be seen that the laminated magnetic shielding effect in the rolling direction of the copper-iron binary alloy processed into a thin plate and the direction perpendicular thereto is excellent. 本発明による薄板加工した銅鉄二元合金の各周波数における磁気遮蔽効果を示す。CFA90の厚さ0.1mmの薄板を圧延方向に対して、直交方向に重ね合わせたものが、銅板0.2mmに比較し、1MHz以上の周波数領域において、磁気遮蔽効果が高いことを示す。The magnetic shielding effect in each frequency of the copper-iron binary alloy by which the thin plate process by this invention was carried out is shown. A CFA90 thin plate with a thickness of 0.1 mm overlapped in the direction perpendicular to the rolling direction shows a higher magnetic shielding effect in a frequency region of 1 MHz or higher compared to a copper plate of 0.2 mm. 本発明による薄板加工した銅鉄二元合金の各周波数における磁気遮蔽効果を示す。CFA50の0.07mm厚さの薄板を圧延方向に対し直交して重ねた場合、図4で使用したCFA90の厚さ0.1mmの薄板に比較して、周波数2MHz以上について、10db程度劣ることがわかる。The magnetic shielding effect in each frequency of the copper-iron binary alloy by which the thin plate process by this invention was carried out is shown. When a thin plate of CFA50 having a thickness of 0.07 mm is stacked perpendicular to the rolling direction, it may be inferior by about 10 db at a frequency of 2 MHz or more compared to the thin plate of CFA90 having a thickness of 0.1 mm used in FIG. Recognize. 本発明による薄板加工した銅鉄二元合金の600倍の顕微鏡写真を示す。黒い横縞状の鉄共晶が圧延方向に伸びていることが解かる。1 shows a 600 × micrograph of a thin sheet processed copper-iron binary alloy according to the present invention. It can be seen that the black horizontal stripe iron eutectic extends in the rolling direction. 本発明による電磁波の水平偏波の伝播方向に対し、直角に伝播を阻止する形態で電磁遮蔽部材を置いた場合の共晶の圧延による伸びの方向の配置を示す。The arrangement | positioning of the direction of the expansion | extension by eutectic rolling at the time of setting an electromagnetic shielding member in the form which blocks | prevents propagation at right angle with respect to the propagation direction of the horizontal polarization of the electromagnetic wave by this invention is shown. 銅と鉄の合金である二元合金の平板を圧延方向のものと圧延方向に直交する方向に一枚、更に圧延方向のものを三枚めとして重ねた電磁遮蔽部材である。This is an electromagnetic shielding member in which a flat plate of a binary alloy, which is an alloy of copper and iron, is overlapped with one in the rolling direction and one in the direction perpendicular to the rolling direction, and the third in the rolling direction. 本発明の電磁シールド効果を測定に使用した電磁波シールド・吸収材評価システムである。It is an electromagnetic shielding / absorbing material evaluation system using the electromagnetic shielding effect of the present invention for measurement.

符号の説明Explanation of symbols

1:銅90%鉄10%の銅鉄二元合金電界遮蔽部材
2:銅鉄二元合金を重ね使用による電界遮蔽部材
3:アルミ箔電界遮蔽部材
4:銅鉄二元合金電界遮蔽部材
5:0.1ミリ厚の銅鉄二元合金遮蔽部材
6:圧延方向と直交方向に重ね使用による磁気遮蔽部材
7:圧延方向と同一方向に重ね使用による磁気遮蔽部材
8:銅50%鉄50%で圧延方向に重ね使用による磁気遮蔽部材
9:銅90%鉄10%で圧延方向を十字に重ね使用による磁気遮蔽部材
10:銅50%鉄50%で圧延方向を十字に重ね使用による磁気遮蔽部材
11:銅50%鉄50%で圧延方向を十字に三枚重ね使用による磁気遮蔽部材
12:0.2ミリ厚の銅板の磁気遮蔽部材
13:銅90%鉄10%で圧延方向磁気遮蔽部材
14:銅90%鉄10%で圧延方向と直交する方向の磁気遮蔽部材
15:銅90%鉄10%で圧延方向を十字に重ね使用による磁気遮蔽部材
16:0.2ミリ厚の銅板の磁気遮蔽部材
17:銅90%鉄10%で圧延方向磁気遮蔽部材
18:銅90%鉄10%で圧延方向と直交する方向の磁気遮蔽部材
19:銅50%鉄50%で圧延方向を十字に重ね使用による磁気遮蔽部材
20:圧延方向の鉄共晶の分布する電磁遮蔽部材
21:圧延方向と直交する鉄共晶の分布する電磁遮蔽部材
22:圧延方向の鉄共晶の分布する電磁遮蔽部材への水平偏波入射
23:圧延方向と直交する鉄共晶分布の電磁遮蔽部材への水平偏波入射
24:電磁波の水平偏波模式図
25:三枚重ねの電磁遮蔽部材
26:ネットワークアナライザ
27:高周波送信ケーブル
28:高周波導波器
29:測定用マスク材
30:被測定電磁遮蔽部材
31:高周波検出プローブ及び導波器
32:高周波検出側ケーブル
1: Copper 90% iron 10% copper iron binary alloy electric field shielding member 2: Electric field shielding member 3 by use of overlapping copper iron binary alloy 3: Aluminum foil electric field shielding member 4: Copper iron binary alloy electric field shielding member 5: 0.1 Milli-thick copper-iron binary alloy shielding member 6: Magnetic shielding member 7 used by overlapping in the direction perpendicular to the rolling direction 7: Magnetic shielding member 8 used by overlapping in the same direction as the rolling direction 8: 50% copper and 50% iron stacked in the rolling direction Magnetic shielding member 9 by use: 90% copper, 10% iron and rolling direction stacked in a cross manner Magnetic shielding member 10: 50% copper 50% iron, rolling direction superimposed in a cross shape 11 Magnetic shielding member 11 by use: 50% copper Magnetic shielding member 12 by using three layers of rolling in a cross shape with iron 50%: 0.2 mm thick copper plate 13: 90% copper 10% iron and rolling direction magnetic shielding member 14: 90% copper 10% direction perpendicular to rolling direction Magnetic shielding member 15: Magnetic shielding member 16 by using 90% copper and 10% iron and rolling directions in a cross shape: Magnetic shielding member 16 made of 0.2 mm thick copper plate 17: Magnetic shielding member with 90% copper and 10% iron in the rolling direction 18: Magnetic shielding member in a direction orthogonal to the rolling direction with 90% iron and 10% copper. 19: Magnetic shielding member by using 50% copper and 50% iron in a cross in a rolling direction. 20: Distribution of iron eutectic in the rolling direction. Electromagnetic shielding member 21: Electromagnetic shielding member in which iron eutectic perpendicular to the rolling direction is distributed 22: Horizontally polarized light incident on the electromagnetic shielding member in which iron eutectic in the rolling direction is distributed 23: Iron eutectic distribution perpendicular to the rolling direction Horizontally polarized light incident on the electromagnetic shielding member 24: Horizontal polarization schematic diagram of electromagnetic wave 25: Three-layer electromagnetic shielding member 26: Network analyzer 27: High frequency transmission cable 28: High frequency director 29: Measurement mask material 30 : Measured Magnetic shielding member 31: high-frequency detecting probe and waveguide 32: high-frequency detecting side cable

Claims (16)

溶解法により、鉄60%以上から90%以下、残りの40%未満から10%未満を電解銅の比率とした二元合金を用いて、あるいは前記銅と鉄の二元合金に微量添加物として、コバルト、ニッケル、マンガン、クロムを加えて造られた銅鉄合金である二元合金を使用することを特徴とする電磁遮蔽方法。    Using a binary alloy with an electrolytic copper ratio of 60% or more to 90% or less and the remaining less than 40% to less than 10% by the melting method, or as a trace additive to the copper / iron binary alloy An electromagnetic shielding method characterized by using a binary alloy which is a copper-iron alloy made by adding cobalt, nickel, manganese and chromium. 溶解法により、鉄30%以上から60%以下、残りの70%未満から40%未満を電解銅の比率とした二元合金を用いて、あるいは前記銅と鉄の二元合金に微量添加物として、コバルト、ニッケル、マンガン、クロムを加えて造られた銅鉄合金である二元合金を使用することを特徴とする電磁遮蔽方法。    Using a binary alloy with an electrolytic copper ratio of 30% or more to 60% or less of iron and the remaining less than 70% to less than 40% by a melting method, or as a trace additive to the copper / iron binary alloy An electromagnetic shielding method characterized by using a binary alloy which is a copper-iron alloy made by adding cobalt, nickel, manganese and chromium. 溶解法により、鉄3%以上から30%以下、残りの97%未満から70%未満を電解銅の比率とした二元合金を用いて、あるいは前記銅と鉄の二元合金に微量添加物として、コバルト、ニッケル、マンガン、クロムを加えて造られた銅鉄合金である二元合金を使用することを特徴とする電磁遮蔽方法。    Using a binary alloy with a ratio of electrolytic copper of 3% or more to 30% or less and the remaining less than 97% to less than 70% by the melting method, or as a trace additive to the copper / iron binary alloy An electromagnetic shielding method characterized by using a binary alloy which is a copper-iron alloy made by adding cobalt, nickel, manganese and chromium. 請求項1から請求項3において、銅鉄の合金である二元合金を平板または薄板加工し、被電磁遮蔽物を覆うことを特徴とする電磁遮蔽部材。    4. The electromagnetic shielding member according to claim 1, wherein a binary alloy that is an alloy of copper iron is processed into a flat plate or a thin plate to cover an electromagnetic shielding object. 請求項4において、圧延板加工時に銅と鉄の共晶体の伸張方向に伸張率を1%から70%調整し、銅の中の鉄の共晶長を可変し、電気特性を加減すること又は、前記伸張率を可変した材料平板を電磁界の入射角度に対し、直交あるいは伸張方向を斜めにずらして使用することを特徴とする電磁遮蔽部材。    In Claim 4, at the time of processing a rolled sheet, the elongation rate is adjusted from 1% to 70% in the elongation direction of the eutectic of copper and iron, the eutectic length of iron in copper is varied, and the electrical characteristics are adjusted. An electromagnetic shielding member, wherein the material flat plate having a variable expansion rate is used while being orthogonal to the incident angle of the electromagnetic field or obliquely shifted in the expansion direction. 請求項4において、圧延線引き加工時に銅と鉄の共晶体の伸張方向を伸張率1%から98%の間で調整し、銅の中の鉄の共晶長を可変し、電気特性を加減すること又は、前記伸張率を可変した線材料を直交あるいは伸張方向を斜めにずらして二枚又は複数枚重ね使用することを特徴とする電磁遮蔽部材。    5. The elongation direction of the eutectic body of copper and iron is adjusted between 1% and 98% at the time of rolling wire drawing, the eutectic length of iron in copper is varied, and electrical characteristics are adjusted. Alternatively, the electromagnetic shielding member is characterized in that two or a plurality of the wire materials having a variable expansion ratio are used in an orthogonal or obliquely shifted extension direction. 請求項1から請求項5において、圧延加工時の加工率を変え、鉄および銅の共晶の伸張長さを変え、電磁遮蔽効果の周波数特性を変えることを特徴とする電磁遮蔽部材。    6. The electromagnetic shielding member according to claim 1, wherein a processing rate at the time of rolling is changed, an extension length of an eutectic of iron and copper is changed, and a frequency characteristic of an electromagnetic shielding effect is changed. 請求項1から請求項6において、電磁遮蔽とともに機器の熱の放出を図るため、部材としてあるいは、放熱フィンを設けることを特徴とした電磁遮蔽材料。    7. The electromagnetic shielding material according to claim 1, further comprising a heat radiating fin as a member in order to release heat of the device together with the electromagnetic shielding. 請求項1から請求項7において、電気的に筐体や他の部品、構造物が鉄あるいは銅である場合、それらの構造物が銅であっても鉄であっても二元合金を用いてあるいは鉄、銅の溶接材を用いて容易に溶接することによって、接地をより確実にし、これにより、電磁遮蔽効果を高めることを特徴とした電磁遮蔽部材。    In Claim 1-7, when a housing | casing, another component, and a structure are iron or copper electrically, even if those structures are copper or iron, binary alloy is used. Or the electromagnetic shielding member characterized by making earthing more reliable by welding easily using the welding material of iron and copper, and improving the electromagnetic shielding effect by this. 請求項1から請求項3において、線引き加工した当該二元合金を用いて、あるいは前記銅と鉄の二元合金に微量添加物として、コバルト、ニッケル、マンガン、クロムを加えて造られた銅および鉄の二元合金を使用し、網状に織り込むことを特徴とする電磁遮蔽部材。    In Claims 1 to 3, copper produced by adding cobalt, nickel, manganese, chromium as a trace additive to the binary alloy obtained by drawing, or as a minor additive to the binary alloy of copper and iron, and An electromagnetic shielding member using a binary alloy of iron and woven in a net shape. 請求項1から請求項3において、線引き加工した当該二元合金を用いて、あるいは前記銅と鉄の二元合金に微量添加物として、コバルト、ニッケル、マンガン、クロムを加えて造られた銅鉄合金である二元合金を使用し、絶縁体の中に一定方向、または不特定方向に固定あるいは絶縁体で固めることを特徴とする電磁遮蔽部材。    The copper iron produced by adding cobalt, nickel, manganese, and chromium as a trace additive to the binary alloy of copper and iron, using the drawn binary alloy according to claim 1 or claim 3 An electromagnetic shielding member using a binary alloy, which is an alloy, fixed in a certain direction or in an unspecified direction in an insulator or solidified with an insulator. 請求項1から請求項3において、線引き加工した当該二元合金を用いて、あるいは前記銅と鉄の二元合金に微量添加物として、コバルト、ニッケル、マンガン、クロムを加えて造られた銅鉄合金である二元合金を使用し、前記線引きした線材を等長あるいは非等長に寸断に、一定方向あるいは規則性を持って配列し、あるいは規則性を持たせず絶縁体のなかに一定方向、または不特定方向に固定あるいは絶縁体で固めることを特徴とする電磁遮蔽部材。    The copper iron produced by adding cobalt, nickel, manganese, and chromium as a trace additive to the binary alloy of copper and iron, using the drawn binary alloy according to claim 1 or claim 3 Uses binary alloys, and the drawn wires are cut into equal lengths or unequal lengths, arranged in a certain direction or regularity, or in a certain direction in an insulator without regularity Or an electromagnetic shielding member fixed in an unspecified direction or solidified by an insulator. 請求項11において、等間隔に導電率の良い導体あるいは、前記銅と鉄の二元合金を用いて、あるいは前記銅と鉄の二元合金に微量添加物として、コバルト、ニッケル、マンガン、クロムを加えて造られた銅鉄合金二元合金を使用した線によりアース線、アースバーあるいはアース棒による接地を設けることを特徴とする電磁遮蔽部材。    In Claim 11, cobalt, nickel, manganese, chromium is used as a trace additive to a conductor with good electrical conductivity at equal intervals or the binary alloy of copper and iron, or to the binary alloy of copper and iron. In addition, an electromagnetic shielding member comprising a ground wire, a ground bar, or a ground bar provided with a wire using a copper-iron alloy binary alloy produced in addition. 請求項12において、寸断長さを最小化し、粉末化したものを絶縁体ないしは、織物、プラスチックシート、不織布に付着加工あるいは混入固化したことを特徴とする電波吸収材。    13. The radio wave absorber according to claim 12, wherein the chopped length is minimized and the powdered material is adhered or mixed and solidified on an insulator, a woven fabric, a plastic sheet, or a non-woven fabric. 請求項4において、前記銅と鉄の二元合金を用いて、あるいは前記銅と鉄の二元合金に微量添加物として、コバルト、ニッケル、マンガン、クロムを加えて造られた銅鉄合金である二元合金を使用した板のバネ性を利用し、バネとしての復元力を利用して、塑性変形させる特定あるいは不持定多数の力点を設け、表面を変形させることで、表面の電磁波反射角度を選べることを特徴とした電磁遮蔽部材。    5. The copper-iron alloy according to claim 4, wherein the copper-iron binary alloy is used or cobalt, nickel, manganese, chromium is added as a trace additive to the copper-iron binary alloy. Utilizing the spring property of a plate made of a binary alloy, using the restoring force as a spring, providing a number of specific or unfixed force points to plastically deform, and deforming the surface, the electromagnetic wave reflection angle of the surface The electromagnetic shielding member characterized by being able to choose. 請求項10から請求項13において、前記銅と鉄の二元合金を用いて、あるいは前記銅と鉄の二元合金に微量添加物として、コバルト、ニッケル、マンガン、クロムを加えて造られた銅鉄合金である二元合金を使用した線のバネ性を利用し、バネとしての復元力を利用して、無反射特性の波長可変を可能とした無反射壁材料。    The copper formed by adding cobalt, nickel, manganese, chromium as a trace amount additive to the binary alloy of copper and iron or the binary alloy of copper and iron according to claim 10 to claim 13. A non-reflective wall material that makes use of the spring property of a wire that uses a binary alloy, an iron alloy, and makes it possible to change the wavelength of the non-reflective property by utilizing the restoring force of the spring.
JP2005254068A 2005-08-08 2005-08-08 Electromagnetic shielding method and electromagnetic shielding member Pending JP2007049104A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005254068A JP2007049104A (en) 2005-08-08 2005-08-08 Electromagnetic shielding method and electromagnetic shielding member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005254068A JP2007049104A (en) 2005-08-08 2005-08-08 Electromagnetic shielding method and electromagnetic shielding member

Publications (1)

Publication Number Publication Date
JP2007049104A true JP2007049104A (en) 2007-02-22

Family

ID=37851654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005254068A Pending JP2007049104A (en) 2005-08-08 2005-08-08 Electromagnetic shielding method and electromagnetic shielding member

Country Status (1)

Country Link
JP (1) JP2007049104A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102729005A (en) * 2012-05-31 2012-10-17 何玉忠 Preparation method and application of metal fiber shielding felt
JP2012207246A (en) * 2011-03-29 2012-10-25 Kobe Steel Ltd Copper alloy for electromagnetic shielding material and method for producing the same
CN104943247A (en) * 2015-06-02 2015-09-30 苏州晓锋知识产权运营管理有限公司 Building interior material for electromagnetic wave shielding and preparation method of copper-iron alloy
CN105002393A (en) * 2015-07-06 2015-10-28 刘实 Manufacturing method of Fe-Cu composite metal material, Fe-Cu composite metal material and application thereof
JP2017092401A (en) * 2015-11-17 2017-05-25 星和電機株式会社 Heat conductive component
CN111893342A (en) * 2020-07-16 2020-11-06 中南大学 Preparation method of CuFe alloy composite material for electromagnetic shielding body and product thereof
WO2021200166A1 (en) * 2020-03-30 2021-10-07 ローム株式会社 Semiconductor device
KR102345560B1 (en) * 2020-07-31 2021-12-29 국방과학연구소 Radar blocking device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61187297A (en) * 1985-02-14 1986-08-20 日本ジツパ−チユ−ビング株式会社 Shielding tape and manufacture thereof
JPS63204799A (en) * 1987-02-20 1988-08-24 日本電気株式会社 Wave absorber
JPH06264196A (en) * 1993-03-15 1994-09-20 Toshiba Corp Shielding material against electromagentic wave and magnetism
JPH11274787A (en) * 1998-03-20 1999-10-08 Tdk Corp Ferrite radio wave absorber
JP2003174280A (en) * 2001-12-07 2003-06-20 Hitachi Metals Ltd Electromagnetic wave absorber, its producing method and electronic apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61187297A (en) * 1985-02-14 1986-08-20 日本ジツパ−チユ−ビング株式会社 Shielding tape and manufacture thereof
JPS63204799A (en) * 1987-02-20 1988-08-24 日本電気株式会社 Wave absorber
JPH06264196A (en) * 1993-03-15 1994-09-20 Toshiba Corp Shielding material against electromagentic wave and magnetism
JPH11274787A (en) * 1998-03-20 1999-10-08 Tdk Corp Ferrite radio wave absorber
JP2003174280A (en) * 2001-12-07 2003-06-20 Hitachi Metals Ltd Electromagnetic wave absorber, its producing method and electronic apparatus

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012207246A (en) * 2011-03-29 2012-10-25 Kobe Steel Ltd Copper alloy for electromagnetic shielding material and method for producing the same
CN102729005A (en) * 2012-05-31 2012-10-17 何玉忠 Preparation method and application of metal fiber shielding felt
CN102729005B (en) * 2012-05-31 2014-05-21 何玉忠 Preparation method and application of metal fiber shielding felt
CN104943247A (en) * 2015-06-02 2015-09-30 苏州晓锋知识产权运营管理有限公司 Building interior material for electromagnetic wave shielding and preparation method of copper-iron alloy
CN105002393A (en) * 2015-07-06 2015-10-28 刘实 Manufacturing method of Fe-Cu composite metal material, Fe-Cu composite metal material and application thereof
JP2017092401A (en) * 2015-11-17 2017-05-25 星和電機株式会社 Heat conductive component
WO2021200166A1 (en) * 2020-03-30 2021-10-07 ローム株式会社 Semiconductor device
CN111893342A (en) * 2020-07-16 2020-11-06 中南大学 Preparation method of CuFe alloy composite material for electromagnetic shielding body and product thereof
KR102345560B1 (en) * 2020-07-31 2021-12-29 국방과학연구소 Radar blocking device

Similar Documents

Publication Publication Date Title
JP2007049104A (en) Electromagnetic shielding method and electromagnetic shielding member
JP2005514797A (en) Wall member for magnetic shield room and magnetic shield room
JP6595450B2 (en) Electromagnetic confinement
JP2007295558A (en) Antenna transmission improving sheet body and electronic apparatus
US10631446B2 (en) Electromagnetic wave absorber and electronic device
KR101878353B1 (en) Wireless Power Transmitters and Wireless Charging Device having the Same
KR101095489B1 (en) Plate of shield can for smd process, manufacturing method for the plate and shield can using the plate
KR102359198B1 (en) noise suppression assembly
Qin et al. Experimental investigation of the potentials modified by radio frequency sheaths during ion cyclotron range of frequency on EAST
CN103929933A (en) Structure for inhibition of electromagnetic wave interference and flexible printed circuit comprising same
JP2010206182A (en) Electromagnetic shielding sheet
TW201043130A (en) Radiation level reducing device
JP2017212239A (en) Electromagnetic shield material and method of manufacturing electromagnetic shield material
CN112740848B (en) Magnetic shield
CN219916744U (en) Shielding wire and electronic product
US20080233426A1 (en) Steel sheeting for use in room size radio frequency shielded enclosures and method for making improved steel sheeting
WO2009088380A1 (en) Fabric that has the property of shielding electromagnetic fields
JPH1126977A (en) Sheet for absorbing electromagnetic wave
JP5930400B2 (en) Open magnetic shield structure with conductor circuit
JPH1126981A (en) Shield member
Raj et al. Analysis of reflectivity and shielding effectiveness of absorbing material–conductor laminate for electromagnetic compatibility
CN104754927A (en) Electromagnetic field shielding case
JP4543864B2 (en) Heat dissipation component and manufacturing method thereof
RU2646439C1 (en) Multilayer electromagnetic screen
CN109067010B (en) Double-frequency near-zero magnetic permeability shielding electromagnetic metamaterial and application thereof

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080214

A521 Written amendment

Effective date: 20080428

Free format text: JAPANESE INTERMEDIATE CODE: A523

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080730

A977 Report on retrieval

Effective date: 20100927

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A02 Decision of refusal

Effective date: 20110405

Free format text: JAPANESE INTERMEDIATE CODE: A02